Generalized Alpha Closed sets in Neutrosophic topological spaces

D. Sreeja,¹ T. Sarankumar²

 Assistant Professor, Department of Mathematics, CMS College of Science and commerce, Coimbatore
 Research Scholar, Department of Mathematics, CMS College of Science and commerce, Coimbatore Email: sreejadamu@gmail.com

ABSTRACT

This paper committed to the investigation of Neutrosophic topological spaces. In this paper Generalized Alpha Closed Sets and Generalized Alpha Open Sets are presented. Some of its properties are contemplated.

Keywords: Neutrosophic Set, Generalized Neutrosophic Set, Neutrosophic Topology

Introduction and Preliminaries

The idea of neutrosophic sets was first presented by Smarandache [7, 8] as a generalization of intuitionistic fuzzy sets where we have the degree of membership, the degree of indeterminacy and the degree of non – membership of each component in X.

Definition 1 [7]

A Neutrosophic set A on the universe of discourse X is defined as

$$A = \{ \langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle : x \in X \}$$

Where $\mu_A, \sigma_A, \gamma_A: X \rightarrow]$ '0, 1+ [and '0 $\leq \mu_A(x) + \sigma_A(x) + \gamma_A(x) \leq 3^+$ From a philosophical point of view, the Neutrosophic set takes the value from real standard or non-standard subsets of] '0, 1+ [. But in real life application in science and engineering problems it is difficult to use Neutrosophic set with values from real standard or non-standard subset of] '0, 1+ [. Hence we consider the Neutrosophic set which takes the value from the subsets of [0,1]. Set of all Neutrosophic set over X is denoted by $\mathcal{N}(X)$.

Definition 2 [12]

Let A, B $\in \mathcal{N}(X)$, Then

i. (Inclusion) If $\mu_A(x) \le \mu_B(x)$, $\sigma_A(x) \ge \sigma_B(x)$ and $\gamma_A(x) \ge \gamma_B(x)$ for all $x \in X$, then A is Neutrosophic subset of B and denoted by $A \sqsubseteq B$.

- ii. (Equality) If $A \sqsubseteq B$ and $B \sqsubseteq A$, then A=B.
- iii. (Intersection) Neutrosophic intersection of A and B, denoted by A ⊓ B. And defined by

 $A \sqcap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \lor \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) \rangle : x \in X \}.$

iv. (Union) Neutrosophic union of A and B, denoted by $A \sqcup B$. and defined by

 $A \sqcup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \land \gamma_B(x) \rangle : x \in X \}.$

v. (Complement) Neutrosophic complement of A denoted by A^c and defined by

 $A^{c} = \{ \langle x, \gamma_{A}(x), 1 - \sigma_{A}(x), \mu_{A}(x) \rangle : x \in X \}$

vi. (Universal Set) If $\mu_A(x) = 1$, $\sigma_A(x) = 0$ and $\gamma_A(x) = 0$ for all $x \in X$, A is said to be Neutrosophic universal set, denoted by \widetilde{X} .

vii. (Empty Set) If $\mu_A(x) = 0$, $\sigma_A(x) = 1$ and $\gamma_A(x) = 1$ for all $x \in X$, A is said to be Neutrosophic empty set, denoted by $\tilde{\emptyset}$.

Definition 3 [12]

Let $\tau \subseteq \mathcal{N}(X)$, then τ is called a Neutrosophic topology on X if

- i. \widetilde{X} and $\widetilde{\emptyset}$ belongs to τ .
- ii. The union of any number of Neutrosophic sets in τ belongs to τ .
- iii. The intersection of any number of Neutrosophic sets in τ belongs to τ .

The pair (X, τ) is called a Neutrosophic topological space over X. Moreover the members of τ are said to be Neutrosophic open sets in X. If $A^c \in \tau$ then $A \in \mathcal{N}(X)$ is said to be Neutrosophic closed set in X.

Definition 4 [12]

Let (X,τ) be a neutrosophic topological space over X and $A \in \mathcal{N}(X)$. Then, the neutrosophic interior of A, denoted by int(A) is the union of all neutrosophic open subsets of A, Clearly int(A) is the biggest neutrosophic open sets over X which containing A.

Definition 5 [12]

Let (X,τ) be a neutrosophic topological space over X and A, B $\in \mathcal{N}(X)$. Then,

- i. $int(\widetilde{\emptyset}) = \widetilde{\emptyset}$ and $int(\widetilde{X}) = \widetilde{X}$.
- ii. $int(A) \sqsubseteq A$.
- iii. A is neutrosophic open set if and only if A = int(A)
- iv. int(int(A)) = int(A)
- v. $A \sqsubseteq B$ implies $int(A) \sqsubseteq int(B)$.
- vi. $int(A) \sqcup int(B) \sqsubseteq int(A \sqcup B)$
- vii. $int(A \sqcap B) = int(A) \sqcap int(B)$

Definition 6 [12]

Let (X,τ) be a neutrosophic topological space over X and $A \in \mathcal{N}(X)$. Then, the neutrosophic closure of A, denoted by cl(A) is the intersection of all neutrosophic closed super sets of A, Clearly cl(A) is the smallest neutrosophic closed sets over X which contains A

Definition 7 [12]

Let (X,τ) be a neutrosophic topological space over X and A, B $\in \mathcal{N}(X)$. Then,

- i. $cl(\widetilde{\emptyset}) = \widetilde{\emptyset}$ and $cl(\widetilde{X}) = \widetilde{X}$.
- ii. $A \sqsubseteq cl(A)$.
- iii. A is neutrosophic closed set if and only if A = cl(A)
- iv. cl(cl(A)) = cl(A)
- v. $A \sqsubseteq B$ implies $cl(A) \sqsubseteq cl(B)$.
- vi. $cl(A \sqcup B) = cl(A) \sqcup cl(B)$
- vii. $cl(A \sqcap B) \sqsubseteq cl(A) \sqcap cl(B)$

Definition 8 [12]

Let (X,τ) be neutrosophic topological space over X and A, B $\in \mathcal{N}(X)$. Then

- i. $int(A^c) = (cl(A))^c$
- ii. $cl(A^{c}) = (int(A))^{c}$

Definition 9 [1]

A neutrosophic set A in a neutrosophic topological space (X, τ) is called neutrosophic semi open set (briefly NSOS) if A \subseteq Ncl(Nint(A))

Definition 10 [1]

A neutrosophic set A in a neutrosophic topological space (X, τ) is called neutrosophic semi closed set (briefly NSCS) if Nint(Ncl(A)) \subseteq A

Definition 11 [1]

A neutrosophic set A in a neutrosophic topological space (X, τ) is called neutrosophic α –open set (briefly N α OS) if A \subseteq Nint(Ncl(Nint(A))).

Definition 12 [1]

A neutrosophic set A in a neutrosophic topological space (X, τ) is called neutrosophic α -closed set (briefly N α CS) if Ncl(Nint(Ncl(A))) \subseteq A.

Definition 13 [1]

A neutrosophic set A in a neutrosophic topological space (X, τ) is called neutrosophic pre open (briefly NPOS) if A \subseteq Nint(Ncl(A)).

Definition 14 [1]

A neutrosophic set A in a topological space (X, τ) is called neutrosophic pre closed (briefly NPCS) if $Ncl(Nint(A)) \subseteq A$.

Definition 15 [1]

A neutrosophic set A in a neutrosophic topological space (X, τ) is called neutrosophic regular open (briefly NROS) if A = Nint(Ncl(A)).

Definition 16 [1]

A neutrosophic set A in a neutrosophic topological space (X, τ) is called neutrosophic regular closed (briefly NRCS) if A = Ncl(Nint(A)).

Definition 17 [1]

A neutrosophic set A in a neutrosophic topological space (X, τ) is called neutrosophic semi pre open or β -open (briefly N β OS) if $A \subseteq Ncl(Nint(Ncl(A)))$

Definition 18 [11]

A neutrosophic set A in a neutrosophic topological space (X, τ) is called neutrosophic ω closed $(N_{\omega}$ -closed set for short) if Ncl(A) \subseteq G whenever A \subseteq G and G is N_{ω} -closed.

Definition 19 [11]

A neutrosophic set A in X is called N_{ω} –open in X if A^c is an N_{ω} –closed in X.

1. Generalized Alpha Closed Sets in Neutrosophic

Definition 1.1.

Neutrosophic set A in (X,τ) is said to be Neutrosophic generalized alpha closed sets (NG α CS in short) if Ntr_{α cl}(A) \subseteq U whenever A \subseteq U and U is N α OS in (X,τ) .

The family of all NG α CS of a Neutrosophic topological space (X, τ) is denoted by NG α CS(X).

Note 1.1

In this paper we denote neutrosophic closure as Ntr_{cl} neutrosophic interior as Ntr_{int} and neutrosophic alpha closure as $Ntr_{\alpha cl}$.

Example 1.2:

Let X = {a, b} and $\tau = \{\emptyset, X, G\}$ is a neutrosophic topology on X. Take G = { $\langle x, (0.4, 0.6, 0.7), (0.8, 0.7, 0.8) \rangle$ }. Here the only α –open set are \emptyset, X, G then the neutrosophic set A= { $\langle x, (0.6, 0.6, 0.7), (0.8, 0.7, 0.8) \rangle$ } is NG α CS in (X, τ).

Theorem 1.3: Every Neutrosophic Closed Set (NCS in short) in (X,τ) is NG α CS, but not conversely.

Proof:

Let A be any set which contained in U and U is N α OS in (X, τ). Since Ntr $_{\alpha cl}(A) \subseteq$ Ntr $_{cl}(A)$ and A is NCS, Ntr $_{\alpha cl}(A) \subseteq$ Ntr $_{cl}(A) = A \subseteq U$. Therefore A is an NG α CS in X.

Example 1.4:

Let X = {a, b} and $\tau = \{\emptyset, X, G\}$ is a neutrosophic topology and (X, τ) on X. Take G= { $\langle x, (0.3, 0.5, 0.3), (0.3, 0.5, 0.4) \rangle$ }. Let A= { $\langle x, (0.6, 0.5, 0.3), (0.5, 0.5, 0.4) \rangle$ } be any NS in X, here Ntr_{α cl}(A) \subseteq X whenever A \subseteq X for all N α OS G in X. A is NG α CS. But not a NCS in X. since Ntr_{cl}(A) = G^c \neq A

Theorem 1.5: Every Neutrosophic α -closed Set (N α CS in short) is NG α CS but not conversely.

Proof:

Let A be any set which contained in U and U is N α OS in (X, τ). By the hypothesis Ntr_{α cl}(A) = A. Hence Ntr_{α cl}(A) \subseteq U. Therefore A is NG α CS in X.

Example 1.6:

Let $X = \{a, b\}$ and $\tau = \{\emptyset, X, G\}$ is a neutrosophic topology and (X, τ) on X. Take $G = \{\langle x, (0.3, 0.5, 0.3), (0.3, 0.5, 0.4) \rangle\}$.Let $A = \{\langle x, (0.6, 0.5, 0.3), (0.5, 0.5, 0.4) \rangle\}$ be any NS in X, here $Ntr_{\alpha cl}(A) \subseteq X$ whenever $A \subseteq X$ for all N α OS G in X. therefore A is NG α CS. But not a NG α CS in X. since $Ntr_{cl}(A) = G^{c} \subseteq A$.

Theorem 1.7: Every Neutrosophic Regular Closed Set (NRCS in short) is an NGαCS but not conversely.

Proof:

Let A is a NRCS in (X,τ) . By Definition, A= Ntr_{cl}(Ntr_{int}(A)), This implies Ntr_{cl}(A) = Ntr_{cl}(Ntr_{int}(A)). Therefore Ntr_{cl}(A) = A. That is A is an NCS in X. By theorem 1.3 A is an NG α CS in X.

Example 1.8:

Let X = {a, b} and $\tau = \{\emptyset, X, G\}$ is a neutrosophic topology on X. Take G = { $\langle x, (0.3, 0.5, 0.3), (0.3, 0.5, 0.4) \rangle$ }. Let A= { $\langle x, (0.8, 0.5, 0.3), (0.5, 0.5, 0.5) \rangle$ } be any NS in X, here A is a NG α CS. But not a NRCS in (X, τ), since Ntr_{cl}(Ntr_{int}(A)) = G^c \neq A

Example 1.9:

Let X = {a, b} and $\tau = \{\emptyset, X, G\}$ is a neutrosophic topology and (X, τ) on X. Take G = { $\langle x, (0.4, 0.4, 0.4), (0.6, 0.6, 0.6) \rangle$ }.Let A= { $\langle x, (0.5, 0.5, 0.5), (0.3, 0.7, 0.7) \rangle$ } be any NS in X, here A is a NGCS in X. consider the N α OS G₁ = { $\langle x, (0.2, 0.2, 0.3), (0.8, 0.6, 0.7) \rangle$ }. Here A \subseteq G₁ but Ntr $_{\alpha cl}(A) \subseteq G_1$. Hence A is not a NG α CS in (X, τ).

Theorem 1.10: Every Neutrosophic Generalized α –closed Set (NG α CS in short) is an N α GCS in X. But converse is not true in general.

Proof:

Let A be any set which contained in U and U is N α OS in (X, τ). Since every open set is α open set we have Ntr $_{\alpha cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is an NOS in (X, τ). Hence A is an N α GCS in X.

Example 1.11:

Let X = {a, b} and $\tau = \{\emptyset, X, G\}$ is a neutrosophic topology on X. Where G = { $\langle x, (0.2, 0.2, 0.3), (0.8, 0.6, 0.7) \rangle$ }. Let A = { $\langle x, (0.6, 0.2, 0.4), (0.9, 0.6, 0.8) \rangle$ } be any NS in X, here A is a NaGCS in X consider the NaOS G₁ = { $\langle x, (0.3, 0.2, 0.8), (0.7, 0.7, 0.3) \rangle$ }. Here A \subseteq G₁ but Ntr_{acl}(A) \subseteq G₁. Hence A is not a NGaCS in (X, τ)

Theorem 1.12: Every Neutrosophic Generalized α –closed Set (NG α CS in short) is NSGCS but its converse may not be true.

Proof:

Let A be any set which contained in U and U is an NSOS in (X,τ) . By hypothesis $Ntr_{\alpha cl}(A) \subseteq A$, which implies $Ntr_{cl}(Ntr_{cl}(A)) \subseteq U$. That is $Ntr_{int}(Ntr_{cl}(A)) \subseteq U$, which implies $A \cup Ntr_{int}(Ntr_{cl}(A)) \subseteq U$. Then $Ntr_{scl}(A) \subseteq U$, U is NSOS. Therefore A is NSGCS in (X,τ)

Example 1.13:

Let $X = \{a, b\}$ and $\tau = \{\emptyset, X, G\}$ is a neutrosophic topology on X. Take $G = \{\langle x, (0.3, 0.4, 0.6), (0.6, 0.6, 0.4) \rangle\}$. Here only α -open sets are $\{\emptyset, X\}$. Let $A = \{\langle x, (0.3, 0.2, 0.5), (0.6, 0.6, 0.8) \rangle\}$ be any NS in X. Then $Ntr_{scl}(A) = X$. Clearly $Ntr_{scl}(A) \subseteq X$ whenever $A \subseteq X$ for all NSOS G in X. A is NSGCS in (X, τ) . But not a NG α CS in X since $Ntr_{\alpha cl}(A) = G^{c} \subseteq G$

Theorem 1.14: Every Neutrosophic Generalized α –closed Set (NG α CS in short) is NGSCS but its converse may not be true.

Proof:

Let A be any set which contained in U and U is an N α OS in (X, τ). By hypothesis Ntr $_{\alpha cl}(A) \subseteq U$, which implies Ntr $_{cl}(A) \subseteq U$. That is Ntr $_{int}(Ntr_{cl}(A)) \subseteq U$, which implies A U Ntr $_{int}(Ntr_{cl}(A)) \subseteq U$. Therefore Ntr $_{scl}(A) \subseteq U$, U is NOS. Therefore A is NGSCS of (X, τ).

Example 1.15:

Let X = {a, b} and $\tau = \{\emptyset, X, G\}$ is a neutrosophic topology (X, τ) on X. where G = { $\langle x, (0.3, 0.2, 0.3), (0.8, 0.6, 0.7) \rangle$ }. Here only α -open sets are { \emptyset, X } Let A= { $\langle x, (0.3, 0.2, 0.6), (0.8, 0.9, 0.8) \rangle$ } be any NS in X, here Ntr_{scl}(A) = X. Clearly Ntr_{scl}(A) \subseteq X whenever A \subseteq X for all NOS G in X. A is NGSCS in (X, τ) . But not a NG α CS since Ntr_{α cl}(A) = G^c \neq A

Theorem 1.16: Every Neutrosophic Generalized α –closed Set (NG α CS in short) is Neutrosophic Generalized Pre Closed Set (NGPCS in short) but its converse may not be true.

Proof:

Let A be any set which contained in U and U is an N α OS in (X, τ), By hypothesis Ntr $_{\alpha cl}(A) \subseteq U$, which implies Ntr $_{cl}(Ntr_{int}(A)) \subseteq U$. That is Ntr $_{cl}(Ntr_{int}(A)) \subseteq U$, which implies A U Ntr $_{cl}(Ntr_{int}(A)) \subseteq U$. Therefore Ntr $_{pcl}(A) \subseteq U$, U is NOS. Therefore A is NGPCS in (X, τ).

Example 1.17:

Let $X = \{a, b\}$ and $\tau = \{\emptyset, X, G\}$ is a neutrosophic topology on X. Where $G = \{\langle x, (0.6, 0.2, 0.8), (0.2, 0.6, 0.1) \rangle\}$. Here only α -open sets are $\{\emptyset, X\}$.Let $A = \{\langle x, (0.3, 0.4, 0.4), (0.4, 0.6, 0.5) \rangle\}$ be any NS in X, here $Ntr_{pcl}(A) \subseteq X$. Therefore A is a NGPCS in (X, τ) but not a NG α CS since $Ntr_{\alpha cl}(A) = G^{c} \subseteq G$

Remark1.18:

A NP closedness in independent of an NG α closedness.

Example 1.19:

Let X = {a, b} and $\tau = \{\emptyset, X, G\}$ is a neutrosophic topology on X. Where G = { $\langle x, (0.3, 0.4, 0.5), (0.8, 0.6, 0.9) \rangle$ }. Here only α -open sets are { \emptyset, X } Let A= { $\langle x, (0.5, 0.6, 0.4), (0.8, 0.3, 0.2) \rangle$ } be any NG α CS(x), But not a NPCS(X) since Ntr_{cl}(Ntr_{int}(A)) = G^c \subseteq A

Example 1.20:

Let X = {a, b} and $\tau = \{\emptyset, X, G\}$ is a neutrosophic topology on X. Where G = { $\langle x, (0.2, 0.1, 0.3), (0.8, 0.4, 0.7) \rangle$ }. A= { $\langle x, (0.4, 0.2, 0.4), (0.7, 0.6, 0.8) \rangle$ } be any NPCS(x), But not a NG α CS(x) since Ntr_{α cl}(A) = G^c \subseteq G

Remark 1.21:

A neutrosophic closed set and neutrosophic generalized α – closed set are independent to each other.

Example 1.22:

Let X = {a, b} and $\tau = \{\emptyset, X, G\}$ is a neutrosophic topology on X. Where G = { $\langle x, (0.2, 0.2, 0.3), (0.8, 0.6, 0.7) \rangle$ }.Let A= { $\langle x, (0.5, 0.8, 0.4), (0.5, 0.5, 0.8) \rangle$ } be any NG α CS(x), here Ntr $_{\alpha cl}(A) \subseteq$ G But not a NSCS(X) since Ntr $_{int}(A) = X \subseteq A$.

Example 1.23:

Let X = {a, b} and $\tau = \{\emptyset, X, G\}$ is a neutrosophic topology on X. Where G = { $\langle x, (0.3, 0.2, 0.3), (0.5, 0.6, 0.5) \rangle$ }.Let A= { $\langle x, (0.1, 0.2, 0.4), (0.3, 0.6, 0.8) \rangle$ } be any NSCS(X) but not a NG α CS(x) since Ntr $_{\alpha cl}(A) = G^c \subseteq G$.

Remark 1.24:

The intersection of any two NG α CS is not a NG α CS in general as seen from the following example.

Example 1.25:

Let X = {a, b} and $\tau = \{\emptyset, X, G\}$ is a neutrosophic topology on X. Where G = { $\langle x, (0.1, 0.2, 0.1), (0.8, 0.1, 0.7) \rangle$ }. Let A= { $\langle x, (0.6, 0.7, 0.4), (0.7, 0.6, 0.8) \rangle$ }, B = { $\langle x, (0.3, 0.2, 0.4), (0.4, 0.6, 0.8) \rangle$ } are NG α CS but A \cap B is not a NG α CS in X.

Theorem 1.26: If A is an NOS and NG α CS in(X, τ), then A is s N α CS in X.

Proof:

Let A is a NOS in X. Since $A \subseteq A$, by hypothesis $Ntr_{\alpha cl}(A) \subseteq A$. But from the definition $A \subseteq Ntr_{\alpha cl}(A)$. Therefore $Ntr_{\alpha cl}(A) = A$. Hence A is a N $\alpha CS(X)$.

2. Generalized Alpha Open Sets in Neutrosophic

In this section we introduce neutrosophic generalized alpha open set and studied some of its properties.

Definition 2.1:

A neutrosophic set A is said to be neutrosophic generalized alpha open set (NG α OP in short) in (X, τ) if the the complement of A^c is a NG α CS in X.

The family of all NG α OS of a NTS (X, τ) is denoted by NG α O(X)

Note

In this paper we denote neutrosophic closure as Ntr_{cl} neutrosophic interior as Ntr_{int} and neutrosophic alpha closure as $Ntr_{\alpha cl}$.

Theorem 2.2:

For any NTS (X,τ) , we have the following

- \succ Every NOS is a NG α OS
- \triangleright Every N α OS is a NG α OS,
- Every NROS is a NG α OS. But the converses are not true in general.

Proof:

Straight forward

Example 2.3:

Let X = {a, b} and $\tau = \{\emptyset, X, G\}$ is a neutrosophic topology on X. Where G = { $\langle x, (0.2, 0.3, 0.8), (0.7, 0.6, 0.7) \rangle$ }. Here only α –open sets are { \emptyset, X }. Let A= { $\langle x, (0.6, 0.7, 0.4), (0.3, 0.4, 0.3) \rangle$ }, be any NS in X. A is an NG α OS, but not an NOS in X.

Example 2.4

Let X = {a, b} and $\tau = \{\emptyset, X, G\}$ is a neutrosophic topology on X. Where G = { $\langle x, (0.3, 0.2, 0.7), (0.6, 0.6, 0.7) \rangle$ }. Here only α -open sets are { \emptyset, X }. Let A= { $\langle x, (0.6, 0.6, 0.4), (0.3, 0.2, 0.2) \rangle$ }, be any NS in X. A is an NG α OS, but not an N α OS in X

Example 2.5

Let X = {a, b} and $\tau = \{\emptyset, X, G\}$ is a neutrosophic topology on X. Where G = { $\langle x, (0.1, 0.2, 0.3), (0.9, 0.6, 0.7) \rangle$ }. Here only α -open sets are { \emptyset, X }. Let A= { $\langle x, (0.7, 0.2, 0.4), (0.8, 0.6, 0.7) \rangle$ }, be any NS in X. A is an NG α OS, but not an NROS in X

Thorem 2.6

For any NTS (X,τ) , we have the following:

- $\succ Every NG\alpha OS is a NGSOS$
- $\succ Every NG\alpha OS is a NSGOS$
- Every NG α OS is a NGPOS. But the converses are not to be true in general.

Proof:

Straight forward

Example 2.7:

Let $X = \{a, b\}$ and $\tau = \{\emptyset, X, G\}$ is a neutrosophic topology on X. Where $G = \{\langle x, (0.2, 0.4, 0.3), (0.7, 0.7, 0.7) \rangle\}$. Here only α -open sets are $\{\emptyset, X\}$. Let $A = \{\langle x, (0.5, 0.2, 0.5), (0.4, 0.6, 0.2) \rangle\}$, be any NS in X. A is an NGSOS, but not an NG α OS in X

Example 2.8:

Let X = {a, b} and $\tau = \{\emptyset, X, G\}$ is a neutrosophic topology on X. Where G = { $\langle x, (0.4, 0.2, 0.3), (0.3, 0.2, 0.1) \rangle$ }. Here only α -open sets are { \emptyset, X }. Let A= { $\langle x, (0.3, 0.2, 0.3), (0.3, 0.6, 0.1) \rangle$ }, be any NS in X. A is an NSGOS, but not an NG α OS in X

Example 2.9

Let X = {a, b} and $\tau = \{\emptyset, X, G\}$ is a neutrosophic topology on X. Where G = { $\langle x, (0.2, 0.1, 0.3), (0.2, 0.6, 0.7) \rangle$ }. Here only α –open sets are { \emptyset, X }. Let A= { $\langle x, (0.6, 0.7, 0.4), (0.3, 0.6, 0.8) \rangle$ }, be any NS in X. A is an NGPOS, but not an NG α OS in X

Remark 2.10

The union of any two any NG α OS is not an NG α OS in general as seen from following example.

Example 2.11:

Let X = {a, b} and $\tau = \{\emptyset, X, G\}$ is a neutrosophic topology on X. Where G = { $\langle x, (0.2, 0.2, 0.3), (0.8, 0.6, 0.7) \rangle$ }. Here only α -open sets are { \emptyset, X }.Let A= { $\langle x, (0.5, 0.2, 0.4), (0.6, 0.7, 0.8) \rangle$ }, and B= { $\langle x, (0.7, 0.2, 0.4), (0.8, 0.6, 0.7) \rangle$ } are NG α OS but A \cup B is not an NG α OS.

BIBLIOGRAPHY

[1] Arokiarani . I On Some New Notions and Functions in Neutrosophic Topological Spaces Neutrosophic Sets and Systems, Vol. 16, 2017, 16-19

[2] Atanasov . k., Intuitionistic fuzzy set, Fuzzy Sets and Systems, 20 (1996), 87-96

[3] Atanassov . k., Intuitionistic fuzzy sets, in V.Sgurev, ed., Vii ITKRS Session, Sofia(June 1983 central Sci. and Techn Library , Bulg Academy of science(1984)).

[4] Atanassov, Review and new result on intuitionistic fuzzy sets, preprint IM-MFAIS-1-88, Sofia, 1988.

[5] Biswas, R., (1997)," On fuzzy sets and intuitionistic fuzzy sets", NIFS, vol.3,pp.3-11.

[6] Edward Samuel A., and Balamurugan. M,(2012), "Fuzzy Max-Min Composition technique in Medical Diagnosis", Applied Mathematics Science, Volume,6(35),pp. 1741-1746.

[7] F. Smarandache, Neutrosophic set – a generation of the intuitionistic fuzzy set,

International Journal of Pune and Applied Mathematics, 24(3) (2005) 287-297.

[8] F. Smarandache, Neutrosophic and Neutrosophic logic, first international conference on neutrosophy, neutrosophic logic, set, probability, and statistics, University of New Mexico, Gallup, NM 87301, USA(2002).40

[9] F. Smarandache. A unifying Field in Logic: Neutrosophic Logic, Neutrosophy, Neutrosophic set, Neutrosophic probability. American Research Press, Rehoboth, NM, 1999.
[10] A.A. Salama and S.A. AL-Blowi, NEUTROSOPHIC SET and NEUTROSOPHIC TOPOLOGICAL SPACES, IOSR Journal of Math. ISSN: 2278-5728. Vol.(3) ISSUE4PP31-35(2012)

[11] Santhi R N ω –CLOSED SETS IN NEUTROSOPHIC TOPOLOGICAL SPACES, Neutrosophic Sets and Systems, Vol. 12, 2016 114-117

[12] Serkan Karatas and Cemil Kuru, Neutrosophic Sets and Systems, Vol. 13, 2016 [13] Shanmugasundram. P Positive Deviation Methods for Decision Making using intuitionistic

Fuzzy Set, International journal of computer application (0975-8887) vol 106- No. 12, November 2014.

[14] Zadeh, L. A., Fuzzy sets, information and control,8(1965) 338-353.