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ABSTRACT

In this paper, the concept of generalized neutrosophic closed set is introduced. Further,

generalized neutrosophic continuous mapping, generalized neutrosophic irresolute mapping,

strongly neutrosophic continuous mapping, perfectly neutrosophic continuous mapping, strongly

generalized neutrosophic continuous mapping and perfectly generalized neutrosophic contin-

uous mapping are introduced. Several interesting properties and characterizations are also

discussed.
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1 INTRODUCTION AND PRELIMINARIES

The notion of fuzzy set has invaded almost all branches of mathematics since its introduction

by Zadeh (1965). Fuzzy sets have applications in many fields such as information theory

(Smets (1981)) and control theory (Sugeno (1985)). The notion of fuzzy topological space

was introduced and developed by Chang (1968) and since then various notions in classical

topology have been extended to fuzzy topological spaces. The idea of ”intuitionistic fuzzy

set” was first published by Krassimir Atanassov (1983) and developed further by him and

his colleagues (Atanassov (1986, 1988); Atanassov and Stoeva (1983)). Intuitionistic fuzzy

set is an extension of Zadeh’s notion of fuzzy set which itself has extended the classical

notion of a set. Later, this concept was generalized to ”intuitionistic L - fuzzy sets” by

Atanassov and Stoeva (1984). The concept of generalized intuitionistic fuzzy closed set was
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first introduced and investigated by Thakur and Chaturvedi (2006) and later independently

by Dhavaseelan et al. (2010). After the introduction of the concepts of neutrosophy and

neutrosophic set by Smarandache Smarandache (1999, 2000), the concepts of neutrosophic

crisp set and neutrosophic crisp topological spaces were introduced by Salama and Alblowi

(2012).

In this paper, the concept of generalized neutrosophic closed set is introduced. Fur-

ther, generalized neutrosophic continuous mapping, generalized neutrosophic irresolute map-

ping, strongly neutrosophic continuous mapping, perfectly neutrosophic continuous map-

ping, strongly generalized neutrosophic continuous mapping and perfectly generalized neu-

trosophic continuous mapping are introduced. Several interesting properties and character-

izations are also discussed.

Definition 1.1. Let T , I and F be real standard or non standard subsets of ]0−, 1+[, with

supT = tsup, infT = tinf

supI = isup, infI = iinf

supF = fsup, infF = finf

n− sup = tsup + isup + fsup

n− inf = tinf + iinf + finf . T , I and F are neutrosophic components.

Definition 1.2. Let X be a nonempty fixed set. A neutrosophic set [briefly NS] A is an

object having the form A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}, where µ
A

(x), σ
A

(x) and

γ
A

(x) represent the degree of membership function (namely µ
A

(x)), the degree of indetermi-

nacy (namely σ
A

(x)) and the degree of nonmembership (namely γ
A

(x)) respectively of each

element x ∈ X to the set A.

Remark 1.1. (1) A neutrosophic set A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X} can be

identified to an ordered triple 〈µ
A
, σ

A
, γ

A
〉 in ]0−, 1+[ on X.

(2) For the sake of simplicity, we shall use the symbol A = 〈µ
A
, σ

A
, γ

A
〉 for the neutrosophic

set A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}.

Definition 1.3. Let X be a nonempty set and the neutrosophic sets A and B in the form

A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}, B = {〈x, µ
B

(x), σ
B

(x), γ
B

(x)〉 : x ∈ X}. Then

(a) A ⊆ B iff µ
A

(x) ≤ µ
B

(x), σ
A

(x) ≤ σ
B

(x) and γ
A

(x) ≥ γ
B

(x) for all x ∈ X;

(b) A = B iff A ⊆ B and B ⊆ A;

(c) Ā = {〈x, γ
A

(x), σ
A

(x), µ
A

(x)〉 : x ∈ X}; [Complement of A]

(d) A ∩B = {〈x, µ
A

(x) ∧ µ
B

(x), σ
A

(x) ∧ σ
B

(x), γ
A

(x) ∨ γ
B

(x)〉 : x ∈ X};

(e) A ∪B = {〈x, µ
A

(x) ∨ µ
B

(x), σ
A

(x) ∨ σ
B

(x), γ
A

(x) ∧ γ
B

(x)〉 : x ∈ X};

(f) [ ]A = {〈x, µ
A

(x), σ
A

(x), 1− µ
A

(x)〉 : x ∈ X};
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(g) 〈〉A = {〈x, 1− γ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X}.

Definition 1.4. Let {Ai : i ∈ J} be an arbitrary family of neutrosophic sets in X. Then

(a)
⋂
Ai = {〈x,∧µ

Ai
(x),∧σ

Ai
(x),∨γ

Ai
(x)〉 : x ∈ X};

(b)
⋃
Ai = {〈x,∨µ

Ai
(x),∨σ

Ai
(x),∧γ

Ai
(x)〉 : x ∈ X}.

Since our main purpose is to construct the tools for developing neutrosophic topological

spaces, we must introduce the neutrosophic sets 0
N

and 1
N

in X as follows:

Definition 1.5. 0
N

= {〈x, 0, 0, 1〉 : x ∈ X} and 1
N

= {〈x, 1, 1, 0〉 : x ∈ X}.

2 NEUTROSOPHIC TOPOLOGY

Definition 2.1. A neutrosophic topology (NT) on a nonempty set X is a family T of

neutrosophic sets in X satisfying the following axioms:

(i) 0
N
, 1

N
∈ T ,

(ii) G1 ∩G2 ∈ T for any G1, G2 ∈ T ,

(iii) ∪Gi ∈ T for arbitrary family {Gi | i ∈ Λ} ⊆ T .

In this case the ordered pair (X,T ) or simply X is called a neutrosophic topological space

(NTS) and each neutrosophic set in T is called a neutrosophic open set (NOS). The comple-

ment A of a NOS A in X is called a neutrosophic closed set (NCS) in X.

Definition 2.2. Let A be a neutrosophic set in a neutrosophic topological space X. Then

Nint(A) =
⋃
{G | G is a neutrosophic open set in X and G ⊆ A} is called the neutro-

sophic interior of A;

Ncl(A) =
⋂
{G | G is a neutrosophic closed set in X and G ⊇ A} is called the neutro-

sophic closure of A.

Corollary 2.1. Let A, B and C be neutrosophic sets in X. Then the basic properties of

inclusion and complementation:

(a) A ⊆ B and C ⊆ D ⇒ A ∪ C ⊆ B ∪D and A ∩ C ⊆ B ∩D,

(b) A ⊆ B and A ⊆ C ⇒ A ⊆ B ∩ C,

(c) A ⊆ C and B ⊆ C ⇒ A ∪B ⊆ C,

(d) A ⊆ B and B ⊆ C ⇒ A ⊆ C,

(e) A ∪B = A ∩B,

(f) A ∩B = A ∪B,
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(g) A ⊆ B ⇒ B ⊆ A,

(h) (A) = A,

(i) 1
N

= 0
N

,

(j) 0
N

= 1
N

.

Now we introduce the notions of image and preimage of neutrosophic sets. Let X and Y

be two nonempty sets and f : X → Y be a function.

Definition 2.3. (a) If B = {〈y, µ
B

(y), σ
B

(y), γ
B

(y)〉 : y ∈ Y } is a neutrosophic set in Y ,

then the preimage of B under f , denoted by f−1(B), is the neutrosophic set in X

defined by

f−1(B) = {〈x, f−1(µ
B

)(x), f−1(σ
B

)(x), f−1(γ
B

)(x)〉 : x ∈ X}.

(b) If A = {〈x, µ
A

(x), σ
A

(x), γ
A

(x)〉 : x ∈ X} is a neutrosophic set in X, then the image

of A under f , denoted by f(A), is the neutrosophic set in Y defined by

f(A) = {〈y, f(µ
A

)(y), f(σ
A

)(y), (1− f(1− γ
A

))(y)〉 : y ∈ Y }. where

f(µ
A

)(y) =

supx∈f−1(y) µA
(x), if f−1(y) 6= ∅,

0, otherwise,

f(σ
A

)(y) =

supx∈f−1(y) σA
(x), if f−1(y) 6= ∅,

0, otherwise,

(1− f(1− γ
A

))(y) =

infx∈f−1(y) γA
(x), if f−1(y) 6= ∅,

1, otherwise,

For the sake of simplicity, let us use the symbol f−(γ
A

) for 1− f(1− γ
A

).

Corollary 2.2. Let A , Ai(i ∈ J) be neutrosophic sets in X, B, Bi(i ∈ K) be neutrosophic

sets in Y and f : X → Y a function. Then

(a) A1 ⊆ A2 ⇒ f(A1) ⊆ f(A2),

(b) B1 ⊆ B2 ⇒ f−1(B1) ⊆ f−1(B2),

(c) A ⊆ f−1(f(A)) { If f is injective, then A = f−1(f(A)) } ,

(d) f(f−1(B)) ⊆ B { If f is surjective, then f(f−1(B)) = B },

(e) f−1(
⋃
Bj) =

⋃
f−1(Bj),

(f) f−1(
⋂
Bj) =

⋂
f−1(Bj),

(g) f(
⋃
Ai) =

⋃
f(Ai),
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(h) f(
⋂
Ai) ⊆

⋂
f(Ai) { If f is injective, then f(

⋂
Ai) =

⋂
f(Ai)},

(i) f−1(1
N

) = 1
N

,

(j) f−1(0
N

) = 0
N

,

(k) f(1
N

) = 1
N

, if f is surjective,

(l) f(0
N

) = 0
N

,

(m) f(A) ⊆ f(A), if f is surjective,

(n) f−1(B) = f−1(B).

3 GENERALIZED NEUTROSOPHIC CLOSED SETS AND GENERALIZED NEUTRO-

SOPHIC CONTINUOUS FUNCTIONS

Definition 3.1. Let (X,T ) be a neutrosophic topological space. A neutrosophic set A in

(X,T ) is said to be a generalized neutrosophic closed set if Ncl (A) ⊆ G whenever A ⊆ G

and G is a neutrosophic open set. The complement of a generalized neutrosophic closed set

is called a generalized neutrosophic open set.

Definition 3.2. Let (X,T ) be a neutrosophic topological space and A be a neutrosophic

set in X. Then the neutrosophic generalized closure and neutrosophic generalized interior

of A are defined by,

(i)NGcl(A) =
⋂
{G: G is a generalized neutrosophic closed

set in X and A ⊆ G}.
(ii)NGint(A) =

⋃
{G: G is a generalized neutrosophic open

set in X and A ⊇ G}.

Proposition 3.1. Let (X,T ) be any neutrosophic topological space and let A and B be

neutrosophic sets in (X,T ) . Then the neutrosophic generalized closure operator satisfy the

following properties:

(i) A ⊆ NGcl(A).

(ii) NGint(A) ⊆ A.

(iii) A ⊆ B ⇒ NGcl(A) ⊆ NGcl(B).

(iv) A ⊆ B ⇒ NGint(A) ⊆ NGint(B).

(v) NGcl(A ∪B) = NGcl(A) ∪NGcl(B).

(vi) NGint(A ∩B) = NGint(A) ∩NGint(B).

(vii) NGcl(A) = NGint(A).
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(viii) NGint(A) = NGcl(A).

Proof. (i) NGcl(A)=
⋂
{G: G is a generalized neutrosophic closed set in X and A ⊆ G}.

Thus, A ⊆ NGcl(A).

(ii) NGint(A)=
⋃
{G: G is a generalized neutrosophic open set in X and A ⊇ G}. Thus,

NGint(A) ⊆ A.

(iii) NGcl(B)=
⋂
{G: G is a generalized neutrosophic closed set in X and B ⊆ G},

⊇
⋂
{G : G is a generalized neutrosophic closed set in X and A ⊆ G},

⊇ NGcl(A).

Thus, NGcl(A) ⊆ NGcl(B).

(iv) NGint(B)=
⋃
{G: G is a generalized neutrosophic open set in X and B ⊇ G},

⊇
⋃
{G: G is a generalized neutrosophic open set in X and A ⊇ G},

⊇ NGint(A).

Thus, NGint(A) ⊆ NGint(B).

(v) NGcl(A∪B) =
⋂
{G: G is a generalized neutrosophic closed set in X and A∪B ⊆ G},

(
⋂
{G: G is a generalized neutrosophic closed set in X and A ⊆ G}) ∪ (

⋂
{G: G is a

generalized neutrosophic closed set in X and B ⊆ G}),
= NGcl(A) ∪NGcl(B).

Thus, NGcl(A ∪B)=NGcl(A) ∪NGcl(B).

(vi) NGint(A∩B)=
⋃
{G: G is a generalized neutrosophic open set in X and A∩B ⊇ G},

(
⋃
{G : G is a generalized neutrosophic open set in X and A ⊇ G}) ∩ (

⋃
{G: G is a

generalized neutrosophic open set in X and B ⊇ G} ),

= NGint(A) ∩NGint(B).

Thus, NGint(A ∩B) = NGint(A) ∩NGint(B).

(vii) NGcl(A) =
⋂
{G: G is a generalized neutrosophic closed set in X and A ⊆ G},

NGcl(A) = ∪{G : G is a generalized neutrosophic open set in X and A ⊇ G},
= NGint(A).

Thus, NGcl(A) = NGint(A).

(viii) NGint(A)=
⋃
{G: G is a generalized neutrosophic open set in X and A ⊇ G},

NGint(A) =
⋂
{G : G is a generalized neutrosophic closed set in X and A ⊆ G},

= NGcl(A). Thus,NGint(A) = NGcl(A).
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Proposition 3.2. Let (X,T ) be a neutrosophic topological space. If B is a generalized

neutrosophic closed set and B ⊆ A ⊆ Ncl(B), then A is a generalized neutrosophic closed

set.

Proof. Let G be a neutrosophic open set in (X,T ), such that A ⊆ G. Since B ⊆ A, B ⊆ G.

Now, B is a generalized neutrosophic closed set and Ncl(B) ⊆ G. But Ncl(A) ⊆ Ncl(B).

Since Ncl(A) ⊆ Ncl(B) ⊆ G, Ncl(A) ⊆ G. Hence, A is a generalized neutrosophic closed

set.

Proposition 3.3. Let (X,T ) be a neutrosophic topological space. An neutrosophic set

A is a generalized neutrosophic open set if and only if B ⊆ Nint(A), whenever B is an

neutrosophic closed set and B ⊆ A.

Proof. Let A be a generalized neutrosophic open set and B be a neutrosophic closed set such

that B ⊆ A. Now, B ⊆ A ⇒ A ⊆ B and since A is a generalized neutrosophic closed set,

then Ncl(A) ⊆ B. This means that B = (B) ⊆ Ncl(A). But Ncl(A) = Nint(A). Hence,

B ⊆ Nint(A).

Conversely, suppose that A is a neutrosophic set such that B ⊆ Nint(A), whenever B

is a neutrosophic closed set and B ⊆ A. Let A ⊆ B whenever B is a neutrosophic open set.

Now, A ⊆ B ⇒ B ⊆ A. Hence by assumption, B ⊆ Nint(A). That is, Nint(A) ⊆ B. But

Nint(A) = Ncl(A). Hence, Ncl(A) ⊆ B. This means that A is a generalized neutrosophic

closed set. Therefore, A is a generalized neutrosophic open set.

Proposition 3.4. If Nint(A) ⊆ B ⊆ A and if A is a generalized neutrosophic open set,

then B is also a generalized neutrosophic open set.

Proof. Now, A ⊆ B ⊆ Nint(A) = Ncl(A). Since A is a generalized neutrosophic open

set, then A is a generalized neutrosophic closed set. By Proposition 3.2, B is a generalized

neutrosophic closed set. That is, B is a generalized neutrosophic open set.

Definition 3.3. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces.

(i) A map f : (X,T ) → (Y, S) is said to be generalized neutrosophic continuous if the

inverse image of every neutrosophic closed set in (Y, S) is a generalized neutrosophic

closed set in (X,T ).

Equivalently if the inverse image of every neutrosophic open set in (Y, S) is a generalized

neutrosophic open set in (X,T ).

(ii) A map f : (X,T ) → (Y, S) is said to be generalized neutrosophic irresolute if the

inverse image of every generalized neutrosophic closed set in (Y, S) is a generalized

neutrosophic closed set in (X,T ).

Equivalently if the inverse image of every generalized neutrosophic open set in (Y, S)

is a generalized neutrosophic open set in (X,T ).
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(iii) A map f : (X,T )→ (Y, S) is said to be strongly neutrosophic continuous if f−1(A) is

both neutrosophic open and neutrosophic closed in (X,T ) for each neutrosophic set A

in (Y, S).

(iv) A map f : (X,T )→ (Y, S) is said to be perfectly neutrosophic continuous if f−1(A) is

both neutrosophic open and neutrosophic closed in (X,T ) for each neutrosophic open

set A in (Y, S).

(v) A map f : (X,T )→ (Y, S) is said to be strongly generalized neutrosophic continuous if

the inverse image of every generalized neutrosophic open set in (Y, S) is an neutrosophic

open set in (X,T ).

(vi) A map f : (X,T ) → (Y, S) is said to be perfectly generalized neutrosophic continu-

ous if the inverse image of every generalized neutrosophic open set in (Y, S) is both

neutrosophic open and neutrosophic closed in (X,T ).

Proposition 3.5. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. Let

f : (X,T ) → (Y, S) be a generalized neutrosophic continuous mapping. Then for every

neutrosophic set A in X, f(NGcl(A)) ⊆ Ncl(f(A)).

Proof. Let A be an neutrosophic set in (X,T ). Since Ncl(f(A)) is a neutrosophic closed

set and f is a generalized neutrosophic continuous mapping, f−1(Ncl(f(A)) is a general-

ized neutrosophic closed set and f−1(Ncl(f(A))) ⊇ A. Now, NGcl(A) ⊆ f−1(Ncl(f(A))).

Therefore, f(NGcl(A)) ⊆ Ncl(f(A)).

Proposition 3.6. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. Let

f : (X,T ) → (Y, S) be a generalized neutrosophic continuous mapping. Then for every

neutrosophic set A in Y , NGcl(f−1(A)) ⊆ f−1(Ncl(A)).

Proof. Let A be a neutrosophic set in (Y, S). Let B = f−1(A). Then, f(B) = f(f−1(A)) ⊆
A. By Proposition 3.5., f(NGcl(f−1(A))) ⊆ Ncl(f(f−1(A))). Thus, NGcl(f−1(A)) ⊆
f−1(Ncl(A)).

Proposition 3.7. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. If A

is a generalized neutrosophic closed set in (X,T ) and if f : (X,T )→ (Y, S) is neutrosophic

continuous and neutrosophic closed mapping then f(A) is a generalized neutrosophic closed

set in (Y, S).

Proof. Let G be a neutrosophic open set in (Y, S). If f(A) ⊆ G then A ⊆ f−1(G) in (X,T ).

Since A is a generalized neutrosophic closed set and f−1(G) is a neutrosophic open set in

(X,T ), Ncl(A) ⊆ f−1(G). That is, f(Ncl(A)) ⊆ G. Now, by assumption, f(Ncl(A)) is

a neutrosophic closed set in (Y, S) and Ncl(f(A)) ⊆ Ncl(f(Ncl(A))) = f(Ncl(A)) ⊆ G.

Hence, f(A) is a generalized neutrosophic closed set.
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Proposition 3.8. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. If f :

(X,T )→ (Y, S) is a neutrosophic continuous mapping then it is a generalized neutrosophic

continuous mapping.

Proof. Let A be a neutrosophic open set in (Y, S). Since f is a neutrosophic continuous

mapping, f−1(A) is a neutrosophic open set in (X,T ). Every neutrosophic open set is a

generalized neutrosophic open set. Now, f−1(A) is a generalized neutrosophic open set in

(X,T ). Hence, f is a generalized neutrosophic continuous mapping.

The converse of Proposition 3.8., need not be true as shown in Example

3.1.

Example 3.1. Let X = {a, b, c}. Define the neutrosophic sets A and B in X as follows:

A = 〈x, ( a
0.4
, b
0.4
, c
0.5

), ( a
0.4
, b
0.4
, c
0.5

), ( a
0.2
, b
0.4
, c
0.3

)〉, B = 〈x, ( a
0.4
, b
0.5
, c
0.6

), ( a
0.4
, b
0.5
, c
0.6

), ( a
0.3
, b
0.2
, c
0.3

)〉.
Then the families T = {0

N
, 1

N
, A} and S = {0

N
, 1

N
, B} are neutrosophic topologies on X.

Thus, (X,T ) and (X,S) are neutrosophic topological spaces. Define f : (X,T ) → (X,S)

as f(a) = b, f(b) = a, f(c) = c. Then f is a generalized neutrosophic continuous

mapping. But, f−1(B) is not a neutrosophic open set in (X,T ) for B ∈ S. Hence, f is

not a neutrosophic continuous mapping.

Proposition 3.9. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. If

f : (X,T )→ (Y, S) is a generalized neutrosophic irresolute mapping then it is a generalized

neutrosophic continuous mapping.

Proof. Let A be a neutrosophic open set in (Y, S). Every neutrosophic open set is a gener-

alized neutrosophic open set. Now, A is a generalized neutrosophic open set. Since f is a

generalized neutrosophic irresolute mapping, f−1(A) is a generalized neutrosophic open set

in (X,T ). Thus, f is a generalized neutrosophic continuous mapping.

The converse of Proposition 3.9., need not be true as shown in Example

3.2.

Example 3.2. Let X = {a, b, c}. Define the neutrosophic sets A, B and C in X as follows:

A = 〈x, ( a
0.4
, b
0.5
, c
0.5

), ( a
0.4
, b
0.5
, c
0.5

), ( a
0.5
, b
0.5
, c
0.5

)〉, B = 〈x, ( a
0.7
, b
0.6
, c
0.5

), ( a
0.7
, b
0.6
, c
0.5

), ( a
0.3
, b
0.4
, c
0.5

)〉
and C = 〈x, ( a

0.5
, b
0.5
, c
0.5

), ( a
0.5
, b
0.5
, c
0.5

), ( a
0.4
, b
0.5
, c
0.5

)〉. Then the families T = {0
N
, 1

N
, A,B}

and S = {0
N
, 1

N
, C} are neutrosophic topologies on X. Thus, (X,T ) and (X,S) are neutro-

sophic topological spaces. Define f : (X,T )→ (X,S) as follows: f(a) = c, f(b) = c, f(c) = c.

Then f is a generalized neutrosophic continuous mapping. But for a generalized neu-

trosophic open set D = 〈x, ( a
0.5
, b
0.6
, c
0.5

), ( a
0.5
, b
0.6
, c
0.5

), ( a
0.4
, b
0.4
, c
0.4

)〉 in (X,S), f−1(D) is not a

generalized neutrosophic open set in (X,T ). Thus, f is not a generalized neutrosophic

irresolute mapping.

Proposition 3.10. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. If

f : (X,T ) → (Y, S) is a strongly generalized neutrosophic continuous mapping then f is a

neutrosophic continuous mapping.
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Proof. Let A be a neutrosophic open set in (Y, S). Every neutrosophic open set is a gen-

eralized neutrosophic open set. Now, A be a generalized neutrosophic open set in (Y, S).

Since f is strongly generalized neutrosophic continuous, f−1(A) is a neutrosophic open set

in (X,T ). Hence, f is a neutrosophic continuous mapping.

The converse of Proposition 3.10., need not be true as shown in Example

3.3

Example 3.3. Let X = {a, b, c}. Define the neutrosophic sets A, B and C in X as follows:

A = 〈x, ( a
0.9
, b
0.9
, c
0.9

), ( a
0.9
, b
0.9
, c
0.9

), ( a
0.1
, b
0.1
, c
0.1

)〉, B = 〈x, ( a
0.9
, b
0.9
, c
0.9

), ( a
0.9
, b
0.9
, c
0.9

), ( a
0.1
, b
0.1
, c
0
)〉

and C = 〈x, ( a
0.9
, b
0.9
, c
0.9

), ( a
0.9
, b
0.9
, c
0.9

), ( a
0.1
, b
0
, c
0.1

)〉. Then the families T = {0
N
, 1

N
, A,B} and

S = {0
N
, 1

N
, C} are neutrosophic topologies on X. Thus, (X,T ) and (X,S) are neutrosophic

topological spaces. Define f : (X,T ) → (X,S) as follows: f(a) = a, f(b) = c, f(c) = b.

Then f is a neutrosophic continuous mapping.

Let D = 〈x, ( a
0.9
, b
0.9
, c
0.99

), ( a
0.9
, b
0.9
, c
0.99

), ( a
0.05

, b
0
, c
0.01

)〉 be a generalized neutrosophic open set

in (X,S). Now, f−1(D) is not a neutrosophic open set in (X,T ). Thus, f is not a Strongly

generalized neutrosophic continuous mapping.

Proposition 3.11. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. If

f : (X,T ) → (Y, S) is a perfectly generalized neutrosophic continuous mapping then f is a

strongly generalized neutrosophic continuous mapping.

Proof. Let A be a generalized neutrosophic open set in (Y, S). Since f is a perfectly gener-

alized neutrosophic continuous mapping, f−1(A) is a neutrosophic open set in (X,T ). Thus,

f is a strongly generalized neutrosophic continuous mapping.

The converse of Proposition 3.11., need not be true as shown in Example

3.4.

Example 3.4. Let X = {a, b, c}. Define the neutrosophic sets An and B in X as follows:

An = 〈x, µ
An
, σ

An
, γ

An
: n = 0, 1, 2, ...〉 where

µ
An

=


(a
0
, b
0
, c
0
), α = 0;

( a
1−α ,

b
1−α ,

c
1−α), 0 < α ≤ 4n

10n+1
;

(a
1
, b
1
, c
1
), 4n

10n+1
< α ≤ 1.

σ
An

=


(a
0
, b
0
, c
0
), α = 0;

( a
1−α ,

b
1−α ,

c
1−α), 0 < α ≤ 4n

10n+1
;

(a
1
, b
1
, c
1
), 4n

10n+1
< α ≤ 1.

and

γ
An

=


(a
1
, b
1
, c
1
), α = 0;

( a
α
, b
α
, c
α

), 0 < α ≤ 4n
10n+1

;

(a
0
, b
0
, c
0
), 4n

10n+1
< α ≤ 1.

and B = 〈x, ( a
0.6
, b
0.6
, c
0.6

), ( a
0.6
, b
0.6
, c
0.5

), ( a
0.4
, b
0.4
, c
0.4

)〉.

Then the families T = {0
N
, 1

N
, An, n = 0, 1, 2, ...} and S = {0

N
, 1

N
, B} are neutrosophic

topologies on X. Thus, (X,T ) and (X,S) are neutrosophic topological spaces. Define f :

(X,T )→ (X,S) as follows: f(a) = c, f(b) = c, f(c) = c. Then f is a strongly generalized

neutrosophic continuous mapping.

Let C = 〈x, ( a
0.7
, b
0.7
, c
0.7

), ( a
0.7
, b
0.7
, c
0.7

), ( a
0.3
, b
0.3
, c
0.3

)〉 be a generalized neutrosophic open set in

(X,S). Now, f−1(D) is neutrosophic open and not neutrosophic closed in (X,T ). Hence,

f is not a perfectly generalized neutrosophic continuous mapping.
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Proposition 3.12. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. If

f : (X,T ) → (Y, S) is a strongly neutrosophic continuous mapping then f is a strongly

generalized neutrosophic continuous mapping.

Proof. Let A be a generalized neutrosophic open set in (Y, S). Since f is a strongly neutro-

sophic continuous mapping, f−1(A) is neutrosophic open and neutrosophic closed in (X,T ).

Hence, f is a strongly generalized neutrosophic continuous mapping.

The converse of Proposition 3.12., need not be true as shown in Example

3.5.

Example 3.5. Let X = {a, b, c}. Define the neutrosophic sets An and B in X as follows:

An = 〈x, µ
An
, σ

An
, γ

An
: n = 0, 1, 2, ...〉 where

µ
An

=


(a
0
, b
0
, c
0
), α = 0;

( a
1−α ,

b
1−α ,

c
1−α), 0 < α ≤ 4n

10n+1
;

(a
1
, b
1
, c
1
), 4n

10n+1
< α ≤ 1.

; σ
An

=


(a
0
, b
0
, c
0
), α = 0;

( a
1−α ,

b
1−α ,

c
1−α), 0 < α ≤ 4n

10n+1
;

(a
1
, b
1
, c
1
), 4n

10n+1
< α ≤ 1.

and

γ
An

=


(a
1
, b
1
, c
1
), α = 0;

( a
α
, b
α
, c
α

), 0 < α ≤ 4n
10n+1

;

(a
0
, b
0
, c
0
), 4n

10n+1
< α ≤ 1.

and B = 〈x, ( a
0.6
, b
0.6
, c
0.6

), ( a
0.6
, b
0.6
, c
0.6

), ( a
0.4
, b
0.4
, c
0.4

)〉.

Then the families T = {0
N
, 1

N
, An, n = 0, 1, 2, ...} and S = {0

N
, 1

N
, B} are neutrosophic

topologies on X. Thus, (X,T ) and (X,S) are neutrosophic topological spaces. Define f :

(X,T )→ (X,S) as follows: f(a) = c, f(b) = c, f(c) = c. Then f is a strongly generalized

neutrosophic continuous mapping.

Let D = 〈x, ( a
0.9
, b
0.9
, c
0.9

), ( a
0.9
, b
0.9
, c
0.9

), ( a
0.1
, b
0.1
, c
0.1

)〉 be a neutrosophic set in (X,S). Then

f−1(D) is a neutrosophic open set and but not a neutrosophic closed set in (X,T ). Hence,

f is not a strongly neutrosophic continuous mapping.

Proposition 3.13. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. If

f : (X,T ) → (Y, S) is a strongly neutrosophic continuous mapping then f is a generalized

neutrosophic irresolute mapping.

Proof. Let A be a generalized neutrosophic open set in (Y, S). Since f is a strongly neutro-

sophic continuous mapping, f−1(A) is neutrosophic open and neutrosophic closed in (X,T ).

Since every neutrosophic open set is a generalized neutrosophic open set, f−1(A) is a gen-

eralized neutrosophic open set in (X,T ). Hence, f is a generalized neutrosophic irresolute

mapping.

The converse of Proposition 3.13., need not be true as shown in Example

3.6.

Example 3.6. Let X = {a, b, c}. Define the neutrosophic sets An and B in X as follows:

An = 〈x, µ
An
, σ

An
, γ

An
: n = 0, 1, 2, ...〉 where

µ
An

=


(a
0
, b
0
, c
0
), α = 0;

( a
1−α ,

b
1−α ,

c
1−α), 0 < α ≤ 4n

10n+1
;

(a
1
, b
1
, c
1
), 4n

10n+1
< α ≤ 1.

; σ
An

=


(a
0
, b
0
, c
0
), α = 0;

( a
1−α ,

b
1−α ,

c
1−α), 0 < α ≤ 4n

10n+1
;

(a
1
, b
1
, c
1
), 4n

10n+1
< α ≤ 1.

and
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γ
An

=


(a
1
, b
1
, c
1
), α = 0;

( a
α
, b
α
, c
α

), 0 < α ≤ 4n
10n+1

;

(a
0
, b
0
, c
0
), 4n

10n+1
< α ≤ 1.

andB = 〈x, ( a
0.6
, b
0.6
, c
0.6

), ( a
0.6
, b
0.6
, c
0.6

), ( a
0.4
, b
0.4
, c
0.4

)〉.Then

the families T = {0
N
, 1

N
, An, n = 0, 1, 2, ...} and S = {0

N
, 1

N
, B} are neutrosophic topologies

on X. Thus, (X,T ) and (X,S) are neutrosophic topological spaces. Define f : (X,T ) →
(X,S) as follows: f(a) = c, f(b) = c, f(c) = c. Then f is a generalized neutrosophic

irresolute mapping.

Let D = 〈x, ( a
0.9
, b
0.9
, c
0.9

), ( a
0.9
, b
0.9
, c
0.9

), ( a
0.1
, b
0.1
, c
0.1

)〉 be a neutrosophic set in (X,S). Then

f−1(D) is neutrosophic open and not neutrosophic closed in (X,T ). Hence, f is not a

strongly neutrosophic continuous mapping.

Proposition 3.14. Let (X,T ),(Y, S) and (Z,R) be any three neutrosophic topological

spaces. Let f : (X,T ) → (Y, S) be a generalized neutrosophic irresolute mapping and

g : (Y, S) → (Z,R) be a generalized neutrosophic continuous mapping. Then g ◦ f is a

generalized neutrosophic continuous mapping.

Proof. Let A be a neutrosophic open set in (Z,R). Since g is a generalized neutrosophic

continuous mapping, g−1(A) is a generalized neutrosophic open set in (Y, S). Since f is a

generalized neutrosophic irresolute mapping, f−1(g−1(A)) is a generalized neutrosophic open

set in (X,T ). Thus, g ◦ f is a generalized neutrosophic continuous mapping.

Proposition 3.15. Let (X,T ),(Y, S) and (Z,R) be any three neutrosophic topological

spaces. Let f : (X,T ) → (Y, S) be a strongly generalized neutrosophic continuous map-

ping and g : (Y, S)→ (Z,R) be a generalized neutrosophic continuous mapping. Then g ◦ f
is a neutrosophic continuous mapping.

Proof. Let A be a neutrosophic closed set in (Z,R). Since g is a generalized neutrosophic

continuous mapping. g−1(A) is a generalized neutrosophic closed set in (Y, S). Since f is a

strongly generalized neutrosophic continuous mapping, f−1(g−1(A))is a neutrosophic closed

set in (X,T ). Thus, g ◦ f is a neutrosophic continuous mapping.

Definition 3.4. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. Let

f : (X,T ) → (Y, S) be a mapping. The graph g : X → X × Y of f is defined by g(x) =

(x, f(x)),∀x ∈ X

Proposition 3.16. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. Let

f : (X,T )→ (Y, S) be a mapping. If the graph g : X → X×Y of f is a strongly neutrosophic

continuous mapping then f is also a strongly neutrosophic continuous mapping.

Proof. Let A be a neutrosophic set in (Y, S). By Definition 3.4., f−1(A) = 1∼ ∩ f−1(A) =

g−1(1∼ × A). Since g is a strongly neutrosophic continuous mapping, g−1(1∼ × A) is both

neutrosophic open and neutrosophic closed in (X,T ). Now, f−1(A) is both neutrosophic

open and neutrosophic closed in (X,T ). Hence, f is a strongly neutrosophic continuous

mapping.
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Proposition 3.17. Let (X,T ) and (Y, S) be any two neutrosophic topological spaces. Let

f : (X,T )→ (Y, S) be a mapping. If the graph g : X → X×Y of f is a perfectly neutrosophic

continuous mapping then f is also a perfectly neutrosophic continuous mapping.

Proof. Let A be a neutrosophic set in (Y, S). By Definition 3.4., f−1(A) = 1∼ ∩ f−1(A) =

g−1(1∼ × A). Since g is a perfectly neutrosophic continuous mapping, g−1(1∼ × A) is both

neutrosophic open and neutrosophic closed in (X,T ). Hence, f is a perfectly neutrosophic

continuous mapping.
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