Advances in Mathematics: Scientific Journal **9** (2020), no.4, 2197–2202 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.4.81 Spec. Issue on NCFCTA-2020

γ -OPEN SETS IN N_{NC} -TOPOLOGICAL SPACES

A. VADIVEL¹ AND C. JOHN SUNDAR

ABSTRACT. In this paper, a new types of γ -open sets and γ -closed sets are introduced in *N*-neutrosophic crisp topological spaces and also we discuss their basic properties in $N_{nc}ts$.

1. INTRODUCTION

The concepts of neutrosophy and neutrosophic set was introduced Smarandache [6, 7]. In 2014, the concept of neutrosophic crisp topological space presented by Salama, Smarandache and Kroumov [4]. Al-Omeri [1] also investigated neutrosophic crisp sets in the context of neutrosophic crisp topological Spaces. Lellis Thivagar et al. [8] introduced the notion of N_n -open (closed) sets and N-neutrosophic topological spaces. In 1996, Andrijevic [2] introduced γ (or) b-open sets in general topology.

2. Preliminaries

Definition 2.1. [5] For any non-empty fixed set Y, a neutrosophic crisp set (briefly, ncs) K, is an object having the form $K = \langle K_1, K_2, K_3 \rangle$ where K_1 , K_2 and K_3 are subsets of Y satisfying any one of the types:

(T1) $K_a \cap K_b = \phi, a \neq b \text{ and } \bigcup_{a=1}^{3} K_a \subset Y, \forall a, b = 1, 2, 3.$ (T2) $K_a \cap K_b = \phi, a \neq b \text{ and } \bigcup_{a=1}^{3} K_a = Y, \forall a, b = 1, 2, 3.$

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54A05, 54A10.

Key words and phrases. $N_{nc}\gamma$ -open sets, $N_{nc}\gamma$ -closed sets, $N_{nc}\gamma int(K)$, $N_{nc}\gamma cl(K)$.

A. VADIVEL AND C. JOHN SUNDAR

(T3) $\bigcap_{a=1}^{3} K_a = \phi \text{ and } \bigcup_{a=1}^{3} K_a = Y, \forall a = 1, 2, 3.$

Definition 2.2. [5] Types of ncs's \emptyset_N and Y_N in Y are as:

- (i) \emptyset_N may be defined as $\emptyset_N = \langle \emptyset, \emptyset, Y \rangle$ or $\langle \emptyset, Y, Y \rangle$ or $\langle \emptyset, Y, \emptyset \rangle$ or $\langle \emptyset, \emptyset, \emptyset, \emptyset \rangle$;
- (ii) Y_N may be defined as $Y_N = \langle Y, \emptyset, \emptyset \rangle$ or $\langle Y, Y, \emptyset \rangle$ or $\langle Y, \emptyset, Y \rangle$ or $\langle Y, Y, Y \rangle$.

Definition 2.3. [5] Let Y be a non-empty set and the ncs's K and M in the form $K = \langle K_{11}, K_{22}, K_{33} \rangle$, $M = \langle M_{11}, M_{22}, M_{33} \rangle$, then:

- (i) $K \subseteq M \Leftrightarrow K_{11} \subseteq M_{11}$, $K_{22} \subseteq M_{22}$ and $K_{33} \supseteq M_{33}$ or $K_{11} \subseteq M_{11}$, $K_{22} \supseteq M_{22}$ and $K_{33} \supseteq M_{33}$;
- (ii) $K \cap M = \langle K_{11} \cap M_{11}, K_{22} \cap M_{22}, K_{33} \cup M_{33} \rangle$ or $\langle K_{11} \cap M_{11}, K_{22} \cup M_{22}, K_{33} \cup M_{33} \rangle$;
- (iii) $K \cup M = \langle K_{11} \cup M_{11}, K_{22} \cup M_{22}, K_{33} \cap M_{33} \rangle$ or $\langle K_{11} \cup M_{11}, K_{22} \cap M_{22}, K_{33} \cap M_{33} \rangle$;

(iv)
$$K^{c} = \langle K_{11}^{c}, K_{22}^{c}, K_{33}^{c} \rangle$$
 or $\langle K_{33}, K_{22}, K_{11} \rangle$ or $\langle K_{33}, K_{22}^{c}, K_{11} \rangle$.

Definition 2.4. [3] Let Y be a non-empty set. Then ${}_{nc}\Gamma_1$, ${}_{nc}\Gamma_2$, \cdots , ${}_{nc}\Gamma_N$ are N-arbitrary crisp topologies defined on Y and the collection

 $N_{nc}\Gamma = \{A \subseteq Y : A = (\bigcup_{j=1}^{N} K_j) \cup (\bigcap_{j=1}^{N} L_j), K_j, L_j \in {}_{nc}\Gamma_j\} \text{ is called } N_{nc}\text{-topology} \text{ on } Y \text{ if the axioms are satisfied:} \}$

(i) $\emptyset_N, Y_N \in N_{nc}\Gamma;$ (ii) $\bigcup_{j=1}^{\infty} A_j \in N_{nc}\Gamma \forall \{A_j\}_{j=1}^{\infty} \in N_{nc}\Gamma;$ (iii) $\bigcap_{j=1}^n A_j \in N_{nc}\Gamma \forall \{A_j\}_{j=1}^n \in N_{nc}\Gamma.$

Then $(Y, N_{nc}\Gamma)$ is called a N_{nc} -topological space (briefly, $N_{nc}ts$) on Y. The $N_{nc}\Gamma$ elements are called N_{nc} -open sets ($N_{nc}os$) on Y and its complement is called N_{nc} -closed sets ($N_{nc}cs$) on Y. The elements of Y are known as N_{nc} -sets ($N_{nc}s$) on Y.

Definition 2.5. [3] Let $(Y, N_{nc}\Gamma)$ be $N_{nc}ts$ on Y and K be an $N_{nc}s$ on Y, then the N_{nc} interior of K (briefly, $N_{nc}int(K)$) and N_{nc} closure of K (briefly, $N_{nc}cl(K)$) are defined as:

- (i) $N_{nc}int(K) = \bigcup \{A : A \subseteq K \text{ and } A \text{ is a } N_{nc}os \text{ in } Y\};$
- (ii) $N_{nc}cl(K) = \cap \{C : K \subseteq C \text{ and } C \text{ is a } N_{nc}cs \text{ in } Y\}.$

Definition 2.6. [3] Let $(Y, N_{nc}\Gamma)$ be any $N_{nc}ts$. Let K be an $N_{nc}s$ in $(Y, N_{nc}\Gamma)$. Then K is said to be a N_{nc} -pre (resp. N_{nc} -semi and $N_{nc}-\alpha$) open set (briefly, $N_{nc}\mathcal{P}os$ (resp. $N_{nc}\mathcal{S}os$ and $N_{nc}\alpha os$)) if $K \subseteq N_{nc}int(N_{nc}cl(K))$ (resp. $K \subseteq N_{nc}cl(N_{nc}int(K))$ and $K \subseteq N_{nc}int(N_{nc}cl(N_{nc}int(K)))$).

The complement of an $N_{nc}\mathcal{P}os$ (resp. $N_{nc}\mathcal{S}os$ and $N_{nc}\alpha os$) is called an N_{nc} pre (resp. N_{nc} -semi and N_{nc} - α) closed set (briefly, $N_{nc}\mathcal{P}cs$ (resp. $N_{nc}\mathcal{S}cs$ and $N_{nc}\alpha cs$)) in Y. The family of all $N_{nc}\mathcal{P}os$ (resp. $N_{nc}\mathcal{P}cs$, $N_{nc}\mathcal{S}os$, $N_{nc}\mathcal{S}cs$, $N_{nc}\alpha os$ and $N_{nc}\alpha cs$) of Y is denoted by $N_{nc}\mathcal{P}OS(Y)$ (resp. $N_{nc}\mathcal{P}CS(Y)$, $N_{nc}\mathcal{S}OS(Y)$, $N_{nc}\mathcal{S}CS(Y)$, $N_{nc}\alpha OS(Y)$ and $N_{nc}\alpha CS(Y)$).

3. γ -open sets in N_{nc} -topological spaces

Throughout this section, let $(Y, \mathcal{N}_{nc}\Gamma)$ be any $\mathcal{N}_{nc}ts$. Let K and L be an $\mathcal{N}_{nc}s$'s in $(Y, \mathcal{N}_{nc}\Gamma)$.

Definition 3.1. The K is said to be a

- (i) N_{nc} - γ -open (or) N_{nc} -b-open (briefly, $N_{nc}\gamma o$ (or) $N_{nc}bo$) set if $K \subseteq N_{nc}cl$ $(N_{nc}int(K)) \cup N_{nc}int(N_{nc}cl(K))$. The complement of an $N_{nc}\gamma o$ set is called an N_{nc} - γ -closed (briefly, $N_{nc}\gamma c$) set in Y. The family of all $N_{nc}\gamma o$ (resp. $N_{nc}\gamma c$) set of Y is denoted by $N_{nc}\gamma OS(Y)$ (resp. $N_{nc}\gamma CS(Y)$).
- (ii) N_{nc} -regular open (briefly, $N_{nc}ro$) set if $K = N_{nc}int(N_{nc}cl(K))$. The complement of an $N_{nc}ro$ set is called a N_{nc} -regular closed (briefly, $N_{nc}rc$) set in Y.

Definition 3.2.

- (i) $N_{nc}\gamma int(K)(\text{ resp. } N_{nc}rint(K)) = \bigcup \{A : A \subseteq K \text{ and } A \text{ is a } N_{nc}\gamma o (\text{ resp. } N_{nc}ro) \text{ set in } Y \}.$
- (ii) $N_{nc}\gamma cl(K)(\text{ resp. } N_{nc}rcl(K)) = \cap \{C : K \subseteq CandC \text{ is a } N_{nc}\gamma c (\text{ resp. } N_{nc}rc) \text{ set in } Y\}.$

Proposition 3.1. The $N_{nc}\gamma$ -closure and $N_{nc}\gamma$ -interior operator satisfies properties:

- (i) $K \subseteq N_{nc}\gamma cl(K)$.
- (ii) $N_{nc}\gamma int(K) \subseteq K$.
- (iii) $K \subseteq L \Rightarrow N_{nc}\gamma cl(K) \subseteq N_{nc}\gamma cl(L).$
- (iv) $K \subseteq L \Rightarrow N_{nc}\gamma int(K) \subseteq N_{nc}\gamma int(L)$.
- (v) $N_{nc}\gamma cl(K \cup L) = N_{nc}\gamma cl(K) \cup N_{nc}\gamma cl(L).$

A. VADIVEL AND C. JOHN SUNDAR

- (vi) $N_{nc}\gamma int(K \cap L) = N_{nc}\gamma int(K) \cap N_{nc}\gamma int(L)$.
- (vii) $(N_{nc}\gamma cl(K))^c = N_{nc}\gamma int(K^c).$
- (viii) $(N_{nc}\gamma int(K))^c = N_{nc}\gamma cl(K^c).$
 - (ix) $N_{nc}\gamma cl(K) = L$ iff L is an $N_{nc}\gamma c$ set.
 - (x) $N_{nc}\gamma int(K) = L$ iff L is an $N_{nc}\gamma o$ set.
 - (xi) $N_{nc}\gamma cl(K)$ is the smallest $N_{nc}\gamma c$ set containing K.
- (xii) $N_{nc}\gamma int(K)$ is the largest $N_{nc}\gamma o$ set containing K.

Proposition 3.2. The statements are hold but the equality does not true.

- (i) Every $N_{nc}ros$ (resp. $N_{nc}rcs$) is a $N_{nc}os$ (resp. $N_{nc}cs$).
- (ii) Every $N_{nc}os$ (resp. $N_{nc}cs$) is a $N_{nc}\alpha os$ (resp. $N_{nc}\alpha cs$).
- (iii) Every $N_{nc}\alpha os$ (resp. $N_{nc}\alpha cs$) is a $N_{nc}Sos$ (resp. $N_{nc}Scs$).
- (iv) Every $N_{nc}\alpha os$ (resp. $N_{nc}\alpha cs$) is a $N_{nc}\mathcal{P}os$ (resp. $N_{nc}\mathcal{P}cs$).
- (v) Every $N_{nc}Sos$ (resp. $N_{nc}Scs$) is a $N_{nc}\gamma os$ (resp. $N_{nc}\gamma cs$).
- (vi) Every $N_{nc}\mathcal{P}os$ (resp. $N_{nc}\mathcal{P}cs$) is a $N_{nc}\gamma os$ (resp. $N_{nc}\gamma cs$).

Proof. (i) *K* is a $N_{nc}ros$, then $K = N_{nc}int(N_{nc}cl(K))$ and so $K = N_{nc}int(K)$. *K* is a $N_{nc}os$. The other cases are similar. It is also true for their respective closed sets.

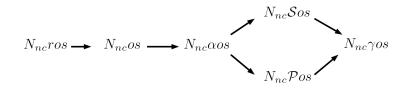


FIGURE 1. Different types N_{nc} open sets.

Proposition 3.3. If K is an $N_{nc}\gamma os$ (resp. $N_{nc}\gamma cs$) iff K is a $N_{nc}Sos$ (resp. $N_{nc}Scs$) and $N_{nc}Pos$ (resp. $N_{nc}Pcs$).

Proposition 3.4. The union (resp. intersection) of any family of $N_{nc}\gamma OS(Y)$ (resp. $N_{nc}\gamma CS(Y)$) is a $N_{nc}\gamma OS(Y)$ (resp. $N_{nc}\gamma CS(Y)$).

Remark 3.1. The intersection of two $N_{nc}\gamma os$'s need not be $N_{nc}\gamma os$.

Example 1. Let $Y = \{l, m, n\}$, ${}_{nc}\Gamma_1 = \{\phi_N, Y_N, L\}$, ${}_{nc}\Gamma_2 = \{\phi_N, Y_N, M, N, O\}$, $L = \langle \{m\}, \{l\}, \{n\} \rangle$, $M = \langle \{\phi\}, \{l, n\}, \{m\} \rangle$,

 $\gamma\text{-}\mathsf{OPEN}$ SETS IN $N_{NC}\text{-}\mathsf{TOPOLOGICAL}$ SPACES

 $N = \langle \{m\}, \{l, n\}, \{\phi\} \rangle, O = \langle \{\phi\}, \{l\}, \{m, n\} \rangle$ then we have $2_{nc}\Gamma = \{\phi_N, Y_N, L, M, N, O\}$. The sets $\langle \{l, m\}, \{\phi\}, \{n\} \rangle$ and $\langle \{l, n\}, \{m\}, \{\phi\} \rangle$ are $N_{nc}\gamma os$ but the intersection $\langle \{l\}, \{\phi\}, \{n\} \rangle$ is not $N_{nc}\gamma os$.

Proposition 3.5. The statements

- (i) K is a $N_{nc}\gamma os$.
- (ii) $K = N_{nc} \mathcal{P}int(K) \cup N_{nc} \mathcal{S}int(K)$.
- (iii) $K \subset N_{nc} \mathcal{P}cl(N_{nc} \mathcal{P}int(K))$

are equivalent.

Proposition 3.6. If K be a $N_{nc}\gamma os$ such that $N_{nc}int(K) = \phi$, then K is a $N_{nc}\mathcal{P}os$.

Example 2. Let $Y = \{l, m, n, o, p\}$, ${}_{nc}\Gamma_1 = \{\phi_N, Y_N, L\}$, ${}_{nc}\Gamma_2 = \{\phi_N, Y_N, M, N, O\}$. $O\}$. $L = \langle \{l\}, \{m, o, p\}, \{n\} \rangle$, $M = \langle \{l, n, p\}, \{m, o\}, \{l, n\} \rangle$, $N = \langle \{l, n, p\}, \{m, o\}, \{n\} \rangle$, $O = \langle \{l\}, \{m, o, p\}, \{l, n\} \rangle$, then we have $2_{nc}\Gamma = \{\phi_N, Y_N, L, M, N, O\}$.

- (i) L is a $N_{nc}os$ but not a $N_{nc}ros$.
- (ii) $P = \langle \{l, m\}, \{n\}, \{o\} \rangle$ is a $N_{nc} \mathcal{P}os$ but not $N_{nc} \alpha os$.
- (iii) $Q = \langle \{l\}, \{m\}, \{n\} \rangle$ is a $N_{nc} \alpha os$ but not $N_{nc} os$.
- (iv) $R = \langle \{l, o\}, \{m\}, \{n, p\} \rangle$ is a $N_{nc}\gamma os$ but not $N_{nc}Sos$.
- (v) $S = \langle \{l, n\}, \{m, o, p\}, \{l\} \rangle$ is a $N_{nc}Sos$ but not $N_{nc}\alpha os$.
- (vi) S is a $N_{nc}\gamma os$ but not $N_{nc}\mathcal{P} os$.

REFERENCES

- [1] W. AL-OMERI: Neutrosophic crisp sets via neutrosophic crisp topological spaces, Neutrosophic Sets and Systems, **13** (2016), 96–104.
- [2] D. ANDRIJEVIC: On b-open sets, Matematicki Vesnik, 48 (1996), 59-64.
- [3] R. K. AL-HAMIDO, T. GHARIBAH, S. JAFARI, F. SMARANDACHE: On neutrosophic crisp topology via N-topology, Neutrosophic Sets and Systems, 23 (2018), 96–109.
- [4] A. A. SALAMA, F. SMARANDACHE, V. KROUMOV: Neutrosophic crisp sets and neutrosophic crisp topological spaces, Neutrosophic Sets and Systems, 2 (2014), 25–30.
- [5] A. A. SALAMA, F. SMARANDACHE: *Neutrosophic crisp set theory*, Educational Publisher, Columbus, Ohio, USA, 2015.
- [6] F. SMARANDACHE: A unifying field in logics: neutrosophic logic. neutrosophy, neutrosophic set, neutrosophic probability, American Research Press, Rehoboth, NM, 1999.

A. VADIVEL AND C. JOHN SUNDAR

- [7] F. SMARANDACHE: Neutrosophy and neutrosophic logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics, University of New Mexico, Gallup, NM 87301, USA 2002.
- [8] M. LELLIS THIVAGAR, S. JAFARI, V. ANTONYSAMY, V. SUTHA DEVI: *The ingenuity of neutrosophic topology via N-topology*, Neutrosophic Sets and Systems, **19** (2018), 91–100.

PG AND RESEARCH DEPARTMENT OF MATHEMATICS GOVERNMENT ARTS COLLEGE (AUTONOMOUS), KARUR - 639 005, INDIA DEPARTMENT OF MATHEMATICS ANNAMALAI UNIVERSITY, ANNAMALAI NAGAR - 608 002, INDIA *E-mail address*: avmaths@gmail.com

DEPARTMENT OF MATHEMATICS ANNAMALAI UNIVERSITY ANNAMALAI NAGAR - 608 002, INDIA *E-mail address*: johnphdau@hotmail.com