Further results on (\in, \in)-neutrosophic subalgebras and ideals in $B C K / B C I$-algebras

G. Muhiuddin ${ }^{1}$, Hashem Bordbar ${ }^{2}$, Florentin Smarandache ${ }^{3}$, Young Bae Jun ${ }^{4, *}$
${ }^{1}$ Department of Mathematics, University of Tabuk, Tabuk 71491, Saudi Arabia. e-mail: chishtygm@gmail.com
${ }^{2}$ Postdoctoral Research Fellow, Shahid Beheshti University, Tehran, Iran. e-mail: bordbar.amirh @ gmail.com
${ }^{3}$ Mathematics \& Science Department, University of New Mexico. 705 Gurley Ave., Gallup, NM 87301, USA. e-mail: fsmarandache@gmail.com
${ }^{4}$ Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea. e-mail: skywine@ gmail.com

*Correspondence: Y.B. Jun (skywine@gmail.com)

Abstract

Characterizations of an (ϵ, ϵ)-neutrosophic ideal are considered. Any ideal in a $B C K / B C I$-algebra will be realized as level neutrosophic ideals of some (ϵ, ϵ)-neutrosophic ideal. The relation between (ϵ, ϵ)-neutrosophic ideal and (ϵ, \in)-neutrosophic subalgebra in a $B C K$-algebra is discussed. Conditions for an (\in,

Keywords: (ϵ, ϵ)-neutrosophic subalgebra, (ϵ, \in)-neutrosophic ideal.

1 Introduction

Neutrosophic set (NS) developed by Smarandache [8, 9, 10] introduced neutrosophic set (NS) as a more general platform which extends the concepts of the classic set and fuzzy set, intuitionistic fuzzy set and interval valued intuitionistic fuzzy set. Neutrosophic set theory is applied to various part which is refered to the site
http://fs.gallup.unm.edu/neutrosophy.htm.
Jun et al. studied neutrosophic subalgebras/ideals in $B C K / B C I$-algebras based on neutrosophic points (see [1], [5] and [7]).

In this paper, we characterize an (\in, \in)-neutrosophic ideal in a $B C K / B C I$-algebra. We show that any ideal in a $B C K / B C I$ algebra can be realized as level neutrosophic ideals of some (ϵ, \in)-neutrosophic ideal. We investigate the relation between (ϵ, \in)-neutrosophic ideal and (ϵ, \in)-neutrosophic subalgebra in a $B C K$-algebra. We provide conditions for an (ϵ, ϵ) neutrosophic subalgebra to be a (\in, \in)-neutrosophic ideal. Using a collection of ideals in a $B C K / B C I$-algebra, we establish an (\in, \in)-neutrosophic ideal. We discuss equivalence relations on the family of all (\in, \in)-neutrosophic ideals, and investigate related properties.

2 Preliminaries

A $B C K / B C I$-algebra is an important class of logical algebras introduced by K. Iséki (see [2] and [3]) and was extensively in-
$\epsilon)$-neutrosophic subalgebra to be a (\in, \in)-neutrosophic ideal are provided. Using a collection of ideals in a $B C K / B C I$-algebra, an (ϵ, \in)-neutrosophic ideal is established. Equivalence relations on the family of all (\in, \in)-neutrosophic ideals are introduced, and related properties are investigated.
vestigated by several researchers.
By a $B C I$-algebra, we mean a set X with a special element 0 and a binary operation $*$ that satisfies the following conditions:
(I) $(\forall x, y, z \in X)(((x * y) *(x * z)) *(z * y)=0)$,
(II) $(\forall x, y \in X)((x *(x * y)) * y=0)$,
(III) $(\forall x \in X)(x * x=0)$,
(IV) $(\forall x, y \in X)(x * y=0, y * x=0 \Rightarrow x=y)$.

If a $B C I$-algebra X satisfies the following identity:
(V) $(\forall x \in X)(0 * x=0)$,
then X is called a $B C K$-algebra. Any $B C K / B C I$-algebra X satisfies the following conditions:

$$
\begin{align*}
& (\forall x \in X)(x * 0=x) \tag{2.1}\\
& (\forall x, y, z \in X)\binom{x \leq y \Rightarrow x * z \leq y * z}{x \leq y \Rightarrow z * y \leq z * x}, \tag{2.2}\\
& (\forall x, y, z \in X)((x * y) * z=(x * z) * y) \tag{2.3}\\
& (\forall x, y, z \in X)((x * z) *(y * z) \leq x * y) \tag{2.4}
\end{align*}
$$

where $x \leq y$ if and only if $x * y=0$. A nonempty subset S of a $B C K / B C I$-algebra X is called a subalgebra of X if $x * y \in S$ for all $x, y \in S$. A subset I of a $B C K / B C I$-algebra X is called an ideal of X if it satisfies:

$$
\begin{align*}
& 0 \in I \tag{2.5}\\
& (\forall x \in X)(\forall y \in I)(x * y \in I \Rightarrow x \in I) \tag{2.6}
\end{align*}
$$

We refer the reader to the books [4, 6] for further information and regarding $B C K / B C I$-algebras.

For any family $\left\{a_{i} \mid i \in \Lambda\right\}$ of real numbers, we define

$$
\bigvee\left\{a_{i} \mid i \in \Lambda\right\}:=\sup \left\{a_{i} \mid i \in \Lambda\right\}
$$

and

$$
\bigwedge\left\{a_{i} \mid i \in \Lambda\right\}:=\inf \left\{a_{i} \mid i \in \Lambda\right\}
$$

If $\Lambda=\{1,2\}$, we will also use $a_{1} \vee a_{2}$ and $a_{1} \wedge a_{2}$ instead of $\bigvee\left\{a_{i} \mid i \in \Lambda\right\}$ and $\bigwedge\left\{a_{i} \mid i \in \Lambda\right\}$, respectively.

Let X be a non-empty set. A neutrosophic set (NS) in X (see [9]) is a structure of the form:

$$
A_{\sim}:=\left\{\left\langle x ; A_{T}(x), A_{I}(x), A_{F}(x)\right\rangle \mid x \in X\right\}
$$

where $A_{T}: X \rightarrow[0,1]$ is a truth membership function, $A_{I}: X \rightarrow[0,1]$ is an indeterminate membership function, and $A_{F}: X \rightarrow[0,1]$ is a false membership function. For the sake of simplicity, we shall use the symbol $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ for the neutrosophic set

$$
A_{\sim}:=\left\{\left\langle x ; A_{T}(x), A_{I}(x), A_{F}(x)\right\rangle \mid x \in X\right\} .
$$

Given a neutrosophic set $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ in a set X, $\alpha, \beta \in(0,1]$ and $\gamma \in[0,1)$, we consider the following sets:

$$
\begin{aligned}
& T_{\in}\left(A_{\sim} ; \alpha\right):=\left\{x \in X \mid A_{T}(x) \geq \alpha\right\}, \\
& I_{\in}\left(A_{\sim} ; \beta\right):=\left\{x \in X \mid A_{I}(x) \geq \beta\right\} \\
& F_{\in}\left(A_{\sim} ; \gamma\right):=\left\{x \in X \mid A_{F}(x) \leq \gamma\right\} .
\end{aligned}
$$

We say $T_{\in}\left(A_{\sim} ; \alpha\right), I_{\in}\left(A_{\sim} ; \beta\right)$ and $F_{\in}\left(A_{\sim} ; \gamma\right)$ are neutrosophic \in-subsets.

A neutrosophic set $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ in a $B C K / B C I$ algebra X is called an (\in, \in)-neutrosophic subalgebra of X (see [5]) if the following assertions are valid.

$$
(\forall x, y \in X)\left(\begin{array}{c}
x \in T_{\in}\left(A_{\sim} ; \alpha_{x}\right), y \in T_{\in}\left(A_{\sim} ; \alpha_{y}\right) \tag{2.7}\\
\Rightarrow x * y \in T_{\in}\left(A_{\sim} ; \alpha_{x} \wedge \alpha_{y}\right), \\
x \in I_{\in}\left(A_{\sim} ; \beta_{x}\right), y \in I_{\in}\left(A_{\sim} ; \beta_{y}\right) \\
\Rightarrow x * y \in I_{\in}\left(A_{\sim} ; \beta_{x} \wedge \beta_{y}\right), \\
x \in F_{\in}\left(A_{\sim} ; \gamma_{x}\right), y \in F_{\in}\left(A_{\sim} ; \gamma_{y}\right) \\
\Rightarrow x * y \in F_{\in}\left(A_{\sim} ; \gamma_{x} \vee \gamma_{y}\right)
\end{array}\right)
$$

for all $\alpha_{x}, \alpha_{y}, \beta_{x}, \beta_{y} \in(0,1]$ and $\gamma_{x}, \gamma_{y} \in[0,1)$.
A neutrosophic set $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ in a $B C K / B C I$ algebra X is called an (\in, \in)-neutrosophic ideal of X (see [7]) if the following assertions are valid.

$$
(\forall x \in X)\left(\begin{array}{l}
x \in T_{\in}\left(A_{\sim} ; \alpha_{x}\right) \Rightarrow 0 \in T_{\in}\left(A_{\sim} ; \alpha_{x}\right) \tag{2.8}\\
x \in I_{\in}\left(A_{\sim} ; \beta_{x}\right) \Rightarrow 0 \in I_{\in}\left(A_{\sim} ; \beta_{x}\right) \\
x \in F_{\in}\left(A_{\sim} ; \gamma_{x}\right) \Rightarrow 0 \in F_{\in}\left(A_{\sim} ; \gamma_{x}\right)
\end{array}\right)
$$

$$
(\forall x, y \in X)\left(\begin{array}{c}
x * y \in T_{\in}\left(A_{\sim} ; \alpha_{x}\right), y \in T_{\in}\left(A_{\sim} ; \alpha_{y}\right) \tag{2.9}\\
\Rightarrow x \in T_{\in}\left(A_{\sim} ; \alpha_{x} \wedge \alpha_{y}\right) \\
x * y \\
\in I_{\in}\left(A_{\sim} ; \beta_{x}\right), y \in I_{\in}\left(A_{\sim} ; \beta_{y}\right) \\
\Rightarrow x \in I_{\in}\left(A_{\sim} ; \beta_{x} \wedge \beta_{y}\right) \\
x * y \\
\Rightarrow F_{\in}\left(A_{\sim} ; \gamma_{x}\right), y \in F_{\in}\left(A_{\sim} ; \gamma_{y}\right) \\
\Rightarrow x \in F_{\in}\left(A_{\sim} ; \gamma_{x} \vee \gamma_{y}\right)
\end{array}\right)
$$

for all $\alpha_{x}, \alpha_{y}, \beta_{x}, \beta_{y} \in(0,1]$ and $\gamma_{x}, \gamma_{y} \in[0,1)$.

$3(\epsilon, \in)$-neutrosophic subalgebras and ideals

We first provide characterizations of an (ϵ, \in)-neutrosophic ideal.

Theorem 3.1. Given a neutrosophic set $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ in a $B C K / B C I$-algebra X, the following assertions are equivalent.
(1) $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ is an (\in, \in)-neutrosophic ideal of X.
(2) $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ satisfies the following assertions.

$$
(\forall x \in X)\left(\begin{array}{l}
A_{T}(0) \geq A_{T}(x) \tag{3.1}\\
A_{I}(0) \geq A_{I}(x), \\
A_{F}(0) \leq A_{F}(x)
\end{array}\right)
$$

and

$$
(\forall x, y \in X)\left(\begin{array}{l}
A_{T}(x) \geq A_{T}(x * y) \wedge A_{T}(y) \tag{3.2}\\
A_{I}(x) \geq A_{I}(x * y) \wedge A_{I}(y) \\
A_{F}(x) \leq A_{F}(x * y) \vee A_{F}(y)
\end{array}\right)
$$

Proof. Assume that $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ is an (\in, \in) neutrosophic ideal of X. Suppose there exist $a, b, c \in X$ be such that $A_{T}(0)<A_{T}(a), A_{I}(0)<A_{I}(b)$ and $A_{F}(0)>$ $A_{F}(c)$. Then $a \in T_{\in}\left(A_{\sim} ; A_{T}(a)\right), b \in I_{\in}\left(A_{\sim} ; A_{I}(b)\right)$ and $c \in F_{\in}\left(A_{\sim} ; A_{F}(c)\right)$. But

$$
0 \notin T_{\in}\left(A_{\sim} ; A_{T}(a)\right) \cap I_{\in}\left(A_{\sim} ; A_{I}(b)\right) \cap F_{\in}\left(A_{\sim} ; A_{F}(c)\right)
$$

This is a contradiction, and thus $A_{T}(0) \geq A_{T}(x), A_{I}(0) \geq$ $A_{I}(x)$ and $A_{F}(0) \leq A_{F}(x)$ for all $x \in X$. Suppose that $A_{T}(x)<A_{T}(x * y) \wedge A_{T}(y), A_{I}(a)<A_{I}(a * b) \wedge A_{I}(b)$ and $A_{F}(c)>A_{F}(c * d) \vee A_{F}(d)$ for some $x, y, a, b, c, d \in X$. Taking $\alpha:=A_{T}(x * y) \wedge A_{T}(y), \beta:=A_{I}(a * b) \wedge A_{I}(b)$ and $\gamma:=$ $A_{F}(c * d) \vee A_{F}(d)$ imply that $x * y \in T_{\in}\left(A_{\sim} ; \alpha\right), y \in T_{\in}\left(A_{\sim} ; \alpha\right)$, $a * b \in I_{\in}\left(A_{\sim} ; \beta\right), b \in I_{\in}\left(A_{\sim} ; \beta\right), c * d \in F_{\in}\left(A_{\sim} ; \gamma\right)$ and $d \in F_{\in}\left(A_{\sim} ; \gamma\right)$. But $x \notin T_{\in}\left(A_{\sim} ; \alpha\right), a \notin I_{\in}\left(A_{\sim} ; \beta\right)$ and $c \notin F_{\in}\left(A_{\sim} ; \gamma\right)$. This is impossible, and so (3.2) is valid.

Conversely, suppose $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ satisfies two conditions (3.1) and (3.2). For any $x, y, z \in X$, let $\alpha, \beta \in(0,1]$ and $\gamma \in[0,1)$ be such that $x \in T_{\in}\left(A_{\sim} ; \alpha\right), y \in I_{\in}\left(A_{\sim} ; \beta\right)$ and
$z \in F_{\in}\left(A_{\sim} ; \gamma\right)$. It follows from (3.1) that $A_{T}(0) \geq A_{T}(x) \geq \alpha$, $A_{I}(0) \geq A_{I}(y) \geq \beta$ and $A_{F}(0) \leq A_{F}(z) \leq \gamma$ and so that $0 \in T_{\in}\left(A_{\sim} ; \alpha\right) \cap I_{\in}\left(A_{\sim} ; \beta\right) \cap F_{\in}\left(A_{\sim} ; \gamma\right)$. Let $a, b, c, d, x, y \in X$ be such that $a * b \in T_{\in}\left(A_{\sim} ; \alpha_{a}\right), b \in T_{\in}\left(A_{\sim} ; \alpha_{b}\right), c * d \in$ $I_{\in}\left(A_{\sim} ; \beta_{c}\right), d \in I_{\in}\left(A_{\sim} ; \beta_{d}\right), x * y \in F_{\in}\left(A_{\sim} ; \gamma_{x}\right)$, and $y \in$ $F_{\in}\left(A_{\sim} ; \gamma_{y}\right)$ for $\alpha_{a}, \alpha_{b}, \beta_{c}, \beta_{d} \in(0,1]$ and $\gamma_{x}, \gamma_{y} \in[0,1)$. Using (3.2), we have

$$
\begin{aligned}
& A_{T}(a) \geq A_{T}(a * b) \wedge A_{T}(b) \geq \alpha_{a} \wedge \alpha_{b} \\
& A_{I}(c) \geq A_{I}(c * d) \wedge A_{I}(d) \geq \beta_{c} \wedge \beta_{d} \\
& A_{F}(x) \leq A_{F}(x * y) \vee A_{F}(y) \leq \gamma_{x} \vee \gamma_{y}
\end{aligned}
$$

Hence $a \in T_{\in}\left(A_{\sim} ; \alpha_{a} \wedge \alpha_{b}\right), c \in I_{\in}\left(A_{\sim} ; \beta_{c} \wedge \beta_{d}\right)$ and $x \in$ $F_{\in}\left(A_{\sim} ; \gamma_{x} \vee \gamma_{y}\right)$. Therefore $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ is an $(\epsilon, \in)-$ neutrosophic ideal of X.

Theorem 3.2. Let $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ be a neutrosophic set in a $B C K / B C I$-algebra X. Then the following assertions are equivalent.
(1) $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ is an (\in, \in)-neutrosophic ideal of X.
(2) The nonempty neutrosophic \in-subsets $T_{\in}\left(A_{\sim} ; \alpha\right)$, $I_{\in}\left(A_{\sim} ; \beta\right)$ and $F_{\in}\left(A_{\sim} ; \gamma\right)$ are ideals of X for all $\alpha, \beta \in(0,1]$ and $\gamma \in[0,1)$.

Proof. Let $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ be an (ϵ, \in)-neutrosophic ideal of X and assume that $T_{\in}\left(A_{\sim} ; \alpha\right), I_{\in}\left(A_{\sim} ; \beta\right)$ and $F_{\in}\left(A_{\sim} ; \gamma\right)$ are nonempty for $\alpha, \beta \in(0,1]$ and $\gamma \in[0,1)$. Then there exist $x, y, z \in X$ such that $x \in T_{\in}\left(A_{\sim} ; \alpha\right), y \in I_{\in}\left(A_{\sim} ; \beta\right)$ and $z \in$ $F_{\in}\left(A_{\sim} ; \gamma\right)$. It follows from (2.8) that

$$
0 \in T_{\in}\left(A_{\sim} ; \alpha\right) \cap I_{\in}\left(A_{\sim} ; \beta\right) \cap F_{\in}\left(A_{\sim} ; \gamma\right)
$$

Let $x, y, a, b, u, v \in X$ be such that $x * y \in T_{\in}\left(A_{\sim} ; \alpha\right)$, $y \in T_{\in}\left(A_{\sim} ; \alpha\right), a * b \in I_{\in}\left(A_{\sim} ; \beta\right), b \in I_{\in}\left(A_{\sim} ; \beta\right), u * v \in$ $F_{\in}\left(A_{\sim} ; \gamma\right)$ and $v \in F_{\in}\left(A_{\sim} ; \gamma\right)$. Then

$$
\begin{aligned}
& A_{T}(x) \geq A_{T}(x * y) \wedge A_{T}(y) \geq \alpha \wedge \alpha=\alpha \\
& A_{I}(a) \geq A_{I}(a * b) \wedge A_{I}(b) \geq \beta \wedge \beta=\beta \\
& A_{F}(u) \leq A_{F}(u * v) \vee A_{F}(v) \leq \gamma \vee \gamma=\gamma
\end{aligned}
$$

by (3.2), and so $x \in T_{\in}\left(A_{\sim} ; \alpha\right), a \in I_{\in}\left(A_{\sim} ; \beta\right)$ and $u \in F_{\in}\left(A_{\sim} ; \gamma\right)$. Hence the nonempty neutrosophic \in-subsets $T_{\in}\left(A_{\sim} ; \alpha\right), I_{\in}\left(A_{\sim} ; \beta\right)$ and $F_{\in}\left(A_{\sim} ; \gamma\right)$ are ideals of X for all $\alpha, \beta \in(0,1]$ and $\gamma \in[0,1)$.

Conversely, let $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ be a neutrosophic set in X for which $T_{\in}\left(A_{\sim} ; \alpha\right), I_{\in}\left(A_{\sim} ; \beta\right)$ and $F_{\in}\left(A_{\sim} ; \gamma\right)$ are nonempty and are ideals of X for all $\alpha, \beta \in(0,1]$ and $\gamma \in[0,1)$. Assume that $A_{T}(0)<A_{T}(x), A_{I}(0)<A_{I}(y)$ and $A_{F}(0)>A_{F}(z)$ for some $x, y, z \in X$. Then $x \in$ $T_{\in}\left(A_{\sim} ; A_{T}(x)\right), y \in I_{\in}\left(A_{\sim} ; A_{I}(y)\right)$ and $z \in F_{\in}\left(A_{\sim} ; A_{F}(z)\right)$, that is, $T_{\in}\left(A_{\sim} ; \alpha\right), I_{\in}\left(A_{\sim} ; \beta\right)$ and $F_{\in}\left(A_{\sim} ; \gamma\right)$ are nonempty. But $0 \notin T_{\in}\left(A_{\sim} ; A_{T}(x)\right) \cap I_{\in}\left(A_{\sim} ; A_{I}(y)\right) \cap F_{\in}\left(A_{\sim} ; A_{F}(z)\right)$, which is a contradiction since $T_{\in}\left(A_{\sim} ; A_{T}(x)\right), I_{\in}\left(A_{\sim} ; A_{I}(y)\right)$ and $F_{\in}\left(A_{\sim} ; A_{F}(z)\right)$ are ideals of X. Hence $A_{T}(0) \geq A_{T}(x)$, $A_{I}(0) \geq A_{I}(x)$ and $A_{F}(0) \leq A_{F}(x)$ for all $x \in X$. Suppose
that

$$
\begin{aligned}
& A_{T}(x)<A_{T}(x * y) \wedge A_{T}(y) \\
& A_{I}(a)<A_{I}(a * b) \wedge A_{I}(b) \\
& A_{F}(u)>A_{F}(u * v) \vee A_{F}(v)
\end{aligned}
$$

for some $x, y, a, b, u, v \in X$. Taking $\alpha:=A_{T}(x * y) \wedge A_{T}(y)$, $\beta:=A_{I}(a * b) \wedge A_{I}(b)$ and $\gamma:=A_{F}(u * v) \vee A_{F}(v)$ imply that $\alpha, \beta \in(0,1], \gamma \in[0,1), x * y \in T_{\in}\left(A_{\sim} ; \alpha\right), y \in T_{\in}\left(A_{\sim} ; \alpha\right)$, $a * b \in I_{\in}\left(A_{\sim} ; \beta\right), b \in I_{\in}\left(A_{\sim} ; \beta\right), u * v \in F_{\in}\left(A_{\sim} ; \gamma\right)$ and $v \in F_{\in}\left(A_{\sim} ; \gamma\right)$. But $x \notin T_{\in}\left(A_{\sim} ; \alpha\right), a \notin I_{\in}\left(A_{\sim} ; \beta\right)$ and $u \notin$ $F_{\in}\left(A_{\sim} ; \gamma\right)$. This is a contradiction since $T_{\in}\left(A_{\sim} ; \alpha\right), I_{\in}\left(A_{\sim} ; \beta\right)$ and $F_{\in}\left(A_{\sim} ; \gamma\right)$ are ideals of X. Thus

$$
\begin{aligned}
& A_{T}(x) \geq A_{T}(x * y) \wedge A_{T}(y) \\
& A_{I}(x) \geq A_{I}(x * y) \wedge A_{I}(y) \\
& A_{F}(x) \leq A_{F}(x * y) \vee A_{F}(y)
\end{aligned}
$$

for all $x, y \in X$. Therefore $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ is an $(\epsilon$, $\in)$-neutrosophic ideal of X by Theorem 3.1.

Proposition 3.3. Every (\in, \in)-neutrosophic ideal $A_{\sim}=$ $\left(A_{T}, A_{I}, A_{F}\right)$ of a $B C K / B C I$-algebra X satisfies the following assertions.

$$
\begin{align*}
& (\forall x, y \in X)\left(x \leq y \Rightarrow\left\{\begin{array}{l}
A_{T}(x) \geq A_{T}(y) \\
A_{I}(x) \geq A_{I}(y) \\
A_{F}(x) \leq A_{F}(y)
\end{array}\right),\right. \tag{3.3}\\
& (\forall x, y, z \in X)\left(x * y \leq z \Rightarrow\left\{\begin{array}{l}
A_{T}(x) \geq A_{T}(y) \wedge A_{T}(z) \\
A_{I}(x) \geq A_{I}(y) \wedge A_{I}(z) \\
A_{F}(x) \leq A_{F}(y) \vee A_{F}(z)
\end{array}\right)\right. \tag{3.4}
\end{align*}
$$

Proof. Let $x, y \in X$ be such that $x \leq y$. Then $x * y=0$, and so

$$
\begin{aligned}
& A_{T}(x) \geq A_{T}(x * y) \wedge A_{T}(y)=A_{T}(0) \wedge A_{T}(y)=A_{T}(y) \\
& A_{I}(x) \geq A_{I}(x * y) \wedge A_{I}(y)=A_{I}(0) \wedge A_{I}(y)=A_{I}(y) \\
& A_{F}(x) \leq A_{F}(x * y) \vee A_{F}(y)=A_{F}(0) \vee A_{F}(y)=A_{F}(y)
\end{aligned}
$$

by Theorem 3.1. Hence (3.3) is valid. Let $x, y, z \in X$ be such that $x * y \leq z$. Then $(x * y) * z=0$, and thus

$$
\begin{aligned}
A_{T}(x) & \geq A_{T}(x * y) \wedge A_{T}(y) \\
& \geq\left(A_{T}((x * y) * z) \wedge A_{T}(z)\right) \wedge A_{T}(y) \\
& \geq\left(A_{T}(0) \wedge A_{T}(z)\right) \wedge A_{T}(y) \\
& \geq A_{T}(z) \wedge A_{T}(y) \\
A_{I}(x) & \geq A_{I}(x * y) \wedge A_{I}(y) \\
& \geq\left(A_{I}((x * y) * z) \wedge A_{I}(z)\right) \wedge A_{I}(y) \\
& \geq\left(A_{I}(0) \wedge A_{I}(z)\right) \wedge A_{I}(y) \\
& \geq A_{I}(z) \wedge A_{I}(y)
\end{aligned}
$$

and

$$
\begin{aligned}
A_{F}(x) & \leq A_{F}(x * y) \vee A_{F}(y) \\
& \leq\left(A_{F}((x * y) * z) \vee A_{F}(z)\right) \vee A_{F}(y) \\
& \leq\left(A_{F}(0) \vee A_{F}(z)\right) \vee A_{F}(y) \\
& \leq A_{F}(z) \vee A_{F}(y)
\end{aligned}
$$

by Theorem 3.1.

Theorem 3.4. Any ideal of a $B C K / B C I$-algebra X can be realized as level neutrosophic ideals of some (\in, \in)-neutrosophic ideal of X.

Proof. Let I be an ideal of a $B C K / B C I$-algebra X and let $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ be a neutrosophic set in X given as follows:

$$
\begin{aligned}
& A_{T}: X \rightarrow[0,1], \quad x \mapsto \begin{cases}\alpha & \text { if } x \in I, \\
0 & \text { otherwise },\end{cases} \\
& A_{I}: X \rightarrow[0,1], \quad x \mapsto \begin{cases}\beta & \text { if } x \in I, \\
0 & \text { otherwise }\end{cases} \\
& A_{F}: X \rightarrow[0,1], \quad x \mapsto \begin{cases}\gamma & \text { if } x \in I \\
1 & \text { otherwise }\end{cases}
\end{aligned}
$$

where (α, β, γ) is a fixed ordered triple in $(0,1] \times(0,1] \times[0,1)$. Then $T_{\in}\left(A_{\sim} ; \alpha\right)=I, I_{\in}\left(A_{\sim} ; \beta\right)=I$ and $F_{\in}\left(A_{\sim} ; \gamma\right)=I$. Obviously, $A_{T}(0) \geq A_{T}(x), A_{I}(0) \geq A_{I}(x)$ and $A_{F}(0) \leq$ $A_{F}(x)$ for all $x \in X$. Let $x, y \in X$. If $x * y \in I$ and $y \in I$, then $x \in I$. Hence

$$
\begin{aligned}
& A_{T}(x * y)=A_{T}(y)=A_{T}(x)=\alpha \\
& A_{I}(x * y)=A_{I}(y)=A_{I}(x)=\beta \\
& A_{F}(x * y)=A_{F}(y)=A_{F}(x)=\gamma
\end{aligned}
$$

and so

$$
\begin{aligned}
& A_{T}(x) \geq A_{T}(x * y) \wedge A_{T}(y) \\
& A_{I}(x) \geq A_{I}(x * y) \wedge A_{I}(y) \\
& A_{F}(x) \leq A_{F}(x * y) \vee A_{F}(y)
\end{aligned}
$$

If $x * y \notin I$ and $y \notin I$, then

$$
\begin{aligned}
& A_{T}(x * y)=A_{T}(y)=0 \\
& A_{I}(x * y)=A_{I}(y)=0 \\
& A_{F}(x * y)=A_{F}(y)=1
\end{aligned}
$$

Thus

$$
\begin{aligned}
& A_{T}(x) \geq A_{T}(x * y) \wedge A_{T}(y) \\
& A_{I}(x) \geq A_{I}(x * y) \wedge A_{I}(y) \\
& A_{F}(x) \leq A_{F}(x * y) \vee A_{F}(y)
\end{aligned}
$$

If $x * y \in I$ and $y \notin I$, then

$$
\begin{aligned}
& A_{T}(x * y)=\alpha \text { and } A_{T}(y)=0 \\
& A_{I}(x * y)=\beta \text { and } A_{I}(y)=0 \\
& A_{F}(x * y)=\gamma \text { and } A_{F}(y)=1
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& A_{T}(x) \geq 0=A_{T}(x * y) \wedge A_{T}(y) \\
& A_{I}(x) \geq 0=A_{I}(x * y) \wedge A_{I}(y) \\
& A_{F}(x) \leq 1=A_{F}(x * y) \vee A_{F}(y)
\end{aligned}
$$

Similarly, if $x * y \notin I$ and $y \in I$, then

$$
\begin{aligned}
& A_{T}(x) \geq A_{T}(x * y) \wedge A_{T}(y) \\
& A_{I}(x) \geq A_{I}(x * y) \wedge A_{I}(y) \\
& A_{F}(x) \leq A_{F}(x * y) \vee A_{F}(y)
\end{aligned}
$$

Therefore $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ is an (\in, \in)-neutrosophic ideal of X by Theorem 3.1. This completes the proof.

Lemma 3.5 ([5]). A neutrosophic set $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ in a $B C K / B C I$-algebra X is an (\in, \in)-neutrosophic subalgebra of X if and only if it satisfies:

$$
(\forall x, y \in X)\left(\begin{array}{l}
A_{T}(x * y) \geq A_{T}(x) \wedge A_{T}(y) \tag{3.5}\\
A_{I}(x * y) \geq A_{I}(x) \wedge A_{I}(y) \\
A_{F}(x * y) \leq A_{F}(x) \vee A_{F}(y)
\end{array}\right)
$$

Theorem 3.6. In a BCK-algebra, every (ϵ, \in)-neutrosophic ideal is an (\in, \in)-neutrosophic subalgebra.

Proof. Let $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ be an (\in, \in)-neutrosophic ideal of a $B C K$-algebra X. Since $x * y \leq x$ for all $x, y \in X$, it follows from Proposition 3.3 and (3.2) that

$$
\begin{aligned}
& A_{T}(x * y) \geq A_{T}(x) \geq A_{T}(x * y) \wedge A_{T}(y) \geq A_{T}(x) \wedge A_{T}(y) \\
& A_{I}(x * y) \geq A_{I}(x) \geq A_{I}(x * y) \wedge A_{I}(y) \geq A_{I}(x) \wedge A_{I}(y) \\
& A_{F}(x * y) \leq A_{F}(x) \leq A_{F}(x * y) \vee A_{F}(y) \leq A_{F}(x) \vee A_{F}(y)
\end{aligned}
$$

Therefore $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ is an (\in, \in)-neutrosophic subalgebra of X by Lemma 3.5.

The following example shows that the converse of Theorem 3.6 is not true in general.

Example 3.7. Consider a set $X=\{0,1,2,3\}$ with the binary operation $*$ which is given in Table 1.
Then $(X ; *, 0)$ is a $B C K$-algebra (see [6]). Let $A_{\sim}=\left(A_{T}, A_{I}\right.$, A_{F}) be a neutrosophic set in X defined by Table 2
It is routine to verify that $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ is an (ϵ, \in) neutrosophic subalgebra of X. We know that $I_{\in}\left(A_{\sim} ; \beta\right)$ is an ideal of X for all $\beta \in(0,1]$. If $\alpha \in(0.3,0.7]$, then $T_{\in}\left(A_{\sim} ; \alpha\right)=$ $\{0,1,3\}$ is not an ideal of X. Also, if $\gamma \in[0.2,0.8)$, then $F_{\in}\left(A_{\sim} ; \gamma\right)=\{0,1,3\}$ is not an ideal of X. Therefore $A_{\sim}=$ $\left(A_{T}, A_{I}, A_{F}\right)$ is not an (\in, \in)-neutrosophic ideal of X by Theorem 3.2.

Table 1: Cayley table for the binary operation "*"

$*$	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	1	0	2
3	3	3	3	0

Table 2: Tabular representation of $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$

X	$A_{T}(x)$	$A_{I}(x)$	$A_{F}(x)$
0	0.7	0.9	0.2
1	0.7	0.6	0.2
2	0.3	0.6	0.8
3	0.7	0.4	0.2

We give a condition for an (ϵ, \in)-neutrosophic subalgebra to be an (ϵ, \in)-neutrosophic ideal.

Theorem 3.8. Let $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ be a neutrosophic set in a $B C K$-algebra X. If $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ is an (\in, \in) neutrosophic subalgebra of X that satisfies the condition (3.4), then it is an (\in, \in)-neutrosophic ideal of X.

Proof. Taking $x=y$ in (3.5) and using (III) induce the condition (3.1). Since $x *(x * y) \leq y$ for all $x, y \in X$, it follows from (3.4) that

$$
\begin{aligned}
& A_{T}(x) \geq A_{T}(x * y) \wedge A_{T}(y) \\
& A_{I}(x) \geq A_{I}(x * y) \wedge A_{I}(y) \\
& A_{F}(x) \leq A_{F}(x * y) \vee A_{F}(y)
\end{aligned}
$$

for all $x, y \in X$. Therefore $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ is an $(\in$, $\in)$-neutrosophic ideal of X by Theorem 3.1.

Theorem 3.9. Let $\left\{D_{k} \mid k \in \Lambda^{T} \cup \Lambda^{I} \cup \Lambda^{F}\right\}$ be a collection of ideals of a BCK/BCI-algebra X, where Λ^{T}, Λ^{I} and Λ^{F} are nonempty subsets of $[0,1]$, such that

$$
\begin{align*}
& X=\left\{D_{\alpha} \mid \alpha \in \Lambda^{T}\right\} \cup\left\{D_{\beta} \mid \beta \in \Lambda^{I}\right\} \cup\left\{D_{\gamma} \mid \gamma \in \Lambda^{F}\right\} \tag{3.6}\\
& \left(\forall i, j \in \Lambda^{T} \cup \Lambda^{I} \cup \Lambda^{F}\right)\left(i>j \Leftrightarrow D_{i} \subset D_{j}\right) . \tag{3.7}
\end{align*}
$$

Let $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ be a neutrosophic set in X defined as follows:

$$
\begin{align*}
& A_{T}: X \rightarrow[0,1], x \mapsto \bigvee\left\{\alpha \in \Lambda^{T} \mid x \in D_{\alpha}\right\} \\
& A_{I}: X \rightarrow[0,1], x \mapsto \bigvee\left\{\beta \in \Lambda^{I} \mid x \in D_{\beta}\right\} \tag{3.8}\\
& A_{F}: X \rightarrow[0,1], x \mapsto \bigwedge\left\{\gamma \in \Lambda^{F} \mid x \in D_{\gamma}\right\}
\end{align*}
$$

Then $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ is an (\in, \in)-neutrosophic ideal of X. Proof. Let $\alpha, \beta \in(0,1]$ and $\gamma \in[0,1)$ be such that $T_{\in}\left(A_{\sim} ; \alpha\right) \neq$ $\emptyset, I_{\in}\left(A_{\sim} ; \beta\right) \neq \emptyset$ and $F_{\in}\left(A_{\sim} ; \gamma\right) \neq \emptyset$. We consider the follow-
ing two cases:

$$
\alpha=\bigvee\left\{i \in \Lambda^{T} \mid i<\alpha\right\} \text { and } \alpha \neq \bigvee\left\{i \in \Lambda^{T} \mid i<\alpha\right\}
$$

First case implies that

$$
\begin{align*}
x \in T_{\in}\left(A_{\sim} ; \alpha\right) & \Leftrightarrow x \in D_{i} \text { for all } i<\alpha \\
& \Leftrightarrow x \in \cap\left\{D_{i} \mid i<\alpha\right\} . \tag{3.9}
\end{align*}
$$

Hence $T_{\in}\left(A_{\sim} ; \alpha\right)=\cap\left\{D_{i} \mid i<\alpha\right\}$, which is an ideal of X. For the second case, we claim that $T_{\in}\left(A_{\sim} ; \alpha\right)=\cup\left\{D_{i} \mid i \geq \alpha\right\}$. If $x \in \cup\left\{D_{i} \mid i \geq \alpha\right\}$, then $x \in D_{i}$ for some $i \geq \alpha$. Thus $A_{T}(x) \geq i \geq \alpha$, and so $x \in T_{\in}\left(A_{\sim} ; \alpha\right)$. If $x \notin \cup\left\{D_{i} \mid i \geq \alpha\right\}$, then $x \notin D_{i}$ for all $i \geq \alpha$. Since $\alpha \neq \bigvee\left\{i \in \Lambda^{T} \mid i<\alpha\right\}$, there exists $\varepsilon>0$ such that $(\alpha-\varepsilon, \alpha) \cap \Lambda^{T}=\emptyset$. Hence $x \notin D_{i}$ for all $i>\alpha-\varepsilon$, which means that if $x \in D_{i}$ then $i \leq \alpha-\varepsilon$. Thus $A_{T}(x) \leq \alpha-\varepsilon<\alpha$, and so $x \notin T_{\in}\left(A_{\sim} ; \alpha\right)$. Therefore $T_{\in}\left(A_{\sim} ; \alpha\right)=\cup\left\{D_{i} \mid i \geq \alpha\right\}$ which is an ideal of X since $\left\{D_{k}\right\}$ forms a chain. Similarly, we can verify that $I_{\in}\left(A_{\sim} ; \beta\right)$ is an ideal of X. Finally, we consider the following two cases:

$$
\gamma=\bigwedge\left\{j \in \Lambda^{F} \mid \gamma<j\right\} \text { and } \gamma \neq \bigwedge\left\{j \in \Lambda^{F} \mid \gamma<j\right\}
$$

For the first case, we have

$$
\begin{align*}
x \in F_{\in}\left(A_{\sim} ; \gamma\right) & \Leftrightarrow x \in D_{j} \text { for all } j>\gamma \\
& \Leftrightarrow x \in \cap\left\{D_{j} \mid j>\gamma\right\}, \tag{3.10}
\end{align*}
$$

and thus $F_{\in}\left(A_{\sim} ; \gamma\right)=\cap\left\{D_{j} \mid j>\gamma\right\}$ which is an ideal of X. The second case implies that $F_{\in}\left(A_{\sim} ; \gamma\right)=\cup\left\{D_{j} \mid j \leq \gamma\right\}$. In fact, if $x \in \cup\left\{D_{j} \mid j \leq \gamma\right\}$, then $x \in D_{j}$ for some $j \leq \gamma$. Thus $A_{F}(x) \leq j \leq \gamma$, that is, $x \in F_{\in}\left(A_{\sim} ; \gamma\right)$. Hence $\cup\left\{D_{j} \mid j \leq\right.$ $\gamma\} \subseteq F_{\in}\left(A_{\sim} ; \gamma\right)$. Now if $x \notin \cup\left\{D_{j} \mid j \leq \gamma\right\}$, then $x \notin D_{j}$ for all $j \leq \gamma$. Since $\gamma \neq \bigwedge\left\{j \in \Lambda^{F} \mid \gamma<j\right\}$, there exists $\varepsilon>0$ such that $(\gamma, \gamma+\varepsilon) \cap \Lambda^{F}$ is empty. Hence $x \notin D_{j}$ for all $j<\gamma+\varepsilon$, and so if $x \in D_{j}$, then $j \geq \gamma+\varepsilon$. Thus $A_{F}(x) \geq \gamma+\varepsilon>\gamma$, and hence $x \notin F_{\in}\left(A_{\sim} ; \gamma\right)$. Thus $F_{\in}\left(A_{\sim} ; \gamma\right) \subseteq \cup\left\{D_{j} \mid j \leq \gamma\right\}$, and therefore $F_{\in}\left(A_{\sim} ; \gamma\right)=\cup\left\{D_{j} \mid j \leq \gamma\right\}$ which is an ideal of X. Consequently, $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ is an (ϵ, \in)-neutrosophic ideal of X by Theorem 3.2.

A mapping $f: X \rightarrow Y$ of $B C K / B C I$-algebras is called a homomorphism if $f(x * y)=f(x) * f(y)$ for all $x, y \in X$. Note that if $f: X \rightarrow Y$ is a homomorphism of $B C K / B C I$ algebras, then $f(0)=0$. Given a homomorphism $f: X \rightarrow Y$ of $B C K / B C I$-algebras and a neutrosophic set $A_{\sim}=\left(A_{T}, A_{I}\right.$, $\left.A_{F}\right)$ in Y, we define a neutrosophic set $A_{\sim}^{f}=\left(A_{T}^{f}, A_{I}^{f}, A_{F}^{f}\right)$ in X, which is called the induced neutrosophic set, as follows:

$$
\begin{aligned}
& A_{T}^{f}: X \rightarrow[0,1], x \mapsto A_{T}(f(x)), \\
& A_{I}^{f}: X \rightarrow[0,1], x \mapsto A_{I}(f(x)) \\
& A_{F}^{f}: X \rightarrow[0,1], x \mapsto A_{F}(f(x))
\end{aligned}
$$

Theorem 3.10. Let $f: X \rightarrow Y$ be a homomorphism of $B C K / B C I$-algebras. If $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ is an $(\in$, $\in)$-neutrosophic ideal of Y, then the induced neutrosophic set
$A_{\sim}^{f}=\left(A_{T}^{f}, A_{I}^{f}, A_{F}^{f}\right)$ in X is an (\in, \in)-neutrosophic ideal of X.
Proof. For any $x \in X$, we have

$$
\begin{aligned}
& A_{T}^{f}(x)=A_{T}(f(x)) \leq A_{T}(0)=A_{T}(f(0))=A_{T}^{f}(0) \\
& A_{I}^{f}(x)=A_{I}(f(x)) \leq A_{I}(0)=A_{I}(f(0))=A_{I}^{f}(0) \\
& A_{F}^{f}(x)=A_{F}(f(x)) \geq A_{F}(0)=A_{F}(f(0))=A_{F}^{f}(0)
\end{aligned}
$$

Let $x, y \in X$. Then

$$
\begin{aligned}
& A_{T}^{f}(x * y) \wedge A_{T}^{f}(y)=A_{T}(f(x * y)) \wedge A_{T}(f(y)) \\
& =A_{T}(f(x) * f(y)) \wedge A_{T}(f(y)) \\
& \leq A_{T}(f(x))=A_{T}^{f}(x) \\
& \\
& A_{I}^{f}(x * y) \wedge A_{I}^{f}(y)=A_{I}(f(x * y)) \wedge A_{I}(f(y)) \\
& =A_{I}(f(x) * f(y)) \wedge A_{I}(f(y)) \\
& \leq A_{I}(f(x))=A_{I}^{f}(x)
\end{aligned}
$$

and

$$
\begin{aligned}
& A_{F}^{f}(x * y) \vee A_{F}^{f}(y)=A_{F}(f(x * y)) \vee A_{F}(f(y)) \\
& =A_{F}(f(x) * f(y)) \vee A_{F}(f(y)) \\
& \geq A_{F}(f(x))=A_{F}^{f}(x)
\end{aligned}
$$

Therefore $A_{\sim}^{f}=\left(A_{T}^{f}, A_{I}^{f}, A_{F}^{f}\right)$ is an (\in, \in)-neutrosophic ideal of X by Theorem 3.1.

Theorem 3.11. Let $f: X \rightarrow Y$ be an onto homomorphism of $B C K / B C I$-algebras and let $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ be a neutrosophic set in Y. If the induced neutrosophic set $A_{\sim}^{f}=\left(A_{T}^{f}, A_{I}^{f}\right.$, $\left.A_{F}^{f}\right)$ in X is an (\in, \in)-neutrosophic ideal of X, then $A_{\sim}=\left(A_{T}\right.$, $\left.A_{I}, A_{F}\right)$ is an (\in, \in)-neutrosophic ideal of Y.

Proof. Assume that the induced neutrosophic set $A_{\sim}^{f}=\left(A_{T}^{f}\right.$, $\left.A_{I}^{f}, A_{F}^{f}\right)$ in X is an (\in, \in)-neutrosophic ideal of X. For any $x \in Y$, there exists $a \in X$ such that $f(a)=x$ since f is onto. Using (3.1), we have

$$
\begin{aligned}
& A_{T}(x)=A_{T}(f(a))=A_{T}^{f}(a) \leq A_{T}^{f}(0)=A_{T}(f(0))=A_{T}(0) \\
& A_{I}(x)=A_{I}(f(a))=A_{I}^{f}(a) \leq A_{I}^{f}(0)=A_{I}(f(0))=A_{I}(0) \\
& A_{F}(x)=A_{F}(f(a))=A_{F}^{f}(a) \geq A_{F}^{f}(0)=A_{F}(f(0))=A_{F}(0)
\end{aligned}
$$

Let $x, y \in Y$. Then $f(a)=x$ and $f(b)=y$ for some $a, b \in X$. It follows from (3.2) that

$$
\begin{aligned}
A_{T}(x) & =A_{T}(f(a))=A_{T}^{f}(a) \\
& \geq A_{T}^{f}(a * b) \wedge A_{T}^{f}(b) \\
& =A_{T}(f(a * b)) \wedge A_{T}(f(b)) \\
& =A_{T}(f(a) * f(b)) \wedge A_{T}(f(b)) \\
& =A_{T}(x * y) \wedge A_{T}(y)
\end{aligned}
$$

$$
\begin{aligned}
A_{I}(x) & =A_{I}(f(a))=A_{I}^{f}(a) \\
& \geq A_{I}^{f}(a * b) \wedge A_{I}^{f}(b) \\
& =A_{I}(f(a * b)) \wedge A_{I}(f(b)) \\
& =A_{I}(f(a) * f(b)) \wedge A_{I}(f(b)) \\
& =A_{I}(x * y) \wedge A_{I}(y),
\end{aligned}
$$

and

$$
\begin{aligned}
A_{F}(x) & =A_{F}(f(a))=A_{F}^{f}(a) \\
& \leq A_{F}^{f}(a * b) \vee A_{F}^{f}(b) \\
& =A_{F}(f(a * b)) \vee A_{F}(f(b)) \\
& =A_{F}(f(a) * f(b)) \vee A_{F}(f(b)) \\
& =A_{F}(x * y) \vee A_{F}(y) .
\end{aligned}
$$

Therefore $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ is an (\in, \in)-neutrosophic ideal of Y by Theorem 3.1.

Let $\mathcal{N}_{(\epsilon, \in)}(X)$ be the collection of all (ϵ, \in)-neutrosophic ideals of X and let $\alpha, \beta \in(0,1]$ and $\gamma \in[0,1)$. Define binary relations $\mathcal{R}_{T}^{\alpha}, \mathcal{R}_{I}^{\beta}$ and \mathcal{R}_{F}^{γ} on $\mathcal{N}_{(\epsilon, \epsilon)}(X)$ as follows:

$$
\begin{align*}
& A_{T} \mathcal{R}_{T}^{\alpha} B_{T} \Leftrightarrow T_{\in}\left(A_{\sim} ; \alpha\right)=T_{\in}\left(B_{\sim} ; \alpha\right) \\
& A_{I} \mathcal{R}_{I}^{\beta} B_{I} \Leftrightarrow I_{\in}\left(A_{\sim} ; \beta\right)=I_{\in}\left(B_{\sim} ; \beta\right) \tag{3.11}\\
& A_{F} \mathcal{R}_{F}^{\gamma} B_{F} \Leftrightarrow F_{\in}\left(A_{\sim} ; \gamma\right)=F_{\in}\left(B_{\sim} ; \gamma\right)
\end{align*}
$$

for all $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ and $B_{\sim}=\left(B_{T}, B_{I}, B_{F}\right)$ in $\mathcal{N}_{(\in, \in)}(X)$.

Clearly $\mathcal{R}_{T}^{\alpha}, \quad \mathcal{R}_{I}^{\beta}$ and \mathcal{R}_{F}^{γ} are equivalence relations on $\mathcal{N}_{(\in, \in)}(X)$. For any $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right) \in \mathcal{N}_{(\in, \in)}(X)$, let $\left[A_{\sim}\right]_{T}$ (resp., $\left[A_{\sim}\right]_{I}$ and $\left[A_{\sim}\right]_{F}$) denote the equivalence class of $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ in $\mathcal{N}_{(\in, \epsilon)}(X)$ under \mathcal{R}_{T}^{α} (resp., \mathcal{R}_{I}^{β} and \mathcal{R}_{F}^{γ}). Denote by $\mathcal{N}_{(\in, \epsilon)}(X) / \mathcal{R}_{T}^{\alpha}, \mathcal{N}_{(\epsilon, \epsilon)}(X) / \mathcal{R}_{I}^{\beta}$ and $\mathcal{N}_{(\in, \in)}(X) / \mathcal{R}_{F}^{\gamma}$ the collection of all equivalence classes under $\mathcal{R}_{T}^{\alpha}, \mathcal{R}_{I}^{\beta}$ and \mathcal{R}_{F}^{γ}, respectively, that is,
$\mathcal{N}_{(\in, \in)}(X) / \mathcal{R}_{T}^{\alpha}=\left\{\left[A_{\sim}\right]_{T} \mid A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right) \in \mathcal{N}_{(\epsilon, \epsilon)}(X)\right.$, $\mathcal{N}_{(\in, \in)}(X) / \mathcal{R}_{I}^{\beta}=\left\{\left[A_{\sim}\right]_{I} \mid A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right) \in \mathcal{N}_{(\in, \in)}(X)\right.$, $\mathcal{N}_{(\in, \in)}(X) / \mathcal{R}_{F}^{\gamma}=\left\{\left[A_{\sim}\right]_{F} \mid A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right) \in \mathcal{N}_{(\in, \in)}(X)\right.$.

Now let $\mathcal{I}(X)$ denote the family of all ideals of X. Define maps f_{α}, g_{β} and h_{γ} from $\mathcal{N}_{(\in, \in)}(X)$ to $\mathcal{I}(X) \cup\{\emptyset\}$ by
$f_{\alpha}\left(A_{\sim}\right)=T_{\in}\left(A_{\sim} ; \alpha\right), g_{\beta}\left(A_{\sim}\right)=I_{\in}\left(A_{\sim} ; \beta\right)$ and
$h_{\gamma}\left(A_{\sim}\right)=F_{\in}\left(A_{\sim} ; \gamma\right)$,
respectively, for all $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ in $\mathcal{N}_{(\in, \in)}(X)$. Then f_{α}, g_{β} and h_{γ} are clearly well-defined.
Theorem 3.12. For any $\alpha, \beta \in(0,1]$ and $\gamma \in[0,1)$, the maps f_{α}, g_{β} and h_{γ} are surjective from $\mathcal{N}_{(\in, \in)}(X)$ to $\mathcal{I}(X) \cup\{\emptyset\}$.
Proof. Let $0_{\sim}:=\left(0_{T}, 0_{I}, 1_{F}\right)$ be a neutrosophic set in X where $0_{T}, 0_{I}$ and 1_{F} are fuzzy sets in X defined by $0_{T}(x)=0$, $0_{I}(x)=0$ and $1_{F}(x)=1$ for all $x \in X$. Obviously, $0_{\sim}:=\left(0_{T}, 0_{I}, 1_{F}\right)$ is an (\in, \in)-neutrosophic ideal of X. Also, $f_{\alpha}\left(0_{\sim}\right)=T_{\in}\left(0_{\sim} ; \alpha\right)=\emptyset, g_{\beta}\left(0_{\sim}\right)=I_{\in}\left(0_{\sim} ; \beta\right)=\emptyset$
and $h_{\gamma}\left(0_{\sim}\right)=F_{\in}\left(0_{\sim} ; \gamma\right)=\emptyset$. For any ideal I of X, let $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ be the (\in, \in)-neutrosophic ideal of X in the proof of Theorem 3.4. Then $f_{\alpha}\left(A_{\sim}\right)=T_{\in}\left(A_{\sim} ; \alpha\right)=I$, $g_{\beta}\left(A_{\sim}\right)=I_{\in}\left(A_{\sim} ; \beta\right)=I$ and $h_{\gamma}\left(A_{\sim}\right)=F_{\in}\left(A_{\sim} ; \gamma\right)=I$. Therefore f_{α}, g_{β} and h_{γ} are surjective.

Theorem 3.13. The quotient sets $\mathcal{N}_{(\in, \in)}(X) / \mathcal{R}_{T}^{\alpha}$, $\mathcal{N}_{(\in, \in)}(X) / \mathcal{R}_{I}^{\beta}$ and $\mathcal{N}_{(\in, \in)}(X) / \mathcal{R}_{F}^{\gamma}$ are equivalent to $\mathcal{I}(X) \cup\{\emptyset\}$ for any $\alpha, \beta \in(0,1]$ and $\gamma \in[0,1)$.

Proof. Let $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right) \in \mathcal{N}_{(\in, \in)}(X)$. For any $\alpha, \beta \in$ $(0,1]$ and $\gamma \in[0,1)$, define

$$
\begin{aligned}
& f_{\alpha}^{*}: \mathcal{N}_{(\in, \epsilon)}(X) / \mathcal{R}_{T}^{\alpha} \rightarrow \mathcal{I}(X) \cup\{\emptyset\},\left[A_{\sim}\right]_{T} \mapsto f_{\alpha}\left(A_{\sim}\right), \\
& g_{\beta}^{*}: \mathcal{N}_{(\in, \in)}(X) / \mathcal{R}_{I}^{\beta} \rightarrow \mathcal{I}(X) \cup\{\emptyset\},\left[A_{\sim}\right]_{I} \mapsto g_{\beta}\left(A_{\sim}\right), \\
& h_{\gamma}^{*}: \mathcal{N}_{(\in, \in)}(X) / \mathcal{R}_{F}^{\gamma} \rightarrow \mathcal{I}(X) \cup\{\emptyset\},\left[A_{\sim}\right]_{F} \mapsto h_{\gamma}\left(A_{\sim}\right) .
\end{aligned}
$$

Assume that $f_{\alpha}\left(A_{\sim}\right)=f_{\alpha}\left(B_{\sim}\right), g_{\beta}\left(A_{\sim}\right)=g_{\beta}\left(B_{\sim}\right)$ and $h_{\gamma}\left(A_{\sim}\right)=h_{\gamma}\left(B_{\sim}\right)$ for $B_{\sim}=\left(B_{T}, B_{I}, B_{F}\right) \in \mathcal{N}_{(\in, \in)}(X)$. Then $T_{\in}\left(A_{\sim} ; \alpha\right)=T_{\in}\left(B_{\sim} ; \alpha\right), I_{\in}\left(A_{\sim} ; \beta\right)=I_{\in}\left(B_{\sim} ; \beta\right)$ and $F_{\in}\left(A_{\sim} ; \gamma\right)=F_{\in}\left(B_{\sim} ; \gamma\right)$ which imply that $A_{T} \mathcal{R}_{T}^{\alpha} B_{T}, A_{I} \mathcal{R}_{I}^{\beta} B_{I}$ and $A_{F} \mathcal{R}_{F}^{\gamma} B_{F}$. Hence $\left[A_{\sim}\right]_{T}=\left[B_{\sim}\right]_{T},\left[A_{\sim}\right]_{I}=\left[B_{\sim}\right]_{I}$ and $\left[A_{\sim}\right]_{F}=\left[B_{\sim}\right]_{F}$. Therefore $f_{\alpha}^{*}, g_{\beta}^{*}$ and h_{γ}^{*} are injective. Consider the (\in, \in)-neutrosophic ideal $0_{\sim}:=\left(0_{T}, 0_{I}\right.$, 1_{F}) of X which is given in the proof of Theorem 3.12. Then $f_{\alpha}^{*}\left(\left[0_{\sim}\right]_{T}\right)=f_{\alpha}\left(0_{\sim}\right)=T_{\in}\left(0_{\sim} ; \alpha\right)=\emptyset, g_{\beta}^{*}\left(\left[0_{\sim}\right]_{I}\right)=g_{\beta}\left(0_{\sim}\right)=$ $I_{\in}\left(0_{\sim} ; \beta\right)=\emptyset$, and $h_{\gamma}^{*}\left(\left[0_{\sim}\right]_{F}\right)=h_{\gamma}\left(0_{\sim}\right)=F_{\in}\left(0_{\sim} ; \gamma\right)=\emptyset$. For any ideal I of X, consider the (ϵ, \in)-neutrosophic ideal $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ of X in the proof of Theorem 3.4. Then $f_{\alpha}^{*}\left(\left[A_{\sim}\right]_{T}\right)=f_{\alpha}\left(A_{\sim}\right)=T_{\in}\left(A_{\sim} ; \alpha\right)=I, g_{\beta}^{*}\left(\left[A_{\sim}\right]_{I}\right)=$ $g_{\beta}\left(A_{\sim}\right)=I_{\in}\left(A_{\sim} ; \beta\right)=I$, and $h_{\gamma}^{*}\left(\left[A_{\sim}\right]_{F}\right)=h_{\gamma}\left(A_{\sim}\right)=$ $F_{\in}\left(A_{\sim} ; \gamma\right)=I$. Hence $f_{\alpha}^{*}, g_{\beta}^{*}$ and h_{γ}^{*} are surjective, and the proof is over.

For any $\alpha, \beta \in[0,1]$, we define another relations \mathcal{R}_{α} and \mathcal{R}_{β} on $\mathcal{N}_{(\in, \in)}(X)$ as follows:

$$
\begin{align*}
\left(A_{\sim}, B_{\sim}\right) \in \mathcal{R}_{\alpha} \Leftrightarrow & T_{\in}\left(A_{\sim} ; \alpha\right) \cap F_{\in}\left(A_{\sim} ; \alpha\right) \\
& =T_{\in}\left(B_{\sim} ; \alpha\right) \cap F_{\in}\left(B_{\sim} ; \alpha\right), \tag{3.12}\\
\left(A_{\sim}, B_{\sim}\right) \in \mathcal{R}_{\beta} \Leftrightarrow & I_{\in}\left(A_{\sim} ; \beta\right) \cap F_{\in}\left(A_{\sim} ; \beta\right) \\
& =I_{\in}\left(B_{\sim} ; \beta\right) \cap F_{\in}\left(B_{\sim} ; \beta\right)
\end{align*}
$$

for all $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ and $B_{\sim}=\left(B_{T}, B_{I}, B_{F}\right)$ in $\mathcal{N}_{(\in, \in)}(X)$. Then the relations \mathcal{R}_{α} and \mathcal{R}_{β} are also equivalence relations on $\mathcal{N}_{(\in, \in)}(X)$.

Theorem 3.14. Given $\alpha, \beta \in(0,1)$, we define two maps

$$
\begin{align*}
\varphi_{\alpha}: \mathcal{N}_{(\in, \in)}(X) & \rightarrow \mathcal{I}(X) \cup\{\emptyset\}, \\
A_{\sim} & \mapsto f_{\alpha}\left(A_{\sim}\right) \cap h_{\alpha}\left(A_{\sim}\right), \\
\varphi_{\beta}: \mathcal{N}_{(\in, \in)}(X) & \rightarrow \mathcal{I}(X) \cup\{\emptyset\}, \tag{3.13}\\
A_{\sim} & \mapsto g_{\beta}\left(A_{\sim}\right) \cap h_{\beta}\left(A_{\sim}\right)
\end{align*}
$$

for each $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right) \in \mathcal{N}_{(\in, \in)}(X)$. Then φ_{α} and φ_{β} are surjective.

Proof. Consider the (\in, \in)-neutrosophic ideal $0_{\sim}:=\left(0_{T}, 0_{I}\right.$, 1_{F}) of X which is given in the proof of Theorem 3.12. Then

$$
\begin{aligned}
& \varphi_{\alpha}\left(0_{\sim}\right)=f_{\alpha}\left(0_{\sim}\right) \cap h_{\alpha}\left(0_{\sim}\right)=T_{\in}\left(0_{\sim} ; \alpha\right) \cap F_{\in}\left(0_{\sim} ; \alpha\right)=\emptyset \\
& \varphi_{\beta}\left(0_{\sim}\right)=g_{\beta}\left(0_{\sim}\right) \cap h_{\beta}\left(0_{\sim}\right)=I_{\in}\left(0_{\sim} ; \beta\right) \cap F_{\in}\left(0_{\sim} ; \beta\right)=\emptyset
\end{aligned}
$$

For any ideal I of X, consider the (ϵ, \in)-neutrosophic ideal $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ of X in the proof of Theorem 3.4. Then

$$
\begin{aligned}
\varphi_{\alpha}\left(A_{\sim}\right) & =f_{\alpha}\left(A_{\sim}\right) \cap h_{\alpha}\left(A_{\sim}\right) \\
& =T_{\in}\left(A_{\sim} ; \alpha\right) \cap F_{\in}\left(A_{\sim} ; \alpha\right)=I
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi_{\beta}\left(A_{\sim}\right) & =g_{\beta}\left(A_{\sim}\right) \cap h_{\beta}\left(A_{\sim}\right) \\
& =I_{\in}\left(A_{\sim} ; \beta\right) \cap F_{\in}\left(A_{\sim} ; \beta\right)=I
\end{aligned}
$$

Therefore φ_{α} and φ_{β} are surjective.

Theorem 3.15. For any $\alpha, \beta \in(0,1)$, the quotient sets $\mathcal{N}_{(\in, \epsilon)}(X) / \varphi_{\alpha}$ and $\mathcal{N}_{(\in, \in)}(X) / \varphi_{\beta}$ are equivalent to $\mathcal{I}(X) \cup$ $\{\emptyset\}$.

Proof. Given $\alpha, \beta \in(0,1)$, define two maps φ_{α}^{*} and φ_{β}^{*} as follows:

$$
\begin{aligned}
& \varphi_{\alpha}^{*}: \mathcal{N}_{(\in, \in)}(X) / \varphi_{\alpha} \rightarrow \mathcal{I}(X) \cup\{\emptyset\},\left[A_{\sim}\right]_{\mathcal{R}_{\alpha}} \mapsto \varphi_{\alpha}\left(A_{\sim}\right), \\
& \varphi_{\beta}^{*}: \mathcal{N}_{(\in, \epsilon)}(X) / \varphi_{\beta} \rightarrow \mathcal{I}(X) \cup\{\emptyset\},\left[A_{\sim}\right]_{\mathcal{R}_{\beta}} \mapsto \varphi_{\beta}\left(A_{\sim}\right) .
\end{aligned}
$$

If $\varphi_{\alpha}^{*}\left(\left[A_{\sim}\right]_{\mathcal{R}_{\alpha}}\right)=\varphi_{\alpha}^{*}\left(\left[B_{\sim}\right]_{\mathcal{R}_{\alpha}}\right)$ and $\varphi_{\beta}^{*}\left(\left[A_{\sim}\right]_{\mathcal{R}_{\beta}}\right)=$ $\varphi_{\beta}^{*}\left(\left[B_{\sim}\right]_{\mathcal{R}_{\beta}}\right)$ for all $\left[A_{\sim}\right]_{\mathcal{R}_{\alpha}},[B]_{\mathcal{R}_{\alpha}} \in \mathcal{N}_{(\in, \in)}(X) / \varphi_{\alpha}$ and $\left[A_{\sim}\right]_{\mathcal{R}_{\beta}},\left[B_{\sim}\right]_{\mathcal{R}_{\beta}} \in \mathcal{N}_{(\in, \in)}(X) / \varphi_{\beta}$, then

$$
f_{\alpha}\left(A_{\sim}\right) \cap h_{\alpha}\left(A_{\sim}\right)=f_{\alpha}\left(B_{\sim}\right) \cap h_{\alpha}\left(B_{\sim}\right)
$$

and

$$
g_{\beta}\left(A_{\sim}\right) \cap h_{\beta}\left(A_{\sim}\right)=g_{\beta}\left(B_{\sim}\right) \cap h_{\beta}\left(B_{\sim}\right)
$$

that is,

$$
T_{\in}\left(A_{\sim} ; \alpha\right) \cap F_{\in}\left(A_{\sim} ; \alpha\right)=T_{\in}\left(B_{\sim} ; \alpha\right) \cap F_{\in}\left(B_{\sim} ; \alpha\right)
$$

and

$$
I_{\in}\left(A_{\sim} ; \beta\right) \cap F_{\in}\left(A_{\sim} ; \beta\right)=I_{\in}\left(B_{\sim} ; \beta\right) \cap F_{\in}\left(B_{\sim} ; \beta\right)
$$

Hence $\left(A_{\sim}, B_{\sim}\right) \in \mathcal{R}_{\alpha}$ and $\left(A_{\sim}, B_{\sim}\right) \in \mathcal{R}_{\beta}$. It follows that $\left[A_{\sim}\right]_{\mathcal{R}_{\alpha}}=\left[B_{\sim}\right]_{\mathcal{R}_{\alpha}}$ and $\left[A_{\sim}\right]_{\mathcal{R}_{\beta}}=\left[B_{\sim}\right]_{\mathcal{R}_{\beta}}$. Thus φ_{α}^{*} and φ_{β}^{*} are injective. Consider the (\in, \in)-neutrosophic ideal $0_{\sim}:=\left(0_{T}\right.$, $0_{I}, 1_{F}$) of X which is given in the proof of Theorem 3.12. Then

$$
\begin{aligned}
\varphi_{\alpha}^{*}\left(\left[0_{\sim}\right]_{\mathcal{R}_{\alpha}}\right) & =\varphi_{\alpha}\left(0_{\sim}\right)=f_{\alpha}\left(0_{\sim}\right) \cap h_{\alpha}\left(0_{\sim}\right) \\
& =T_{\in}\left(0_{\sim} ; \alpha\right) \cap F_{\in}\left(0_{\sim} ; \alpha\right)=\emptyset
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi_{\beta}^{*}\left(\left[0_{\sim}\right]_{\mathcal{R}_{\beta}}\right) & =\varphi_{\beta}\left(0_{\sim}\right)=g_{\beta}\left(0_{\sim}\right) \cap h_{\beta}\left(0_{\sim}\right) \\
& =I_{\in}\left(0_{\sim} ; \beta\right) \cap F_{\in}\left(0_{\sim} ; \beta\right)=\emptyset .
\end{aligned}
$$

For any ideal I of X, consider the (\in, \in)-neutrosophic ideal $A_{\sim}=\left(A_{T}, A_{I}, A_{F}\right)$ of X in the proof of Theorem 3.4. Then

$$
\begin{aligned}
\varphi_{\alpha}^{*}\left(\left[A_{\sim}\right]_{\mathcal{R}_{\alpha}}\right) & =\varphi_{\alpha}\left(A_{\sim}\right)=f_{\alpha}\left(A_{\sim}\right) \cap h_{\alpha}\left(A_{\sim}\right) \\
& =T_{\in}\left(A_{\sim} ; \alpha\right) \cap F_{\in}\left(A_{\sim} ; \alpha\right)=I
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi_{\beta}^{*}\left(\left[A_{\sim}\right]_{\mathcal{R}_{\beta}}\right) & =\varphi_{\beta}\left(A_{\sim}\right)=g_{\beta}\left(A_{\sim}\right) \cap h_{\beta}\left(A_{\sim}\right) \\
& =I_{\in}\left(A_{\sim} ; \beta\right) \cap F_{\in}\left(A_{\sim} ; \beta\right)=I
\end{aligned}
$$

Therefore φ_{α}^{*} and φ_{β}^{*} are surjective. This completes the proof.

References

[1] A. Borumand Saeid and Y.B. Jun, Neutrosophic subalgebras of $B C K / B C I$-algebras based on neutrosophic points, Ann. Fuzzy Math. Inform. 14 (2017), no. 1, 87-97.
[2] K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
[3] K. Iséki and S. Tanaka, An introduction to the theory of $B C K$-algebras, Math. Japon. 23 (1978), 1-26.
[4] Y. Huang, BCI-algebra, Science Press, Beijing, 2006.
[5] Y.B. Jun, Neutrosophic subalgebras of several types in $B C K / B C I$-algebras, Ann. Fuzzy Math. Inform. 14 (2017), no. 1, 75-86.
[6] J. Meng and Y. B. Jun, $B C K$-algebras, Kyungmoonsa Co. Seoul, Korea 1994.
[7] M.A. Öztürk and Y.B. Jun, Neutrosophic ideals in $B C K / B C I$-algebras based on neutrosophic points, J. Inter. Math. Virtual Inst. 8 (2018), 1-17.
[8] F. Smarandache, Neutrosophy, Neutrosophic Probability, Set, and Logic, ProQuest Information \& Learning, Ann Arbor, Michigan, USA, 105 p., 1998. http://fs.gallup.unm.edu/eBook-neutrosophics6.pdf (last edition online).
[9] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability, American Reserch Press, Rehoboth, NM, 1999.
[10] F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, Int. J. Pure Appl. Math. 24 (2005), no.3, 287-297.
[11] Abdel-Basset, M., Mohamed, M., Smarandache, F., \& Chang, V. (2018). Neutrosophic Association Rule Mining Algorithm for Big Data Analysis. Symmetry, 10(4), 106.
[12] Abdel-Basset, M., \& Mohamed, M. (2018). The Role of Single Valued Neutrosophic Sets and Rough Sets in Smart City: Imperfect and Incomplete Information Systems. Measurement. Volume 124, August 2018, Pages 47-55
[13] Abdel-Basset, M., Gunasekaran, M., Mohamed, M., \& Smarandache, F. A novel method for solving the fully neutrosophic linear programming problems. Neural Computing and Applications, 1-11.
[14] Abdel-Basset, M., Manogaran, G., Gamal, A., \& Smarandache, F. (2018). A hybrid approach of neutrosophic sets and DEMATEL method for developing supplier selection criteria. Design Automation for Embedded Systems, 1-22.
[15] Abdel-Basset, M., Mohamed, M., \& Chang, V. (2018). NMCDA: A framework for evaluating cloud computing services. Future Generation Computer Systems, 86, 12-29.
[16] Abdel-Basset, M., Mohamed, M., Zhou, Y., \& Hezam, I. (2017). Multi-criteria group decision making based on neutrosophic analytic hierarchy process. Journal of Intelligent \& Fuzzy Systems, 33(6), 4055-4066.
[17] Abdel-Basset, M.; Mohamed, M.; Smarandache, F. An Extension of Neutrosophic AHP-SWOT Analysis for Strategic Planning and Decision-Making. Symmetry 2018, 10, 116.

Received : March 26, 2018. Accepted : April 16, 2018.

