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Abstract—Neutrosophic sets (NSs), as a new mathematical tool for dealing with

problems involving incomplete, indeterminant and inconsistent knowledge, were proposed

by Smarandache. By simplifying NSs, Wang et al. proposed the concept of single val-

ued neutrosophic sets (SVNSs) and studied some properties of SVNSs. In this paper,

we mainly investigate the topological structures of single valued neutrosophic rough sets

which is constructed by combining SVNSs and rough sets. Firstly, we introduce the con-

cept of single valued neutrosophic topological spaces. Then, we discuss the relationships

between single valued neutrosophic approximation spaces and single valued neutrosophic

topological spaces. Concretely, a reflexive and transitive single valued neutrosophic rela-

tion can induce a single valued neutrosophic topological space such that its single valued

neutrosophic interior and closure operators are the lower and upper approximation opera-

tors induced by this single valued neutrosophic relation, respectively. Conversely, a single

valued neutrosophic interior (closure, respectively) operator derived from a single valued

neutrosophic topological space is just the single valued neutrosophic lower (upper, respec-

tively) approximation operator derived from a single valued neutrosophic approximation

space under some conditions. Finally, we show there exists a one-to-one correspondence

between the set of all reflexive and transitive single valued neutrosophic relations and the

set of all single valued neutrosophic rough topologies.

Keywords—Neutrosophic sets; Single valued neutrosophic sets; Single valued neutro-

sophic rough sets; Single valued neutrosophic topological spaces

1 Introduction

Rough set theory, initiated by Pawlak [15, 16], is an effective mathematical tool for

the study of intelligent systems characterized by insufficient and incomplete information.

∗Corresponding author. E-mail address: yanghailong@snnu.edu.cn (H.-L. Yang).
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Pawlak rough set model is established based on an equivalence relation. In the real appli-

cation, the equivalence relation is a very stringent condition which limits the applications

of rough sets in real world. For this reason, by replacing the equivalence relation with

covering, similarity relation, tolerance relation, fuzzy relation, etc, different kinds of gen-

eralizations of Pawlak rough set model were proposed [3, 5, 9, 11, 19, 20, 23, 30, 31, 32, 33].

Rough set theory has been successfully applied to many fields, such as machine learning,

knowledge acquisition, and decision analysis, etc.

Smarandache [21, 22] introduced the concept of NSs which consists of three member-

ship functions (truth membership function, indeterminacy membership function and fal-

sity membership function), where every function value is a real standard or non-standard

subset of the nonstandard unit interval ]0−, 1+[. The NS generalizes the concepts of the

classical set, fuzzy set [37], interval-valued fuzzy set [24], intuitionistic fuzzy set [1] and

interval-valued intuitionistic fuzzy set [2]. Wang et al. [25] proposed SVNSs by simplifying

NSs. SVNSs can also be looked as an extension of intuitionistic fuzzy sets [1], in which

three membership functions are unrelated and their function values belong to the unit

closed interval. Many researchers have studied the theory and applications of SVNSs.

Ye [34, 35] proposed decision making based on correlation coefficients and weighted cor-

relation coefficient of SVNSs, and gave the application of proposed methods. Majumdar

and Samant [13] studied distance, similarity and entropy of SVNSs from a theoretical as-

pect. Yang et al. [29] proposed SVNRs and studied some kinds of kernels and closures of

SVNRs. Broumi and Smarandance [6] proposed single valued neutrosophic information

systems based on rough set theory to exploit simultaneously the advantages of SVNSs

and rough sets. They studied rough approximation of a SVNS in the single valued neu-

trosophic information systems and investigated the knowledge reduction and extension of

the single valued neutrosophic information systems. Yang et al. [28] proposed single val-

ued neutrosophic rough sets by combining SVNSs and rough sets, and explored a general

framework of the study of single valued neutrosophic rough sets.

Topological structures and properties [10] of rough sets are important research issues

for the study of rough sets. Many researchers have addressed the issues [4, 7, 8, 12,

14, 17, 18, 26, 27]. Wiweger [26] and Chuchro [7, 8] established the relationships be-

tween crisp rough sets and crisp topological spaces. Boixader et al. [4] investigated the

connection between fuzzy rough sets and fuzzy topological spaces. Qin et al. [17, 18]
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discussed topological structures of fuzzy rough sets. Wu and Zhou [27] generalized the

results to IF rough sets and established relationships between IF rough approximations

and IF topologies. Ma and Hu [14] studied topological and lattice structures of L-fuzzy

rough sets determined by lower and upper sets. Li and Cui [12] studied similarity of

fuzzy relations which is based on fuzzy topologies induced by fuzzy rough approxima-

tion operators. Zhang et al. [38] discussed the topological structures of interval-valued

hesitant fuzzy rough set and its application. Along this line, in the present paper, we

shall study topological structures of single valued neutrosophic rough sets and establish

the relationships between the single valued neutrosophic approximation spaces and single

valued neutrosophic topological spaces.

The rest of this paper is organized as follows. In the next section, we recall some basic

notions on Pawlak rough sets, NSs, SVNSs and single valued neutrosophic rough sets. In

Section 3, we give notions of single valued neutrosophic topology and its interior operation

and closure operation. Some related properties are also studied. Section 4 investigates the

relationships between single valued neutrosophic approximation spaces and single valued

neutrosophic topology spaces. The last section summarizes the conclusion.

2 Preliminaries

In this section, we recall some basic notions and results which will be used in the

paper.

2.1. Pawlak rough sets

Definition 2.1([15, 16]). Let U be a nonempty finite universe and R be an equivalence

relation in U . (U,R) is called a Pawlak approximation space. ∀X ⊆ U , the lower

and upper approximations of X, denoted by R(X) and R(X), are defined as follows,

respectively:

R(X) = {x ∈ U | [x]R ⊆ X},

R(X) = {x ∈ U | [x]R ∩X ̸= ∅},

where [x]R = {y ∈ U | (x, y) ∈ R}. R and R are called as lower and upper approximation

operators, respectively. The pair (R(X), R(X)) is called a Pawlak rough set.

2.2. NSs and SVNSs
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Definition 2.2([21]). Let U be a space of points (objects), with a generic element

in U denoted by x. A NS Ã in U is characterized by three membership functions, a

truth-membership function TÃ, an indeterminacy membership function IÃ and a falsity-

membership function FÃ, where ∀x ∈ U , TÃ(x), IÃ(x) and FÃ(x) are real standard or

non-standard subsets of ]0−, 1+[.

There is no restriction on the sum of TÃ(x), IÃ(x) and FÃ(x), thus 0
− ≤ sup TÃ(x)+

sup IÃ(x)+ sup FÃ(x) ≤ 3+.

Definition 2.3([25]). Let U be a space of points (objects), with a generic element in

U denoted by x. A SVNS Ã in U is characterized by three membership functions, a

truth-membership function TÃ, an indeterminacy membership function IÃ, and a falsity-

membership function FÃ, where ∀x ∈ U , TÃ(x), IÃ(x), FÃ(x) ∈ [0, 1].

The SVNS Ã can be denoted by Ã= {⟨x, TÃ(x), IÃ(x), FÃ(x)⟩ | x ∈ U} or Ã=

(TÃ, IÃ, FÃ). ∀x ∈ U , Ã(x) = (TÃ(x), IÃ(x), FÃ(x)), and (TÃ(x), IÃ(x), FÃ(x)) is called a

single valued neutrosophic number.

In this paper, SVNS(U) will denote the family of all SVNSs in U . Let Ã be a SVNS

in U . If ∀x ∈ U , TÃ(x) = 0 and IÃ(x) = FÃ(x) = 1, then Ã is called an empty SVNS,

denoted by ∅̃. If ∀x ∈ U , TÃ(x) = 1, and IÃ(x) = FÃ(x) = 0, then Ã is called a full

SVNS, denoted by Ũ . ∀α1, α2, α3 ∈ [0, 1], ̂α1, α2, α3 denotes a constant SVNS satisfying,

T ̂α1,α2,α3
(x) = α1, I ̂α1,α2,α3

(x) = α2, F ̂α1,α2,α3
(x) = α3.

For any y ∈ U , a single valued neutrosophic singleton set 1y and its complement 1U−{y}

are, defined as: ∀x ∈ U ,

T1y(x) =

{
1, x = y
0, x ̸= y

, I1y(x) = F1y(x) =

{
0, x = y
1, x ̸= y

;

T1U−{y}(x) =

{
0, x = y
1, x ̸= y

, I1U−{y}(x) = F1U−{y}(x) =

{
1, x = y
0, x ̸= y

.

Definition 2.4([36]). Let Ã and B̃ be two SVNSs in U . If for any x ∈ U , TÃ(x) ≤ TB̃(x),

IÃ(x) ≥ IB̃(x) and FÃ(x) ≥ FB̃(x), then we called Ã is contained in B̃, i.e. Ã b B̃.

If Ã b B̃ and B̃ b Ã, then we called Ã is equal to B̃, denoted by Ã = B̃.

Definition 2.5([25]). Let Ã be a SVNS in U . The complement of Ã is denoted by Ãc,

where ∀x ∈ U , TÃc(x) = FÃ(x), IÃc(x) = 1− IÃ(x), and FÃc(x) = TÃ(x).

Definition 2.6([29]). Let Ã and B̃ be two SVNSs in U .

(1) The union of Ã and B̃ is a SVNS C̃, denoted by C̃ = Ã d B̃, where ∀x ∈ U ,
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TC̃(x) = TÃ(x) ∨ TB̃(x), IC̃(x) = IÃ(x) ∧ IB̃(x) and FC̃(x) = FÃ(x) ∧ FB̃(x);

(2) The intersection of Ã and B̃ is a SVNS D̃, denoted by D̃ = Ã e B̃, where ∀x ∈ U ,

TD̃(x) = TÃ(x) ∧ TB̃(x), ID̃(x) = IÃ(x) ∨ IB̃(x) and FD̃(x) = FÃ(x) ∨ FB̃(x),

where “ ∨ ” and “ ∧ ” denote maximum and minimum, respectively.

It is easy to verify that the union and intersection of SVNSs satisfy commutative law,

associative law, and distributive law.

Proposition 2.7([28]). Let Ã and B̃ be two SVNSs in U . The following results hold:

(1) Ã b Ã d B̃ and B̃ b Ã d B̃,

(2) Ã e B̃ b Ã and Ã e B̃ b B̃,

(3) (Ãc)c = Ã,

(4) (Ã d B̃)c = Ãc e B̃c,

(5) (Ã e B̃)c = Ãc d B̃c.

2.3. Single valued neutrosophic rough sets

Definition 2.8([28]). A SVNS R̃ in U ×U is called a single valued neutrosophic relation

(SVNR) in U , denoted by R̃= {⟨(x, y), TR̃(x, y), IR̃(x, y), FR̃(x, y)⟩ | (x, y) ∈ U × U},

where TR̃ : U × U −→ [0, 1], IR̃ : U × U −→ [0, 1], and FR̃ : U × U −→ [0, 1] denote the

truth-membership function, indeterminacy membership function, and falsity-membership

function of R̃, respectively.

Let R̃ be a SVNR in U , the complement R̃c of R̃ is defined as follows

R̃c = {⟨(x, y), TR̃c(x, y), IR̃c(x, y), FR̃c(x, y)⟩ | (x, y) ∈ U × U},

where ∀(x, y) ∈ U × U , TR̃c(x, y) = FR̃(x, y), IR̃c(x, y) = 1 − IR̃(x, y) and FR̃c(x, y) =

TR̃(x, y).

Definition 2.9([28]). Let R̃ be a SVNR in U . If ∀x ∈ U , TR̃(x, x) = 1 and IR̃(x, x) =

FR̃(x, x) = 0, then R̃ is called a reflexive SVNR. If ∀x, y ∈ U , TR̃(x, y) = TR̃(y, x),

IR̃(x, y) = IR̃(y, x) and FR̃(x, y) = FR̃(y, x), then R̃ is called a symmetric SVNR. If

∀x ∈ U ,
∨

y∈U TR̃(x, y) = 1 and
∧

y∈U IR̃(x, y) =
∧

y∈U FR̃(x, y) = 0, then R̃ is called a seri-

al SVNR. If ∀x, y, z ∈ U ,
∨

y∈U(TR̃(x, y)∧TR̃(y, z)) ≤ TR̃(x, z),
∧

y∈U(IR̃(x, y)∨IR̃(y, z)) ≥

IR̃(x, z) and
∧

y∈U(FR̃(x, y) ∨ FR̃(y, z)) ≥ FR̃(x, z), then R̃ is called a transitive SVNR,

where “ ∨ ” and “ ∧ ” denote maximum and minimum, respectively.
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Definition 2.10([28]). Let R̃ be a SVNR in U , the tuple (U, R̃) is called a single valued

neutrosophic approximation space. ∀Ã ∈ SVNS(U), the lower and upper approximation-

s of Ã w.r.t. (U, R̃), denoted by R̃(Ã) and R̃(Ã), are two SVNSs whose membership

functions are defined as: ∀x ∈ U ,

TR̃(Ã)(x) =
∧

y∈U(FR̃(x, y) ∨ TÃ(y)),

IR̃(Ã)(x) =
∨

y∈U((1− IR̃(x, y)) ∧ IÃ(y)),

FR̃(Ã)(x) =
∨

y∈U(TR̃(x, y) ∧ FÃ(y));

T
R̃(Ã)

(x) =
∨

y∈U(TR̃(x, y) ∧ TÃ(y)),

I
R̃(Ã)

(x) =
∧

y∈U(IR̃(x, y) ∨ IÃ(y)),

F
R̃(Ã)

(x) =
∧

y∈U(FR̃(x, y) ∨ FÃ(y)).

The pair (R̃(Ã), R̃(Ã)) is called the single valued neutrosophic rough set of Ã w.r.t. (U, R̃).

R̃ and R̃ are referred to as the single valued neutrosophic lower and upper approximation

operators, respectively.

Yang et al. [28] studied the properties of single valued neutrosophic lower and upper

approximation operators as follows.

Proposition 2.11([28]). Let (U, R̃) be a single valued neutrosophic approximation s-

pace. The single valued neutrosophic lower and upper approximation operators have the

following properties: ∀Ã, B̃ ∈ SVNS(U), ∀α1, α2, α3 ∈ [0, 1],

(1) R̃(Ũ) = Ũ , R̃(∅̃) = ∅̃;

(2) If Ã b B̃, then R̃(Ã) b R̃(B̃) and R̃(Ã) b R̃(B̃);

(3) R̃(Ã e B̃) = R̃(Ã) e R̃(B̃), R̃(Ã d B̃) = R̃(Ã) d R̃(B̃);

(4) R̃(Ã d B̃) c R̃(Ã) d R̃(B̃), R̃(Ã e B̃) b R̃(Ã) e R̃(B̃);

(5) R̃(Ãc) = (R̃(Ã))c, R̃(Ãc) = (R̃(Ã))c;

(6) R̃(A d ̂α1, α2, α3) = R̃(Ã) d ̂α1, α2, α3, R̃(A e ̂α1, α2, α3) = R̃(Ã) e ̂α1, α2, α3;

(7) R̃( ̂α1, α2, α3) = ̂α1, α2, α3 ⇐⇒ R̃(∅̃) = ∅̃,

R̃( ̂α1, α2, α3) = ̂α1, α2, α3 ⇐⇒ R̃(Ũ) = Ũ .

Proposition 2.12([28]). Let (U, R̃) be a single valued neutrosophic approximation space.

R̃ and R̃ are the lower and upper approximation operators, then we have

(1) R̃ is serial ⇐⇒ R̃( ̂α1, α2, α3) = ̂α1, α2, α3, ∀α1, α2, α3 ∈ [0, 1],

⇐⇒ R̃(∅̃) = ∅̃,

⇐⇒ R̃( ̂α1, α2, α3) = ̂α1, α2, α3, ∀α1, α2, α3 ∈ [0, 1],
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⇐⇒ R̃(Ũ) = Ũ ;

(2) R̃ is reflexive ⇐⇒ R̃(Ã) b Ã, ∀Ã ∈ SVNS(U),

⇐⇒ Ã b R̃(Ã), ∀Ã ∈ SVNS(U);

(3) R̃ is symmetric ⇐⇒ R̃(1U−{x})(y) = R̃(1U−{y})(x), ∀x, y ∈ U ,

⇐⇒ R̃(1x)(y) = R̃(1y)(x), ∀x, y ∈ U ;

(4) R̃ is transitive ⇐⇒ R̃(Ã) b R̃(R̃(Ã)), ∀Ã ∈ SVNS(U),

⇐⇒ R̃(R̃(Ã)) b R̃(Ã), ∀Ã ∈ SVNS(U).

3 Single valued neutrosophic topological spaces

In this section, we will introduce the concept of single valued neutrosophic topological

spaces and basis concepts related to single valued neutrosophic topological spaces.

We first introduce the concept of single valued neutrosophic topology as follows.

Definition 3.1. A single valued neutrosophic topology on a nonempty set U is a family

τ of SVNSs in U that satisfies the following conditions:

(T1) ∅̃, Ũ ∈ τ,

(T2) Ã e B̃ ∈ τ for any Ã, B̃ ∈ τ,

(T3) di∈IÃi ∈ τ for any Ãi ∈ τ , i ∈ I, I is an index set.

The pair (U, τ) is called a single valued neutrosophic topological space and each SVNS Ã

in τ is referred to as a single valued neutrosophic open set in (U, τ). The complement of a

single valued neutrosophic open set in (U, τ) is called a single valued neutrosophic closed

set in (U, τ).

Example 3.2. Let U = {x1, x2}. Ã, B̃, C̃, D̃ are four SVNSs in U defined as follows:

Ã = {⟨x1, 0.2, 0.8, 0.1⟩, ⟨x2, 1, 0.3, 0.1⟩},

B̃ = {⟨x1, 0.2, 0.8, 0.6⟩, ⟨x2, 0.5, 0.4, 1⟩},

C̃ = {⟨x1, 0.3, 0.7, 0.1⟩, ⟨x2, 1, 0.2, 0.1⟩},

D̃ = {⟨x1, 0.1, 0.9, 0.8⟩, ⟨x2, 0.4, 0.5, 1⟩}.

By Definitions 2.6 and 3.1, τ= {∅̃, Ũ , Ã, B̃, C̃, D̃} is a single valued neutrosophic topology

on U and (U, τ) is a single valued neutrosophic topological space.
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Now, we define the single valued neutrosophic interior and closure operators in a single

valued neutrosophic topological space.

Definition 3.3. Let (U, τ) be a single valued neutrosophic topological space. For any

Ã ∈ SVNS(U), the single valued neutrosophic interior and closure of Ã are defined as

follows:

int(Ã) = d{M̃ |M̃ ∈ τ and M̃ b Ã},

cl(Ã) = e{Ñ |Ñ c ∈ τ and Ã b Ñ},

where int and cl: SVNS(U) −→ SVNS(U) are called the single valued neutrosophic

interior and closure operators of τ , respectively.

Next, we discuss the properties of the single valued neutrosophic interior and closure

operators.

Theorem 3.4. Let (U, τ) be a single valued neutrosophic topological space. For any Ã ∈

SVNS(U), we have

(1) Ã is a single valued neutrosophic open set in (U, τ) iff int(Ã) = Ã;

(2) Ã is a single valued neutrosophic closed set in (U, τ) iff cl(Ã) = Ã.

Proof. It is straightforward from Definition 3.3.

Theorem 3.5. Let (U, τ) be a single valued neutrosophic topological space. For any

Ã, B̃ ∈ SVNS(U), the following results hold:

(Int0) (int(Ã))c = cl(Ãc);

(Cl0) (cl(Ã))c = int(Ãc);

(Int1) int(Ũ) = Ũ , int(∅̃) = ∅̃;

(Cl1) cl(Ũ) = Ũ , cl(∅̃) = ∅̃;

(Int2) int(Ã) b Ã;

(Cl2) Ã b cl(Ã);

(Int3) int(int(Ã)) = int(Ã);

(Cl3) cl(cl(Ã)) = cl(Ã);

(Int4) int(Ã e B̃) = int(Ã) e int(B̃);

(Cl4) cl(Ã d B̃) = cl(Ã) d cl(B̃);

(Int5) If Ã b B̃, then int(Ã) b int(B̃);

(Cl5) If Ã b B̃, then cl(Ã) b cl(B̃).
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Proof. We only prove (Int0) and (Int4). For any Ã, B̃ ∈ SVNS(U), by Definition 3.3 and

Proposition 2.7, we have

(Int0) (int(Ã))c = (d{M̃ | M̃ ∈ τ and M̃ b Ã})c

= e{M̃ c | M̃ ∈ τ and M̃ b Ã}

= e{Ñ | Ñ c ∈ τ and Ñ c b Ã}

= e{Ñ | Ñ c ∈ τ and Ãc b Ñ}

= cl(Ãc);

(Int4) int(Ã e B̃) = d{M̃ | M̃ ∈ τ and M̃ b (Ã e B̃)}

= d{M̃ | M̃ ∈ τ and M̃ b Ã and M̃ b B̃}

= (d{M̃ | M̃ ∈ τ and M̃ b Ã}) e (d{M̃ | M̃ ∈ τ and M̃ b B̃})

= int(Ã) e int(B̃).

The following Theorem 3.6 shows that under some conditions, a single valued neu-

trosophic operator is the single valued neutrosophic interior operator (the single valued

neutrosophic closure operator) of a certain topology.

Theorem 3.6. (1) If a single valued neutrosophic operator int : SVNS(U) −→ SVNS(U)

satisfies the properties (Int1)–(Int4), then there exists a single valued neutrosophic topol-

ogy τ int on U such that intτint
= int.

(2) If a single valued neutrosophic operator cl: SVNS(U) −→ SVNS(U) satisfies the

properties (Cl1)–(Cl4), then there exists a single valued neutrosophic topology τ cl on U

such that clτcl = cl.

Proof. (1) Define τ int= {Ã ∈ SVNS(U) | int(Ã) = Ã}. Next, we show τ int satisfies

(T1)–(T3).

(T1) By (Int1), ∅̃, Ũ ∈ τ int.

(T2) For any Ã, B̃ ∈ τ int, int(Ã) = Ã and int(B̃) = B̃. By (Int4), we have int(ÃeB̃) =

int(Ã) e int(B̃) = Ã e B̃. So Ã e B̃ ∈ τ int.

(T3) Suppose that Ãi ∈ τ int, then int(Ãi) = Ãi for any i ∈ I. By (Int2), we have

int(di∈IÃi) b di∈IÃi.

Conversely, int(Ãi) b di∈Iint(Ãi). By (Int3) and (Int5), we have int(di∈Iint(Ãi)) c
int(int(Ãi)) = int(Ãi) for any i ∈ I. Thus int(di∈Iint(Ãi)) c di∈Iint(Ãi). Since

int(Ãi) = Ãi, we have int(di∈IÃi) c di∈IÃi.

Thus int(di∈I(Ãi)) = di∈IÃi. So di∈I(Ãi) ∈ τ int.
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Hence τ int is a single valued neutrosophic topology on U . It is obvious that intτint
=

int.

(2) Define τ cl ={Ã ∈ SVNS(U) | cl(Ãc) = Ãc}. Next, we show τ cl satisfies (T1)–(T3).

(T1) By Definition 2.5, we have ∅̃c = Ũ and Ũ c = ∅̃. Then by (Cl1), cl(∅̃c) = cl(Ũ) =

Ũ = ∅̃c and cl(Ũ c) = cl(∅̃) = ∅̃ = Ũ c, which means that ∅̃, Ũ ∈ τ cl.

(T2) For any Ã, B̃ ∈ τ cl, cl(Ã
c) = Ãc and cl(B̃c) = B̃c. By Proposition 2.7 and (Cl4),

we have cl((ÃeB̃)c) = cl(ÃcdB̃c) = cl(Ãc)dcl(B̃c) = ÃcdB̃c = (ÃeB̃)c. So ÃeB̃ ∈ τ cl.

(T3) Suppose that Ãi ∈ τ cl, then cl(Ãi
c) = Ãi

c for any i ∈ I. By (Cl2), we have

(di∈IÃi)
c b cl((di∈IÃi)

c).

Conversely, by (Cl5), we have cl((di∈IÃi)
c) = cl(ei∈IÃi

c) b cl(Ãi
c) for any i ∈ I.

Thus cl((di∈IÃi)
c) b ei∈Icl(Ãi

c) = ei∈IÃi
c = (di∈IÃi)

c.

Thus cl((di∈IÃi)
c) = (di∈IÃi)

c. So di∈IÃi ∈ τ cl.

Hence τ cl is a single valued neutrosophic topology on U . It is obvious that clτcl = cl.

Theorem 3.7. (1) Let int : SVNS(U) −→ SVNS(U) be a single valued neutrosophic

operator satisfying the properties (Int1)–(Int4). Define

τ
′
int = {int(Ã) | Ã ∈ SVNS(U)},

then τ
′
int =τ int.

(2) Let cl : SVNS(U) −→ SVNS(U) be a single valued neutrosophic operator satisfying

the properties (Cl1)–(Cl4). Define

τ
′

cl = {(cl(Ã))c | Ã ∈ SVNS(U)},

then τ
′

cl =τ cl.

Proof. (1) Obviously, τ int = {Ã ∈ SVNS(U) | int(Ã) = Ã} b τ
′
int. Conversely, for any

Ã ∈ SVNS(U), by (Int3), int(int(Ã)) = int(Ã), from which we have int(Ã) ∈ τ int. Hence

τ
′
int b τ int. So τ

′
int = τ int.

(2) For any Ã ∈ SVNS(U), (cl(Ã))c ∈ τ
′

cl, we have cl(((cl(Ã))c)c) = cl(cl(Ã)) =

cl(Ã) = ((cl(Ã))c)c, which means that (cl(Ã))c ∈ τ cl. Then τ
′

cl b τcl. Conversely, for any

Ã ∈ τ cl, Ã = (cl(Ãc))c. Since Ãc ∈ SVNS(U), we have Ã = (cl(Ãc))c ∈ τ
′

cl, which means

that τ cl b τ
′

cl. So τ cl = τ
′

cl.

Theorem 3.8. Let int : SVNS(U) −→ SVNS(U) be a single valued neutrosophic operator

satisfying the properties (Int0)–(Int4) and cl : SVNS(U) −→ SVNS(U) be a single valued

neutrosophic operator satisfying the properties (Cl0)–(Cl4). Then the following result
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holds:

τ
′
int = τ int = τ

′

cl = τ cl.

Proof. By Theorem 3.7, we have τ
′
int = τ int and τ

′

cl = τ cl. Thus, we only need to prove

that τ
′
int = τ

′

cl.

By (Int0) and (Cl0), we have

τ
′
int = {int(Ã) | Ã ∈ SVNS(U)}

= {(cl(Ãc))c | Ã ∈ SVNS(U)}

= {(cl(Ã))c | Ãc ∈ SVNS(U)}

= {(cl(Ã))c | Ã ∈ SVNS(U)}

= τ
′

cl.

4 Relationships between single valued neutrosoph-

ic approximation spaces and single valued neutro-

sophic topological spaces

In this section, we will discuss the relationships between single valued neutrosophic

approximation spaces and single valued neutrosophic topological spaces.

4.1. F rom single valued neutrosophic approximation spaces to single valued neutrosophic

topological spaces

Let (U, R̃) be a single valued neutrosophic approximation space. Define

τ R̃ = {Ã ∈ SVNS(U) | R̃(Ã) = Ã} (1)

The following Theorem 4.1 shows that, by Equation (1), a reflexive SVNR R̃ in U can

induce a single valued neutrosophic topology τ R̃ on U .

Theorem 4.1. If R̃ is a reflexive SVNR in U , then τ R̃ is a single valued neutrosophic

topology on U .

Proof. We verify τ R̃ satisfies (T1)–(T3).

(T1) Since R̃ is a reflexive relation, R̃ is serial. By Propositions 2.11 and 2.12, we have

R̃(∅̃) = (∅̃) and R̃(Ũ) = (Ũ). Hence ∅̃, Ũ ∈ τ R̃.

(T2) According to the definition of τ R̃, for any Ã, B̃ ∈ τ R̃, we have R̃(Ã) = Ã and

R̃(B̃) = B̃. By Proposition 2.11, we have R̃(Ã e B̃) = R̃(Ã) e R̃(B̃) = Ã e B̃, which

implies that Ã e B̃ ∈ τ R̃.
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Table 1: SVNR R̃

R̃ x1 x2 x3

x1 (0,0,1) (0.3,0.1,0.6) (1,0,0.4)
x2 (0,0.2,0.4) (0.6,0.5,1) (0.6,0,1)
x3 (1,0,1) (1,0.5,1) (1,0,0)

(T3) For any Ãi ∈ τ R̃, we have R̃(Ãi) = Ãi for any i ∈ I. By Proposition 2.12 and

the reflexivity of R̃, we have R̃(di∈IÃi) b di∈IÃi. Conversely, by Proposition 2.11, Ãi =

R̃(Ãi) b R̃(di∈IÃi), which implies that di∈IÃi b R̃(di∈IÃi). Thus di∈IÃi = R̃(di∈IÃi)

and di∈IÃi ∈ τ R̃.

So τ R̃ is a single valued neutrosophic topology on U .

Remark 4.2. If the SVNR R̃ is not reflexive, then τ R̃ defined by Equations (1) may not

be a single valued neutrosophic topology, as shown in the following example.

Example 4.3. Let (U, R̃) be a single valued neutrosophic approximation space, where

U = {x1, x2, x3} and R̃ ∈ SVNR(U × U) is given in Table 1.

Obviously, R̃ is not reflexive. According to Definition 2.10, we have

T
R̃(∅̃)(x1) =

∧
y∈U(FR̃(x1, y) ∨ T∅̃(y)) = 0.4,

I
R̃(∅̃)(x1) =

∨
y∈U((1− IR̃(x1, y)) ∧ I∅̃(y)) = 1,

F
R̃(∅̃)(x1) =

∨
y∈U(TR̃(x1, y) ∧ F∅̃(y)) = 1,

T
R̃(Ũ)

(x1) =
∨

y∈U(TR̃(x1, y) ∧ TŨ(y)) = 1,

I
R̃(Ũ)

(x1) =
∧

y∈U(IR̃(x1, y) ∨ IŨ(y)) = 0,

F
R̃(Ũ)

(x1) =
∧

y∈U(FR̃(x1, y) ∨ FŨ(y)) = 0.4.

Hence R̃(∅̃)(x1) = (0.4, 1, 1). Similarly, we can obtain R̃(∅̃)(x2) = (0.4, 1, 0.6) and

R̃(∅̃)(x3) = (0, 1, 1). Thus R̃(∅̃) = {⟨x1, 0.4, 1, 1⟩, ⟨x2, 0.4, 1, 0.6⟩, ⟨x3, 0, 1, 1⟩} ̸= ∅̃, which

means that ∅̃ /∈ τR̃. So τ R̃ do not form a single valued neutrosophic topology.

Lemma 4.4. If R̃ is a reflexive and transitive SVNR in U , for any Ã ∈ SVNS(U), we

have

R̃(R̃(Ã)) = R̃(Ã),

R̃(R̃(Ã)) = R̃(Ã).

Proof. It can be easily verified by Proposition 2.12.
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Theorem 4.5. Then the following conclusions hold:

(1) If R̃ is a reflexive and transitive SVNR in U , then τ R̃ = {R̃(Ã) | Ã ∈ SVNS(U)};

(2) τ R̃ = {Ã ∈ SVNS(U) | R̃(Ãc) = Ãc}.

Proof. (1) It is obvious that τ R̃ b {R̃(Ã) | Ã ∈ SVNS(U)}. By Lemma 4.4, for any Ã ∈

SVNS(U), we have R̃(R̃(Ã)) = R̃(Ã), which implies that R̃(Ã) ∈ τ R̃ and {R̃(Ã) | Ã ∈

SVNS(U)} b τR̃. So τ R̃ = {R̃(Ã) | Ã ∈ SVNS(U)}.

(2) It follows immediately from the duality of R̃ and R̃.

The above Theorem 4.5 (1) states a reflexive and transitive single valued neutrosophic

relation can generate a single valued neutrosophic topology and this topology is just the

family of all single valued neutrosophic lower approximations induced by the given single

valued neutrosophic relation.

Proposition 4.6. Let I be an index set, and Ãi ∈ SVNS(U) for any i ∈ I. If R̃ is a

reflexive and transitive SVNR in U , then R̃(di∈IR̃(Ãi)) = di∈IR̃(Ãi).

Proof. By the reflexivity of R̃, we have R̃(di∈IR̃(Ãi)) b di∈IR̃(Ãi).

On the other hand, since di∈IR̃(Ãi) c R̃(Ãi), R̃(di∈IR̃(Ãi)) c R̃(R̃(Ãi)). By Lemma

4.4, we have R̃(di∈IR̃(Ãi)) c R̃(Ãi), which means that R̃(di∈IR̃(Ãi)) c di∈IR̃(Ãi).

Thus R̃(di∈IR̃(Ãi)) = di∈IR̃(Ãi).

The following Theorem 4.7 shows that the single valued neutrosophic lower and upper

approximation operators are the interior and closure operators of a single valued topolog-

ical space induced by a reflexive and transitive SVNR, respectively.

Theorem 4.7. Let (U, τ R̃) be a single valued neutrosophic topological space induced by

a reflexive and transitive SVNR w.r.t. (U, R̃), i.e., τ R̃ = {R̃(Ã) | Ã ∈ SVNS(U)}, then

∀Ã ∈ SVNS(U),

(1) R̃(Ã) = intτ
R̃
(A)

= d{R̃(B̃) | R̃(B̃) b Ã, B̃ ∈ SVNS(U)},

(2) R̃(Ã) = clτ
R̃
(Ã)

= e{(R̃(B̃))c | (R̃(B̃))c c Ã, B̃ ∈ SVNS(U)}

= e{R̃(B̃c) | R̃(B̃c) c Ã, B̃ ∈ SVNS(U)}.

Proof. (1) By reflexivity of R̃ and Proposition 2.12, we have R̃(Ã) b Ã. So R̃(Ã) b
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d{R̃(B̃) | R̃(B̃) b Ã, B̃ ∈ SVNS(U)}. On the other hand, we have d{R̃(B̃) | R̃(B̃) b
Ã, B̃ ∈ SVNS(U)} b Ã, from which it follows that R̃(d{R̃(B̃) | R̃(B̃) b Ã, B̃ ∈

SVNS(U)}) b R̃(Ã). By Proposition 4.6, d{R̃(B̃) | R̃(B̃) b Ã, B̃ ∈ SVNS(U)} =

R̃(d{R̃(B̃) | R̃(B̃)) b R̃(Ã). Hence we can conclude that R̃(Ã) = d{R̃(B̃) | R̃(B̃) b
Ã, B̃ ∈ SVNS(U)}.

(2) It follows immediately from the duality of R̃ and R̃.

Proposition 4.8. Let R̃ ∈ SVNR(U × U), then ∀x, y ∈ U , we have

R̃(1y)(x) = (1, 0, 0) and R̃(1y)(x) = R̃(x, y).

Proof. It can easily be verified by Definition 2.10.

Theorem 4.9. Let (U, R̃) be a single valued neutrosophic approximation space and

(U, τ R̃) be a single valued neutrosophic topological space induced by (U, R̃), where R̃ is a

reflexive and transitive SVNR in U , then

R̃ = {⟨(x, y), TR̃(x, y), IR̃(x, y), FR̃(x, y)⟩ | (x, y) ∈ U × U},

where ∀x, y ∈ U , TR̃(x, y) =
∧

B̃∈(y)τ
R̃

TB̃(x), IR̃(x, y) =
∨

B̃∈(y)τ
R̃

IB̃(x), FR̃(x, y) =∨
B̃∈(y)τ

R̃

FB̃(x) and (y)τ
R̃
= {B̃ ∈SVNS(U) | B̃c ∈ τ R̃, TB̃(y) = 1, IB̃(y) = 0, FB̃(y) = 0}.

Proof. For any x, y ∈ U , by Theorem 4.7, we have R̃(1y) = clτ
R̃
(1y). Moreover, by Propo-

sition 4.8, we have TR̃(x, y) = T
R̃(1y)

(x) = Tclτ
R̃
(1y)(x), IR̃(x, y) = I

R̃(1y)
(x) = Iclτ

R̃
(1y)(x)

and FR̃(x, y) = F
R̃(1y)

(x) = Fclτ
R̃
(1y)(x).

Notice that clτ
R̃
(1y) = e{B̃ ∈SVNS(U) | B̃c ∈ τ R̃, 1y b B̃}. Then for any x, y ∈ U ,

we have

TR̃(x, y) = Tclτ
R̃
(1y)(x)

= Te{B̃∈SV NS(U)|B̃c∈τ
R̃
,1ybB̃}(x)

=
∧
{TB̃(x) | B̃c ∈ τ R̃, T1y(t) ≤ TB̃(t) for any t ∈ U}

=
∧
{TB̃(x) | B̃c ∈ τ R̃, TB̃(y) = 1}

=
∧

B̃∈(y)τ
R̃

TB̃(x),

IR̃(x, y) = Iclτ
R̃
(1y)(x)

= Ie{B̃∈SV NS(U)|B̃c∈τ
R̃
,1ybB̃}(x)

=
∨
{IB̃(x) | B̃c ∈ τ R̃, I1y(t) ≥ IB̃(t) for any t ∈ U}

=
∨
{IB̃(x) | B̃c ∈ τ R̃, IB̃(y) = 0}

=
∨

B̃∈(y)τ
R̃

IB̃(x),
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FR̃(x, y) = Fclτ
R̃
(1y)(x)

= Fe{B̃∈SV NS(U)|B̃c∈τ
R̃
,1ybB̃}(x)

=
∨
{FB̃(x) | B̃c ∈ τ R̃, F1y(t) ≥ FB̃(t) for any t ∈ U}

=
∨
{FB̃(x) | B̃c ∈ τ R̃, FB̃(y) = 0}

=
∨

B̃∈(y)τ
R̃

FB̃(x).

This completes the proof.

Theorem 4.9 above shows that a reflexive and transitive SVNR can be represented by

its induced single valued neutrosophic topology.

4.2. F rom single valued neutrosophic topological spaces to single valued neutrosophic

approximation spaces

In subsection 4.1, we obtain a reflexive single valued neutrosophic relation derived

from a single valued neutrosophic approximation space can generate a single valued neu-

trosophic topology. Furthermore, a reflexive and transitive single valued neutrosophic

relation can induce a single valued neutrosophic topological space such that its single

valued neutrosophic interior and closure operators are the lower and upper approxima-

tion operators induced by this single valued neutrosophic relation, respectively. In this

subsection, we discuss the reverse problem—if a single valued neutrosophic topological

space can induce a single valued neutrosophic approximation space under some specifical

conditions?

Theorem 4.10. Let (U, τ) be a single valued neutrosophic topological space and int, cl :

SVNS(U) −→ SVNS(U) be its single valued neutrosophic interior and closure opera-

tors, respectively. Then there exists a reflexive and transitive SVNR R̃τ in U such

that R̃τ (Ã) = int(Ã) and R̃τ (Ã) = cl(Ã) for all Ã ∈ SVNS(U) iff int satisfies the

axioms (I1) and (I2), or equivalently, cl satisfies the axioms (C1) and (C2): ∀Ã, B̃ ∈

SVNS(U),∀α1, α2, α3 ∈ [0, 1],

(I1) int(Ã d ̂α1, α2, α3) = int(Ã) d ̂α1, α2, α3,

(I2) int(Ã e B̃) = int(Ã) e int(B̃),

(C1) cl(Ã e ̂α1, α2, α3) = cl(Ã) e ̂α1, α2, α3,

(C2) cl(Ã d B̃) = cl(Ã) d cl(B̃).

Proof. “ =⇒ ” Suppose that there exists a reflexive and transitive SVNR R̃τ in U such

that R̃τ (Ã) = int(Ã) and R̃τ (Ã) = cl(Ã) for all Ã ∈ SVNS(U), then it can be easily
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observed that the axioms (I1), (I2), (C1) and (C2) hold.

“ ⇐= ” Assume that the operator cl satisfies the axioms (C1) and (C2). By cl, we

define a single valued neutrosophic relation R̃τ = {⟨(x, y), TR̃τ
(x, y), IR̃τ

(x, y), FR̃τ
(x, y)⟩ |

(x, y) ∈ U × U} in U × U as follows:

TR̃τ
(x, y) = Tcl(1y)(x), IR̃τ

(x, y) = Icl(1y)(x), FR̃τ
(x, y) = Fcl(1y)(x) (2)

Moreover, we can prove that for any Ã ∈ SVNS(U),

Ã = dy∈U(1y e ̂TÃ(y), IÃ(y), FÃ(y)).

In fact, for any x ∈ U , by Definition 2.6, we have

Tdy∈U (1ye ̂T
Ã
(y),I

Ã
(y),F

Ã
(y)
(x) =

∨
y∈U T

1ye ̂T
Ã
(y),I

Ã
(y),F

Ã
(y))

(x)

=
∨

y∈U(T1y(x) ∧ T ̂T
Ã
(y),I

Ã
(y),F

Ã
(y)
(x))

= (1 ∧ TÃ(x))
∨

y∈U,y ̸=x(0 ∧ TÃ(y))

= TÃ(x).

Idy∈U (1ye ̂T
Ã
(y),I

Ã
(y),F

Ã
(y))

(x) =
∧

y∈U I
1ye ̂T

Ã
(y),I

Ã
(y),F

Ã
(y))

(x)

=
∧

y∈U(I1y(x) ∨ I ̂T
Ã
(y),I

Ã
(y),F

Ã
(y)
(x))

= (0 ∨ IÃ(x))
∧

y∈U,y ̸=x(1 ∨ IÃ(y))

= IÃ(x).

Fdy∈U (1ye ̂T
Ã
(y),I

Ã
(y),F

Ã
(y))

(x) =
∧

y∈U F
1ye ̂T

Ã
(y),I

Ã
(y),F

Ã
(y))

(x)

=
∧

y∈U(F1y(x) ∨ F ̂T
Ã
(y),I

Ã
(y),F

Ã
(y)
(x))

= (0 ∨ FÃ(x))
∧

y∈U,y ̸=x(1 ∨ FÃ(y))

= FÃ(x).

So Ã = dy∈U(1y e ̂TÃ(y), IÃ(y), FÃ(y)) for any Ã ∈ SVNS(U).

Next, we prove cl(Ã) = R̃τ (Ã) and int(Ã) = R̃τ (Ã).

For any x ∈ U , by definition 2.10 and the axioms (I1), (I2), (C1) and (C2), we have

T
R̃τ (Ã)

(x) =
∨

y∈U(TR̃τ
(x, y) ∧ TÃ(y))

=
∨

y∈U(Tcl(1y)(x) ∧ T ̂T
Ã
(y),I

Ã
(y),F

Ã
(y)
(x))

=
∨

y∈U(Tcl(1y)e ̂T
Ã
(y),I

Ã
(y),F

Ã
(y)
(x))

=
∨

y∈U(Tcl(1ye ̂T
Ã
(y),I

Ã
(y),F

Ã
(y))

(x))

= Tdy∈U cl(1ye ̂T
Ã
(y),I

Ã
(y),F

Ã
(y))

(x)

= T
cl(dy∈U (1ye ̂T

Ã
(y),I

Ã
(y),F

Ã
(y)))

(x)

= Tcl(Ã)(x).

I
R̃τ (Ã)

(x) =
∧

y∈U(IR̃τ
(x, y) ∨ IÃ(y))

=
∧

y∈U(Icl(1y)(x) ∨ I ̂T
Ã
(y),I

Ã
(y),F

Ã
(y)
(x))
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=
∧

y∈U(Icl(1y)e ̂T
Ã
(y),I

Ã
(y),F

Ã
(y)
(x))

=
∧

y∈U(Icl(1ye ̂T
Ã
(y),I

Ã
(y),F

Ã
(y))

(x))

= Idy∈U cl(1ye ̂T
Ã
(y),I

Ã
(y),F

Ã
(y))

(x)

= I
cl(dy∈U (1ye ̂T

Ã
(y),I

Ã
(y),F

Ã
(y)))

(x)

= Icl(Ã)(x).

F
R̃τ (Ã)

(x) =
∧

y∈U(FR̃τ
(x, y) ∨ FÃ(y))

=
∧

y∈U(Fcl(1y)(x) ∨ F ̂T
Ã
(y),I

Ã
(y),F

Ã
(y)
(x))

=
∧

y∈U(Fcl(1y)e ̂T
Ã
(y),I

Ã
(y),F

Ã
(y)
(x))

=
∧

y∈U(Fcl(1ye ̂T
Ã
(y),I

Ã
(y),F

Ã
(y))

(x))

= Fdy∈U cl(1ye ̂T
Ã
(y),I

Ã
(y),F

Ã
(y))

(x)

= F
cl(dy∈U (1ye ̂T

Ã
(y),I

Ã
(y),F

Ã
(y)))

(x)

= Fcl(Ã)(x).

Thus cl(Ã) = R̃τ (Ã). Note that cl and int are dual to each other, we have int(Ã) =

R̃τ (Ã). By Theorem 3.5, we have R̃τ (Ã) b Ã. Then, by Proposition 2.12, R̃τ is reflex-

ive. Moreover, by Theorem 3.5 again, we have R̃τ (R̃τ (Ã)) = R̃τ (Ã), which means that

R̃τ (Ã) b R̃τ (R̃τ (Ã)). By Proposition 2.12, R̃τ is transitive. Hence R̃τ is a reflexive and

transitive SVNR.

The above Theorem 4.10 gives the sufficient and necessary conditions that a single

valued neutrosophic interior (closure, respectively) operator derived from a single val-

ued neutrosophic topological space is just the single valued neutrosophic lower (upper,

respectively) approximation operator induced by a reflexive and transitive single valued

neutrosophic relation. Based on Theorem 4.10, we give the following definition.

Definition 4.11. Let (U, τ) be a single valued neutrosophic topological space and int, cl:

SVNS(U) −→ SVNS(U) be the single valued neutrosophic interior and closure operators

of τ , respectively. If int satisfies the axioms (I1) and (I2) (or equivalently, cl satisfies the

axioms (C1) and (C2)), then we call (U, τ) a single valued neutrosophic rough topological

space and τ a single valued neutrosophic rough topology.

Let R̃ be the set of all reflexive and transitive SVNRs in U and T be the set of all

single valued neutrosophic rough topologies. We can obtain the following results.

Theorem 4.12. (1) If R̃ ∈ R̃, τ R̃ is defined by Equation (1) and R̃τ
R̃
is defined by

Equation (2), then R̃τ
R̃
= R̃.
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(2) If τ∈ T , R̃τ is defined by Equation (2) and τ R̃τ
is defined by Equation (1), then

τ R̃τ
= τ .

Proof. (1) By Theorem 4.7, and the reflexivity and transitivity of R̃, we have R̃ = intτ
R̃

and R̃ = clτ
R̃
. According to Proposition 4.8, for any x, y ∈ U , we have

TR̃τ
R̃

(x, y) = Tclτ
R̃
(1y)(x) = T

R̃(1y)
(x) = TR̃(x, y),

IR̃τ
R̃

(x, y) = Iclτ
R̃
(1y)(x) = I

R̃(1y)
(x) = IR̃(x, y),

FR̃τ
R̃

(x, y) = Fclτ
R̃
(1y)(x) = F

R̃(1y)
(x) = FR̃(x, y).

Thus R̃τ
R̃
= R̃.

(2) By Equation (1) and Theorem 4.10, we have

τR̃τ
= {Ã ∈ SVNS(U) | R̃τ (Ã) = Ã} = {Ã ∈ SVNS(U) | int(Ã) = Ã} = τ .

Theorem 4.13. There exists a one-to-one correspondence between R̃ and T .

Proof. Define a mapping f : R̃ −→ T as ∀R̃ ∈ R, f(R̃) = τ R̃.

On the other hand, define a mapping g : T −→ R̃ as ∀τ ∈ T , g(τ) =R̃τ . Then,

by Theorem 4.12, it is easy to verify that both f and g are one-to-one correspondences

between R and T .

Theorem 4.13 shows that there exists a one-to-one correspondence between the set

of all reflexive and transitive single valued neutrosophic relations and the set of all sin-

gle valued neutrosophic rough topologies such that the single valued neutrosophic lower

and upper approximation operators induced by the reflexive and transitive single valued

neutrosophic relations are the single valued neutrosophic interior and closure operators of

single valued neutrosophic rough topologies, respectively.

5 Conclusion

In this paper, we study the topological structures of single valued neutrosophic rough

sets. Firstly, we prove that a reflexive and transition single valued neutrosophic relation

can induce a single valued neutrosophic topological space such that its single valued neu-

trosophic interior and closure operators are the lower and upper approximation operators

induced by this single valued neutrosophic relation, respectively. Then, we investigate

the sufficient and necessary conditions that a single valued neutrosophic interior (closure,

respectively) operator derived from a single valued neutrosophic topological space is just

18



the single valued neutrosophic lower (upper, respectively) approximation operator derived

from a single valued neutrosophic approximation space. Finally, we show there exists a

one-to-one correspondence between the set of all reflexive and transitive single valued

neutrosophic relations and the set of all single valued neutrosophic rough topologies.
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