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Abstract

The aim of this survey paper is to offer a general view of the developments of fuzzy TOPSIS methods. We begin with a

literature review an we explore different fuzzy models that have been applied to the decision making field. Finally, we present

some applications of fuzzy TOPSIS.
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1. Introduction and literature review

The problems of Multi-Criteria Decision Making (MCDM) appear and are intensely applied in many domains,

such as Economics, Social Sciences, Medical Sciences etc. Sometimes, MCDM problems are mentioned as

Multiple-Criteria Decision Analysis (MCDA) or Multi-Attribute Decision-Making (MADM) (see [22, 27, 47, 60]).

In spite of their diversity, the MCDM have as common characteristic multiple objectives and multiple criteria

which usually are in conflict with each other. The decision makers have to select, assess or rank these alternatives

according to the weights of the criteria. In the last decades the MCDM techniques have become an important

branch of operations research (see [23, 46, 65]).

In many real-world situations, the problems of decision making are subjected to some constraints, objectives

and consequences that are not accurately known. After Bellman and Zadeh [8] introduced for the first time fuzzy

sets within MCDM, many researchers have been preoccupied by decision making in fuzzy environments. The

fusion between MCDM and fuzzy set theory has led to a new decision theory, known today as fuzzy multi-criteria

decision making (FMCDM), where we have decision-maker models that can deal with incomplete and uncertain

knowledge and information. The most important thing is that, when we want to assess, judge or decide we usually

use a natural language in which the words do not have a clear, definite meaning. As a result, we need fuzzy

numbers to express linguistic variables, to describe the subjective judgement of a decision maker in a quantitative

manner. Fuzzy numbers (FN) most often used are triangular FN, trapezoidal FN and Gaussian FN.

We highlight that the concept of linguistic variable introduced by Zadeh in 1975 (see [61]) allows computation

with words instead of numbers and thus linguistic terms defined by fuzzy sets are intensely used in problems of

decision theory for modeling uncertain information. There are very good monographs (see for instance [17]) and

surveys papers [1, 12, 25, 33, 38] on FMCDM. Recently, some new methods have been explored [3, 53, 67].
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After Atanassov [4] introduced the concept of intuitionistic fuzzy sets, where each element is characterized

by a membership function, as in fuzzy sets, as well as by a non-membership function, the interest in the study of

the problems of decision making theory with the help of intuitionistic fuzzy sets (see [11, 26, 29, 31, 32, 62]) has

increased.

As a generalization of the concept of the classic set, fuzzy set, intuitionistic fuzzy set etc., Smarandache [42]

firstly proposed the concept of neutrosophic set. In paper [49] there are proposed set-theoretic operators on an

instance of neutrosophic set called interval neutrosophic set. Recently, neutrosophic sets have been applied in

MCDM (see [36, 56, 57, 58, 63]).

Torra and Narakawa [45] and Torra [44] introduced the concept of hesitant fuzzy set, which undergoes a much

more flexible approach for decision makers when they provide their decisions. Therefore, hesitant fuzzy sets have

become useful in MCDM problems [37, 39, 48, 52].

The aim of this survey paper is to offer a general view of the developments of fuzzy TOPSIS methods. We

begin with a literature review an we explore different fuzzy models that have been applied to the decision making

field. Finally, we present some applications of fuzzy TOPSIS.

2. Basic concepts and definitions

Definition 2.1. [21] A fuzzy number (FN) is a fuzzy set in R, namely a mapping x : R→ [0, 1], with the following
properties:

1. x is convex, i.e. x(t) ≥ min{x(s), x(r)}, for s ≤ t ≤ r;
2. x is normal, i.e. (∃)t0 ∈ R : x(t0) = 1;
3. x is upper semicontinuous, i.e.

(∀)t ∈ R, (∀)α ∈ (0, 1] : x(t) < α, (∃)δ > 0 such that |s − t| < δ⇒ x(s) < α . (1)

Remark 2.2. Among the various types of FNs, triangular FNs and trapezoidal FNs are the most popular. A
triangular FN is defined by its membership function

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 if t < a

t−a
b−a if a ≤ t < b
c−t
c−b if b ≤ t < c
0 if t > c

,where a ≤ b ≤ c , (2)

and it is denoted x̃ = (a, b, c). A trapezoidal FN is defined by its membership function

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if t < a
t−a
b−a if a ≤ t ≤ b
1 if b < t < c

d−t
d−c if c ≤ t ≤ d
0 if t > d

,where a ≤ b ≤ c ≤ d , (3)

and it can be expressed as x̃ = (a, b, c, d).

Remark 2.3. [14, 22, 24] Let x̃ = (a1, b1, c1), ỹ = (a2, b2, c2) be two non negative triangular FNs and α ∈ R+.
According to the extension principle, the arithmetic operations are defined as follows:

1. x̃ + ỹ = (a1 + a2, b1 + b2, c1 + c2);
2. x̃ − ỹ = (a1 − c2, b1 − b2, c1 − a2);
3. αx̃ = (αa1, αb1, αc1);
4. x̃−1 � (1/c1, 1/b1, 1/a1);
5. x̃ × ỹ � (a1a2, b1b2, c1c2);
6. x̃/ỹ � (a1/c2, b1/b2, c1/a2).

We note that the results of (4) − (6) are not triangular FNs, but they can be approximated by triangular FNs.

Remark 2.4. [17, 28, 59] Let x̃ = (a1, b1, c1, d1), ỹ = (a2, b2, c2, d2) be two non negative trapezoidal FNs and
α ∈ R+. The arithmetic operations are defined as follows:

1. x̃ + ỹ = (a1 + a2, b1 + b2, c1 + c2, d1 + d2);
2. x̃ − ỹ = (a1 − d2, b1 − c2, c1 − b2, d1 − a2);
3. αx̃ = (αa1, αb1, αc1, αd1);
4. x̃−1 � (1/d1, 1/c1, 1/b1, 1/a1);
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5. x̃ × ỹ � (a1a2, b1b2, c1c2, d1d2);
6. x̃/ỹ � (a1/d2, b1/c2, c1/b2, d1/a2).

We mention that the results of (4)− (6) are not trapezoidal FNs, but they can be approximated by trapezoidal FNs.

Definition 2.5. [4] An intuitionistic fuzzy set (IFS) A in X is given by

A = {< x, μA(x), νA(x) > : x ∈ X} , (4)

where μA, νA : X → [0, 1] such that 0 ≤ μA(x) + νA(x) ≤ 1 and represent the degree of membership and the degree
of non-membership of an element x to A.

Definition 2.6. [5] Let D([0, 1]) be the set of all closed subinterval of [0, 1]. An interval valued intuitionistic
fuzzy set (IVIFS) in X is given by

Ã = {< x, μÃ(x), νÃ(x) > : x ∈ X} , (5)

where μA, νA : X → D([0, 1]) such that 0 ≤ sup
x∈X
μÃ(x) + sup

x∈X
νÃ(x) ≤ 1.

Remark 2.7. If we denote μÃ(x) = [a, b], νÃ(x) = [c, d], then Ã can be written Ã = ([a, b], [c, d]). Let Ã1 =

([a1, b1], [c1, d1]), Ã2 = ([a2, b2], [c2, d2]) and α ∈ R+. The arithmetic operations are defined by Xu [54]:
1. Ã1 + Ã2 = ([a1 + a2 − a1a2, b1 + b2 − b1b2], [c1c2, d1d2]);
2. αÃ1 = ([1 − (1 − a1)α, 1 − (1 − b1)α], [cα

1
, dα

1
]);

3. Ã1 × Ã2 = ([a1a2, b1b2], [c1 + c2 − c1c2, d1 + d2 − d1d2]).

3. Fuzzy MCDM problem formulation

A MCDM problem with m alternatives {A1, A2, · · · , Am} which should be assessed by applying n criteria (or

attributes) {C1,C2, · · · ,Cn} can be expressed by the decision matrix

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x11 x12 · · · x1n

x21 x22 · · · x2n

· · · · · · · · · · · ·
xm1 xm2 · · · xmn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (6)

where xi j is a numeric data which represents the value of the ith alternative with respect to the jth criterion.

The importance (or weight) of the criterion C j to the decision is denoted by wj. Let w be the vector

w = [w1,w2, · · · ,wn] . (7)

Generally, the weights are determined on a subjective basis by a single decision maker or by a group of experts.

Some remarks must be made:

Remark 3.1. In fuzzy MCDM, in order to assign the importance degree to the criteria, it can be used an empirical
method described in [55], where an equivalence between the importance of an attribute and a triangular FN is
presented.

Table 1. Triangular FNs for the importance of criteria

Rank Attribute grade Triangular FN

Very low 1 (0.00, 0.10, 0.30)

Low 2 (0.10, 0.30, 0.50)

Medium 3 (0.30, 0.50, 0.75)

High 4 (0.50, 0.75, 0.90)

Very high 5 (0.75, 0.90, 1.00)

Similarly, alternatives can be evaluated by linguistic terms which can be represented by triangular FNs [15].

Remark 3.2. If the performance ratings of alternatives on qualitative criteria is expressed by linguistic term,
these linguistic terms can be represented by trapezoidal FNs or IVIFS as in the following tables:

Remark 3.3. It is often difficult for decision makers to assign a precise value to an alternative for the criteria
considered. In this situation the fuzzy MCDM problem can be expressed by the decision matrix

X̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x̃11 x̃12 · · · x̃1n

x̃21 x̃22 · · · x̃2n

· · · · · · · · · · · ·
x̃m1 x̃m2 · · · x̃mn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (8)

where x̃i j are fuzzy value (triangular FN, trapezoidal FN, IFS, IVIFS, trapezoidal hesitant fuzzy element etc.)



826   Sorin N˘ad˘aban et al.  /  Procedia Computer Science   91  ( 2016 )  823 – 831 

Table 2. Linguistic terms for alternatives ratings

Linguistic terms for alternatives ratings Triangular FN

Very good (9,10,10)

Good (7,9,10)

Medium (3,5,7)

Poor (1,3,5)

Very poor (1,1,3)

Table 3. Linguistic values of trapezoidal FNs for linguistic terms

Linguistic term Trapezoidal FN

Very low (0.00, 0.00, 0.00, 0.10)

Low (0.10, 0.20, 0.25, 0.30)

Medium low (0.30, 0.40, 0.45, 0.50)

Medium (0.50, 0.60, 0.65, 0.70)

Medium high (0.70, 0.80, 0.85, 0.90)

High (0.90, 0.95, 1.00, 1.00)

Very high (1.00, 1.00, 1.00, 1.00)

4. Fuzzy AHP

There exists a number of methods in order to obtain criteria weights [64, 66], but the AHP (Analytic Hierarchy

Process) developed by Saaty [40] is the most used. Buckley [9] incorporated the fuzzy theory into AHP and ob-

tained in this way fuzzy AHP. We note that a new method for finding fuzzy weights, based on a direct fuzzification

of method proposed by Saaty is presented in paper [10]. The procedure of fuzzy AHP (see for instance [22, 51]

etc.) is:

Step 1: Construct fuzzy pairwise comparison matrices.

Each decision maker assigns linguistic term represented by triangular FN to the pairwise comparison among

all criteria. Let P̃ = [ãi j] be a n × n matrix, where ãi j is the importance of criterion Ci with respect to criterion C j,

according to the fuzzy preference scale shown in the next table:

We note that

P̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(1, 1, 1) ã12 · · · ã1n

ã21 (1, 1, 1) · · · ã2n

· · · · · · · · · · · ·
ãn1 ãn2 · · · (1, 1, 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1, 1, 1) ã12 · · · ã1n

(1, 1, 1)/ã12 (1, 1, 1) · · · ã2n

· · · · · · · · · · · ·
(1, 1, 1)/ã1n (1, 1, 1)/ã2n · · · (1, 1, 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (9)

Step 2: Compute the fuzzy weights by normalization.

The fuzzy weight of criterion Ci, denoted w̃i, is obtained by

w̃i = r̃i × (r̃1 + r̃2 + · · · + r̃n)−1 , (10)

where r̃i = [ãi1 × ãi2 × · · · × ãin]1/n.

5. Fuzzy TOPSIS

Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) was proposed by Hwang and Yoon

[27] and it is the most known technique for solving MCDM problems. This method is based on the concept that the

chosen alternative should have the shortest distance to Positive Ideal Solution (PIS) (the solution which minimizes

the cost criteria and maximizes the benefit criteria) and the farthest distance to Negative Ideal Solution (NIS).

Chen [15] extended TOPSIS with triangular FNs. Chen introduced a vertex method to calculate the distance

between two triangular FNs. If x̃ = (a1, b1, c1), ỹ = (a2, b2, c2) are two triangular FNs then

d(x̃, ỹ) :=

√
1

3

[
(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2

]
. (11)

The procedure of fuzzy TOPSIS (see for instance [6, 15] etc.) is:

Step 1. Assignment rating to the criteria and to the alternatives.

We assume that we have a decision group with K members. The fuzzy rating of the kth decision maker

about alternative Ai w.r.t. criterion C j is denoted x̃k
i j = (ak

i j, b
k
i j, c

k
i j) and the weight of criterion C j is denoted

w̃k
j = (wk

j1,w
k
j2,w

k
j3).

Step 2. Compute the aggregated fuzzy ratings for alternatives and the aggregated fuzzy weights for criteria.
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Table 4. Linguistic values of IVIFS for linguistic terms

Linguistic term IVIFS

Very low ([0.00,0.10], [0.85,0.90])

Low ([0.10,0.15], [0.75,0.80])

Medium low ([0.25,0.30], [0.60,0.65])

Medium ([0.35,0.40], [0.45,0.50])

Medium high ([0.50,0.60], [0.30,0.35])

High ([0.65,0.70], [0.15,0.20])

Very high ([0.75,0.80], [0.10,0.15])

Very very high ([0.90,0.95], [0.01,0.02])

Extremely high ([1.00,1.00], [0.00,0.00])

Table 5. Fuzzy preference scale

Linguistic value Triangular FN (ãi j)

Absolutely important (7,9,9)

Very strongly extreme important (6,8,9)

Very strongly important (5,7,9)

Strongly important (4,6,8)

Moderately strong important (3,5,7)

Moderate important (2,4,6)

Weakly important (1,3,5)

Equally moderate important (1,2,4)

Equally important (1,1,3)

The aggregated fuzzy rating x̃i j = (ai j, bi j, ci j) of ith alternative w.r.t. jth criterion is obtained as follows:

ai j = min
k
{ak

i j} , bi j =
1

K

K∑
k=1

bk
i j , ci j = max

k
{ck

i j} . (12)

The aggregated fuzzy weight w̃ j = (wj1,wj2,wj3) for the criterion C j are calculated by formulas:

wj1 = min
k
{wk

j1} , wj2 =
1

K

K∑
k=1

wk
j2 , wj3 = max

k
{wk

j3} . (13)

Step 3. Compute the normalized fuzzy decision matrix.

The normalized fuzzy decision matrix is R̃ = [r̃i j], where

r̃i j =

⎛⎜⎜⎜⎜⎜⎝ai j

c∗j
,

bi j

c∗j
,

ci j

c∗j

⎞⎟⎟⎟⎟⎟⎠ and c∗j = max
i
{ci j} (benefit criteria) (14)

or

r̃i j =

⎛⎜⎜⎜⎜⎝a−jci j
,

a−j
bi j
,

a−j
ai j

⎞⎟⎟⎟⎟⎠ and c−j = min
i
{ai j} (cost criteria) . (15)

Step 4. Compute the weighted normalized fuzzy decision matrix.

The weighted normalized fuzzy decision matrix is Ṽ = (ṽi j), where ṽi j = r̃i j × wj.

Step 5. Compute the Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative Ideal Solution (FNIS).
The FPIS and FNIS are calculated as follows:

A∗ = (ṽ∗1, ṽ
∗
2, · · · , ṽ∗n), where ṽ∗j = max

i
{vi j3} ; (16)

A− = (ṽ−1 , ṽ
−
2 , · · · , ṽ−n ), where ṽ−j = min

i
{vi j1} . (17)

Step 6. Compute the distance from each alternative to the FPIS and to the FNIS.

Let

d∗i =
n∑

j=1

d(ṽi j, ṽ∗j) , d−i =
n∑

j=1

d(ṽi j, ṽ−j ) (18)

be the distance from each alternative Ai to the FPIS and to the FNIS, respectively.

Step 7. Compute the closeness coefficient CCi for each alternative.

For each alternative Ai we calculate the closeness coefficient CCi as follows:

CCi =
d−i

d−i + d∗i
. (19)

Step 8. Rank the alternatives.

The alternative with highest closeness coefficient represents the best alternative.
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Remark 5.1. If for the evaluation ratings of alternatives and the weights of criteria there are used linguistic
values represented by trapezoidal FNs, then the fuzzy TOPSIS approach is slightly modified (see [16]):
If x̃ = (a1, b1, c1, d1), ỹ = (a2, b2, c2, d2) are two trapezoidal FNs then

d(x̃, ỹ) :=

√
1

4

[
(a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2 + (d1 − d2)2

]
. (20)

1. The aggregated fuzzy ratings x̃i j = (ai j, bi j, ci j, di j) are defined as:

ai j = min
k
{ak

i j} , bi j =
1

K

K∑
k=1

bk
i j , ci j =

1

K

K∑
k=1

ck
i j , di j = max

k
{dk

i j} , (21)

where x̃k
i j = (ak

i j, b
k
i j, c

k
i j, d

k
i j) are the fuzzy ratings of kth decision maker.

Let w̃k
j = (wk

j1,w
k
j2,w

k
j3,w

k
j4) be the importance weight of kth decision maker. The aggregated fuzzy weight

w̃ j = (wj1,wj2,wj3,wj4) for the criterion C j can be calculated as:

wj1 = min
k
{wk

j1} , wj2 =
1

K

K∑
k=1

wk
j2 , wj3 =

1

K

K∑
k=1

wk
j3 , wj4 = max

k
{wk

j4} . (22)

2. The normalized fuzzy decision matrix is R̃ = [r̃i j], where

r̃i j =

⎛⎜⎜⎜⎜⎜⎝ai j

d∗j
,

bi j

d∗j
,

ci j

d∗j
,

di j

d∗j

⎞⎟⎟⎟⎟⎟⎠ and d∗j = max
i
{di j} for j ∈ Benefit criteria (23)

r̃i j =

⎛⎜⎜⎜⎜⎝a−jdi j
,

a−j
ci j
,

a−j
bi j
,

a−j
ai j

⎞⎟⎟⎟⎟⎠ and a−j = min
i
{ai j} for j ∈ Cost criteria . (24)

3.

A∗ = (ṽ∗1, ṽ
∗
2, · · · , ṽ∗n), where ṽ∗j = max

i
{vi j4} ; (25)

A− = (ṽ−1 , ṽ
−
2 , · · · , ṽ−n ), where ṽ−j = min

i
{vi j1} . (26)

Remark 5.2. In 2008, Chen and Tsao [19] extended TOPSIS method based on interval-valued fuzzy sets. In
2010, Chen and Lee [18] presented a fuzzy TOPSIS technique based on interval type-2 fuzzy sets.

Remark 5.3. In 2010, Li developed in paper [30] a methodology that is based on TOPSIS to solve MCDM
problems with both ratings of alternatives w.r.t. criteria and weights of criteria are expressed in interval-valued
intuitionistic fuzzy sets. In this case the decision matrix is X̃ = [x̃i j], where x̃i j = ([ai j, bi j], [ci j, di j]) is interpreted
as follows:
- the interval [ai j, bi j] represents the performance rating of the alternative Ai w.r.t. the criterion C j, namely the
degree that the alternative Ai satisfy the criterion C j may take any value between ai j and bi j;
- the interval [ci j, di j] represents the degree that the alternative Ai does not satisfies the criterion C j, which means
that the non-membership degree of alternative Ai w.r.t. criterion C j may take value between ci j and di j.

The weight of criterion C j is denoted w̃ j = ([a j, b j], [c j, d j]). The interval [a j, b j] means that the membership
degree of criterion C j may take any value between a j and b j. The interval [c j, d j] shows the non-membership
degree of criterion C j.

For each alternative Ai the closeness coefficient CCi is defined as follows:

CCi((μi j), (νi j), (wj), (ρ j)) =

√
n∑

j=1
{(wjμi j)2 + [ρ j(1 − νi j)]2}

√
n∑

j=1
{(wjμi j)2 + [ρ j(1 − νi j)]2} +

√
n∑

j=1
{[wj(1 − μi j)]2 + (ρ jνi j)2}

, (27)

where (μi j) and (νi j) are m × n matrices with elements μi j ∈ [ai j, bi j] and νi j ∈ [ci j, di j] and (wj) and (ρ j) are
n-dimensional vectors with elements wj ∈ [a j, b j] and ρ j ∈ [c j, d j].

We note that the values of CCi are closed and bounded subinterval of [0, 1].
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Remark 5.4. In 2011, another TOPSIS method to solve MCDM problems in interval-valued intuitionistic fuzzy
environment is proposed in paper [35].

Step 1. Let X̃(k) = [x̃k
i j] be the interval-valued intuitionistic fuzzy (IVIF) decision matrix of decision-maker

Dk(k = 1,K), where x̃k
i j = ([ak

i j, b
k
i j], [c

k
i j, d

k
i j]).

Step 2. Aggregate all individual IVIF decision matrix X̃(k) into a collective IVIF decision matrix X̃ = [x̃i j]

using IIFHG operator.
Step 3. Compute the weighted IVIF decision matrix.
Step 4. Compute the interval-valued intuitionistic positive ideal solution (IVIPIS) and interval-valued intu-

itionistic negative ideal solution (IVINIS).
Step 5. Compute the distance from each alternative to the IVIPIS and to the IVINIS using Hamming distance

or Euclidean distance.
Step 6. Compute the closeness coefficient CCi for each alternative as follows:

CCi =
S −i

S −i + S ∗i
. (28)

Step 7. Rank the alternatives.
The alternative with highest closeness coefficient represents the best alternative.

6. Some applications

First of all we must note that there are very good surveys concerning fuzzy MCDM applications (see for

example [1, 2, 7, 33, 34]. We mention in this paper some fuzzy TOPSIS applications:

6.1. Location problem

A fuzzy TOPSIS approach for selecting plant location is firstly proposed by Chu in 2002, in paper [20], where

the rating of alternatives and the weights of criteria are assessed in linguistic terms represented by triangular FN.

In paper [6] fuzzy TOPSIS method is also used . A logistic company is interested in implementing a new urban

distribution center and there are three alternatives (A1, A2, A3). Firstly a committee of three decision-makers is

formed. The criteria are: accessibility (C1), security (C2), connectivity to multimodal transport (C3), costs (C4),

environmental impact (C5), proximity to customers (C6), proximity to suppliers (C7), resource availability (C8),

conformance to sustainable freight regulations (C9), possibility of expansion (C10), quality of service (C11).

Similar problems are considered by various authors [41, 50].

6.2. Supplier selection

In paper [16] a fuzzy TOPSIS approach based on trapezoidal FNs is used to solve the supplier-selection prob-

lem. Five benefit criteria are considered: profitability of supplier, relationship closeness, technological capability,

conformance quality, conflict resolution.

6.3. Sustainable and renewable energy

In paper [13], a fuzzy TOPSIS methodology is used to compare different heat transfer fluids. An important

step, in problem formulation, is choosing the criteria. Ten criteria are selected both technical-economic and

environmental. Three of them are qualitative and expressed in linguistic terms: state of knowledge of innovative

technology, environmental risk and safety freezing point.

A fuzzy TOPSIS method is applied in paper [43] for ranking renewable energy supply systems in Turkey.

There are five criteria with positive impact: value of CO2 emission (environmental), job creation (social), efficien-

cy, installed capacity, amount of energy produced (technical) and four criteria with negative impact: investment

cost, operation and maintenance cost, payback period (economic), land use (environmental).

Conclusion

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) for solving problems in decision

making issues is a very popular method. In this paper we presented a general overview about the development

of fuzzy TOPSIS methods. Finally we have mentioned several works that presents some applications of fuzzy

TOPSIS, such as: location problem, supplier selection and, sustainable and renewable energy. We believe that this

survey will be a support for future research in this field.
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