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Abstract: With the development of the social economy and enlarged volume of information,
the application of multiple-attribute decision-making (MADM) has become increasingly complex,
uncertain, and obscure. As a further generalization of hesitant fuzzy set (HFS), simplified
neutrosophic hesitant fuzzy set (SNHFS) is an efficient tool to process the vague information and
contains the ideas of a single-valued neutrosophic hesitant fuzzy set (SVNHFS) and an interval
neutrosophic hesitant fuzzy set (INHFS). In this paper, we propose a decision-making approach based
on the maximizing deviation method and TOPSIS (Technique for Order Preference by Similarity to
Ideal Solution) to solve the MADM problems, in which the attribute weight information is incomplete,
and the decision information is expressed in simplified neutrosophic hesitant fuzzy elements. Firstly,
we inaugurate an optimization model on the basis of maximizing deviation method, which is useful
to determine the attribute weights. Secondly, using the idea of the TOPSIS, we determine the relative
closeness coefficient of each alternative and based on which we rank the considered alternatives to
select the optimal one(s). Finally, we use a numerical example to show the detailed implementation
procedure and effectiveness of our method in solving MADM problems under simplified neutrosophic
hesitant fuzzy environment.

Keywords: simplified neutrosophic hesitant fuzzy set; multi-attribute decision-making;
maximizing deviation; TOPSIS

1. Introduction

The concept of neutrosophy was originally introduced by Smarandache [1] from a philosophical
viewpoint. Gradually, it has been discovered that without a specific description, it is not easy to apply
neutrosophic sets in real applications because a truth-membership, an indeterminacy-membership,
and a falsity-membership degree, in non-standard unit interval ]0−, 1+[, are independently assigned
to each element in the set. After analyzing this difficulty, Smarandache [2] and Wang [3] initiated the
notion of a single-valued neutrosophic set (SVNS) and made the first ever neutrosophic publication.
Ye [4] developed the concept of simplified neutrosophic set (SNS). SNS, a subclass of a neutrosophic
set, contains the ideas of a SVNS and an interval neutrosophic set (INS), which are very useful in real
science and engineering applications with incomplete, indeterminate, and inconsistent information
existing commonly in real situations. Torra and Narukawa [5] put forward the concept of HFS as
another extension of fuzzy set [6]. HFS is an effective tool to represent vague information in the process
of MADM, as it permits the element membership degree to a set characterized by a few possible values
in [0, 1] and can be accurately described in terms of the judgment of the experts.
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Ye [7] introduced SVNHFS as an extension of SVNS in the spirit of HFS and developed the
single-valued neutrosophic hesitant fuzzy weighted averaging and weighted geometric operator. The
SVNHFS represents some uncertain, incomplete, and inconsistent situations where each element
has certain different values characterized by truth-membership hesitant, indeterminacy-membership
hesitant, and falsity-membership hesitant function. For instance, when the opinion of three experts
is required for a certain statement, they may state that the possibility that the statement is true
is {0.3, 0.5, 0.8}, and the statement is false is {0.1, 0.4}, and the degree that they are not sure
is {0.2, 0.7, 0.8}. For single-valued neutrosophic hesitant fuzzy notation, it can be expressed as
{{0.3, 0.5, 0.8}, {0.1, 0.4}, {0.2, 0.7, 0.8}}. Liu and Luo [8] discussed the certainty function, score
function, and accuracy function of SVNHFS and proposed the single-valued neutrosophic hesitant
fuzzy ordered weighted averaging operator and hybrid weighted averaging operator. Sahin and
Liu [9] proposed the correlation coefficient with single-valued neutrosophic hesitant fuzzy information
and successfully applied it to decision-making problems. Li and Zhang [10] introduced Choquet
aggregation operators with single-valued neutrosophic hesitant fuzzy information for MADM.
Juan-Juan et al. [11] developed a decision-making technique using geometric weighted Choquet
integral Heronian mean operator for SVNHFSs. Wang and Li [12] developed the generalized prioritized
weighted average operator, the generalized prioritized weighted geometric operator with SVNHFS,
and further developed an approach on the basis of the proposed operators to solve MADM problems.
Recently, Akram et al. [13–16] and Naz et al. [17–19] put forward certain novel decision-making
techniques in the frame work of extended fuzzy set theory. Furthermore, Liu and Shi [20] proposed
the concept of INHFS by combining INS with HFS and developed the generalized weighted operator,
generalized ordered weighted operator, and generalized hybrid weighted operator with the proposed
interval neutrosophic hesitant fuzzy information. Ye [21] and Kakati et al. [22] proposed the correlation
coefficients and Choquet integrals, respectively, with INHFS. Mahmood et al. [23] discussed the vector
similarity measures with SNHFS. In practical terms, the SNHFS measures the truth-membership,
the indeterminacy-membership and the falsity-membership degree by SVNHFSs and INHFSs. The
classical sets, fuzzy sets, intuitionistic fuzzy sets, SVNSs, INSs, SNSs, and HFSs are the particular
situations of SNHFSs. In modeling vague and uncertain information, SNHFS is more flexible
and practice.

In the theory of decision analysis, MADM is one of the most important branches and several
beneficial models and approaches have been developed related to decision analysis. However, due to
limited time, lack of data or knowledge, and the limited expertise of the expert about the problem,
MADM process under simplified neutrosophic hesitant fuzzy circumstances, encounters the situations
where the information about attribute weights is completely unknown or incompletely known.
The existing approaches are not suitable to handle these situations. Furthermore, among some
useful MADM methodologies, the maximizing deviation method and the TOPSIS provide a ranking
approach, which is measured by the farthest distance from the negative-ideal solution (NIS) and
the shortest distance from the positive-ideal solution (PIS). For all these, in this paper, we propose
an innovative approach of maximizing deviation and TOPSIS to objectively determine the attribute
weights and rank the alternatives with completely unknown or partly known attribute weights. We
propose the new distance measure and discuss the application of SNHFSs to MADM. In the framework
of TOPSIS, we construct a novel generalized method under the simplified neutrosophic hesitant
fuzzy environment. As compared to the existing work, the SNHFSs availably depict more general
decision-making situations.

The paper is structured as follows: Section 2 establishes a simplified neutrosophic hesitant fuzzy
MADM based on maximizing deviations and TOPSIS. In Section 3, a numerical example is given
to demonstrate the effectiveness of our model and method and finally we draw conclusions in Section 4.

SVNHFS as a more flexible general formal framework extends the concept of fuzzy set [6],
intuitionistic fuzzy set [24], SVNS [3] and HFS [25]. Ye [7] proposed the following definition of SVNHFS.
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Definition 1. [7] Let Z be a fixed set, a SVNHFS n on Z is defined as

n = {〈z, t(z), i(z), f(z)〉|z ∈ Z}

where t(z), i(z), f(z) are the sets of a few values in [0, 1], representing the possible truth-membership
hesitant degree, indeterminacy-membership hesitant degree and falsity-membership hesitant degree of
the element z to n, respectively; t(z) = {γ1, γ2, . . . , γl}, γ1, γ2, . . . , γl are the elements of t(z);
i(z) = {δ1, δ2, . . . , δp}, δ1, δ2, . . . , δp are the elements of i(z); f(z) = {η1, η2, . . . , ηq}, η1, η2, . . . , ηq are the
elements of f(z), for every z ∈ Z; and l, p, q denote, respectively, the numbers of the hesitant fuzzy elements
in t, i, f.

For simplicity, the expression n(z) = {t(z), i(z), f(z)} is called a single-valued neutrosophic
hesitant fuzzy element (SVNHFE), which we represent by simplified symbol n = {t, i, f}.

Definition 2. [7] Let n, n1 and n2 be three SVNHFEs. Then their operations are defined as follows:

1. n1 ⊕ n2 =
⋃

γ1∈t1,δ1∈i1,η1∈f1,γ2∈t2,δ2∈i2,η2∈f2

{{γ1 + γ2 − γ1γ2}, {δ1δ2}, {η1η2}};

2. n1 ⊗ n2 =
⋃

γ1∈t1,δ1∈i1,η1∈f1,γ2∈t2,δ2∈i2,η2∈f2

{{γ1γ2}, {δ1 + δ2 − δ1δ2}, {η1 + η2 − η1η2}};

3. ςn =
⋃

γ∈t,δ∈i,η∈f
{{1− (1− γ)ς}, {δς}, {ης}}; ς > 0

4. nς =
⋃

γ∈t,δ∈i,η∈f
{{γς}, {1− (1− δ)ς}, {1− (1− η)ς}} ς > 0.

2. TOPSIS and Maximizing Deviation Method for Simplified Neutrosophic Hesitant Fuzzy
Multi-Attribute Decision-Making

In this section, we propose the normalization technique and the distance measures of SNHFSs
and based on this we develop further a new decision-making approach based on maximum deviation
and TOPSIS under simplified neutrosophic hesitant fuzzy circumstances to explore the application of
SNHFSs to MADM.

2.1. TOPSIS and Maximizing Deviation Method for Single-Valued Neutrosophic Hesitant Fuzzy
Multi-Attribute Decision-Making

In this subsection, we only use SVNHFSs in SNHFSs and develop a new decision-making
approach, by combining the idea of SVNHFSs with maximizing deviation, to solve a MADM problem
in single-valued neutrosophic hesitant fuzzy environment.

2.1.1. Description of the MADM Problem

Consider a MADM problem containing a discrete set of m alternatives {A1, A2, . . . , Am} and a
set of all attributes P = {P1, P2, . . . , Pn}. The evaluation information of the ith alternative with respect
to the jth attribute is a SVNHFE nij = 〈tij, iij, fij〉, where tij, iij and fij indicate the preference degree,
uncertain degree, and falsity degree, respectively, of the decision maker facing the ith alternative
that satisfied the jth attribute. Then the single-valued neutrosophic hesitant fuzzy decision matrix
(SVNHFDM) N , can be constructed as follows:

N =


n11 n12 . . . n1n
n21 n22 . . . n2n

...
...

. . .
...

nm1 nm2 . . . nmn


Assume that each attribute has different importance, the weight vector of all attributes is defined

as w = (w1, w2, . . . , wn)t, where 0 ≤ wj ≤ 1 and
n
∑

j=1
wj = 1 with wj representing the importance degree
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of the attribute Pj. Due to the complexity of the practical decision-making problems, the attribute
weights information is frequently incomplete. For ease, let = be the set of the known information
about attribute weights, which we can construct by the following forms, for i 6= j:

(i) wi ≥ wj (weak ranking);

(ii) wi − wj ≥ αi, αi > 0 (strict ranking);

(iii) wi − wj ≥ wk − wl , for j 6= k 6= l (ranking of differences);

(iv) wi ≥ αiwj, 0 ≤ αi ≤ 1 (ranking with multiples);

(v) αi ≤ wi ≤ αi + ξi, 0 ≤ αi ≤ αi + ξi ≤ 1 (interval form).

In the comparison of SVNHFEs, the number of their corresponding element may be unequal.
To handle this situation, we normalize the SVNHFEs as follows:

Suppose that n = {t, i, f} is a SVNHFE, then γ̄ = vγ+ + (1 − v)γ−, δ̄ = vδ+ + (1 − v)δ−

and η̄ = vη+ + (1− v)η− are the added truth-membership, the indeterminacy-membership and
the falsity-membership degree, respectively, where γ− and γ+ are the minimum and the maximum
elements of t, respectively, δ− and δ+ are the minimum and the maximum elements of i, respectively,
η− and η+ are the minimum and the maximum elements of f, respectively, and v ∈ [0, 1] is a parameter
assigned by the expert according to his risk preference.

For the normalization of SVNHFE, different values of v produce different results for the added
truth-membership, the indeterminacy-membership and the falsity-membership degree. Usually,
there are three cases of the preference of the expert:

• If v = 0, the pessimist expert may add the minimum truth-membership degree γ−, the minimum
indeterminacy-membership degree δ− and the minimum falsity-membership degree η−.

• If v = 0.5, the neutral expert may add the truth-membership degree γ−+γ+

2 ,

the indeterminacy-membership degree δ−+δ+

2 and the falsity-membership degree η−+η+

2 .
• If v = 1, the optimistic expert may add the maximum truth-membership degree γ−, the maximum

indeterminacy-membership degree δ− and the maximum falsity-membership degree η−.

For instance, if we have two SVNHFEs n1 = {t1, i1, f1} = {{0.3, 0.5}, {0.4, 0.6, 0.8}, {0.5, 0.7}},
n2 = {t2, i2, f2} = {{0.1, 0.4, 0.5}, {0.6, 0.7}, {0.2, 0.6, 0.9}}. Here #t1 = 2, #i1 = 3, #f1 = 2, #t2 = 3,
#i2 = 2 and #f2 = 3. Clearly, #t1 6= #t2, #i1 6= #i2, and #f1 6= #f2. The truth-membership and
the falsity-membership degree of n1, while the indeterminacy-membership degree of n2 need to
be pre-treated.

If v = 0, then we may add the minimum truth-membership degree or the
indeterminacy-membership degree or the falsity-membership degree for the target
object. For the SVNHFE n1, the truth-membership and falsity-membership degree of
n1 can be attained as {0.3, 0.3, 0.5} and {0.5, 0.5, 0.7}, i.e., n1 can be normalized as
n1 = {{0.3, 0.3, 0.5}, {0.4, 0.6, 0.8}, {0.5, 0.5, 0.7}}. For the SVNHFE n2, the indeterminacy-membership
degree of n2 can be obtained as {0.6,0.6,0.7}, i.e., n2 is normalized as n2 =

{{0.1, 0.4, 0.5}, {0.6, 0.6, 0.7}, {0.2, 0.6, 0.9}}.
If v = 0.5, then we may add the average truth-membership degree or the

indeterminacy-membership degree or the falsity-membership degree for the target
object. For the SVNHFE n1, the truth-membership and falsity-membership degree of
n1 can be attained as {0.3, 0.4, 0.5} and {0.5, 0.6, 0.7}, i.e., n1 can be normalized as
n1 = {{0.3, 0.4, 0.5}, {0.4, 0.6, 0.8}, {0.5, 0.6, 0.7}}. For the SVNHFE n2, the indeterminacy-membership
degree of n2 can be obtained as {0.6,0.65,0.7}, i.e., n2 is normalized as n2 =

{{0.1, 0.4, 0.5}, {0.6, 0.65, 0.7}, {0.2, 0.6, 0.9}}.
If v = 1, then we may add the maximum truth-membership degree or the

indeterminacy-membership degree or the falsity-membership degree for the normalization.
For the SVNHFE n1, the truth-membership and falsity-membership degree of n1
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can be attained as {0.3, 0.5, 0.5} and {0.5, 0.7, 0.7}, i.e., n1 is normalized as n1 =

{{0.3, 0.5, 0.5}, {0.4, 0.6, 0.8}, {0.5, 0.7, 0.7}}. For the SVNHFE n2, the indeterminacy-membership
degree of n2 can be attained as {0.6,0.7,0.7}, i.e., n2 is normalized as n2 =

{{0.1, 0.4, 0.5}, {0.6, 0.7, 0.7}, {0.2, 0.6, 0.9}}.
The algorithm for the normalization of SVNHFEs is given in Algorithm 1.

Algorithm 1 The algorithm for the normalization of SVNHFEs.
INPUT: Two SVNHFEs n1 = (t1, i1, f1), n2 = (t2, i2, f2) and the value of v.
OUTPUT: The normalization of n1 = (t1, i1, f1) and n2 = (t2, i2, f2).

1: Count the number of elements of n1 and n2, i.e., #t1, #i1, #f1, #t2, #i2, #f2;
2: Determine the minimum and the maximum of the elements of n1 and n2;
3: t = arg mini=1,2 #ti, i = arg mini=1,2 #ii, f = arg mini=1,2 #fi;
4: if #t1 = #t2 then break;
5: else if t = #t1 then
6: n = #t2 − #t1;
7: Determine the value of γ̄ for t1;
8: for i=1:1:n do
9: t1 = t1 ∪ γ̄;

10: end for
11: else
12: n = #t1 − #t2;
13: Determine the value of γ̄ for t2;
14: for i=1:1:n do
15: t2 = t2 ∪ γ̄;
16: end for
17: end if
18: if #i1 = #i2 then break;
19: else if i = #i1 then
20: n = #i2 − #i1;
21: Determine the value of δ̄ for i1;
22: for i=1:1:n do
23: i1 = i1 ∪ δ̄;
24: end for
25: else
26: n = #i1 − #i2;
27: Determine the value of δ̄ for i2;
28: for i=1:1:n do
29: i2 = i2 ∪ δ̄;
30: end for
31: end if
32: if #f1 = #f2 then break;
33: else if f = #f1 then
34: n = #f2 − #f1;
35: Determine the value of η̄ for f1;
36: for i=1:1:n do
37: f1 = f1 ∪ η̄;
38: end for
39: else
40: n = #f1 − #f2;
41: Determine the value of η̄ for f2;
42: for i=1:1:n do
43: f2 = f2 ∪ η̄;
44: end for
45: end if
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2.1.2. The Distance Measures for SVNHFSs

Definition 3. Let n1 = {t1, i1, f1} and n2 = {t2, i2, f2} be two normalized SVNHFEs, then the single-valued
neutrosophic hesitant fuzzy Hamming distance between n1 and n2 can be defined as follows:

d1(n1, n2) =
1
3

(
1
#t

#t

∑
ς=1

∣∣∣γσ(ς)
1 − γ

σ(ς)
2

∣∣∣+ 1
#i

#i

∑
ς=1

∣∣∣δσ(ς)
1 − δ

σ(ς)
2

∣∣∣+ 1
#f

#f

∑
ς=1

∣∣∣ησ(ς)
1 − η

σ(ς)
2

∣∣∣) , (1)

where #t = #t1 = #t2, #i = #i1 = #i2 and #f = #f1 = #f2. γ
σ(ς)
i , δ

σ(ς)
i and η

σ(ς)
i are the ςth largest values in

γi, δi and ηi, respectively (i = 1, 2).

In addition, the single-valued neutrosophic hesitant fuzzy Euclidean distance is defined as:

d2(n1, n2) =

√√√√1
3

(
1
#t

#t

∑
ς=1

(
γ

σ(ς)
1 − γ

σ(ς)
2

)2
+

1
#i

#i

∑
ς=1

(
δ

σ(ς)
1 − δ

σ(ς)
2

)2
+

1
#f

#f

∑
ς=1

(
η

σ(ς)
1 − η

σ(ς)
2

)2
)

. (2)

By using the geometric distance model of [26], the above distances can be generalized as follows:

d(n1, n2) =

(
1
3

(
1
#t

#t

∑
ς=1

∣∣∣γσ(ς)
1 − γ

σ(ς)
2

∣∣∣α + 1
#i

#i

∑
ς=1

∣∣∣δσ(ς)
1 − δ

σ(ς)
2

∣∣∣α + 1
#f

#f

∑
ς=1

∣∣∣ησ(ς)
1 − η

σ(ς)
2

∣∣∣α)) 1
α

, (3)

where α is constant and α > 0. Based on the value of α, the relationship among d(n1, n2), d1(n1, n2) and
d2(n1, n2) can be deduced as:

• If α = 1, then the distance d(n1, n2) = d1(n1, n2).
• If α = 2, then the distance d(n1, n2) = d2(n1, n2).

Therefore, the distance d(n1, n2) is a generalization of the single-valued neutrosophic hesitant fuzzy
Hamming distance d1(n1, n2) and the single-valued neutrosophic hesitant fuzzy Euclidean distance d2(n1, n2).

Theorem 1. Let n1 = {t1, i1, f1} and n2 = {{1}, {0}, {0}} be two SVNHFEs, then the generalized distance
d(n1, n

′
2) can be calculated as:

d(n1, n
′
2) =

(
1
3

(
1

#t1
∑

γ∈t1

(1− γ)α +
1

#i1
∑

δ∈i1
δα +

1
#f1

∑
η∈f1

ηα

)) 1
α

where n
′
2 is the normalization outcome of n2 by the comparison of n1 and n2.
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Proof. Using (3), the generalized distance d(n1, n
′
2) can be calculated as:

d(n1, n
′
2) =

(
1
3

(
1
#t

#t

∑
ς=1

∣∣∣γσ(ς)
1 − γ

σ(ς)
2

∣∣∣α + 1
#i

#i

∑
ς=1

∣∣∣δσ(ς)
1 − δ

σ(ς)
2

∣∣∣α + 1
#f

#f

∑
ς=1

∣∣∣ησ(ς)
1 − η

σ(ς)
2

∣∣∣α)) 1
α

=

(
1
3

(
1
#t

#t

∑
ς=1

∣∣∣γσ(ς)
1 − 1

∣∣∣α + 1
#i

#i

∑
ς=1

∣∣∣δσ(ς)
1 − 0

∣∣∣α + 1
#f

#f

∑
ς=1

∣∣∣ησ(ς)
1 − 0

∣∣∣α)) 1
α

=

(
1
3

(
1
#t

#t

∑
ς=1

(
1− γ

σ(ς)
1

)α
+

1
#i

#i

∑
ς=1

(
δ

σ(ς)
1

)α
+

1
#f

#f

∑
ς=1

(
η

σ(ς)
1

)α
)) 1

α

=

(
1
3

(
1

#t1

#t1

∑
ς=1

(
1− γ

σ(ς)
1

)α
+

1
#i1

#i1

∑
ς=1

(
δ

σ(ς)
1

)α
+

1
#f1

#f1

∑
ς=1

(
η

σ(ς)
1

)α
)) 1

α

=

(
1
3

(
1

#t1
∑

γ∈t1

(1− γ)α +
1

#i1
∑

δ∈i1
δα +

1
#f1

∑
η∈f1

ηα

)) 1
α

.

Theorem 2. Let n1 = {t1, i1, f1} and n2 = {{0}, {1}, {1}} be two SVNHFEs, then the generalized distance
d(n1, n

′
2) can be calculated as:

d(n1, n
′
2) =

(
1
3

(
1

#t1
∑

γ∈t1

γα +
1

#i1
∑

δ∈i1
(1− δ)α +

1
#f1

∑
η∈f1

(1− η)α

)) 1
α

.

where n
′
2 is the normalization outcome of n2 by the comparison of n1 and n2.

Proof. Using (3), the generalized distance d(n1, n
′
2) can be calculated as:

d(n1, n
′
2) =

(
1
3

(
1
#t

#t

∑
ς=1

∣∣∣γσ(ς)
1 − γ

σ(ς)
2

∣∣∣α + 1
#i

#i

∑
ς=1

∣∣∣δσ(ς)
1 − δ

σ(ς)
2

∣∣∣α + 1
#f

#f

∑
ς=1

∣∣∣ησ(ς)
1 − η

σ(ς)
2

∣∣∣α)) 1
α

=

(
1
3

(
1
#t

#t

∑
ς=1

∣∣∣γσ(ς)
1 − 0

∣∣∣α + 1
#i

#i

∑
ς=1

∣∣∣δσ(ς)
1 − 1

∣∣∣α + 1
#f

#f

∑
ς=1

∣∣∣ησ(ς)
1 − 1

∣∣∣α)) 1
α

=

(
1
3

(
1
#t

#t

∑
ς=1

(
γ

σ(ς)
1

)α
+

1
#i

#i

∑
ς=1

(
1− δ

σ(ς)
1

)α
+

1
#f

#f

∑
ς=1

(
1− η

σ(ς)
1

)α
)) 1

α

=

(
1
3

(
1

#t1

#t1

∑
ς=1

(
γ

σ(ς)
1

)α
+

1
#i1

#i1

∑
ς=1

(
1− δ

σ(ς)
1

)α
+

1
#f1

#f1

∑
ς=1

(
1− η

σ(ς)
1

)α
)) 1

α

=

(
1
3

(
1

#t1
∑

γ∈t1

γα +
1

#i1
∑

δ∈i1
(1− δ)α +

1
#f1

∑
η∈f1

(1− η)α

)) 1
α

.

2.1.3. Computation of Optimal Weights Using Maximizing Deviation Method

Case I: Completely unknown attribute weight information
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Construct an optimization model on the basis of the approach of maximizing deviation to
determine the attributes optimal relative weights with SVNHFS. For the attribute Pj ∈ Z, the deviation
of the alternative Ai to all the other alternatives can be represented as:

Dij(w) =
m

∑
k=1

d(nij, nkj)wj, i = 1, 2, . . . , m, j = 1, 2, . . . , n

where d(nij, nkj) =

(
1
3

(
1
#t

#t
∑

ς=1

∣∣∣γσ(ς)
ij − γ

σ(ς)
kj

∣∣∣α + 1
#i

#i
∑

ς=1

∣∣∣δσ(ς)
ij − δ

σ(ς)
kj

∣∣∣α + 1
#f

#f
∑

ς=1

∣∣∣ησ(ς)
ij − η

σ(ς)
kj

∣∣∣α)) 1
α

.

Let

Dj(w) =
m

∑
i=1

Dij(w) =
m

∑
i=1

m

∑
k=1

wj

(
1
3

(
1
#t

#t

∑
ς=1

∣∣∣γσ(ς)
ij − γ

σ(ς)
kj

∣∣∣α + 1
#i

#i

∑
ς=1

∣∣∣δσ(ς)
ij − δ

σ(ς)
kj

∣∣∣α + 1
#f

#f

∑
ς=1

∣∣∣ησ(ς)
ij − η

σ(ς)
kj

∣∣∣α)) 1
α

,

j = 1, 2, . . . , n. Then Dj(w) indicates the deviation value of all alternatives to other alternatives for the
attribute Pj ∈ Z.

On the basis of the above analysis, to select the weight vector w which maximizes all deviation
values for all the attributes, a non-linear programming model is constructed as follows:

(M− 1)


max D(w) =

n
∑

j=1

m
∑

i=1

m
∑

k=1
wj

(
1
3

(
1
#t

#t
∑

ς=1

∣∣∣γσ(ς)
ij − γ

σ(ς)
kj

∣∣∣α + 1
#i

#i
∑

ς=1

∣∣∣δσ(ς)
ij − δ

σ(ς)
kj

∣∣∣α + 1
#f

#f
∑

ς=1

∣∣∣ησ(ς)
ij − η

σ(ς)
kj

∣∣∣α)) 1
α

s.t. wj ≥ 0, j = 1, 2, . . . , n,
n
∑

j=1
w2

j = 1

To solve the above model, we construct the Lagrange function:

L(w, ξ) =
n

∑
j=1

m

∑
i=1

m

∑
k=1

(
1
3

(
1
#t

#t

∑
ς=1

∣∣∣γσ(ς)
ij − γ

σ(ς)
kj

∣∣∣α + 1
#i

#i

∑
ς=1

∣∣∣δσ(ς)
ij − δ

σ(ς)
kj

∣∣∣α + 1
#f

#f

∑
ς=1

∣∣∣ησ(ς)
ij − η

σ(ς)
kj

∣∣∣α)) 1
α

wj +
ξ

2

(
n

∑
j=1

w2
j − 1

)

where ξ is a real number, representing the Lagrange multiplier variable. Then we compute the partial
derivatives of L and let:

∂L
∂wj

=
m

∑
i=1

m

∑
k=1

(
1
3

(
1
#t

#t

∑
ς=1

∣∣∣γσ(ς)
ij − γ

σ(ς)
kj

∣∣∣α + 1
#i

#i

∑
ς=1

∣∣∣δσ(ς)
ij − δ

σ(ς)
kj

∣∣∣α + 1
#f

#f

∑
ς=1

∣∣∣ησ(ς)
ij − η

σ(ς)
kj

∣∣∣α)) 1
α

+ ξwj = 0

∂L
∂ξ

=
1
2

 n

∑
j=1

w2
j − 1

 = 0

By solving above equations, an exact and simple formula for determining the attribute weights
can be obtained as follows:

w∗j =

m
∑

i=1

m
∑

k=1

(
1
3

(
1
#t

#t
∑

ς=1

∣∣∣γσ(ς)
ij − γ

σ(ς)
kj

∣∣∣α + 1
#i

#i
∑

ς=1

∣∣∣δσ(ς)
ij − δ

σ(ς)
kj

∣∣∣α + 1
#f

#f
∑

ς=1

∣∣∣ησ(ς)
ij − η

σ(ς)
kj

∣∣∣α)) 1
α

√√√√√ n
∑

j=1

 m
∑

i=1

m
∑

k=1

(
1
3

(
1
#t

#t
∑

ς=1

∣∣∣γσ(ς)
ij − γ

σ(ς)
kj

∣∣∣α + 1
#i

#i
∑

ς=1

∣∣∣δσ(ς)
ij − δ

σ(ς)
kj

∣∣∣α + 1
#f

#f
∑

ς=1

∣∣∣ησ(ς)
ij − η

σ(ς)
kj

∣∣∣α)) 1
α

2
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Because the weights of the attributes should satisfy the normalization condition, so we obtain the
normalized attribute weights:

wj =

m
∑

i=1

m
∑

k=1

(
1
3

(
1
#t

#t
∑

ς=1

∣∣∣γσ(ς)
ij − γ

σ(ς)
kj

∣∣∣α + 1
#i

#i
∑

ς=1

∣∣∣δσ(ς)
ij − δ

σ(ς)
kj

∣∣∣α + 1
#f

#f
∑

ς=1

∣∣∣ησ(ς)
ij − η

σ(ς)
kj

∣∣∣α)) 1
α

n
∑

j=1

m
∑

i=1

m
∑

k=1

(
1
3

(
1
#t

#t
∑

ς=1

∣∣∣γσ(ς)
ij − γ

σ(ς)
kj

∣∣∣α + 1
#i

#i
∑

ς=1

∣∣∣δσ(ς)
ij − δ

σ(ς)
kj

∣∣∣α + 1
#f

#f
∑

ς=1

∣∣∣ησ(ς)
ij − η

σ(ς)
kj

∣∣∣α)) 1
α

(4)

Case II: Partly known attribute weight information
However, there are some situations that the information about the weight vector is partially

known instead of completely known. For such situations, on the basis of the set of the known weight
information, =, the constrained optimization model can be designed as:

(M− 2)


max D(w) =

n
∑

j=1

m
∑

i=1

m
∑

k=1
wj

(
1
3

(
1
#t

#t
∑

ς=1

∣∣∣γσ(ς)
ij − γ

σ(ς)
kj

∣∣∣α + 1
#i

#i
∑

ς=1

∣∣∣δσ(ς)
ij − δ

σ(ς)
kj

∣∣∣α + 1
#f

#f
∑

ς=1

∣∣∣ησ(ς)
ij − η

σ(ς)
kj

∣∣∣α)) 1
α

s.t. w ∈ =, wj ≥ 0, j = 1, 2, . . . , n,
n
∑

j=1
wj = 1

where = is also a set of constraint conditions that the weight value wj should satisfy according to
the requirements in real situations. The model (M− 2) is a linear programming model. By solving
this model, we obtain the optimal solution w = (w1, w2, . . . , wn)t, which can be used as the attributes
weight vector.

2.1.4. TOPSIS Method

Recently, several MADM techniques are established such as TOPSIS [27], TODIM [28], VIKOR [29],
MULTIMOORA [30] and minimum deviation method [31]. TOPSIS method is attractive as limited
subjective input is required from experts. It is quite well known that TOPSIS is a useful and easy
approach helping an expert choose the optimal alternative according to both the minimal distance
from the positive-ideal solution and the maximal distance from the negative-ideal solution. Therefore,
after attaining the weight of attributes by using the maximizing deviation method, in this section,
we develop a MADM approach based on TOPSIS model under single-valued neutrosophic hesitant
fuzzy circumstances. The PIS A+, and the NIS A− can be computed as:

A+ = {n+1 , n+2 , . . . , n+n } (5)

= {{{1}, {0}, {0}}, {{1}, {0}, {0}}, . . . , {{1}, {0}, {0}}}. (6)

A− = {n−1 , n−2 , . . . , n−n } (7)

= {{{0}, {1}, {1}}, {{0}, {1}, {1}}, . . . , {{0}, {1}, {1}}}. (8)

Based on Equation (3), Theorems 1 and 2, the separation measures d+i and d−i of each alternative
from the single-valued neutrosophic hesitant fuzzy PIS A+ and the NIS A−, respectively, are
determined as:

d+i =
n

∑
j=1

d(n
′
ij, n

+
j )wj =

n

∑
j=1

d(n
′
ij, {{1}, {0}, {0}})wj (9)

=
n

∑
j=1

wj

1
3

 1
#t′ij

∑
γ∈t′ij

(1− γ)α +
1

#i′ij
∑

δ∈i′ij

δα +
1

#f′ij
∑

η∈f′ij

ηα

 1
α

, (10)
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d−i =
n

∑
j=1

d(n
′
ij, n
−
j )wj =

n

∑
j=1

d(n
′
ij, {{0}, {1}, {1}})wj (11)

=
n

∑
j=1

wj

1
3

 1
#t′ij

∑
γ∈t′ij

γα +
1

#i′ij
∑

δ∈i′ij

(1− δ)α +
1

#f′ij
∑

η∈f′ij

(1− η)α

 1
α

, (12)

where i = 1, 2, . . . , m.
The relative closeness coefficient of an alternative Ai with respect to the single-valued

neutrosophic hesitant fuzzy PIS A+ can be defined as follows:

RC(Ai) =
d−i

d+i + d−i
(13)

where 0 ≤ RC(Ai) ≤ 1, i = 1, 2, . . . , m. The ranking orders of all alternatives can be
determined according to the closeness coefficient CR(Ai) and select the best one(s) from a set of
appropriate alternatives.

The scheme of the proposed MADM technique is given in Figure 1. The detailed algorithm is
constructed as follows:

Step 1. Construct the decision matrix N = [nij]m×n for the MADM problem, where the entries
nij(i = 1, 2, . . . , m; j = 1, 2, . . . , n) are SVNHFEs, given by the decision makers, for the
alternative Ai according to the attribute Pj.

Step 2. On the basis of Equation (4) determine the attribute weights w = (w1, w2, . . . , wm)t, if the
attribute weights information is completely unknown, and turn to Step 4. Otherwise go
to Step 3.

Step 3. Use model (M-2) to determine the attribute weights w = (w1, w2, . . . , wm)t, if the information
about the attribute weights is partially known.

Step 4. Based on Equations (6) and (8), we determine the corresponding single-valued neutrosophic
hesitant fuzzy PIS A+ and the single-valued neutrosophic hesitant fuzzy NIS A−, respectively.

Step 5. Based on Equations (10) and (12), we compute the separation measures d+i and d−i of
each alternative Ai from the single-valued neutrosophic hesitant fuzzy PIS A+ and the
single-valued neutrosophic hesitant fuzzy NIS A−, respectively.

Step 6. Based on Equation (13), we determine the relative closeness coefficient RC(Ai) (i =

1, 2, . . . , m) of each alternative Ai to the single-valued neutrosophic hesitant fuzzy PIS A+.
Step 7. Rank the alternatives Ai (i = 1, 2, . . . , m) based on the relative closeness coefficients

RC(Ai) (i = 1, 2, . . . , m) and select the optimal one(s).
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Description of the MADM Problem

Construct simplified neutrosophic

Maximizing deviation

Identify the PIS and the NIS

TOPSIS method

Rank the alternatives

hesitant fuzzy decision matrix

Based on maximizing deviation method

determine the attribute weights method

Approve attribute
weight ?

No

Yes

Calculate the separation
measures

Determine the relative
closeness coefficient

Knowledge based

Model Based

Figure 1: The scheme of the developed approach for MADM.

2.2 Maximizing deviation method for interval neutrosophic hesitant fuzzy253

multi-attribute decision making254

In this subsection, we only use INHFSs in SNHFSs and put forward a novel decision making approach,255

by combining the idea of INHFSs with maximizing deviation, to solve a MADM problem in interval256

neutrosophic hesitant fuzzy environment.257

Definition 2.2. [13] Let Z be a fixed set, an INHFS ñ on Z is defined as:
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Figure 1. The scheme of the developed approach for MADM.

2.2. TOPSIS and Maximizing Deviation Method for Interval Neutrosophic Hesitant Fuzzy Multi-Attribute
Decision-Making

In this subsection, we only use INHFSs in SNHFSs and put forward a novel decision-making
approach, by combining the idea of INHFSs with maximizing deviation, to solve a MADM problem in
interval neutrosophic hesitant fuzzy environment.

Definition 4 ([20]). Let Z be a fixed set, an INHFS ñ on Z is defined as:

ñ = {〈z, t̃(z), ĩ(z), f̃(z)〉|z ∈ Z}

where t̃(z), ĩ(z), f̃(z) are sets of some interval-values in [0, 1], indicating the possible truth-membership
hesitant degree, indeterminacy-membership hesitant degree and falsity-membership hesitant degree of the
element z to ñ, respectively; t̃(z) = {γ̃1, γ̃2, . . . , γ̃l}, γ̃1, γ̃2, . . . , γ̃l are the elements of t̃(z); ĩ(z) =

{δ̃1, δ̃2, . . . , δ̃p}, δ̃1, δ̃2, . . . , δ̃p are the elements of ĩ(z); f̃(z) = {η̃1, η̃2, . . . , η̃q}, η̃1, η̃2, . . . , η̃q are the elements
of f̃(z), for every z ∈ Z; and l, p, q denote, respectively, the numbers of the interval-valued hesitant fuzzy
elements in t̃, ĩ, f̃.

For convenience, the expression ñ(z) = {t̃(z), ĩ(z), f̃(z)} is called an interval neutrosophic hesitant
fuzzy element (INHFE), which we represent by simplified symbol ñ = {t̃, ĩ, f̃}.
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Similar to Section 2.1, we consider a MADM problem, where A = {A1, A2, . . . , Am} is a discrete
set of m alternatives and P = {P1, P2, . . . , Pn} is a set of n attributes. The evaluation information of the
ith alternative with respect to the jth attribute is an INHFE ñij = 〈t̃ij, ĩij, f̃ij〉, where t̃ij, ĩij and f̃ij indicate
the interval-valued preference degree, interval-valued uncertain degree, and interval-valued falsity
degree, respectively, of the expert facing the ith alternative that satisfied the jth attribute. Then the
interval neutrosophic hesitant fuzzy decision matrix (INHFDM) Ñ , can be constructed as follows:

Ñ =


ñ11 ñ12 . . . ñ1n
ñ21 ñ22 . . . ñ2n

...
...

. . .
...

ñm1 ñm2 . . . ñmn


In the comparison of INHFEs, the number of their corresponding element may be unequal.

To handle this situation, we normalize the INHFEs as follows:
Suppose that ñ = {t̃, ĩ, f̃} is an INHFE, then ¯̃γ = vγ̃+ + (1− v)γ̃−, ¯̃δ = vδ̃+ + (1− v)δ̃− and

¯̃η = vη̃+ + (1− v)η̃− are the added truth-membership, the indeterminacy-membership and the
falsity-membership degree, respectively, where γ̃−, γ̃+, δ̃−, δ̃+ and η̃−, η̃+ are the minimum and the
maximum elements of t̃, ĩ and f̃, respectively, and v ∈ [0, 1] is a parameter assigned by the expert
according to his risk preference.

For the normalization of INHFE, different values of v produce different results for the added
truth-membership, the indeterminacy-membership and the falsity-membership degree. Usually, there
are three cases of the preference of the expert:

• If v = 0, the pessimist expert may add the minimum truth-membership degree γ̃−, the minimum
indeterminacy-membership degree δ̃− and the minimum falsity-membership degree η̃−.

• If v = 0.5, the neutral expert may add the truth-membership degree γ̃−+γ̃+

2 ,

the indeterminacy-membership degree δ̃−+δ̃+

2 and the falsity-membership degree η̃−+η̃+

2 .
• If v = 1, the optimistic expert may add the maximum truth-membership degree γ̃+, the maximum

indeterminacy-membership degree δ̃+ and the maximum falsity-membership degree η̃+.

The algorithm for the normalization of INHFEs is given in Algorithm 2.
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Algorithm 2 The algorithm for the normalization of INHFEs.

INPUT: Two INHFEs ñ1 = (t̃1, ĩ1, f̃1) and ñ2 = (t̃2, ĩ2, f̃2) and the value of ṽ.
OUTPUT: The normalization of ñ1 = (t̃1, ĩ1, f̃1) and ñ2 = (t̃2, ĩ2, f̃2).

1: Count the number of elements of ñ1 and ñ2, i.e., #t̃1, #ĩ1, #f̃1, #t̃2, #ĩ2, #f̃2;
2: Determine the minimum and the maximum of the elements of ñ1 and ñ2;
3: t̃ = arg mini=1,2 #t̃i, ĩ = arg mini=1,2 #ĩi, f̃ = arg mini=1,2 #f̃i
4: if #t̃1 = #t̃2 then break;
5: else if t̃ = #t̃1 then
6: n = #t̃2 − #t̃1;
7: Determine the value of γ̃ for t̃1;
8: for i=1:1:n do
9: t̃1 = t̃1 ∪ γ̃;

10: end for
11: else
12: n = #t̃1 − #t̃2;
13: Determine the value of γ̃ for t̃2;
14: for i=1:1:n do
15: t̃2 = t̃2 ∪ γ̃;
16: end for
17: end if
18: if #ĩ1 = #ĩ2 then break;
19: else if ĩ = #ĩ1 then
20: n = #ĩ2 − #ĩ1;
21: Determine the value of δ̃ for ĩ1;
22: for i=1:1:n do
23: ĩ1 = ĩ1 ∪ δ̃;
24: end for
25: else
26: n = #ĩ1 − #ĩ2;
27: Determine the value of δ̃ for ĩ2;
28: for i=1:1:n do
29: ĩ2 = ĩ2 ∪ δ̃;
30: end for
31: end if
32: if #f̃1 = #f̃2 then break;
33: else if f̃ = #f̃1 then
34: n = #f̃2 − #f̃1;
35: Determine the value of η̃ for f̃1;
36: for i=1:1:n do
37: f̃1 = f̃1 ∪ η̃;
38: end for
39: else
40: n = #f̃1 − #f̃2;
41: Determine the value of η̃ for f̃2;
42: for i=1:1:n do
43: f̃2 = f̃2 ∪ η̃;
44: end for
45: end if

2.2.1. The Distance Measures for INHFSs

Definition 5. Let ñ1 = {t̃1, ĩ1, f̃1} and ñ2 = {t̃2, ĩ2, f̃2} be two normalized INHFEs, then we define the interval
neutrosophic hesitant fuzzy Hamming distance between ñ1 and ñ2 as follows:

d̃1(ñ1, ñ2) =
1
6

(
1
#t̃

#t̃

∑
ς=1

(∣∣∣γ̃σ(ς)L

1 − γ̃
σ(ς)L

2

∣∣∣+ ∣∣∣γ̃σ(ς)U

1 − γ̃
σ(ς)U

2

∣∣∣)+ 1
#ĩ

#ĩ

∑
ς=1

(∣∣∣δ̃σ(ς)L

1 − δ̃
σ(ς)L

2

∣∣∣
+
∣∣∣δ̃σ(ς)U

1 − δ̃
σ(ς)U

2

∣∣∣)+ 1
#f̃

#f̃

∑
ς=1

(∣∣∣η̃σ(ς)L

1 − η̃
σ(ς)L

2

∣∣∣+ ∣∣∣η̃σ(ς)U

1 − η̃
σ(ς)U

2

∣∣∣)) ,
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where #t̃ = #t̃1 = #t̃2, #ĩ = #ĩ1 = #ĩ2 and #f̃ = #f̃1 = #f̃2. γ̃
σ(ς)
i , δ̃

σ(ς)
i and η

σ(ς)
i are the ςth largest values in

γ̃i, δ̃i and η̃i, respectively (i = 1, 2).
In addition, the interval neutrosophic hesitant fuzzy Euclidean distance is defined as:

d̃2(ñ1, ñ2) =

(
1
6

(
1
#t̃

#t̃

∑
ς=1

((
γ̃

σ(ς)L

1 − γ̃
σ(ς)L

2

)2
+
(

γ̃
σ(ς)U

1 − γ̃
σ(ς)U

2

)2
)
+

1
#ĩ

#ĩ

∑
ς=1

((
δ̃

σ(ς)L

1 − δ̃
σ(ς)L

2

)2

+
(

δ̃
σ(ς)U

1 − δ̃
σ(ς)U

2

)2
)
+

1
#f̃

#f̃

∑
ς=1

((
η̃

σ(ς)L

1 − η̃
σ(ς)L

2

)2
+
(

η̃
σ(ς)U

1 − η̃
σ(ς)U

2

)2
))) 1

2

.

By using the geometric distance model of [26], the above distances can be generalized as follows:

d̃(ñ1, ñ2) =

(
1
6

(
1
#t̃

#t̃

∑
ς=1

((
γ̃

σ(ς)L

1 − γ̃
σ(ς)L

2

)α
+
(

γ̃
σ(ς)U

1 − γ̃
σ(ς)U

2

)α
)
+

1
#ĩ

#ĩ

∑
ς=1

((
δ̃

σ(ς)L

1 − δ̃
σ(ς)L

2

)α

+
(

δ̃
σ(ς)U

1 − δ̃
σ(ς)U

2

)α
)
+

1
#f̃

#f̃

∑
ς=1

((
η̃

σ(ς)L

1 − η̃
σ(ς)L

2

)α
+
(

η̃
σ(ς)U

1 − η̃
σ(ς)U

2

)α
))) 1

α

,

where α is constant and α > 0. Based on the value of α, the relationship among d̃(ñ1, ñ2), d̃1(ñ1, ñ2) and
d̃2(ñ1, ñ2) can be deduced as:

• If α = 1, then the distance d̃(ñ1, ñ2) = d̃1(ñ1, ñ2).
• If α = 2, then the distance d̃(ñ1, ñ2) = d̃2(ñ1, ñ2).

Therefore, the distance d̃(ñ1, ñ2) is a generalization of the interval neutrosophic hesitant fuzzy Hamming
distance d̃1(ñ1, ñ2) and the interval neutrosophic hesitant fuzzy Euclidean distance d̃2(ñ1, ñ2).

Theorem 3. Let ñ1 = {t̃1, ĩ1, f̃1} and ñ2 = {{[1, 1]}, {[0, 0]}, {[0, 0]}} be two INHFEs, then the generalized
distance d̃(ñ1, ñ

′
2) can be calculated as:

d̃(ñ1, ñ
′
2) =

 1
6

 1
#t̃1

∑
γ̃∈t̃1

(
(

1− γ̃L
)α

+
(

1− γ̃U
)α

) +
1

#ĩ1
∑

δ̃∈ĩ1
((δ̃L)α + (δ̃U)α) +

1
#f̃1

∑
η̃∈f̃1

((η̃L)α + (η̃U)α)

 1
α

.

where ñ
′
2 is the normalization outcome of ñ2 by the comparison of ñ1 and ñ2.

Theorem 4. Let ñ1 = {t̃1, ĩ1, f̃1} and ñ2 = {{[0, 0]}, {[1, 1]}, {[1, 1]}} be two INHFEs, then the generalized
distance d̃(ñ1, ñ

′
2) can be calculated as:

d̃(ñ1, ñ
′
2) =

 1
6

 1
#t̃1

∑
γ̃∈t̃1

((γ̃L)α + (γ̃U)α) +
1

#ĩ1
∑

δ̃∈ĩ1

((
1− δ̃L

)α
+
(

1− δ̃U
)α)

+
1

#f̃1
∑

η∈f̃1

((
1− η̃L

)α
+
(

1− η̃U
)α) 1

α

.

where ñ
′
2 is the normalization outcome of ñ2 by the comparison of ñ1 and ñ2.

2.2.2. Computation of Optimal Weights Using Maximizing Deviation Method

Case I: Completely unknown information on attribute weights
Using the maximizing deviation method, we construct an optimization model to determine the

attributes optimal relative weights in interval neutrosophic hesitant fuzzy setting. For the attribute
Pj ∈ Z, the deviation of the alternative Ai to all the other alternatives can be represented as:

D̃ij(w) =
m

∑
k=1

d̃(ñij, ñkj)wj, i = 1, 2, . . . , m, j = 1, 2, . . . , n
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where

d̃(ñij, ñkj) =

(
1
6

(
1
#t̃

#t̃

∑
ς=1

(∣∣∣γ̃σ̃(ς)L

ij − γ̃
σ̃(ς)L

kj

∣∣∣α + ∣∣∣γ̃σ̃(ς)U

ij − γ̃
σ̃(ς)U

kj

∣∣∣α)+
1
#ĩ

#ĩ

∑
ς=1

(∣∣∣δ̃σ̃(ς)L

ij − δ̃
σ̃(ς)L

kj

∣∣∣α

+
∣∣∣δ̃σ̃(ς)U

ij − δ̃
σ̃(ς)U

kj

∣∣∣α)+
1
#f̃

#f̃

∑
ς=1

(∣∣∣η̃σ̃(ς)L

ij − η̃
σ̃(ς)L

kj

∣∣∣α + ∣∣∣η̃σ̃(ς)U

ij − η̃
σ̃(ς)U

kj

∣∣∣α)))
1
α

.

Let

D̃j(w) =
m

∑
i=1

D̃ij(w) =
m

∑
i=1

m

∑
k=1

wj

(
1
6

(
1
#t̃

#t̃

∑
ς=1

(∣∣∣γ̃σ̃(ς)L

ij − γ̃
σ̃(ς)L

kj

∣∣∣α + ∣∣∣γ̃σ̃(ς)U

ij − γ̃
σ̃(ς)U

kj

∣∣∣α)+
1
#ĩ

#ĩ

∑
ς=1

(∣∣∣δ̃σ̃(ς)L

ij − δ̃
σ̃(ς)L

kj

∣∣∣α

+
∣∣∣δ̃σ̃(ς)U

ij − δ̃
σ̃(ς)U

kj

∣∣∣α)+
1
#f̃

#f̃

∑
ς=1

(∣∣∣η̃σ̃(ς)L

ij − η̃
σ̃(ς)L

kj

∣∣∣α + ∣∣∣η̃σ̃(ς)U

ij − η̃
σ̃(ς)U

kj

∣∣∣α)))
1
α

,

j = 1, 2, . . . , n. Then Dj(w) represents the deviation value of all alternatives to other alternatives for
the attribute Pj ∈ Z.

On the basis of the analysis above, to select the weight vector w which maximizes all deviation
values for all the attributes, a non-linear programming model is constructed as follows:

(M− 3)



max D̃(w) =
n

∑
j=1

m

∑
i=1

m

∑
k=1

wj


1
6


1
#t̃

#t̃

∑
ς=1

(∣∣∣γ̃σ̃(ς)L

ij − γ̃
σ̃(ς)L

kj

∣∣∣α + ∣∣∣γ̃σ̃(ς)U

ij − γ̃
σ̃(ς)U

kj

∣∣∣α)+
1
#ĩ

#ĩ

∑
ς=1

(∣∣∣δ̃σ̃(ς)L

ij − δ̃
σ̃(ς)L

kj

∣∣∣α

+
∣∣∣δ̃σ̃(ς)U

ij − δ̃
σ̃(ς)U

kj

∣∣∣α)+
1
#f̃

#f̃

∑
ς=1

(∣∣∣η̃σ̃(ς)L

ij − η̃
σ̃(ς)L

kj

∣∣∣α + ∣∣∣η̃σ̃(ς)U

ij − η̃
σ̃(ς)U

kj

∣∣∣α)




1
α

s.t. wj ≥ 0, j = 1, 2, . . . , n,
n

∑
j=1

w2
j = 1

To solve the above model, we construct the Lagrange function:

L(w, ξ) =
n

∑
j=1

m

∑
i=1

m

∑
k=1

(
1
6

(
1
#t̃

#t̃

∑
ς=1

(∣∣∣γ̃σ̃(ς)L

ij − γ̃
σ̃(ς)L

kj

∣∣∣α + ∣∣∣γ̃σ̃(ς)U

ij − γ̃
σ̃(ς)U

kj

∣∣∣α)+
1
#ĩ

#ĩ

∑
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(∣∣∣δ̃σ̃(ς)L

ij − δ̃
σ̃(ς)L

kj

∣∣∣α

+
∣∣∣δ̃σ̃(ς)U

ij − δ̃
σ̃(ς)U

kj

∣∣∣α)+
1
#f̃

#f̃

∑
ς=1

(∣∣∣η̃σ̃(ς)L

ij − η̃
σ̃(ς)L

kj

∣∣∣α + ∣∣∣η̃σ̃(ς)U

ij − η̃
σ̃(ς)U

kj

∣∣∣α)))
1
α

wj +
ξ

2

(
n

∑
j=1

w2
j − 1

)

where ξ is a real number, representing the Lagrange multiplier variable. Then we compute the partial
derivatives of L and let:

∂L
∂wj

=
m

∑
i=1

m

∑
k=1

(
1
6

(
1
#t̃

#t̃

∑
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(∣∣∣γ̃σ̃(ς)L
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σ̃(ς)L

kj
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#ĩ
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+
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∑
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∣∣∣α)))
1
α

+ ξwj = 0

∂L
∂ξ

=
1
2

(
n

∑
j=1

w2
j − 1

)
= 0
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By solving the above equations, to determining the attribute weights, an exact and simple formula
can be obtained as follows:

w∗j =

m
∑

i=1

m
∑

k=1

 1
6


1
#t̃

#t̃
∑

ς=1

(∣∣∣γ̃σ̃(ς)L

ij − γ̃
σ̃(ς)L

kj

∣∣∣α + ∣∣∣γ̃σ̃(ς)U
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kj
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∑
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∑
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2

As the weights of the attributes should satisfy the normalization condition, so we obtain the
normalized attribute weights:

wj =

m
∑

i=1

m
∑

k=1
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(14)

Case II: Partly known information on attribute weights
However, there are some situations that the information about the weight vector is partially

known. For such situations, using the set of the known weight information, =, the constrained
optimization model can be designed as:

(M− 4)
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1
α

s.t. w ∈ =, wj ≥ 0, j = 1, 2, . . . , n,
n

∑
j=1

wj = 1

where = is also a set of constraint conditions that the weight value wj should satisfy according to
the requirements in real situations. By solving the linear programming model (M− 4), we obtain the
optimal solution w = (w1, w2, . . . , wn)t, which can be used as the weight vector of attributes.

In interval neutrosophic hesitant fuzzy environment, the PIS Ã+, and the NIS Ã− can be defined
as follows:

Ã+ = {ñ+1 , ñ+2 , . . . , ñ+n }
= {{{[1, 1]}, {[0, 0]}, {[0, 0]}}, {{[1, 1]}, {[0, 0]}, {[0, 0]}}, . . . , {{[1, 1]}, {[0, 0]}, {[0, 0]}}}.

Ã− = {ñ−1 , ñ−2 , . . . , ñ−n }
= {{{[0, 0]}, {[1, 1]}, {[1, 1]}}, {{[0, 0]}, {[1, 1]}, {[1, 1]}}, . . . , {{[0, 0]}, {[1, 1]}, {[1, 1]}}}.
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On the basis of Equation (14), Theorems 3 and 4, the separation measures d̃+i and d̃−i of each
alternative from the interval neutrosophic hesitant fuzzy PIS Ã+ and the interval neutrosophic hesitant
fuzzy NIS Ã−, respectively, are determined as:

d̃+i =
n

∑
j=1

d̃(ñ
′
ij , ñ

+
j )wj =

n

∑
j=1

d̃(ñ
′
ij , {{[1, 1]}, {[0, 0]}, {[0, 0]}})wj (15)

=
n

∑
j=1

wj

 1
6

 1
#t̃′ij

∑
γ̃∈t̃′ij

((
1− γ̃L

)α
+
(

1− γ̃U
)α)

+
1

#ĩ′ij
∑

δ̃∈ĩ′ij

(
(δ̃L)α + (δ̃U)α

)
+

1
#f̃′ij

∑
η̃∈f̃′ij

((η̃L)α + (η̃U)α)

 1
α

,(16)

d̃−i =
n

∑
j=1

d̃(ñ
′
ij , ñ

−
j )wj =

n

∑
j=1

d̃(ñ
′
ij , {{[0, 0]}, {[1, 1]}, {[1, 1]}})wj (17)

=
n

∑
j=1

wj

 1
6

 1
#t̃′ij

∑
γ̃∈t̃′ij

(
(γ̃L)α + (γ̃U )α

)
+

1
#ĩ′ij

∑
δ̃∈ĩ′ij

((
1− δ̃L

)α
+
(

1− δ̃U
)α)

+
1

#f̃′ij
∑

η̃∈f̃′ij

((
1− η̃L

)α
+
(

1− η̃U
)α) 1

α

, (18)

where i = 1, 2, . . . , m. The relative closeness coefficient of an alternative Ãi with respect to the PIS Ã+

is defined as:

RC(Ãi) =
d̃−i

d̃+i + d̃−i
(19)

where 0 ≤ RC(Ãi) ≤ 1, i = 1, 2, . . . , m. The ranking orders of all alternatives can be
determined according to the closeness coefficient CR(Ãi) and select the optimal one(s) from a set of
appropriate alternatives.

3. An Illustrative Example

To examine the validity and feasibility of developed decision-making approach in this section, we give
a smartphone accessories supplier selection problem in realistic scenario as follows: In the smartphone
fields, the Chinese market is the immense one in the world and the competition of smartphone field is so
fierce that several companies could not avoid the destiny of bankrupt. In the Chinese market, a firm, who
does not want to be defeated must choose the excellent accessories suppliers to fit its supply requirements
and technology strategies. A new smartphone design firm called “Hua Xin” incorporated company, who
wants to choose a few accessories suppliers for guaranteeing the productive throughput. For simplicity,
we assume only one kind of accessory known as Central Processing Unit (CPU), which is used as an
essential part in smartphones. The firm determines five CPU suppliers (alternatives) Ai(i = 1, 2, . . . , 5)
through the analysis of their planned level of effort and the market investigation. The evaluation criteria
are (1) P1 : cost; (2) P2 : technical ability; (3) P3 : product performance; (4) P4 : service performance.
Because the uncertainty of the information, the evaluation information given by the three experts is
expressed as SVNHFEs. The SVNHFDM is given in Table 1. The hierarchical structure of constructed
decision-making problem is depicted in Figure 2.

Table 1. Single-valued neutrosophic hesitant fuzzy decision matrix.

P1 P2

A1 {{0.2},{0.3,0.5},{0.1,0.2,0.3}} {{0.6,0.7},{0.1,0.3},{0.2,0.4}}
A2 {{0.1},{0.3},{0.5,0.6}} {{0.4},{0.3,0.5},{0.5,0.6}}
A3 {{0.6,0.7},{0.2,0.3},{0.1,0.2}} {{0.1,0.2},{0.3},{0.6,0.7}}
A4 {{0.2,0.3},{0.1,0.2},{0.5,0.6}} {{0.3,0.4},{0.2,0.3},{0.5,0.6,0.7}}
A5 {{0.7},{0.4,0.5},{0.2,0.4,0.5}} {{0.6},{0.1,0.7},{0.3,0.5}}

P3 P4

A1 {{0.2,0.3},{0.4},{0.7,0.8}} {{0.4},{0.1,0.3},{0.5,0.7,0.9}}
A2 {{0.1,0.3},{0.4},{0.5,0.6,0.8}} {{0.6,0.8},{0.2},{0.3,0.5}}
A3 {{0.2,0.3},{0.1,0.2},{0.6,0.7}} {{0.2,0.3},{0.4},{0.2,0.5,0.6}}
A4 {{0.2,0.4},{0.3},{0.1,0.2}} {{0.6},{0.2},{0.3,0.5}}
A5 {{0.3},{0.5},{0.1,0.4}} {{0.5},{0.1,0.2},{0.3,0.4}}
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Take v = 0.5, α = 2, and we normalize the SVNHFDM by using Algorithm 1. The normalized
SVNHFDM is given in Table 2.

Selection of the best
Smartphone accessories supplier

Cost

P1

Technical ability

P2

Product
P3

Service
P4

A1

A2

A5

A4

A3

Goal

performance

performance

Figure 2: The smartphone accessories supplier selection hierarchical structure.

Table 1: Single-valued neutrosophic hesitant fuzzy decision matrix.

P1 P2

A1 {{0.2},{0.3,0.5},{0.1,0.2,0.3}} {{0.6,0.7},{0.1,0.3},{0.2,0.4}}
A2 {{0.1},{0.3},{0.5,0.6}} {{0.4},{0.3,0.5},{0.5,0.6}}
A3 {{0.6,0.7},{0.2,0.3},{0.1,0.2}} {{0.1,0.2},{0.3},{0.6,0.7}}
A4 {{0.2,0.3},{0.1,0.2},{0.5,0.6}} {{0.3,0.4},{0.2,0.3},{0.5,0.6,0.7}}
A5 {{0.7},{0.4,0.5},{0.2,0.4,0.5}} {{0.6},{0.1,0.7},{0.3,0.5}}

P3 P4

A1 {{0.2,0.3},{0.4},{0.7,0.8}} {{0.4},{0.1,0.3},{0.5,0.7,0.9}}
A2 {{0.1,0.3},{0.4},{0.5,0.6,0.8}} {{0.6,0.8},{0.2},{0.3,0.5}}
A3 {{0.2,0.3},{0.1,0.2},{0.6,0.7}} {{0.2,0.3},{0.4},{0.2,0.5,0.6}}
A4 {{0.2,0.4},{0.3},{0.1,0.2}} {{0.6},{0.2},{0.3,0.5}}
A5 {{0.3},{0.5},{0.1,0.4}} {{0.5},{0.1,0.2},{0.3,0.4}}

Take ̟ = 0.5, α = 2, and we normalize the SVNHFDM by utilizing Algorithm 1. The normalized362

SVNHFDM is given in Table 2.363

18

Figure 2. The smartphone accessories supplier selection hierarchical structure.

Table 2. Normalized single-valued neutrosophic hesitant fuzzy decision matrix.

P1 P2

A1 {{0.2,0.2},{0.3,0.5},{0.1,0.2,0.3}} {{0.6,0.7},{0.1,0.3},{0.2,0.3,0.4}}
A2 {{0.1,0.1},{0.3,0.3},{0.5,0.55,0.6}} {{0.4,0.4},{0.3,0.5},{0.5,0.55,0.6}}
A3 {{0.6,0.7},{0.2,0.3},{0.1,0.15,0.2}} {{0.1,0.2},{0.3,0.3},{0.6,0.65,0.7}}
A4 {{0.2,0.3},{0.1,0.2},{0.5,0.55,0.6}} {{0.3,0.4},{0.2,0.3},{0.5,0.6,0.7}}
A5 {{0.7,0.7},{0.4,0.5},{0.2,0.4,0.5}} {{0.6,0.6},{0.1,0.7},{0.3,0.4,0.5}}

P3 P4

A1 {{0.2,0.3},{0.4,0.4},{0.7,0.75,0.8}} {{0.4,0.4},{0.1,0.3},{0.5,0.7,0.9}}
A2 {{0.1,0.3},{0.4,0.4},{0.5,0.6,0.8}} {{0.6,0.8},{0.2,0.2},{0.3,0.4,0.5}}
A3 {{0.2,0.3},{0.1,0.2},{0.6,0.65,0.7}} {{0.2,0.3},{0.4,0.4},{0.2,0.5,0.6}}
A4 {{0.2,0.4},{0.3,0.3},{0.1,0.15,0.2}} {{0.6,0.6},{0.2,0.2},{0.3,0.4,0.5}}
A5 {{0.3,0.3},{0.5,0.5},{0.1,0.25,0.4}} {{0.5,0.5},{0.1,0.2},{0.3,0.35,0.4}}

Now to obtain the optimal accessory supplier, we use the developed method, which contains the
following two cases:
Case 1: The information of the attribute weights is completely unknown, then the MADM approach
related to accessory supplier selection includes the following steps:

Step 1: On the basis of Equation (4), we get the optimal weight vector:

w = (0.2994, 0.2367, 0.2521, 0.2118)T

Step 2: Based on the decision matrix of Table 2, we get the normalization of the reference points A+

and A− as follows:

A+ = {n+1 , n+2 , n+3 , n+4 }

= {{{1, 1}, {0, 0}, {0, 0, 0}}, {{1, 1}, {0, 0}, {0, 0, 0}}, {{1, 1}, {0, 0}, {0, 0, 0}}, {{1, 1}, {0, 0}, {0, 0, 0}}},
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A− = {n−1 , n−2 , n−3 , n−4 }

= {{{0, 0}, {1, 1}, {1, 1, 1}}, {{0, 0}, {1, 1}, {1, 1, 1}}, {{0, 0}, {1, 1}, {1, 1, 1}}, {{0, 0}, {1, 1}, {1, 1, 1}}}.

Step 3: On the basis of Equations (10) and (12), we determine the geometric distances d+i = d(Ai, A+)

and d−i = d(Ai, A−) for the alternative Ai(i = 1, 2, . . . , 5) as shown in Table 3.
Step 4: Use Equation (13) to determine the relative closeness of each alternative Ai with respect to

the single-valued neutrosophic hesitant fuzzy PIS A+:

RC(A1) = 0.5251, RC(A2) = 0.4896, RC(A3) = 0.5394, RC(A4) = 0.5600, RC(A5) = 0.5927.

Step 5: On the basis of the relative closeness coefficients RC(Ai), rank the alternatives Ai(i =

1, 2, . . . , 5): A5 � A4 � A3 � A1 � A2. Thus, the optimal alternative (CPU supplier) is
A5.

Table 3. The geometric distances for alternatives.

Geometric Distance A1 A2 A3 A4 A5

d+i = d(Ai, A+) 0.5142 0.5434 0.4974 0.4781 0.4279
d−i = d(Ai, A−) 0.5685 0.5212 0.5824 0.6086 0.6226

Case 2: The information of the attribute weights is partly known, and the known weight information
is as follows:

= = {0.15 ≤ w1 ≤ 0.2, 0.16 ≤ w2 ≤ 0.18, 0.3 ≤ w3 ≤ 0.35, 0.3 ≤ w4 ≤ 0.45,
4

∑
j=1

wj = 1}

Step 1: Use the model (M-2) to establish the single-objective programming model as follows:

(M− 2)


max D(w) = 5.6368w1 + 4.4554w2 + 4.7465w3 + 3.9864w4

s.t. w ∈ =, wj ≥ 0, j = 1, 2, 3, 4,
4
∑

j=1
wj = 1

By solving this model, we obtain the attributes weight vector:

w = (0.2000, 0.1600, 0.3400, 0.3000)T

Step 2: According to the decision matrix of Table 2, the normalization of the reference points A+ and
A− can be obtained as follows:

A+ = {n+1 , n+2 , n+3 , n+4 }

= {{{1, 1}, {0, 0}, {0, 0, 0}}, {{1, 1}, {0, 0}, {0, 0, 0}}, {{1, 1}, {0, 0}, {0, 0, 0}}, {{1, 1}, {0, 0}, {0, 0, 0}}},

A− = {n−1 , n−2 , n−3 , n−4 }

= {{{0, 0}, {1, 1}, {1, 1, 1}}, {{0, 0}, {1, 1}, {1, 1, 1}}, {{0, 0}, {1, 1}, {1, 1, 1}}, {{0, 0}, {1, 1}, {1, 1, 1}}}.

Step 3: Based on Equations (10) and (12), we determine the geometric distances d(Ai, A+) and
d(Ai, A−) for the alternative Ai(i = 1, 2, . . . , 5) as shown in Table 4.

Step 4: Use Equation (13) to determine the relative closeness of each alternative Ai with respect to
the single-valued neutrosophic hesitant fuzzy PIS A+:

RC(A1) = 0.4972, RC(A2) = 0.5052, RC(A3) = 0.5199, RC(A4) = 0.5808, RC(A5) = 0.5883.
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Step 5: Based on the relative closeness coefficients RC(Ai), rank the alternatives Ai(i = 1, 2, . . . , 5):
A5 � A4 � A3 � A2 � A1. Thus, the optimal alternative (CPU supplier) is A5.

Taking v = 0.5, we normalize the single-valued neutrosophic hesitant fuzzy decision matrix
and compute the closeness coefficient of the alternatives with the different values of α.
The comparison results are given in Figure 3.

Table 4. The geometric distances for alternatives.

Geometric Distance A1 A2 A3 A4 A5

d(Ai, A+) 0.5446 0.5244 0.5220 0.4534 0.4341
d(Ai, A−) 0.5385 0.5355 0.5652 0.6281 0.6202
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Figure 3. Comparison of the closeness coefficient of the alternative.

The analysis process under interval neutrosophic hesitant fuzzy circumstances:

In the above smartphone accessories supplier selection problem, if the information provided by
the experts is indicated in INHFEs, as in Table 5. Then, to choose the optimal CPU supplier, we proceed
to use the developed approach.

Take v = 0.5, α = 2, and we normalize the INHFDM by using Algorithm 2. The normalized
INHFDM is given in Table 6.
Case 1: The information of the attribute weights is completely unknown , then the MADM method of
accessory supplier selection consists of the following steps:

Step 1: On the basis of Equation (14), we get the optimal weight vector:

w = {0.2963, 0.2562, 0.2388, 0.2087}



Symmetry 2019, 11, 1058 21 of 26

Step 2: According to the decision matrix of Table 6, the normalization of the reference points Ã+ and
Ã− can be obtained as follows:

Ã+ = {ñ+1 , ñ+2 , ñ+3 , ñ+4 }

= {{{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}}, {{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}},

{{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}}, {{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}}},

Ã− = {ñ−1 , ñ−2 , ñ−3 , ñ−4 }

= {{{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}}, {{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}},

{{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}}, {{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}}}.

Step 3: Based on Equations (15) and (17), we determine the geometric distances d̃(Ai, A−) and
d̃(Ai, A+) for the alternative Ai(i = 1, 2, . . . , 5) as shown in Table 7.

Step 4: Use Equation (19) to determine the relative closeness of each alternative Ãi with respect to
the interval neutrosophic hesitant fuzzy PIS Ã+:

RC(Ã1) = 0.5169, RC(Ã2) = 0.4592, RC(Ã3) = 0.4969, RC(Ã4) = 0.5368, RC(Ã5) = 0.5643.

Step 5: Based on the relative closeness coefficients RC(Ãi), rank the alternatives Ai(i = 1, 2, . . . , 5):
A5 � A4 � A1 � A3 � A2. Thus, the optimal alternative (CPU supplier) is A5.

Case 2: The information of the attribute weights is partly known, and the known weight information
is given as follows:

= = {0.15 ≤ w1 ≤ 0.2, 0.16 ≤ w2 ≤ 0.18, 0.3 ≤ w3 ≤ 0.35, 0.3 ≤ w4 ≤ 0.45,
4

∑
j=1

wj = 1}

Step 1: Use the model (M-4) to establish the single-objective programming model as follows: (M−

4)


max D(w) = 4.5556w1 + 4.2000w2 + 3.3222w3 + 3.3111w4

s.t. w ∈ =, wj ≥ 0, j = 1, 2, 3, 4,
4
∑

j=1
wj = 1

By solving this model, we obtain the weight vector of attributes:

w = {0.2000, 0.1800, 0.3200, 0.3000}

Step 2: According to the decision matrix of Table 6, we can obtain the normalization of the reference
points Ã+ and Ã− as follows:

Ã+ = {ñ+1 , ñ+2 , ñ+3 , ñ+4 }

= {{{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}}, {{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}},

{{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}}, {{[1, 1], [1, 1]}, {[0, 0], [0, 0]}, {[0, 0], [0, 0], [0, 0]}}},

Ã− = {ñ−1 , ñ−2 , ñ−3 , ñ−4 }

= {{{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}}, {{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}},

{{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}}, {{[0, 0], [0, 0]}, {[1, 1], [1, 1]}, {[1, 1], [1, 1], [1, 1]}}}.

Step 3: Use Equations (15) and (17) to determine the geometric distances d̃(Ai, A+) and d̃(Ai, A−)
for the alternative Ai(i = 1, 2, . . . , 5) as shown in Table 8.
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Step 4: Use Equation (19) to determine the relative closeness of each alternative Ãi with respect to
the interval neutrosophic hesitant fuzzy PIS Ã+:

RC(Ã1) = 0.4955, RC(Ã2) = 0.4729, RC(Ã3) = 0.4803, RC(Ã4) = 0.5536, RC(Ã5) = 0.5607.

Step 5: According to the relative closeness coefficients RC(Ãi), rank the alternatives Ai(i =

1, 2, . . . , 5): A5 � A4 � A1 � A3 � A2. Thus, the optimal alternative (CPU supplier)
is A5.

Taking v = 0.5, we normalize the interval neutrosophic hesitant fuzzy decision matrix and
compute the closeness coefficient of the alternatives with the different values of α. The comparison
results are given in Figure 4.
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Figure 4. Comparison of the closeness coefficient of the alternative.
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Table 5. Interval neutrosophic hesitant fuzzy decision matrix.

P1 P2

A1 {{[0.2,0.3]},{[0.3,0.4],[0.5,0.7]},{[0.1,0.3],[0.2,0.5],[0.3,0.6]}} {{[0.6,0.8],[0.7,0.9]},{[0.1,0.2],[0.3,0.5]},{[0.2,0.3],[0.4,0.5]}}
A2 {{[0.1,0.3]},{[0.3,0.5]},{[0.5,0.7],[0.6,0.8]}} {{[0.4,0.6]},{[0.3,0.4],[0.5,0.6]},{[0.5,0.7],[0.6,0.8]}}
A3 {{[0.6,0.7],[0.7,0.8]},{[0.2,0.4],[0.3,0.5]},{[0.1,0.3],[0.2,0.4]}} {{[0.1,0.3],[0.2,0.4]},{[0.3,0.6]},{[0.6,0.8],[0.7,0.9]}}
A4 {{[0.2,0.5],[0.3,0.4]},{[0.1,0.3],[0.2,0.3]},{[0.5,0.6],[0.6,0.7]}} {{[0.3,0.5],[0.4,0.6]},{[0.2,0.3],[0.3,0.4]},{[0.5,0.7],[0.6,0.8],[0.7,0.9]}}
A5 {{[0.7,0.8]},{[0.4,0.6],[0.5,0.7]},{[0.2,0.3],[0.4,0.6],[0.5,0.7]}} {{[0.6,0.8]},{[0.1,0.3],[0.7,0.8]},{[0.3,0.4],[0.5,0.6}}

P3 P4

A1 {{[0.2,0.4],[0.3,0.5]},{[0.4,0.5]},{[0.7,0.8],[0.8,0.9]}} {{[0.4,0.6]},{[0.1,0.2],[0.3,0.4]},{[0.5,0.6],[0.7,0.8],[0.8,0.9]}}
A2 {{[0.1,0.3],[0.3,0.5]},{[0.4,0.6]},{[0.5,0.6],[0.6,0.7],[0.8,0.9]}} {{[0.6,0.7],[0.8,0.9]},{[0.2,0.5]},{[0.3,0.5],[0.5,0.7]}}
A3 {{[0.2,0.3],[0.3,0.4]},{[0.1,0.3],[0.2,0.4]},{[0.6,0.8],[0.7,0.9]}} {{[0.2,0.4],[0.3,0.5]},{[0.4,0.6]},{[0.2,0.3],[0.5,0.7],[0.6,0.8]}}
A4 {{[0.2,0.3],[0.4,0.5]},{[0.3,0.6]},{[0.1,0.4],[0.2,0.5]}} {{[0.6,0.8]},{[0.2,0.3]},{[0.3,0.4],[0.5,0.6]}}
A5 {{[0.3,0.5]},{[0.5,0.6]},{[0.1,0.3],[0.4,0.5]}} {{[0.5,0.7]},{[0.1,0.3],[0.2,0.5]},{[0.3,0.5],[0.4,0.8]}}

Table 6. Normalized interval neutrosophic hesitant fuzzy decision matrix.

P1 P2

A1 {{[0.2,0.3],[0.2,0.3]},{[0.3,0.4],[0.5,0.7]},{[0.1,0.3],[0.2,0.5],[0.3,0.6]}} {{[0.6,0.8],[0.7,0.9]},{[0.1,0.2],[0.3,0.5]},{[0.2,0.3],[0.3,0.4],[0.4,0.5]}}
A2 {{[0.1,0.3],[0.1,0.3]},{[0.3,0.5],[0.3,0.5]},{[0.5,0.7],[0.55,0.75],[0.6,0.8]}} {{[0.4,0.6],[0.4,0.6]},{[0.3,0.4],[0.5,0.6]},{[0.5,0.7],[0.55,0.75],[0.6,0.8]}}
A3 {{[0.6,0.7],[0.7,0.8]},{[0.2,0.4],[0.3,0.5]},{[0.1,0.3],[0.15,0.35],[0.2,0.4]}} {{[0.1,0.3],[0.2,0.4]},{[0.3,0.6],[0.3,0.6]},{[0.6,0.8],[0.65,0.85],[0.7,0.9]}}
A4 {{[0.2,0.5],[0.3,0.4]},{[0.1,0.3],[0.2,0.3]},{[0.5,0.6],[0.55,0.65],[0.6,0.7]}} {{[0.3,0.5],[0.4,0.6]},{[0.2,0.3],[0.3,0.4]},{[0.5,0.7],[0.6,0.8],[0.7,0.9]}}
A5 {{[0.7,0.8],[0.7,0.8]},{[0.4,0.6],[0.5,0.7]},{[0.2,0.3],[0.4,0.6],[0.5,0.7]}} {{[0.6,0.8],[0.6,0.8]},{[0.1,0.3],[0.7,0.8]},{[0.3,0.4],[0.4,0.5],[0.5,0.6}}

P3 P4

A1 {{[0.2,0.4],[0.3,0.5]},{[0.4,0.5],[0.4,0.5]},{[0.7,0.8],[0.75,0.85],[0.8,0.9]}} {{[0.4,0.6],[0.4,0.6]},{[0.1,0.2],[0.3,0.4]},{[0.5,0.6],[0.7,0.8],[0.8,0.9]}}
A2 {{[0.1,0.3],[0.3,0.5]},{[0.4,0.6],[0.4,0.6]},{[0.5,0.6],[0.6,0.7],[0.8,0.9]}} {{[0.6,0.7],[0.8,0.9]},{[0.2,0.5],[0.2,0.5]},{[0.3,0.5],[0.4,0.6],[0.5,0.7]}}
A3 {{[0.2,0.3],[0.3,0.4]},{[0.1,0.3],[0.2,0.4]},{[0.6,0.8],[0.65,0.85],[0.7,0.9]}} {{[0.2,0.4],[0.3,0.5]},{[0.4,0.6],[0.4,0.6]},{[0.2,0.3],[0.5,0.7],[0.6,0.8]}}
A4 {{[0.2,0.3],[0.4,0.5]},{[0.3,0.6],[0.3,0.6]},{[0.1,0.4],[0.15,0.45],[0.2,0.5]}} {{[0.6,0.8],[0.6,0.8]},{[0.2,0.3],[0.2,0.3]},{[0.3,0.4],[0.4,0.5],[0.5,0.6]}}
A5 {{[0.3,0.5],[0.3,0.5]},{[0.5,0.6],[0.5,0.6]},{[0.1,0.3],[0.25,0.4],[0.4,0.5]}} {{[0.5,0.7],[0.5,0.7]},{[0.1,0.3],[0.2,0.5]},{[0.3,0.5],[0.35,0.65],[0.4,0.8]}}
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Table 7. The geometric distances for alternatives.

Geometric Distance A1 A2 A3 A4 A5

d̃(Ai, A+) 0.5169 0.5711 0.5361 0.4952 0.4625
d̃(Ai, A−) 0.5531 0.4849 0.5295 0.5740 0.5991

Table 8. The geometric distances for alternatives.

Geometric Distance A1 A2 A3 A4 A5

d̃(Ai, A+) 0.5406 0.5562 0.5569 0.4752 0.4653
d̃(Ai, A−) 0.5310 0.4990 0.5147 0.5894 0.5938

3.1. Comparative Analysis

Zhao et al. [31] generalized the minimum deviation method to accommodate hesitant
fuzzy values for solving the decision-making problems. We have used this approach
on the above illustrative example and compared the decision results with proposed
approach of this paper for SNHFSs. In the approach of Zhao et al., assume that the
subjective preference values to all the alternatives Aj(j = 1, 2, 3, 4, 5) assigned by the
experts are: s1 = {{0.3, 0.4}, {0.2, 0.5}, {0.1, 0.3, 0.7}}, s2 = {{0.2, 0.7}, {0.1, 0.9}, {0.3, 0.6}},
s3 = {{0.8}, {0.5, 0.8}, {0.4, 0.7, 0.9}}, s4 = {{0.1, 0.4}, {0.6}, {0.5, 0.7, 0.8}} and s5 = {{0.3}, {0.4, 0.6},
{0.2, 0.4}}. Also s̃1 = {{[0.3, 0.5], [0.4, 0.6]}, {[0.2, 0.3], [0.5, 0.7]}, {[0.1, 0.2], [0.3, 0.4], [0.7, 0.9]}}, s̃2 =

{{[0.2, 0.3], [0.7, 0.9]}, {[0.1, 0.4], [0.7, 0.9]}, {[0.3, 0.4], [0.6, 0.8]}}, s̃3 =

{{[0.8, 0.9]}, {[0.5, 0.6], [0.8, 0.9]}, {[0.4, 0.6], [0.7, 0.9], [0.6, 0.7]}}, s̃4 =

{{[0.1, 0.4], [0.4, 0.5]}, {[0.6, 0.7]}, {[0.5, 0.7], [0.7, 0.8], [0.8, 0.9]}} and s̃5 = {{[0.3, 0.5]}, {[0.4, 0.5],
[0.6, 0.8]}, {[0.2, 0.3], [0.4, 0.7]}}.

The results corresponding to these approaches are summarized in Table 9.

Table 9. Comparative analysis.

Methods Score of Alternatives Ranking of Alternatives

Zhao et al. [31] for SVNHFS 0.4431 0.4025 0.4941 0.5073 0.5691 A5 � A4 � A3 � A1 � A2
Our proposed method for SVNHFS 0.5251 0.4896 0.5394 0.5600 0.5927 A5 � A4 � A3 � A1 � A2

Zhao et al. [31] for INHFS 0.4559 0.4206 0.4255 0.5334 0.5791 A5 � A4 � A1 � A3 � A2
Our proposed method for INHFS 0.5169 0.4592 0.4969 0.5368 0.5643 A5 � A4 � A1 � A3 � A2

From this comparative study, the results obtained by the approach [31] coincide with the proposed
one which validates the proposed approach. The main reason is that in approach [31], the subjective
preferences are taken into account to serve as decision information and will have a positive effect on the
final decision results. Hence, the proposed approach can be suitably used to solve the MADM problems.
The advantages of our proposed method are as follows: (1) The developed approach has good
flexibility and extension. (2) The SNHFSs of developed approach availably depicts increasingly general
decision-making situations. (3) With the aid of the maximizing deviation and TOPSIS, the developed
approach uses the satisfaction level of the alternative to the ideal solutions to make the decision.

4. Conclusions

SNHFS is a suitable tool for dealing with the obscurity of an expert’s judgments over alternatives
according to attributes. SNHFSs are useful for representing the hesitant assessments of the experts,
and remains the edge of SNSs and HFSs, which accommodates an increasingly complex MADM
situation. SNHFS (by combining SNS and HFS) as an extended format represents some general
hesitant scenarios. In this paper, firstly we have developed the normalization method and the distance
measures of SNHFSs and further, to obtain the attribute optimal relative weights, we have proposed a



Symmetry 2019, 11, 1058 25 of 26

decision-making approach called the maximizing deviation method with SNHFSs including SVNHFSs
and INHFSs. Secondly, we have developed a new approach based on TOPSIS to solve MADM problems
under SNHFS environment (SVNHFS and INHFS). Finally, we have illustrated the applicability and
effectiveness of the developed method with a smartphone accessories supplier selection problem.
In future work, we will extend the proposed approach of SNHFSs to other areas, such as pattern
recognition, medical diagnosis, clustering analysis, and image processing.
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