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Abstract
In this paper, we have introduced the notion of generalized closed sets in Neutrosophic topological spaces and
studied some of their basic properties.
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1. Introduction
In 1970, Levine [9] introduced the concept of generalized

closed sets as a weaker form of closed sets in topological
spaces. Zadeh [15] introduced the notion of fuzzy sets in the
year 1965. In fuzzy set theory, the membership of an element
to a fuzzy set is a single value between 0 and 1. The concept
of fuzzy topological spaces have been introduced and devel-
oped by Chang [2]. In 1983, Atanassov [1] introduced the
concept of intuitionistic fuzzy set which was generalization of
fuzzy set. In intuitionistic fuzzy set theory, the elements have
the degree membership and non-membership value between
0 and 1. Later, In 1997 Coker [4] introduced the concept of
intuitionitic fuzzy topological spaces, by using the notion of
the intuitionitic fuzzy set.

Floretin Smarandache [5] introduced the concept of Neu-
trosophic set. Neutrosophic set is classified into three indepen-
dent functions namely, membership function, indeterminancy
function and non membership function that are independently
related. In 2012, Salama, Alblowi [11] introduced the concept
of Neutrosophic topology. Neutrosophic topological spaces

are very natural generalizations of fuzzy topological spaces, al-
low more general functions to be members of fuzzy topology.
In 2014, Salama, Smarandache and Valeri [10] introduced
the concept of Neutrosophic closed sets and Neutrosophic
continuous functions. Salama, Alblowi [11] introduced the
concept of generalized Neutrosophic set and generalized Neu-
trosophic topological spaces. A generalized Neutrosophic set
A = {〈x,µA(x),σA(x),γA(x)〉 : x ∈ X} can be identified as an
ordered triple 〈µA,σA,γA〉 in ]−0,1+[ on X , where the triple
function satisfy the condition µA(x)∩σA(x)∩ γA(x)≤ 0.5.

Wadel and Smarandache [14] introduced the Neutrosophic
open sets via Neutrosophic topological spaces. Ishwarya and
Bageerathi[8]introduced the concept of Neutrosophic semi-
open sets in Neutrosophic topological spaces. Dhavaseelan,
Saied Jafari [3] introduced generalized Neutrosophic closed
sets. In 2018, Shanthi, Chandrasekar and Safina [12] intro-
duced the Neutrosophic generalized semi closed sets in Neu-
trosophic topological spaces. In this paper, we introduce the
concept of generalized closed sets [9] in Neutrosophic topo-
logical spaces and studied some of their properties.

2. Preliminaries
In this section, we recollect some relevant basic prelimi-

naries about Neutrosophic sets and its operations.

Definition 2.1. [10] Let X be a non-empty fixed set. A Neu-
trosophic set [NS for short] A is an object having the form
A= {〈x,µA(x),σA(x),γA(x)〉 : x∈X} where µA(x),σA(x) and
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γA(x) which represents the degree of membership function, the
degree of inderminacy and the degree of non-membership
function respectively of each element x ∈ X to the set A.

Remark 2.2. [10] A Neutrosophic set
A = {〈x,µA(x),σA(x),γA(x)〉 : x ∈ X} can be identified to an
ordered triple
A = 〈µA(x),σA(x),γA(x)〉 in]−0,1+[ on X.

Remark 2.3. [10] For the sake of simplicity, we shall use
the symbol A = 〈µA,σA,γA〉 for the neutrosophic set A =
{〈x,µA(x),σA(x),γA(x)〉 : x ∈ X}.

Example 2.4. [10] Every intuitionistic fuzzy set A is a non-
empty set in X is obviously on NS having the form A =
{〈x,µA(x),1−µA(x)+ γA(x),γA(x)〉 : x∈X} . Since our main
purpose is to construct the tools for developing Neutrosophic
set and Neutrosophic topology, we must introduce the Neutro-
sophic sets 0N and 1N in X as follows:
0N may be defined as:
(01)0N = {〈x,0,0,1〉 : x ∈ X}
(02)0N = {〈x,0,1,1〉 : x ∈ X}
(03)0N = {〈x,0,1,0〉 : x ∈ X}
(04)0N = {〈x,0,0,0〉 : x ∈ X}

1N may be defined as:
(11)1N = {〈x,1,0,0〉 : x ∈ X}
(12)1N = {〈x,1,0,1〉 : x ∈ X}
(13)1N = {〈x,1,1,0〉 : x ∈ X}
(14)1N = {〈x,1,1,1〉 : x ∈ X}

Definition 2.5. [10] Let A = 〈(µA,σA,γA)〉 be a NS on X,
then the complement of the set A [C(A) for short] may be
defined as three kinds of complements:
(C1)C(A) = {〈x,1−µA(x),1−σA(x),1− γA(x)〉 : x ∈ X}
(C2)C(A) = {〈x,γA(x),σA(x),µA(x)〉 : x ∈ X}
(C1)C(A) = {〈x,γA(x),1−σA(x),µA(x)〉 : x ∈ X}

Definition 2.6. [10] Let X be a non-empty set, and neutro-
sophic sets A and B in the form A = {〈x,µA(x),σA(x),γA(x)〉 :
x ∈ X} and B = {〈x,µB(x),σB(x),γB(x)〉 : x ∈ X}. Then we
may consider two possible definitions for subsets (A⊆ B).
(A⊆ B) may be defined as:
(A⊆ B)⇔ µA(x)≤ µB(x),σA(x)≤ σB(x),γA(x)≥ γB(x)∀x∈
X
(A⊆ B)⇔ µA(x)≤ µB(x),σA(x)≥ σB(x),γA(x)≥ γB(x)∀x∈
X

Proposition 2.7. [10] For any Neutrosophic set A, the follow-
ing conditions holds:
0N ⊆ A,0N ⊆ 0N
A⊆ 1N ,1N ⊆ 1N

Definition 2.8. [10] Let X be a non-empty set, and
A = {〈x,µA(x),σA(x),γA(x)〉 : x ∈ X},
B = {〈x,µB(x),σB(x),γB(x)〉 : x ∈ X} are NSs. Then A∩B
may be defined as:
(I1)A∩B = 〈x,µA(x)∧µB(x),σA(x)∧σB(x),γA(x)∨ γB(x)〉

(I2)A∩B = 〈x,µA(x)∧µB(x),σA(x)∨σB(x),γA(x)∨ γB(x)〉
A∪B may be defined as:
(U1)A∪B = 〈x,µA(x)∨µB(x),σA(x)∨σB(x),γA(x)∧ γB(x)〉
(U2)A∪B = 〈x,µA(x)∨µB(x),σA(x)∧σB(x),γA(x)∧ γB(x)〉

We can easily generalize the operations of intersection and
union in Defintion 2.8 to arbitrary family of NSs as follows:

Definition 2.9. [10] Let {A j : j ∈ J} be a arbitrary family of
NSs in X, then
1. ∩A j may be defined as:
∩A j =

〈
x,∧ j∈J µA j(x),∧ j∈JσA j(x),∨ j∈JγA j(x)

〉
∩A j =

〈
x,∧ j∈J µA j(x),∨ j∈JσA j(x),∨ j∈JγA j(x)

〉
∪A j may be

defined as:
∪A j = 〈x,∨,∨,∧〉 ∪A j = 〈x,∨,∧,∧〉

Proposition 2.10. [10] For all A and B are two neutrosophic
sets then the following conditions are true:
C(A∩B) =C(A)∪C(B); C(A∪B) =C(A)∩C(B).

Definition 2.11. [10] A Neutrosophic topology [NT for short]
is a non-empty set X is a family τN of neutrosophic subsets in
X satisfying the following axioms:
(NT1)0N ,1N ∈ τN ,
NT2)G1∩G2 ∈ τN for any G1,G2 ∈ τN ,
(NT3)∪Gi ∈ τN for every {Gi : i ∈ J} ⊆ τN
Throughout this paper, the pair of (X ,τN) is called a neutro-
sophic topological space [NT S for short]. The elements of τN
are called neutrosophic open set [NOS for short].
A Neutrosophic set F is Neutrosophic closed if and only if
C(F) is neutrosophic open.

Example 2.12. [10] Any fuzzy topological space (X ,τ0) in
the sense of Chang is obviously a NT S in the form τN =
{A : µA ∈ τ0} wherever we identify a fuzzy set in X whose
membership function is µA with its counterpart.

The following is an example of Neutrosophic topological
space.

Example 2.13. [10] Let x = {X} and A = {〈x,0.5,0.5,0.4〉 :
x ∈ X} B = {〈x,0.4,0.6,0.8〉 : x ∈ X} C = {〈x,0.5,0.6,0.4〉 :
x ∈ X} D = {〈x,0.4,0.5,0.8〉 : x ∈ X} Then the family τN =
{oN ,1N ,A,B,C,D} is called a neutrosophic topological space
on X.

Definition 2.14. [10] The complement of A [C(A) for short]
of NOS is called a neutrosophic closed set [NCS for short] in
X.

Now, we define Neutrosophic closure and Neutrosophic
interior operations in Neutrosophic topological spaces:

Definition 2.15. [10] Let (X ,τN) be NT S and
A = 〈x,µA(x),σA(x),γA(x)〉 be a NS in X. Then the neutro-
sophic closure and neutrosophic interior of A are defined by
NCl(A) = ∩{k : K is a NCS in X and A⊆ K
NInt(A) = {G : G is a NOS in X and G ⊆ A} It can be also
shown that NCl(A) is NCS and NInt(A) is a NOS in X.
A is NOS if and only if A = NInt(A)
A is NCS if and only if A = NCl(A)
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Proposition 2.16. [10] For any Neutrosophic set A in (X ,τN)
we have

a. NCl(C(A)) =C(NInt(A))

b. NInt(C(A)) =C(NCl(A))

Proposition 2.17. [10] Let (X ,τN) be a NTS and A,B be two
neutrosophic sets in X. Then the following properties are
holds:

a) NInt(A)⊆ A

b) A⊆ NCl(A)

c) A⊆ B⇒ NInt(A)⊆ NInt(B)

d) A⊆ B⇒ NCl(A)⊆ NCl(B)

e) NInt(NInt(A)) = NInt(A)

f) NCl(NCl(A)) = NCl(A)

g) NInt(A∩B) = NInt(A)∩NInt(B)

h) NCl(A∪B) = NCl(A)∪NCl(B)

i) NInt(0N) = 0N

j) NInt(1N) = 1N

k) NCl(0N) = 0N

l) NCl(1N) = 1N

m) A⊆ B⇒C(A)⊆C(B)

n) NCl(A∩B)⊆ NCl(A)∩NCl(B)

o) NInt(A∪B)⊆ NInt(A)∪NInt(B)

Definition 2.18. [14] Let A = {〈x,µA(x),σA(x),γA(x)〉 : x ∈
X} be a neutrosophic open sets and
B = {〈x,µB(x),σB(x),γB(x)〉 : x ∈ X} be a neutrosophic set
on a neutrosophic toplogical space (X ,τN) then

a. A is called neutrosophic regular open iff A=NInt(NCl(A)).

b. If B ∈ NCS(X) then B in called neutosophic regular close
iff A = NCl(NInt(A).

Definition 2.19. [14] A neutrosophic set A in a neutrosophic
toplogical space (X ,τN) is called
1. Neutrosophic semi-open set (NSOS) if A⊆ NCl(NInt(A)).
2. Neutrosophic pre-open set (NPOS) if A⊆ NInt(NCl(A)).
3. Neutrosophic α-open set (NαOS) if A⊆NInt(NCl(NInt(A))).
4. Neutrosophic β -open set (NβOS) if A⊆NCl(NInt(NCl(A))).
An (NSs) A is called neutrosophic semi-closed set, neutro-
sophic α-closed set, Neutrosophic pre-closed set and Neutro-
sophic regular closed set respectively (NSCS,NαCS,NPCS
and NRCS, resp.), if the complement of A is a NSOS,NαOS,
NPOS and NROS respectively.

Definition 2.20. [8] Let A be a subset of a neutrosophic
spaces (X ,τN) is called neutrosophic generalized semi closed
(Ngs-closed) if neutrosophic semi−cl(A)⊆G, whenever A⊆
G and G is NOS.

3. Neutrosophic generalized closed sets

In this section, we introduce the new concept namely Neu-
trosophic generalized closed sets in Neutrosophic topological
spaces.

Definition 3.1. Let (X ,τN) be a neutrosophic topological
space. A subset A of (X ,τN) is called Neutrosophic general-
ized closed set (neutrosophic-g-closed) if Ncl(A)⊆ G when
ever A⊆ G and G is neutrosophic open set (NOS). Comple-
ment of neutrosophic-g-closed set is called the neutrosophic-
g-open set.

Example 3.2. Let X = {a,b,c}with τN = {0N ,1N ,A,B}where
A = 〈(0.5,0.5,0.4),(0.7,0.5,0.5),(0.4,0.5,0.5)〉,
B = 〈(0.3,0.4,0.4),(0.4,0.5,0.5),(0.3,0.4,0.6)〉.
Then (X ,τN) is a neutrosophic topological space. The closed
sets of (X ,τN) are
A
′
= 〈(0.4,0.5,0.5),(0.5,0.5,0.7),(0.5,0.5,0.4)〉,

B
′
= 〈(0.4,0.6,0.3),(0.5,0.5,0.4),(0.6,0.6,0.3)〉.

Consider the Neutrosophic set
C = 〈(0.4,0.6,0.5),(0.4,0.3,0.5),(0.5,0.6,0.4)〉 in (X ,τN).
Here C is neutrosophic-g-closed set in (X ,τN).

Theorem 3.3. Every Neutrosophic closed set is a Neutro-
sophic generalized closed set in (X ,τN).

Proof. Let A⊆G, where G neutrosophic open set in is (X ,τN).
Since A is neutrosophic closed set, NCl(A) ⊆ A [Since A =
NCl(A)]. Therefore NCl(A)⊆A⊆G. Hence A is a neutrosophic-
g-closed set in (X ,τN).

Remark 3.4. The converse of the above theorem need not be
true as seen in the following example.

Example 3.5. Let X = {a,b} with τN = {0N ,1N ,A,B} and
where A = 〈(0.4,0.5,0.5),(0.2,0.4,0.6)〉 ,
B = 〈(0.7,0.5,0.3),(0.3,0.4,0.5)〉.
Then (X ,τN) is a neutrosophic topological space. The closed
sets of (X ,τN) are A

′
= 〈(0.5,0.5,0.4),(0.6,0.6,0.2)〉, B

′
=

〈(0.3,0.5,0.7),(0.5,0.6,0.3)〉. Consider the Neutrosophic set
C = 〈0.6,0.5,0.6),(0.4,0.3,0.7)〉. C is neutrosophic-g-closed
set, but C is not NCS, (Since NCl(C) 6=C).

Theorem 3.6. If A and B are neutrosophic-g-closed sets in
(X ,τN) then A∪B is neutrosophic-g-closed set in (X ,τN).

Proof. Let A and B are neutrosophic-g-closed sets in (X ,τN).
Then NCl(A)⊆ G whenever A⊆ G and G is NOS in (X ,τN)
and NCl(B)⊆ G whenever B⊆ G and G is NOS in X . Since
A and B are subsets of G, A∪B is a subset of G and G is
neutrosophic open set. Then NCl(A∪B) = NCl(A)∪NCl(B)
[by proposition 2.17(h)], NCl(A∪B)⊆ G. Therefore A∪B is
neutrosophic-g-closed set in (X ,τN).

Theorem 3.7. If A and B are neutrosophic-g-closed sets in
(X ,τN), then Ncl(A∩B)⊆ Ncl(A)∩Ncl(B).
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Proof. Let A and B are neutrosophic-g-closed sets in (X ,τN).
Then NCl(A)⊆ G whenever A⊆ G and G is NOS in (X ,τN)
and NCl(B) ⊆ G whenever B ⊆ G and G is NOS in (X ,τN).
Since A and B are subsets of G, A∩B is a subset of G and G is
NOS. Since A∩B⊆ A and A∩B⊆ B, we know that, if A⊆ B
then Ncl(A)⊆ Ncl(B) [10]. Therefore Ncl(A∩B)⊆ Ncl(A)
and Ncl(A∩B) ⊆ Ncl(B),which implies that Ncl(A∩B) ⊆
Ncl(A)∩Ncl(B). Hence proved.

Remark 3.8. The intersection of two neutrosophic-g-closed
sets need not be a neutrosophic-g-closed set as seen from the
following example.

Example 3.9. Let X = {a,b,c} with τN = {0N ,1N ,A,B,C}
where
A = 〈(0.4,0.5,0.4),(0.5,0.5,0.6),(0.7,0.4,0.3)〉,
B = 〈(0.3,0.4,0.5),(0.5,0.4,0.8),(0.6,0.3,0.4)〉,
C = 〈(0.4,0.5,0.4),(0.5,0.5,0.8),(0.7,0.5,0.3)〉.
Then (X ,τN) is a neutrosophic topological space. The closed
sets are A

′
= 〈(0.4,0.5,0.4),(0.6,0.5,0.5),(0.3,0.6,0.7)〉,

B
′
= 〈(0.5,0.6,0.3),(0.8,0.6,0.8),(0.4,0.7,0.6)〉,

C
′
= 〈(0.4,0.5,0.4),(0.8,0.5,0.5),(0.3,0.5,0.7)〉.

Consider the neutrosophic-g-closed sets
D = 〈(0.5,0.6,0.7),(0.5,0.5,0.5),(0.6,0.4,0.6)〉,
and E = 〈(0.4,0.3,0.8),(0.2,0.6,0.7),(0.5,0.4,0.7)〉,
then D∩E = 〈(0.4,0.3,0.8),(0.2,0.5,0.7),(0.5,0.4,0.7)〉,
is not a neutrosophic-g-closed set.

Theorem 3.10. If A is neutrosophic-g-closed set in (X ,τN)
and A⊆ B⊆ NCl(A), then B is neutrosophic-g-closed set in
(X ,τN).

Proof. Let B ⊆ G where G is NOS in (X ,τN). Then A ⊆ B
implies A⊆G. Since A is neutrosophic-g-closed, NCl(A)⊆G.
Also A⊆NCl(B) implies NCl(B)⊆NCl(A). Thus NCl(B)⊆
G and so B is neutrosophic-g-closed set in (X ,τN).

Theorem 3.11. An neutrosophic-g-closed set A is neutro-
sophic closed set iff NCl(A)-A is neutrosophic closed set.

Proof. Assume that, A is NCS, then NCl(A) = A and so
NCl(A)− A = 0N which is NCS[x]. Conversely, suppose
NCl(A)-A is NCS. Then NCl(A)−A = 0N , that is NCl(A) =
A. Therefore A is NCS. Hence proved.

Theorem 3.12. Suppose that A⊆B⊆X, B is an neutrosophic-
g-closed set relative to A and that A is an neutrosophic-g-
closed subset of X. Then B is neutrosophic-g-closed set rela-
tive to X.

Proof. Let B ⊆ G and suppose that G is NOS in X . Then
B ⊆ A∩G. Therefore NCl(B) ⊆ A∩G. It follows that A∩
NCl(B)⊆A∩G and A⊆G∪NCl(B). Since A is neutrosophic-
g-closed in X , we have NCl(A) ⊆ G∪NCl(B). Therefore
NCl(B) ⊆ NCl(A) ⊆ G∪NCl(B)andNCl(B) ⊆ G. Then B
is neutrosophic-g-closed relative to B is an neutrosophic-g-
closed set relative to G.

Corollary 3.13. Let A be a neutrosophic-g-closed set and
suppose that F is a NCS. Then A∩F is an neutrosophic-g-
closed set.

Theorem 3.14. If A is neutrosophic-g-closed set in X, then A
is neutrosophic-gs-closed set in X.

Proof. Let A be a neutrosophic-g-closed set in X . Therefore
NCl(A)⊆G and A⊆G whenever G is NOS in X . NSCl(A)⊆
G. Then NSCl(A) ⊆ NCl(A), NSCl(A) ⊆ G. Therefore A is
neutrosophic-gs-closed in X .

Remark 3.15. The converse of the above theorem need not
be true as seen from the following example.

Example 3.16. Let X = {a} with τN = {0N ,1N ,A,B,C,D}
where A = 〈0.6,0.7,0.9〉
B = 〈0.5,0.4,0.7〉
C = 〈0.6,0.7,0.7〉
D = 〈0.5,0.4,0.9〉
Then (X ,τN) is a neutrosophic topological space. Consider
the neutrosophic set E = 〈0.4,0.3,0.7〉. E is neutrosophic-gs-
closed set in (X ,τN), but E is not a neutrosophic-g-closed set
(X ,τN), since NCl(E) 6⊆ G.
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