GENERALIZED β – CONTINUOUS FUNCTION IN NEUTROSOPHIC BITOPOLOGICAL SPACES

Dr.A.Arokia Lancy¹, Ms.A.Kulandhai Therese²

¹Assistant Professor, Department of Mathematics, Nirmala College for Women

² Research Scholar, Department of Mathematics, Nirmala College for Women

ABSTRACT

In this paper we address the continuous function in neutrosophic bitopological spaces.

The focus of this paper is to introduce $g\beta$ - continuous in neutrosophic bitopological spaces.

Some of the fundamental properties and relationship between these continuous functions are investigated in this paper.

Key words: Ng β – continuous maps in neutrosophic bitopological spaces.

INTRODUCTION:

In the neutrosophic set, all the elements have the degree of membership, indeterminacy and degree of non-membership. The neutrosophic closed sets and neutrosophic continuous functions were introduced by salama, smarandache and valeri [16] in 2014. D.Andrijevic, [2] introduced " semi preopen sets" in 1986. In 1983, Abd EI – Monsef [1] introduced the classes of beta open sets and beta continuous mappings. In 2014 Jayanthi [7] introduced the generalized β – closed set in intuitionistic fuzzy topological spaces. F.H.Khedr, S.M.AI-Areefi, and T.Noiri, [8] introduced generalized the notions of β – open sets and investigated β - continuous functions in bitopological spaces.

2. Preliminaries:

Definition 2.1 [10] Neutrosophic topological spaces

Let τ be a collection of all neutrosophic subsets on X. Then τ is called a neutrosophic topology in X if the following conditions hold

i. 0_x and 1_x belong to τ .

ii. Union of any number of neutrosophic sets in τ again belong to .

iii. Intersection of any two neutrosophic set in τ belong to .

Then the pair (X, τ) is called neutrosophic topology on X.

Definition 2.2 [17]

A neutrosophic set A on the universe of discourse X is defined as $A = \{ \langle x, \mu_A, \sigma_A, \gamma_A \rangle : x \in X \}$

Where μ_A , σ_A , $:X \rightarrow]0-$, 1+[and $0- \le \mu_A + \sigma_A + \gamma_A \le 3+$, μ_A represents degrees of membership function, σ_A is the degree of indeterminacy and γ_A is the degree of non-membership function.

Definition 2.2 [3]

A map $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is (i,j) neutrosophic generalized $\beta \sigma_k$ - continuous [(i,j) NG β - σ_k -continuous] if $f^{-1}(U)$ is (i, j) NG β closed in (X, τ_1, τ_2) for each σ_k - closed set U in (Y, σ_1, σ_2) where i, j, k =1,2 and i \neq j

Definition 2.3

Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be any two bitopological spaces. A map $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be

i) Semi-continuous [9] if f^{-1} (U) is semi-closed set in (X,τ_1,τ_2) for every closed set U of (Y,σ_1,σ_2) .

ii) pre-continuous [11] if f^{-1} (U) is pre-closed set in (X,τ_1,τ_2) for every closed set U of (Y,σ_1,σ_2) .

iii) semi pre-continuous [14] if f^{-1} (U) is semi pre-closed set in (X, τ_1, τ_2) for every closed set U of (Y, σ_1, σ_2) .

iv) α - continuous [12] if f^{-1} (U) is α -closed set in (X, τ_1, τ_2) for every closed set U of (Y, σ_1, σ_2) .

Definition 2.4

Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be any two bitopological spaces. A map $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be

i) generalized continuous [5] if f^{-1} (U) is generalized closed set in (X, τ_1, τ_2) for every closed set U of (Y, σ_1, σ_2) .

ii) generalized β - continuous [13] if f^{-1} (U) is generalized β - closed set in (X,τ_1,τ_2) for every closed set U of (Y,σ_1,σ_2) .

iii) semi generalized-continuous [4] if f^{-1} (U) is semi generalized closed set in (X, τ_1, τ_2) for every closed set U of (Y, σ_1, σ_2) .

iv) generalized semi-continuous [6] if f^{-1} (U) is generalized semi closed set in (X, τ_1, τ_2) for every closed set U of (Y, σ_1, σ_2) .

v) regular generalized-continuous [15] if f^{-1} (U) is regular generalized closed set in (X, τ_1, τ_2) for every closed set U of (Y, σ_1, σ_2) .

3. Generalized β - continuous maps in neutrosophic bitopological spaces

Definition 3.1:

A map $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is (i,j) neutrosophic generalized $\beta \sigma_k$ - continuous [(i,j) NG β - σ_k -continuous] if $f^{-1}(U)$ is (i, j) NG β closed in (X, τ_1, τ_2) for each σ_k - closed set U in (Y, σ_1, σ_2) where i, j, k =1,2 and i \neq j

Theorem 3.2:

Every σ_k -neutrosophic continuous is (i,j) NG $\beta \sigma_k$ - continuous.

Proof:

Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a σ_k -neutrosophic continuous map.

Let us prove that f is (i,j) NG $\beta \sigma_k$ - continuous.Let U be a σ_k - closed set in (Y, σ_1 , σ_2)

Then $f^{-1}(U)$ is σ_k -Nclosed in (X, τ_1, τ_2) . Since every σ_k -NC set is (i,j) NG β closed.

 $f^{-1}(U)$ is NG β closed and hence f is (i,j) NG $\beta \sigma_k$ - continuous.

Theorem 3.3:

Every (i,j) Ng- σ_k -neutrosophic continuous is (i,j) NG $\beta \sigma_k$ - continuous.

Proof:

Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a (i,j) Ng- σ_k -continuous map.

Let us prove that f is (i,j) NG $\beta \sigma_k$ - continuous.Let U be a $N\sigma_k$ - closed set in (Y, σ_1 , σ_2)

Then $f^{-1}(U)$ is (i,j) Ng closed in (X, τ_1, τ_2). Since every (i,j) Ng closed set is (i,j) NG β closed.

 $f^{-1}(U)$ is (i,j) NG β closed and hence f is (i,j) NG β σ_k - continuous.

Theorem 3.4:

Every (i,j) Nsg- σ_k -neutrosophic continuous is (i,j) NG $\beta \sigma_k$ - continuous.

Proof:

Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a (i,j) Nsg- σ_k - continuous map.

Let us prove that f is (i,j) Ng $\beta \sigma_k$ - continuous.Let U be a $N\sigma_k$ - closed set in (Y, σ_1 , σ_2).

Then $f^{-1}(U)$ is (i,j) Nsg closed in (X, τ_1, τ_2). Since every (i,j)Nsg closed set is (i,j) NG β closed. $f^{-1}(U)$ is (i,j) NG β closed and hence f is (i,j) NG β σ_k - continuous.

Theorem 3.5:

Every (i,j) Ngs- σ_k -neutrosophic continuous is (i,j) NG $\beta \sigma_k$ - continuous.

Proof:

Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a (i,j) Ngs- σ_k - continuous map.

Let us prove that f is (i,j) Ng $\beta \sigma_k$ - continuous.Let U be a $N\sigma_k$ - closed set in (Y, σ_1 , σ_2)

Then $f^{-1}(U)$ is (i,j) Ngs -closed in (X, τ_1, τ_2). Since every (i,j) Ngs-closed set is (i,j) NG β closed.

 $f^{-1}(U)$ is (i,j) NG β closed and hence f is (i,j) NG $\beta \sigma_k$ - continuous.

Theorem 3.6:

Every (i,j) N β - σ_k -neutrosophic continuous is (i,j) NG β σ_k - continuous.

Proof:

Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a (i,j) N β - σ_k - continuous map.

Let us prove that f is (i,j) Ng $\beta \sigma_k$ - continuous.Let U be a $N\sigma_k$ - closed set in (Y, σ_1, σ_2)

Then $f^{-1}(U)$ is (i,j) N β -closed in (X, τ_1, τ_2). Since every (i,j)N β -closed set is (i,j) NG β closed.

 $f^{-1}(U)$ is (i,j) NG β closed and hence f is (i,j) NG β σ_k - continuous.

Theorem 3.7:

Every (i,j) N α g- σ_k -neutrosophic continuous is (i,j) NG $\beta \sigma_k$ - continuous.

Proof:

Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a (i,j) N α g - σ_k - continuous map.

Let us prove that f is (i,j) Ng $\beta \sigma_k$ - continuous.Let U be a $N\sigma_k$ - closed set in (Y, σ_1 , σ_2)

Then $f^{-1}(U)$ is (i,j) N α g -closed in (X, τ_1, τ_2). Since every (i,j) N α g -closed set is (i,j) NG β closed.

 $f^{-1}(U)$ is (i,j) NG β closed and hence f is (i,j) NG β σ_k - continuous.

Theorem 3.8:

Every (i,j) N α - σ_k -neutrosophic continuous is (i,j) NG β σ_k - continuous.

Proof:

Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a (i,j) N α - σ_k - continuous map.

Let us prove that f is (i,j) Ng $\beta \sigma_k$ - continuous.Let U be a $N\sigma_k$ - closed set in (Y, σ_1 , σ_2)

Then $f^{-1}(U)$ is (i,j) N α -closed in (X, τ_1, τ_2). Since every (i,j) N α -closed set is (i,j) NG β closed.

 $f^{-1}(U)$ is (i,j) NG β closed and hence f is (i,j) NG β σ_k - continuous.

Theorem 3.9:

Every (i,j) Nrg- σ_k -neutrosophic continuous is (i,j) NG $\beta \sigma_k$ - continuous.

Proof:

Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a (i,j) Nrg - σ_k - continuous map.

Let us prove that f is (i,j) Ng $\beta \sigma_k$ - continuous.Let U be a $N\sigma_k$ - closed set in (Y, σ_1 , σ_2)

Then $f^{-1}(U)$ is (i,j) Nrg -closed in (X, τ_1, τ_2). Since every (i,j) Nrg -closed set is (i,j) NG β closed and hence f is (i,j) NG β σ_k - continuous.

Volume XII, Issue XI, 2020

REFERENCES :

- [1].M.E.Abd EI-Monsef, S.N.EI-Deeb, and R.A.Mahmoud, " beta open sets and beta continuous mappings", Bulletin of the faculty of science. 1983
- [2]. D.Andrijevic, "semi preopen sets" matematicki vensnik, Vol.38, 1986.
- [3]. Arockia Lancy.A "generalized beta closed sets in bitopological spaces",The international Journal of analytical and experimental modal analysis"- 2020.

[4].P.Bhattacharya, B.K. Lahiri (1987), Semi-generalized closed sets in topology, Indian J. Math. 29,375–382.

[5]. Balachandran.K,Sundaram. P and Maki.H,On generalized continuous maps in topological spaces, Mem.Fac.Sci.kochi Uni.Ser.A.Math.,12(1991),5-13.

[6]. R. Devi, H. Maki, K. Balachandran, Semi-generalized homeomorphisms and generalized semi homeomorphisms, Indian J. Pure. Appl. Math. 26(3) (1995), 271-284.

[7]. Jayanthi .D, "generalized beta closed sets in intuitionistic fuzzy topological spaces,

IJAFRSE, Dec-2014.

[8] F.H.Khedr,S.M.AI-Areefi, and T.Noiri, "precontinuity and semi precontinuity in

bitopological spaces" Indian journal of pure and Applied Mathematics, Vol 23, 1992.

[9].Levine.N, semi open sets and semi continuity in topological spaces, Amer. Math. Monthly 1963; 70:36-41.

[10]. F. G. Lupi'a nez (2008), On neutrosophic topology, The International Journal of Systems and Cybernetics, 37(6), 797–800.

[11].Mashour.A.S,M.E.Abd.EI-Monsef and S.N.EI-Deep,on precontinuous mappings and weak precontinuous mappings,Proc.Math.Phys.Soc.Egypt.1982

[12]. Mashour.A.S,Haseanein.IA, and EI Deep.S.N. α -continuous and α -open mappings,Acta Math Hung.,41(3-4) (1983),213-218.

[13]. Navalagi G.B, Charantimath.R.G, Nagarajappa.C, Some generalized continuous functions via generalized semi-pre open sets, IJMCA, 2012; 4: 119-124.

[14]. Navalagi.G.B,Semi-pre continuous functions and properties of generalized semi- pre closed sets in topological spaces,IJMMS 2002; 29(2):85-98

[15].N.Palaniappan and K.CRao, Regular generalized closed sets,Kyungpook Math.J.,33(2) (1993),211-219.

[16] . Salama.A.A,Sanarandache.F,Valeri.K,Neutrosophic closed sets and neutrosophic

continuous function, Neutrosophic sets Syst. 2014, 4-8

[17]. Takashi Noiri , Valeriu Popa (2006) , Some Properties Of Weakly Open Functions In Bitopological Spaces , Novi Sad J. Math. 36(1) , 47-54