Further results on \((\varepsilon, \varepsilon)\)-neutrosophic subalgebras and ideals in \(BCK/BCI\)-algebras

G. Muhiuddin\(^1\), Hashem Bordbar\(^2\), Florentin Smarandache\(^3\), Young Bae Jun\(^4, *\)

\(^1\)Department of Mathematics, University of Tabuk, Tabuk 71491, Saudi Arabia. e-mail: chishtygm@gmail.com
\(^2\)Postdoctoral Research Fellow, Shahid Beheshti University, Tehran, Iran. e-mail: bordbar.amirh@gmail.com
\(^3\)Mathematics & Science Department, University of New Mexico. 705 Gurley Ave., Gallup, NM 87301, USA. e-mail: fsmarandache@gmail.com
\(^4\)Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea. e-mail: skywine@gmail.com

\(*\)Correspondence: Y.B. Jun (skywine@gmail.com)

Abstract: Characterizations of an \((\varepsilon, \varepsilon)\)-neutrosophic ideal are considered. Any ideal in a \(BCK/BCI\)-algebra will be realized as level neutrosophic ideals of some \((\varepsilon, \varepsilon)\)-neutrosophic ideal. The relation between \((\varepsilon, \varepsilon)\)-neutrosophic ideal and \((\varepsilon, \varepsilon)\)-neutrosophic subalgebra in a \(BCK\)-algebra is discussed. Conditions for an \((\varepsilon, \varepsilon)\)-neutrosophic subalgebra to be a \((\varepsilon, \varepsilon)\)-neutrosophic ideal are provided. Using a collection of ideals in a \(BCK/BCI\)-algebra, an \((\varepsilon, \varepsilon)\)-neutrosophic ideal is established. Equivalence relations on the family of all \((\varepsilon, \varepsilon)\)-neutrosophic ideals are introduced, and related properties are investigated.

Keywords: \((\varepsilon, \varepsilon)\)-neutrosophic subalgebra, \((\varepsilon, \varepsilon)\)-neutrosophic ideal.

1 Introduction

Neutrosophic set (NS) developed by Smarandache [8, 9, 10] introduced neutrosophic set (NS) as a more general platform which extends the concepts of the classic set and fuzzy set, intuitionistic fuzzy set and interval valued intuitionistic fuzzy set. Neutrosophic set theory is applied to various part which is refered to the site http://fs.gallup.unm.edu/neutrosophy.htm.

Jun et al. studied neutrosophic subalgebras/ideals in \(BCK/BCI\)-algebras based on neutrosophic points (see [1], [5] and [7]).

In this paper, we characterize an \((\varepsilon, \varepsilon)\)-neutrosophic ideal in a \(BCK/BCI\)-algebra. We show that any ideal in a \(BCK/BCI\)-algebra can be realized as level neutrosophic ideals of some \((\varepsilon, \varepsilon)\)-neutrosophic ideal. We investigate the relation between \((\varepsilon, \varepsilon)\)-neutrosophic ideal and \((\varepsilon, \varepsilon)\)-neutrosophic subalgebra in a \(BCK\)-algebra. We provide conditions for an \((\varepsilon, \varepsilon)\)-neutrosophic subalgebra to be a \((\varepsilon, \varepsilon)\)-neutrosophic ideal. Using a collection of ideals in a \(BCK/BCI\)-algebra, we establish an \((\varepsilon, \varepsilon)\)-neutrosophic ideal. We discuss equivalence relations on the family of all \((\varepsilon, \varepsilon)\)-neutrosophic ideals, and investigate related properties.

2 Preliminaries

A \(BCK/BCI\)-algebra is an important class of logical algebras introduced by K. Iséki (see [2] and [3]) and was extensively investigated by several researchers.

By a \(BCI\)-algebra, we mean a set \(X\) with a special element \(0\) and a binary operation \(*\) that satisfies the following conditions:

(I) \((\forall x, y, z \in X) (((x * y) * (x * z)) * (z * y) = 0),\)

(II) \((\forall x, y \in X) ((x * (x * y)) * y = 0),\)

(III) \((\forall x \in X) (x * x = 0),\)

(IV) \((\forall x, y \in X) (x * y = 0, y * x = 0 \Rightarrow x = y).\)

If a \(BCI\)-algebra \(X\) satisfies the following identity:

(V) \((\forall x \in X) (0 * x = 0),\)

then \(X\) is called a \(BCK\)-algebra. Any \(BCK/BCI\)-algebra \(X\) satisfies the following conditions:

\[(\forall x \in X) (x * 0 = x),\]

\[(\forall x, y, z \in X) \left( \begin{array}{l} x \leq y \Rightarrow x * z \leq y * z \\ x \leq y \Rightarrow z * y \leq z * x \end{array} \right),\]

\[(\forall x, y, z \in X) ((x * y) * z = (x * z) * y),\]

\[(\forall x, y, z \in X) ((x * z) * (y * z) \leq x * y)\]

where \(x \leq y\) if and only if \(x * y = 0\). A nonempty subset \(S\) of a \(BCK/BCI\)-algebra \(X\) is called a subalgebra of \(X\) if \(x * y \in S\) for all \(x, y \in S\). A subset \(I\) of a \(BCK/BCI\)-algebra \(X\) is called an ideal of \(X\) if it satisfies:

\[0 \in I,\]

\[(\forall x \in X) (\forall y \in I) (x * y \in I \Rightarrow x \in I).\]
We refer the reader to the books [4, 6] for further information regarding BCK/BCI-algebras.

For any family \( \{a_i \mid i \in \Lambda \} \) of real numbers, we define
\[
\bigvee \{a_i \mid i \in \Lambda \} := \sup \{a_i \mid i \in \Lambda \}
\]
and
\[
\bigwedge \{a_i \mid i \in \Lambda \} := \inf \{a_i \mid i \in \Lambda \}.
\]

If \( \Lambda = \{1, 2 \} \), we will also use \( a_1 \vee a_2 \) and \( a_1 \wedge a_2 \) instead of \( \bigvee \{a_i \mid i \in \Lambda \} \) and \( \bigwedge \{a_i \mid i \in \Lambda \} \), respectively.

Let \( X \) be a non-empty set. A neutrosophic set (NS) in \( X \) (see [9]) is a structure of the form:
\[
A_\sim := \{ (x; A_T(x), A_I(x), A_F(x)) \mid x \in X \}
\]
where \( A_T : X \to [0, 1] \) is a truth membership function, \( A_I : X \to [0, 1] \) is an indeterminate membership function, and \( A_F : X \to [0, 1] \) is a false membership function. For the sake of simplicity, we shall use the symbol \( A_\sim = (A_T, A_I, A_F) \) for the neutrosophic set
\[
A_\sim := \{ (x; A_T(x), A_I(x), A_F(x)) \mid x \in X \}.
\]

Given a neutrosophic set \( A_\sim = (A_T, A_I, A_F) \) in a set \( X \), \( \alpha, \beta \in (0, 1) \) and \( \gamma \in [0, 1] \), we consider the following sets:
\[
T_e(A_\sim; \alpha) := \{ x \in X \mid A_T(x) \geq \alpha \},
\]
\[
I_e(A_\sim; \beta) := \{ x \in X \mid A_I(x) \geq \beta \},
\]
\[
F_e(A_\sim; \gamma) := \{ x \in X \mid A_F(x) \leq \gamma \}.
\]

We say \( T_e(A_\sim; \alpha) \), \( I_e(A_\sim; \beta) \) and \( F_e(A_\sim; \gamma) \) are neutrosophic \( \in \)-subsets.

A neutrosophic set \( A_\sim = (A_T, A_I, A_F) \) in a BCK/BCI-algebra \( X \) is called an \((\in, \in)\)-neutrosophic subalgebra of \( X \) (see [5]) if the following assertions are valid:
\[
(\forall x, y \in X) \begin{cases}
 x \in T_e(A_\sim; \alpha_x), \ y \in T_e(A_\sim; \alpha_y) \\
 x \in I_e(A_\sim; \beta_x), \ y \in I_e(A_\sim; \beta_y) \\
 x \in F_e(A_\sim; \gamma_x), \ y \in F_e(A_\sim; \gamma_y)
\end{cases}
\]
for all \( \alpha_x, \alpha_y, \beta_x, \beta_y \in (0, 1) \) and \( \gamma_x, \gamma_y \in [0, 1] \).

A neutrosophic set \( A_\sim = (A_T, A_I, A_F) \) in a BCK/BCI-algebra \( X \) is called an \((\in, \in)\)-neutrosophic ideal of \( X \) (see [7]) if the following assertions are valid:
\[
(\forall x \in X) \begin{cases}
 x \in T_e(A_\sim; \alpha_x) \Rightarrow 0 \in T_e(A_\sim; \alpha_x) \\
 x \in I_e(A_\sim; \beta_x) \Rightarrow 0 \in I_e(A_\sim; \beta_x) \\
 x \in F_e(A_\sim; \gamma_x) \Rightarrow 0 \in F_e(A_\sim; \gamma_x)
\end{cases}
\]

and
\[
(\forall x, y \in X) \begin{cases}
 x \ast y \in T_e(A_\sim; \alpha_x), \ y \in T_e(A_\sim; \alpha_y) \\
 x \ast y \in I_e(A_\sim; \beta_x), \ y \in I_e(A_\sim; \beta_y) \\
 x \ast y \in F_e(A_\sim; \gamma_x), \ y \in F_e(A_\sim; \gamma_y)
\end{cases}
\]
for all \( \alpha_x, \alpha_y, \beta_x, \beta_y \in (0, 1) \) and \( \gamma_x, \gamma_y \in [0, 1] \).

3 \((\in, \in)\)-neutrosophic subalgebras and ideals

We first provide characterizations of an \((\in, \in)\)-neutrosophic ideal.

**Theorem 3.1.** Given a neutrosophic set \( A_\sim = (A_T, A_I, A_F) \) in a BCK/BCI-algebra \( X \), the following assertions are equivalent:

1. \( A_\sim = (A_T, A_I, A_F) \) is an \((\in, \in)\)-neutrosophic ideal of \( X \).
2. \( A_\sim = (A_T, A_I, A_F) \) satisfies the following assertions.

\[
(\forall x \in X) \begin{cases}
 A_T(0) \geq A_T(x), \\
 A_I(0) \geq A_I(x), \\
 A_F(0) \leq A_F(x)
\end{cases}
\]

and

\[
(\forall x, y \in X) \begin{cases}
 A_T(x) \geq A_T(x \ast y) \wedge A_T(y), \\
 A_I(x) \geq A_I(x \ast y) \wedge A_I(y), \\
 A_F(x) \leq A_F(x \ast y) \vee A_F(y)
\end{cases}
\]

**Proof.** Assume that \( A_\sim = (A_T, A_I, A_F) \) is an \((\in, \in)\)-neutrosophic ideal of \( X \). Suppose there exist \( a, b, c \in X \) be such that \( A_T(0) < A_T(a), A_I(0) < A_I(b) \) and \( A_F(0) > A_F(c) \). Then \( a \in T_e(A_\sim; A_T(a)), b \in I_e(A_\sim; A_I(b)) \) and \( c \in F_e(A_\sim; A_F(c)) \). But
\[
0 \notin T_e(A_\sim; A_T(a)) \cap I_e(A_\sim; A_I(b)) \cap F_e(A_\sim; A_F(c)).
\]

This is a contradiction, and thus \( A_T(0) \geq A_T(x), A_I(0) \geq A_I(x) \) and \( A_F(0) \leq A_F(x) \) for all \( x \in X \). Suppose that \( A_T(x) < A_T(x \ast y) \wedge A_T(y), A_I(a) < A_I(a \ast b) \wedge A_I(b) \) and \( A_F(c) > A_F(c \ast d) \vee A_F(d) \) for some \( x, y, a, b, c, d \in X \). Taking \( \alpha := A_T(x \ast y) \wedge A_T(y), \beta := A_I(a \ast b) \wedge A_I(b) \) and \( \gamma := A_F(c \ast d) \vee A_F(d) \) imply that \( x \ast y \in T_e(A_\sim; \alpha), y \in T_e(A_\sim; \alpha), a \ast b \in I_e(A_\sim; \beta), b \in I_e(A_\sim; \beta), c \ast d \in F_e(A_\sim; \gamma) \) and \( d \in F_e(A_\sim; \gamma) \). But \( x \notin T_e(A_\sim; \alpha), a \notin I_e(A_\sim; \beta) \) and \( c \notin F_e(A_\sim; \gamma) \). This is impossible, and so (3.2) is valid.

Conversely, suppose \( A_\sim = (A_T, A_I, A_F) \) satisfies two conditions (3.1) and (3.2). For any \( x, y, z \in X \), let \( \alpha, \beta \in (0, 1) \) and \( \gamma \in [0, 1] \) be such that \( x \in T_e(A_\sim; \alpha), y \in I_e(A_\sim; \beta) \) and
$z \in F_c(A_\gamma; \gamma)$. It follows from (3.1) that $A_T(0) \geq A_T(x) \geq \alpha$, $A_T(0) \geq A_T(y) \geq \beta$ and $A_T(0) \leq A_T(z) \geq \gamma$ and so that $0 \in T_c(A_\alpha; \alpha) \cap I_c(A_\beta; \beta) \cap F_c(A_\gamma; \gamma)$. Let $a, b, c, d, x, y \in X$ be such that $a \ast b \in T_c(A_\alpha; \alpha)$, $b \in T_c(A_\alpha; \alpha)$, $c \ast d \in I_c(A_\beta; \beta)$, $d \in I_c(A_\beta; \beta)$, $x \ast y \in F_c(A_\gamma; \gamma_x)$, and $y \in F_c(A_\beta; \gamma_y)$ for $\alpha, \beta, \gamma_x, \gamma_y \in [0, 1]$. Using (3.2), we have

$$
\begin{align*}
A_T(a) & \geq A_T(a \ast b) \land A_T(b) \geq \alpha \land \alpha \\
A_T(c) & \geq A_T(c \ast d) \land A_T(d) \geq \beta \land \beta \\
A_T(x) & \leq A_T(x \ast y) \lor A_T(y) \leq \gamma_x \lor \gamma_y.
\end{align*}
$$

Hence $a \in T_c(A_\alpha; \alpha) \land \alpha$, $c \in I_c(A_\beta; \beta) \land \beta$ and $x \in F_c(A_\gamma; \gamma_x \lor \gamma_y)$. Therefore $A_\alpha = (A_T, A_I, A_F)$ is an $(\varepsilon, \varepsilon)$-neutrosophic ideal of $X$.

**Theorem 3.2.** Let $A_\alpha = (A_T, A_I, A_F)$ be a neutrosophic set in a $BCK/BCI$-algebra $X$. Then the following assertions are equivalent.

1. $A_\alpha = (A_T, A_I, A_F)$ is an $(\varepsilon, \varepsilon)$-neutrosophic ideal of $X$.
2. The nonempty neutrosophic $\varepsilon$-subsets $T_c(A_\alpha; \alpha)$, $I_c(A_\beta; \beta)$ and $F_c(A_\gamma; \gamma)$ are ideals of $X$ for all $\alpha, \beta \in [0, 1]$ and $\gamma \in [0, 1]$.

**Proof.** Let $A_\alpha = (A_T, A_I, A_F)$ be an $(\varepsilon, \varepsilon)$-neutrosophic ideal of $X$ and assume that $T_c(A_\alpha; \alpha)$, $I_c(A_\beta; \beta)$ and $F_c(A_\gamma; \gamma)$ are nonempty for $\alpha, \beta \in [0, 1]$ and $\gamma \in [0, 1]$. Then there exist $x, y, z \in X$ such that $x \in T_c(A_\alpha; \alpha)$, $y \in I_c(A_\beta; \beta)$ and $z \in F_c(A_\gamma; \gamma)$. It follows from (2.8) that $0 \in T_c(A_\alpha; \alpha) \cap I_c(A_\beta; \beta) \cap F_c(A_\gamma; \gamma)$. Let $x, y, a, b, u, v \in X$ be such that $x \ast y \in T_c(A_\alpha; \alpha)$, $y \in T_c(A_\alpha; \alpha)$, $a \ast b \in I_c(A_\beta; \beta)$, $b \in I_c(A_\beta; \beta)$, $u \ast v \in F_c(A_\gamma; \gamma)$ and $v \in F_c(A_\beta; \gamma)$. Then

$$
\begin{align*}
A_T(x) & \geq A_T(x \ast y) \land A_T(y) \geq \alpha \land \alpha \\
A_I(a) & \geq A_I(a \ast b) \land A_I(b) \geq \beta \land \beta \\
A_F(u) & \leq A_F(u \ast v) \lor A_F(v) \leq \gamma \lor \gamma.
\end{align*}
$$

by (3.2), and so $x \in T_c(A_\alpha; \alpha)$, $a \in I_c(A_\beta; \beta)$ and $u \in F_c(A_\gamma; \gamma)$. Hence the nonempty neutrosophic $\varepsilon$-subsets $T_c(A_\alpha; \alpha)$, $I_c(A_\beta; \beta)$ and $F_c(A_\gamma; \gamma)$ are ideals of $X$ for all $\alpha, \beta \in [0, 1]$ and $\gamma \in [0, 1]$.

Conversely, let $A_\alpha = (A_T, A_I, A_F)$ be a neutrosophic set in $X$ for which $T_c(A_\alpha; \alpha)$, $I_c(A_\beta; \beta)$ and $F_c(A_\gamma; \gamma)$ are nonempty and are ideals of $X$ for all $\alpha, \beta \in [0, 1]$. Then assume that $A_T(0) < A_T(x)$, $A_I(0) < A_I(y)$ and $A_F(0) > A_F(z)$ for some $x, y, z \in X$. Then $x \in T_c(A_\alpha; A_T(x))$, $y \in I_c(A_\beta; A_I(y))$ and $z \in F_c(A_\gamma; A_F(z))$, that is, $x \in T_c(A_\alpha; \alpha)$, $y \in I_c(A_\beta; \beta)$ and $z \in F_c(A_\gamma; \gamma)$. Hence by Theorem 3.1. Hence (3.3) is valid. Let $x, y \in X$ be such that

$$
A_T(x) \geq A_T(x \ast y) \land A_T(y)
$$

for all $x, y \in X$. Therefore $A_\alpha = (A_T, A_I, A_F)$ is an $(\varepsilon, \varepsilon)$-neutrosophic ideal of $X$ by Theorem 3.1.

**Proposition 3.3.** Every $(\varepsilon, \varepsilon)$-neutrosophic ideal $A_\alpha = (A_T, A_I, A_F)$ of a $BCK/BCI$-algebra $X$ satisfies the following assertions.

$$
\begin{align*}
&\forall x, y \in X \quad x \leq y \Rightarrow \begin{cases} 
A_T(x) \geq A_T(y) \\
A_I(a) \geq A_I(b) \\
A_F(u) \geq A_F(v)
\end{cases}, \\
&\forall x, y \in X \quad x \ast y \leq y \Rightarrow \begin{cases} 
A_T(x) \geq A_T(y) \land A_T(z) \\
A_I(a) \geq A_I(b) \land A_I(z) \\
A_F(u) \leq A_F(v) \lor A_F(z)
\end{cases}.
\end{align*}
$$

**Proof.** Let $x, y \in X$ be such that $x \leq y$. Then $x \ast y = 0$, and so

$$
\begin{align*}
A_T(x) & \geq A_T(x \ast y) \land A_T(y) = A_T(0) \land A_T(y) = A_T(y), \\
A_I(x) & \geq A_I(x \ast y) \land A_I(y) = A_I(0) \land A_I(y) = A_I(y), \\
A_F(x) & \leq A_F(x \ast y) \lor A_F(y) = A_F(0) \lor A_F(y) = A_F(y)
\end{align*}
$$

by Theorem 3.1. Hence (3.3) is valid. Let $x, y \in X$ be such that $x \ast y \leq z$. Then $x \ast y \ast z = 0$, and thus

$$
\begin{align*}
A_T(x) & \geq A_T(x \ast y) \land A_T(y) \\
& \geq A_T((x \ast y) \ast z) \land A_T(y) \\
& \geq A_T(0) \land A_T(z) \land A_T(y) \\
& \geq A_T(z) \land A_T(y),
\end{align*}
$$

$$
\begin{align*}
A_I(x) & \geq A_I(x \ast y) \land A_I(y) \\
& \geq A_I((x \ast y) \ast z) \land A_I(y) \\
& \geq A_I(0) \land A_I(z) \land A_I(y) \\
& \geq A_I(z) \land A_I(y)
\end{align*}
$$

G. Muhiuddin, H. Bordbar, F. Smarandache, Y.B. Jun, Further results on $(\varepsilon, \varepsilon)$-neutrosophic subalgebras and ideals in $BCK/BCI$-algebras
and

\[ A_F(x) \leq A_F(x \ast y) \vee A_F(y) \leq (A_F((x \ast y) \ast z) \vee A_F(z)) \vee A_F(y) \leq (A_F(0) \vee A_F(z)) \vee A_F(y) \leq A_F(z) \vee A_F(y) \]

by Theorem 3.1.

**Theorem 3.4.** Any ideal of a BCK/BCI-algebra \( X \) can be realized as level neutrosophic ideals of some \((\varepsilon, \varepsilon)-\)neutrosophic ideal of \( X \).

**Proof.** Let \( I \) be an ideal of a BCK/BCI-algebra \( X \) and let \( A_\varepsilon = (A_T, A_I, A_F) \) be a neutrosophic set in \( X \) given as follows:

\[ A_T : X \rightarrow [0, 1], \quad x \mapsto \begin{cases} \alpha & \text{if } x \in I, \\ 0 & \text{otherwise,} \end{cases} \]

\[ A_I : X \rightarrow [0, 1], \quad x \mapsto \begin{cases} \beta & \text{if } x \in I, \\ 0 & \text{otherwise,} \end{cases} \]

\[ A_F : X \rightarrow [0, 1], \quad x \mapsto \begin{cases} \gamma & \text{if } x \in I, \\ 1 & \text{otherwise} \end{cases} \]

where \((\alpha, \beta, \gamma)\) is a fixed ordered triple in \((0, 1) \times (0, 1) \times [0, 1)\). Then \( T_{\varepsilon}(A_\varepsilon; \alpha) = I, \ I_{\varepsilon}(A_\varepsilon; \beta) = I \) and \( F_{\varepsilon}(A_\varepsilon; \gamma) = I \).

Obviously, \( A_T(0) \geq A_T(x), \ A_I(0) \geq A_I(x) \) and \( A_F(0) \leq A_F(x) \) for all \( x \in X \). Let \( x, y \in X \). If \( x \ast y \in I \) and \( y \notin I \), then \( x \in I \). Hence

\[ A_T(x \ast y) = A_T(y) = A_T(x) = \alpha, \]
\[ A_I(x \ast y) = A_I(y) = A_I(x) = \beta, \]
\[ A_F(x \ast y) = A_F(y) = A_F(x) = \gamma, \]

and so

\[ A_T(x) \geq A_T(x \ast y) \wedge A_T(y), \]
\[ A_I(x) \geq A_I(x \ast y) \wedge A_I(y), \]
\[ A_F(x) \leq A_F(x \ast y) \vee A_F(y). \]

If \( x \ast y \notin I \) and \( y \notin I \), then

\[ A_T(x \ast y) = A_T(y) = 0, \]
\[ A_I(x \ast y) = A_I(y) = 0, \]
\[ A_F(x \ast y) = A_F(y) = 1. \]

Thus

\[ A_T(x) \geq A_T(x \ast y) \wedge A_T(y), \]
\[ A_I(x) \geq A_I(x \ast y) \wedge A_I(y), \]
\[ A_F(x) \leq A_F(x \ast y) \vee A_F(y). \]

If \( x \ast y \in I \) and \( y \notin I \), then

\[ A_T(x \ast y) = \alpha \text{ and } A_T(y) = 0, \]
\[ A_I(x \ast y) = \beta \text{ and } A_I(y) = 0, \]
\[ A_F(x \ast y) = \gamma \text{ and } A_F(y) = 1. \]

It follows that

\[ A_T(x) \geq 0 = A_T(x \ast y) \wedge A_T(y), \]
\[ A_I(x) \geq 0 = A_I(x \ast y) \wedge A_I(y), \]
\[ A_F(x) \leq 1 = A_F(x \ast y) \vee A_F(y). \]

Similarly, if \( x \ast y \notin I \) and \( y \in I \), then

\[ A_T(x) \geq A_T(x \ast y) \wedge A_T(y), \]
\[ A_I(x) \geq A_I(x \ast y) \wedge A_I(y), \]
\[ A_F(x) \leq A_F(x \ast y) \vee A_F(y). \]

Therefore \( A_\varepsilon = (A_T, A_I, A_F) \) is an \((\varepsilon, \varepsilon)-\)neutrosophic ideal of \( X \) by Theorem 3.1. This completes the proof.

**Lemma 3.5 ([5]).** A neutrosophic set \( A_\varepsilon = (A_T, A_I, A_F) \) in a BCK/BCI-algebra \( X \) is an \((\varepsilon, \varepsilon)-\)neutrosophic subalgebra of \( X \) if and only if it satisfies:

\[ (\forall x, y \in X) \left( \begin{array}{c} A_T(x \ast y) \geq A_T(x) \wedge A_T(y) \\ A_I(x \ast y) \geq A_I(x) \wedge A_I(y) \\ A_F(x \ast y) \leq A_F(x) \vee A_F(y) \end{array} \right). \]  

**Theorem 3.6.** In a BCK-algebra, every \((\varepsilon, \varepsilon)-\)neutrosophic ideal is an \((\varepsilon, \varepsilon)-\)neutrosophic subalgebra.

**Proof.** Let \( A_\varepsilon = (A_T, A_I, A_F) \) be an \((\varepsilon, \varepsilon)-\)neutrosophic ideal of a BCK-algebra \( X \). Since \( x \ast y \leq x \) for all \( x, y \in X \), it follows from Proposition 3.3 and (3.2) that

\[ A_T(x \ast y) \geq A_T(x) \wedge A_T(y), \]
\[ A_I(x \ast y) \geq A_I(x) \wedge A_I(y), \]
\[ A_F(x \ast y) \leq A_F(x) \vee A_F(y). \]

Therefore \( A_\varepsilon = (A_T, A_I, A_F) \) is an \((\varepsilon, \varepsilon)-\)neutrosophic subalgebra of \( X \) by Lemma 3.5.

The following example shows that the converse of Theorem 3.6 is not true in general.

**Example 3.7.** Consider a set \( X = \{0, 1, 2, 3\} \) with the binary operation \( \ast \) which is given in Table 1.

Then \( (X; \ast, 0) \) is a BCK-algebra (see [6]). Let \( A_\varepsilon = (A_T, A_I, A_F) \) be a neutrosophic set in \( X \) defined by Table 2

It is routine to verify that \( A_\varepsilon = (A_T, A_I, A_F) \) is an \((\varepsilon, \varepsilon)-\)neutrosophic subalgebra of \( X \). We know that \( I_{\varepsilon}(A_\varepsilon; \beta) \) is an ideal of \( X \) for all \( \beta \in (0, 1] \). If \( \alpha \in (0, 0.7] \), then \( T_{\varepsilon}(A_\varepsilon; \alpha) = \{0, 1\} \) is not an ideal of \( X \). Also, if \( \gamma \in [0, 0.8) \), then \( F_{\varepsilon}(A_\varepsilon; \gamma) = \{0, 1, 3\} \) is not an ideal of \( X \). Therefore \( A_\varepsilon = (A_T, A_I, A_F) \) is not an \((\varepsilon, \varepsilon)-\)neutrosophic ideal of \( X \) by Theorem 3.2.
Let \( \alpha, \beta, \gamma \in [0, 1] \) be such that \( T_\varepsilon(A_\varepsilon; \alpha) \neq \emptyset, I_\varepsilon(A_\varepsilon; \beta) \neq \emptyset \) and \( F_\varepsilon(A_\varepsilon; \gamma) \neq \emptyset \). We consider the following two cases:

\[
\alpha = \bigvee \{i \in \Delta^T \mid i < \alpha\} \quad \text{and} \quad \alpha \neq \bigvee \{i \in \Delta^T \mid i < \alpha\}.
\]

First case implies that

\[
x \in T_\varepsilon(A_\varepsilon; \alpha) \iff x \in D_i \quad \text{for all} \quad i < \alpha \quad \Rightarrow \quad x \in \cap\{D_i \mid i < \alpha\}. \tag{3.9}
\]

Hence \( T_\varepsilon(A_\varepsilon; \alpha) = \cap\{D_i \mid i < \alpha\} \), which is an ideal of \( X \). For the second case, we claim that \( T_\varepsilon(A_\varepsilon; \alpha) = \cup\{D_i \mid i \geq \alpha\} \).

Let \( \alpha, \beta, \gamma \in [0, 1] \) be such that \( T_\varepsilon(A_\varepsilon; \alpha) = \cup\{D_i \mid i \geq \alpha\} \).

Now, if \( x \in \cup\{D_i \mid i > \gamma\} \), then \( x \in D_j \) for some \( j \geq \gamma \). Thus \( A_F(x) \leq j \leq \gamma \), and therefore \( \gamma \neq \bigvee \{j \in \Delta^F \mid \gamma < j\} \).

For the first case, we have

\[
x \in F_\varepsilon(A_\varepsilon; \gamma) \iff x \in D_j \quad \text{for all} \quad j > \gamma \quad \Leftrightarrow \quad x \in \cap\{D_j \mid j > \gamma\}, \tag{3.10}
\]

and thus \( F_\varepsilon(A_\varepsilon; \gamma) = \cap\{D_j \mid j > \gamma\} \) which is an ideal of \( X \).

The second case implies that \( F_\varepsilon(A_\varepsilon; \gamma) = \cup\{D_j \mid j \leq \gamma\} \).

In fact, if \( x \in \cup\{D_j \mid j \leq \gamma\} \), then \( x \in D_j \) for some \( j \leq \gamma \). Thus \( A_F(x) \leq j \leq \gamma \), and therefore \( \gamma \neq \bigvee \{j \in \Delta^F \mid \gamma < j\} \).

For the second case, we consider the following two cases:

\[
\gamma = \bigwedge \{j \in \Delta^F \mid \gamma > j\} \quad \text{and} \quad \gamma \neq \bigwedge \{j \in \Delta^F \mid \gamma > j\}.
\]

We consider the following two cases:

\[
\alpha = \bigvee \{i \in \Delta^T \mid i < \alpha\} \quad \text{and} \quad \alpha \neq \bigvee \{i \in \Delta^T \mid i < \alpha\}.
\]

First case implies that

\[
x \in T_\varepsilon(A_\varepsilon; \alpha) \iff x \in D_i \quad \text{for all} \quad i < \alpha \quad \Rightarrow \quad x \in \cap\{D_i \mid i < \alpha\}. \tag{3.9}
\]

Hence \( T_\varepsilon(A_\varepsilon; \alpha) = \cap\{D_i \mid i < \alpha\} \), which is an ideal of \( X \). For the second case, we claim that \( T_\varepsilon(A_\varepsilon; \alpha) = \cup\{D_i \mid i \geq \alpha\} \).

Now, if \( x \in \cup\{D_i \mid i > \gamma\} \), then \( x \in D_j \) for some \( j > \gamma \). Thus \( A_F(x) \leq j \leq \gamma \), and therefore \( \gamma \neq \bigvee \{j \in \Delta^F \mid \gamma < j\} \).

For the first case, we have

\[
x \in F_\varepsilon(A_\varepsilon; \gamma) \iff x \in D_j \quad \text{for all} \quad j > \gamma \quad \Leftrightarrow \quad x \in \cap\{D_j \mid j > \gamma\}, \tag{3.10}
\]

and thus \( F_\varepsilon(A_\varepsilon; \gamma) = \cap\{D_j \mid j > \gamma\} \) which is an ideal of \( X \).

The second case implies that \( F_\varepsilon(A_\varepsilon; \gamma) = \cup\{D_j \mid j \leq \gamma\} \).

In fact, if \( x \in \cup\{D_j \mid j \leq \gamma\} \), then \( x \in D_j \) for some \( j \leq \gamma \). Thus \( A_F(x) \leq j \leq \gamma \), and therefore \( \gamma \neq \bigvee \{j \in \Delta^F \mid \gamma < j\} \).

For the second case, we consider the following two cases:

\[
\gamma = \bigwedge \{j \in \Delta^F \mid \gamma > j\} \quad \text{and} \quad \gamma \neq \bigwedge \{j \in \Delta^F \mid \gamma > j\}.
\]

We consider the following two cases:

\[
\alpha = \bigvee \{i \in \Delta^T \mid i < \alpha\} \quad \text{and} \quad \alpha \neq \bigvee \{i \in \Delta^T \mid i < \alpha\}.
\]

First case implies that

\[
x \in T_\varepsilon(A_\varepsilon; \alpha) \iff x \in D_i \quad \text{for all} \quad i < \alpha \quad \Rightarrow \quad x \in \cap\{D_i \mid i < \alpha\}. \tag{3.9}
\]
$A^f_T = (A^f_T, A^f_I, A^f_F)$ in $X$ is an $(\varepsilon, \delta)$-neutrosophic ideal of $X$.

**Proof.** For any $x \in X$, we have

$$
A^f_T(x) = A_T(f(x)) \leq A_T(0) = A_T(f(0)) = A^f_T(0),
$$

$$
A^f_I(x) = A_I(f(x)) \leq A_I(0) = A_I(f(0)) = A^f_I(0),
$$

$$
A^f_F(x) = A_F(f(x)) \geq A_F(f(0)) = A_F(0) = A^f_F(0).
$$

Let $x, y \in X$. Then

$$
A^f_T(x \ast y) \wedge A^f_T(y) = A_T(f(x \ast y)) \wedge A_T(f(y))
$$

$$
= A_T(f(x) \ast f(y)) \wedge A_T(f(y))
$$

$$
\leq A_T(f(x)) = A^f_T(x),
$$

and

$$
A^f_T(x \ast y) \vee A^f_T(y) = A_T(f(x \ast y)) \vee A_T(f(y))
$$

$$
= A_T(f(x) \ast f(y)) \vee A_T(f(y))
$$

$$
\geq A_T(f(x)) = A^f_T(x).
$$

Therefore $A^f_T = (A^f_T, A^f_I, A^f_F)$ is an $(\varepsilon, \delta)$-neutrosophic ideal of $X$ by Theorem 3.1.

**Theorem 3.11.** Let $f : X \rightarrow Y$ be an onto homomorphism of BCK/BCI-algebras and let $A_\gamma = (A_T, A_I, A_F)$ be a neutrosophic set in $Y$. If the induced neutrosophic set $A^f_\gamma = (A^f_T, A^f_I, A^f_F)$ in $X$ is an $(\varepsilon, \delta)$-neutrosophic ideal of $X$, then $A_\gamma = (A_T, A_I, A_F)$ is an $(\varepsilon, \delta)$-neutrosophic ideal of $Y$.

**Proof.** Assume that the induced neutrosophic set $A^f_\gamma = (A^f_T, A^f_I, A^f_F)$ in $X$ is an $(\varepsilon, \delta)$-neutrosophic ideal of $X$. For any $x \in Y$, there exists $a \in X$ such that $f(a) = x$ since $f$ is onto. Using (3.1), we have

$$
A_T(x) = A_T(f(a)) = A^f_T(f(a)) \leq A^f_T(0) = A_T(f(0)) = A_T(0),
$$

$$
A_I(x) = A_I(f(a)) = A^f_I(f(a)) \leq A^f_I(0) = A_I(f(0)) = A_I(0),
$$

$$
A_F(x) = A_F(f(a)) = A^f_F(f(a)) \geq A^f_F(0) = A_F(f(0)) = A_F(0).
$$

Let $x, y \in Y$. Then $f(a) = x$ and $f(b) = y$ for some $a, b \in X$. It follows from (3.2) that

$$
A_T(x) = A_T(f(a)) = A^f_T(f(a)) \geq A^f_T(a \ast b) \wedge A^f_T(b)
$$

$$
= A_T(f(a \ast b)) \wedge A_T(f(b))
$$

$$
= A_T(f(a) \ast f(b)) \wedge A_T(f(b))
$$

$$
= A_T(x \ast y) \wedge A_T(y).
$$

Therefore $A_\gamma = (A_T, A_I, A_F)$ is an $(\varepsilon, \delta)$-neutrosophic ideal of $Y$ by Theorem 3.1.

Let $N_{(\varepsilon, \delta)}(X)$ be the collection of all $(\varepsilon, \delta)$-neutrosophic ideals of $X$ and let $\alpha, \beta \in (0, 1]$ and $\gamma \in [0, 1)$. Define binary relations $R^\alpha_T, R^\beta_I$ and $R^\gamma_F$ on $N_{(\varepsilon, \delta)}(X)$ as follows:

$$
A_T R^\alpha_T B_T \iff T_\alpha(A_{\gamma}) = T_\alpha(B_{\gamma})
$$

$$
A_I R^\beta_I B_I \iff I_\beta(A_{\gamma}) = I_\beta(B_{\gamma})
$$

$$
A_F R^\gamma_F B_F \iff F_\gamma(A_{\gamma}) = F_\gamma(B_{\gamma})
$$

for all $A_{\gamma} = (A_T, A_I, A_F)$ and $B_{\gamma} = (B_T, B_I, B_F)$ in $N_{(\varepsilon, \delta)}(X)$.

Clearly $R^\alpha_T, R^\beta_I$ and $R^\gamma_F$ are equivalence relations on $N_{(\varepsilon, \delta)}(X)$. For any $A_{\gamma} = (A_T, A_I, A_F) \in N_{(\varepsilon, \delta)}(X)$, let $[A_{\gamma}]_T$ (resp. $[A_{\gamma}]_I$ and $[A_{\gamma}]_F$) denote the equivalence class of $A_{\gamma} = (A_T, A_I, A_F)$ in $N_{(\varepsilon, \delta)}(X)$ under $R^\alpha_T$ (resp. $R^\beta_I$ and $R^\gamma_F$). Denote by $N_{(\varepsilon, \delta)}(X)/R^\alpha_T, N_{(\varepsilon, \delta)}(X)/R^\beta_I$ and $N_{(\varepsilon, \delta)}(X)/R^\gamma_F$ the collection of all equivalence classes under $R^\alpha_T, R^\beta_I$ and $R^\gamma_F$, respectively, that is,

$$
N_{(\varepsilon, \delta)}(X)/R^\alpha_T = \{[A_{\gamma}]_T \mid A_{\gamma} = (A_T, A_I, A_F) \in N_{(\varepsilon, \delta)}(X),
$$

$$
N_{(\varepsilon, \delta)}(X)/R^\beta_I = \{[A_{\gamma}]_I \mid A_{\gamma} = (A_T, A_I, A_F) \in N_{(\varepsilon, \delta)}(X),
$$

$$
N_{(\varepsilon, \delta)}(X)/R^\gamma_F = \{[A_{\gamma}]_F \mid A_{\gamma} = (A_T, A_I, A_F) \in N_{(\varepsilon, \delta)}(X).
$$

Now let $I(X)$ denote the family of all ideals of $X$. Define maps $f_\alpha, g_\beta$ and $h_\gamma$ from $N_{(\varepsilon, \delta)}(X)$ to $I(X) \cup \{\emptyset\}$ by

$$
f_\alpha(A_{\gamma}) = T_\alpha(A_{\gamma}; \alpha), g_\beta(A_{\gamma}) = I_\beta(A_{\gamma}; \beta)
$$

and

$$
h_\gamma(A_{\gamma}) = F_\gamma(A_{\gamma}),
$$

respectively, for all $A_{\gamma} = (A_T, A_I, A_F)$ in $N_{(\varepsilon, \delta)}(X)$. Then $f_\alpha, g_\beta$ and $h_\gamma$ are clearly well-defined.

**Theorem 3.12.** For any $\alpha, \beta \in (0, 1]$ and $\gamma \in [0, 1)$, the maps $f_\alpha, g_\beta$ and $h_\gamma$ are surjective from $N_{(\varepsilon, \delta)}(X)$ to $I(X) \cup \{\emptyset\}$.

**Proof.** Let $0_\varepsilon := (0_T, 0_I, 0_F)$ be a neutrosophic set in $X$ where $0_T, 0_I$ and $0_F$ are fuzzy sets in $X$ defined by $0_T(x) = 0$, $0_I(x) = 0$ and $0_F(x) = 1$ for all $x \in X$. Obviously, $0_\varepsilon := (0_T, 0_I, 0_F)$ is an $(\varepsilon, \delta)$-neutrosophic ideal of $X$. Also, $f_\alpha(0_\varepsilon) = T_\alpha(0_\varepsilon; \alpha) = 0$, $g_\beta(0_\varepsilon) = I_\beta(0_\varepsilon; \beta) = 0$
and \(h_\gamma(0_\gamma) = F_\varepsilon(0_\varepsilon; \gamma) = \emptyset\). For any ideal \(I\) of \(X\), let \(A_\sim = (A_T, A_I, A_F)\) be the \((\varepsilon, \alpha)-\)neutrosophic ideal of \(X\) in the proof of Theorem 3.4. Then \(f_{\alpha}(A_\sim) = T_\varepsilon(A_\sim; \alpha) = I, g_\beta(A_\sim) = I_\varepsilon(A_\sim; \beta) = I\) and \(h_\gamma(A_\sim) = F_\varepsilon(A_\sim; \gamma) = I\). Therefore \(f_{\alpha}, g_\beta\) and \(h_\gamma\) are surjective.

**Theorem 3.13.** The quotient sets \(N_{(\varepsilon, \alpha)}(X)/R^2_T, N_{(\varepsilon, \alpha)}(X)/R^2_I, N_{(\varepsilon, \alpha)}(X)/R^2_F\) and \(N_{(\varepsilon, \alpha)}(X)/R^2_T\) are equivalent to \(I(X) \cup \{0\}\) for any \(\alpha, \beta \in (0, 1)\) and \(\gamma \in (0, 1)\).

**Proof.** Let \(A_\sim = (A_T, A_I, A_F) \in N_{(\varepsilon, \alpha)}(X)\). For any \(\alpha, \beta \in (0, 1)\) and \(\gamma \in (0, 1)\), define

\[
\begin{align*}
f_{\alpha}^* : N_{(\varepsilon, \alpha)}(X)/R^2_T & \rightarrow I(X) \cup \{0\}, \quad f_{\alpha}^*(A_\sim) = f_{\alpha}(A_\sim), \\
g_\beta^* : N_{(\varepsilon, \alpha)}(X)/R^2_I & \rightarrow I(X) \cup \{0\}, \quad g_\beta^*(A_\sim) = g_\beta(A_\sim), \\
h_\gamma^* : N_{(\varepsilon, \alpha)}(X)/R^2_F & \rightarrow I(X) \cup \{0\}, \quad h_\gamma^*(A_\sim) = h_\gamma(A_\sim).
\end{align*}
\]

Assume that \(f_{\alpha}(A_\sim) = f_{\alpha}(B_\sim), g_\beta(A_\sim) = g_\beta(B_\sim)\) and \(h_\gamma(A_\sim) = h_\gamma(B_\sim)\) for \(A_\sim = (A_T, A_I, A_F) \in N_{(\varepsilon, \alpha)}(X)\) and \(B_\sim = (B_T, B_I, B_F) \in N_{(\varepsilon, \alpha)}(X)\). Then \(T_\varepsilon(A_\sim; \alpha) = I_\varepsilon(A_\sim; \beta) = f_\beta(A_\sim), B_\sim \subseteq I_\varepsilon(A_\sim; \beta) = F_\varepsilon(A_\sim; \gamma) = \emptyset\). Therefore \(f_{\alpha}^*, g_\beta^*\) and \(h_\gamma^*\) are surjective. Consider the \((\varepsilon, \alpha)-\)neutrosophic ideal \(0_\varepsilon = (0_T, 0_I, 1_F)\) of \(X\) which is given in the proof of Theorem 3.12. Then

\[
\begin{align*}
\varphi_{\alpha} & = f_{\alpha}^*(0_\varepsilon) \cap h_\alpha(A_\sim) = T_\varepsilon(A_\sim; \alpha) \cap F_\varepsilon(A_\sim; \gamma) = I(F_\varepsilon(A_\sim; \gamma)), \\
\varphi_{\beta} & = g_\beta^*(0_\varepsilon) \cap h_\beta(A_\sim) = I_\varepsilon(A_\sim; \beta) \cap F_\varepsilon(A_\sim; \beta) = I(F_\varepsilon(A_\sim; \beta)).
\end{align*}
\]

For any ideal \(I\) of \(X\), consider the \((\varepsilon, \alpha)-\)neutrosophic ideal \(A_\sim = (A_T, A_I, A_F)\) of \(X\) in the proof of Theorem 3.4. Then

\[
\begin{align*}
f_{\alpha}(A_\sim) & = T_\varepsilon(A_\sim; \alpha) \cap F_\varepsilon(A_\sim; \gamma) = I_\varepsilon(A_\sim; \beta) \cap F_\varepsilon(A_\sim; \beta), \\
g_\beta(A_\sim) & = I_\varepsilon(A_\sim; \beta) \cap F_\varepsilon(A_\sim; \beta) = I_\varepsilon(A_\sim; \beta) \cap F_\varepsilon(A_\sim; \beta).
\end{align*}
\]

\[
\begin{align*}
\text{Therefore } f_{\alpha}, g_\beta \text{ and } h_\gamma \text{ are surjective.}
\end{align*}
\]

**Theorem 3.14.** For any \(\alpha, \beta \in (0, 1)\), the quotient sets \(N_{(\varepsilon, \alpha)}(X)/\varphi_{\alpha} \land N_{(\varepsilon, \alpha)}(X)/\varphi_{\beta} = \emptyset\).

**Proof.** Given \(\alpha, \beta \in (0, 1)\), define two maps \(\varphi_{\alpha}^* \land \varphi_{\beta}^*\) as follows:

\[
\begin{align*}
\varphi_{\alpha}^* : N_{(\varepsilon, \alpha)}(X)/\varphi_{\alpha} & \rightarrow I(X) \cup \{0\}, \quad \varphi_{\alpha}^*(A_\sim) = f_{\alpha}(A_\sim), \\
\varphi_{\beta}^* : N_{(\varepsilon, \alpha)}(X)/\varphi_{\beta} & \rightarrow I(X) \cup \{0\}, \quad \varphi_{\beta}^*(A_\sim) = g_\beta(A_\sim).
\end{align*}
\]

If \(\varphi_{\alpha}^*(A_\sim) = \varphi_{\alpha}^*(B_\sim)\) and \(\varphi_{\beta}^*(A_\sim) = \varphi_{\beta}^*(B_\sim)\) for all \(A_\sim, B_\sim \in N_{(\varepsilon, \alpha)}(X)\), then

\[
\begin{align*}
f_{\alpha}(A_\sim) & = f_{\alpha}(B_\sim) \cap h_\alpha(A_\sim), \\
g_\beta(A_\sim) & = g_\beta(B_\sim) \cap h_\beta(A_\sim),
\end{align*}
\]

so that

\[
\begin{align*}
f_{\alpha}(A_\sim) & = T_\varepsilon(A_\sim; \alpha) \cap F_\varepsilon(A_\sim; \gamma), \\
g_\beta(A_\sim) & = I_\varepsilon(A_\sim; \beta) \cap F_\varepsilon(A_\sim; \beta).
\end{align*}
\]

\[
\begin{align*}
\text{Therefore } f_{\alpha}, g_\beta \text{ and } h_\gamma \text{ are surjective.}
\end{align*}
\]

---

**G. Muniuddin, H. Bordbar, F. Smarandache, Y.B. Jun, Further results on \((\varepsilon, \alpha)-\)neutrosophic subalgebras and ideals in BCK/BCI-algebras**
Therefore \( \varphi\) and \( A \) are surjective. This completes the proof.

References


Received : March 26, 2018. Accepted : April 16, 2018.