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Abstract: Neutrosophic extended triplet group is a new algebra structure and is different from the
classical group. In this paper, the notion of generalized neutrosophic extended triplet group is
proposed and some properties are discussed. In particular, the following conclusions are strictly
proved: (1) an algebraic system is a generalized neutrosophic extended triplet group if and only if it
is a quasi-completely regular semigroup; (2) an algebraic system is a weak commutative generalized
neutrosophic extended triplet group if and only if it is a quasi-Clifford semigroup; (3) for each
n ∈ Z+, n ≥ 2, (Zn,⊗) is a commutative generalized neutrosophic extended triplet group; (4) for
each n ∈ Z+, n ≥ 2, (Zn,⊗) is a commutative neutrosophic extended triplet group if and only if
n = p1 p2 · · · pm, i.e., the factorization of n has only single factor.

Keywords: neutrosophic extended triplet group; generalized neutrosophic extended triplet group;
quasi-completely regular semigroup; clifford semigroup

1. Introduction

Groups are very important algebraic structures and have been applied in many fields, such as
cryptology, engineering, physics, chemistry, etc. Recently, a new algebraic system, neutrosophic triplet
group (NTG), is proposed by Smarandache and Ali in [1]. For an NTG (N, ∗), every element a ∈ N
has its own neutral element (denote by neut(a)) satisfying condition a ∗ neut(a) = neut(a) ∗ a = a,
and there exits at least one opposite element (denote by anti(a)) in N relative to neut(a) such that
a ∗ anti(a) = anti(a) ∗ a = neut(a). Some further studies can be found in [2–11].

From the original definition of NTG, we can see that it is an extension of a group. However, it is
different from a group. In NTG, the neutral element is different from the unit element of the classical
algebraic system. By removing this restriction, an algebraic system, which is called neutrosophic
extended triplet group (NETG), is proposed, and the classical group is regarded as a special case of
NETG. Moreover, further studies of NETG can be found in [12–18] and some important results have
been achieved.

For the algebraic system (Zn,⊗), ⊗ is the classical mod multiplication, where Zn =

{[0], [1], · · · , [n − 1]} and n ≥ 2 is a positive integer. (Zn,⊗) is only a commutative semigroup
before NTG and NETG are introduced. Recently, properties of algebraic structure of (Zn,⊗) in some
special cases are studied in [19,20] by the point view of NTG. We can see that for some positive integers
n, (Zn,⊗) is a commutative NETG, but for some positive integers n, (Zn,⊗) is not a commutative
NETG. So, there are two problems, 1 What conditions can guarantee (Zn,⊗) to be a NETG? 2 Is there a
new algebraic system that makes (Zn,⊗) is the algebraic system for each positive integer n? We will
give positive answers for the two problems in this paper.

The paper is organized as follows. Section 2 gives the related work. In Section 3, the conditions
which guarantee the algebraic system (Zn,⊗) to be a NETG are deeply studied. In Section 4,
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the generalized neutrosophic extended triplet group (GNETG) is proposed and some properties
and structure are discussed. Finally, the summary and future work are presented in Section 5.

2. Related Works

In this section, we will give the related research and results of the NETG. Some related notions
are introduced at first. Let G be non-empty set, ∗ is a binary operation on G. If ∀a, b ∈ G, implies
a ∗ b ∈ G, then (G, ∗) is called a groupoid. A groupoid G is called a semigroup if ∗ satisfies associative
law, i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c) ( ∀a, b, c ∈ G). A semigroup G is called a group if there exists the unit
element and for each element in G exists its inverse element.

Definition 1. [11] Let N be a non-empty set together with a binary operation ∗. Then, N is called a neutrosophic
extended triplet set if for any a ∈ N, there exists a neutral of “a” (denote by neut(a)), and an opposite of
“a”(denote by anti(a)), such that neut(a) ∈ N, anti(a) ∈ N and:

a ∗ neut(a) = neut(a) ∗ a = a, a ∗ anti(a) = anti(a) ∗ a = neut(a).

The triplet (a, neut(a), anti(a)) is called a neutrosophic extended triplet.

Definition 2. [11,15] Let (N, ∗) be a neutrosophic extended triplet set. Then, N is called a neutrosophic
extended triplet group (NETG), if the following conditions are satisfied:
(1) (N, ∗) is well-defined, i.e., for any a, b ∈ N, one has a ∗ b ∈ N.
(2) (N, ∗) is associative, i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ N.

A NETG N is called a commutative NETG if for all a, b ∈ N, a ∗ b = b ∗ a.

From Definition 2, we can see that a NETG is an extension of the classical group. There are some
important results about the properties and structure of a NETG. For examples, G is a NETG iff it
is a completely regular semigroup, G is a singular NETG iff it is a generalized group, and so on.
We introduce some related notions and results in the following. Figure 1 gives the relations of the
NETG and other algebraic structures.

Figure 1. The relations of NETG and other algebraic structures.

Proposition 1. [15] (N, ∗) be a NETG. We have:
(1) neut(a) is unique for any a ∈ N.
(2) neut(a) ∗ neut(a) = neut(a) for any a ∈ N.
(3) neut(neut(a)) = neut(a) for any a ∈ N.

Definition 3. [17] A NETG (N, ∗) is said to be singular, if anti(a) is unique for any a ∈ N.

Definition 4. [21] A generalized group (G, ∗) is a non-empty set admitting a binary operation ∗ called
multiplication subject to the set of rules given below:
(1) (a ∗ b) ∗ c = a ∗ (b ∗ c), ∀ a, b, c ∈ G.
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(2) For each a ∈ G, there exists a unique e(a) ∈ G such that a ∗ e(a) = e(a) ∗ a = a.
(3) For each a ∈ G, there exists a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e(a).

Theorem 1. [17] (N, ∗) is a singular NETG iff (N, ∗) is a generalized group.

Definition 5. [15] Let (N, ∗) be a NETG. Then N is called a weak commutative NETG if a ∗ neut(b) =

neut(b) ∗ a for all a, b ∈ N.

Definition 6. [22] A semigroup (S, ∗) is called regular if for any a ∈ S, there exists a unary operation a→ a−1

on S such that
(a−1)−1 = a, a ∗ a−1 ∗ a = a.

A semigroup S is called quasi-regular if for any a ∈ S, there exists a positive integer n such that an is regular.

Definition 7. [22] A semigroup (S, ∗) is called completely regular if for any a ∈ S, there exists a unary
operation a→ a−1 on S such that

(a−1)−1 = a, a ∗ a−1 ∗ a = a, a ∗ a−1 = a−1 ∗ a.

A semigroup S is called quasi-completely regular if for any a ∈ S, there exists a positive integer n such that an is
completely regular.

Proposition 2. [22] Let (S, ∗) be a semigroup. Then the following statements are equivalent:
(1) S is completely regular;
(2) every element of S lies in a subgroup of S;
(3) every H-class in S is a group.

Definition 8. [22] A semigroup (S, ∗) is called Clifford semigroup, if it is completely regular and in which for
any a, b ∈ S, such that

(a ∗ a−1) ∗ (b ∗ b−1) = (b ∗ b−1) ∗ (a ∗ a−1).

Proposition 3. [22] Let (S, ∗) be a semigroup. Then the following statements are equivalent:
(1) S is Clifford semigroup;
(2) S is a semilattice of groups;
(3) S is regular, and the idempotents of S are central.

Theorem 2. [18] Let (N, ∗) be a groupoid. Then N is a NETG iff it is a completely regular semigroup.

Theorem 3. [18] Let (N, ∗) be a groupoid. Then N is a weak commutative NETG iff it is a Clifford semigroup.

3. The Relations of (Zn,⊗) and NETG

Lemma 1. In an algebra system (Zn,⊗), where Z is the integer set, we have for a, b, c ∈ Z, ab ≡ c(mod n)
holds iff [a]⊗ [b] = [c] holds.

Lemma 2. For each positive integer n ≥ 2, linear congruence equation ax ≡ c(mod n) has a solution iff
gcd(a, n) | c, where gcd(a, b) is the greatest common divisor of a and b.

Proposition 4. The solution of x for equation [a]⊗ [x] = [a] is x = mn/gcd(a, n) + 1, where m ∈ Z.

Proof. From Lemma 1, [a]⊗ [x] = [a] has a solution iff ax ≡ a(mod n) has a solution, and by Lemma 2,
ax ≡ a(mod n) must have a solution being gcd(a, n) | a holds obviously. We will prove the solution to
the equation [a]⊗ [x] = [a] is mn/gcd(a, n) in the following.
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Let gcd(a, n) = d, then there exist two integers a1 and n1, such that a = a1 ∗ d, n = n1 ∗ d
and gcd(a1, n1) = 1. If x satisfies the equation ax ≡ a(mod n), we can get that n|(ax − a), thus
n1|(a1x− a1), i.e., a1x− a1 = m1n1, m1 ∈ Z, that is a1(x− 1) = m1n1. Since gcd(a1, n1) = 1, we have
a1|m1. Let m1 = ma1, m ∈ Z, then, a1(x− 1) = ma1n1, that is x = mn1 + 1, m ∈ Z.

On the other hand, being a(mn1 + 1)− a = amn1 = a1mn, that is n|(a(mn1 + 1)− a), i.e., a(mn1 +

1) ≡ a(mod n) holds, so x = mn1 + 1 is the solution of equation ax ≡ a(mod n). This tells us that the
solution for equation [a]⊗ [x] = [a] is x = mn/gcd(a, n) + 1, where m ∈ Z.

Remark: From Proposition 4, we can see that the solution of [a]⊗ [x] = [a] is just decided by the gcd(a, n).
If gcd(a, n) = gcd(b, n), then [a]⊗ [x] = [a] and [b]⊗ [x] = [b] have the same solution in (Zn,⊗).

Theorem 4. In the algebra system (Zn,⊗), for each [a] ∈ Zn, [a] has neut([a]) and anti([a]) iff
gcd(gcd(a, n), n/gcd(a, n)) = 1.

Proof. Necessity: In general, let [a] ∈ Zn and the neutral elements of [a] exists, that is there are
neut([a]) and anti([a]) such that [a] ⊗ neut([a]) = [a] and [a] ⊗ anti([a]) = neut([a]). That is the
linear congruence equations ax ≡ a(mod n) and ay ≡ x(mod n) have solutions. Let gcd(a, n) = d
and a = a1 ∗ d, n = n1 ∗ d. From Proposition 4, x = mn1 + 1, m ∈ Z. From Lemma 2, y has
solution for equation ay ≡ x(mod n) iff gcd(a, n)|x, that is gcd(a, n)|(mn1 + 1), which means
gcd(gcd(a, n), n/gcd(a, n)) = 1.

Sufficiency: If gcd(gcd(a, n), n/gcd(a, n)) = 1, we should verify that there is x and y, such that
ax ≡ a(mod n) and ay ≡ x(mod n). From Proposition 4, ax ≡ a(mod n) has a solution and x =

mn1 + 1, m ∈ Z. From the given condition gcd(d, n1) = 1, we can infer that there exist p, q ∈ Z, such
that pd + qn1 = 1, which means d|((−q)n1 + 1), that is d|x when m = −q. So there exists y, such that
ay ≡ x(mod n), which means if gcd(gcd(a, n), n/gcd(a, n)) = 1, thus for [a] ∈ Zn, [a] has neut([a])
and anti([a]).

Example 1. For (Z8,⊗), n = 8 = 23, the operation table as following Table 1. From Definition 1,
we have netu([0]) = [0], {anti([0])} = {[0], [1], [2], [3], [4], [5], [6], [7]}, netu([1]) = [1], anti([1]) =

[1], netu([3]) = [1], anti([3]) = [3], netu([5]) = [1], anti([5]) = [5], netu([7]) = [1], anti([7]) = [7],
but [2], [4] and [6] have not the neutral element and opposite element.

We can get the above results by Theorem 4. Being gcd(gcd(1, 8), 8/gcd(1, 8)) =

gcd(gcd(3, 8), 8/gcd(3, 8)) = gcd(gcd(5, 8), 8/gcd(5, 8)) = gcd(gcd(7, 8), 8/gcd(7, 8)) = 1, so from
Theorem 4, [1], [3], [5] and [7] exist the neutral element and opposite element. In fact, from Proposition 4, being
gcd(1, 8) = gcd(3, 8) = gcd(5, 8) = gcd(7, 8) = 1, i.e., they have the same greatest common divisor, so they
have the same neutral element, that is [1]. In the same way, [0] has its neutral element and opposite element.
However, gcd(gcd(2, 8), 8/gcd(2, 8)) = gcd(gcd(4, 8), 8/gcd(4, 8)) = gcd(gcd(6, 8), 8/gcd(6, 8)) =

2 6= 1, so [2], [4] and [6] do not have the neutral element and opposite element.

Table 1. The operation table of Z8.

⊗ [0] [1] [2] [3] [4] [5] [6] [7]

[0] [0] [0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5] [6] [7]
[2] [0] [2] [4] [6] [0] [2] [4] [6]
[3] [0] [3] [6] [1] [4] [7] [2] [5]
[4] [0] [4] [0] [4] [0] [4] [0] [4]
[5] [0] [5] [2] [7] [4] [1] [6] [3]
[6] [0] [6] [4] [2] [0] [6] [4] [2]
[7] [0] [7] [6] [5] [4] [3] [2] [1]
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Proposition 5. In the algebra system (Zn,⊗), if the neutral element exists, then it is unique.

Proof. In general, if [a] ∈ Zn and the neutral elements of [a] exists, that is there are neut([a]) and
anti([a]) such that [a]⊗ neut([a]) = [a] and [a]⊗ anti([a]) = neut([a]). Let gcd(a, n) = d and there are
two integers a1 and n1, such that a = a1 ∗ d, n = n1 ∗ d.

By Proposition 4, the neutral element of [a] has form n1m + 1, where m ∈ Z, and from Theorem 4,
there exists m0 ∈ Z such that d|(n1m0 + 1). Since d|n, we have d|(n1m0 + 1± n), which means there
must exist m ∈ Z such that 0 ≤ n1m + 1 < n, so the neutral element of [a] exists.

In the following, we will show that if there exist two integers m1 and m2, such that d|(n1m1 + 1)
and d|(n1m2 + 1), then n|n1(m1 −m2).

From d|(n1m1 + 1) and d|(n1m2 + 1), we have d|(n1m1 + 1− n1m2 − 1), i.e., d|(n1(m1 − m2)).
Being gcd(d, n1) = 1, then d|(m1 −m2), that is n|n1(m1 −m2).

From the above analysis, we can get that the neutral element of [a] is unique in (Zn,⊗) if it
exists.

Remark: From Proposition 5, we can see that if the neutral element of [a] exists, then it is unique. Let neut([a])
is the neutral element of [a], then we have that (neut([a], neut([a])), [1]) and (neut([a], neut([a])), neut([a]))
are the neutrosophic extended triplets in (Zn,⊗).

Example 2. For (Z36,⊗), n = 36 = 2232. From the above results we have:

(1) [2] has not the neutral element and opposite element being gcd(gcd(2, 36), 36/gcd(2, 36)) = 2 6= 1.
In fact, [2], [3], [6], [10], [12], [14], [15], [18], [21], [22], [24], [26], [30], [33] and [34] do not have the neutral
element and opposite element by Theorem 4 for the same reason.

(2) [4] and [8] have the same neutral element being gcd(4, 36) = gcd(8, 36) = 4. In fact,
[4], [8], [16], [20], [28] and [32] have the same neutral element, which is [28].

(3) [9] and [27] have the same neutral element [9] being gcd(9, 36) = gcd(27, 36) = 9.
(4) [1], [5], [7], [11], [13], [17], [19], [23], [25], [29], [31] and [35] have the same neutral element [1].
(5) [0] has the neutral element [0].
(6) We can see that the neutral element of each element is unique and explain that Proposition 5 is

correct. Moreover, ([0], [0], [1]), ([0], [0], [0]), ([1], [1], [1]), ([9], [9], [1]), ([9], [9], [9]), ([28], [28], [1])
and ([28], [28], [28]) are some neutrosophic extended triplets in (Z36,⊗), which verify the above Remark.

Theorem 5. An algebra system (Zn,⊗) is a NETG iff the factorization of n is a product of single factors,
i.e., n = p1 p2 · · · pk, where pi(i = 1, 2, · · · , k) is a prime number.

Proof. Necessity: Suppose that (Zn,⊗) is a NETG, we verify the factorization of n is the product of a
single factor and proof by contradiction.

Assume, the factorization of n is n = pk1
1 pk2

2 · · · p
kt
t , and ∃i, such that ki ≥ 2. Without losing

generality, let k1 ≥ 2. We will prove neut([p1]) and anti([p1]) do not exist.
Because gcd(gcd(p1, n), n/gcd(p1, n)) = pk1−1

1 and k1 ≥ 2, then

gcd(gcd(p1, n), n/gcd(p1, n)) 6= 1.

By Theorem 4, we have that neut([p1]) and anti([p1]) do not exist. This contradicts that (Zn,⊗) is
NETG. So, the factorization of n is a product of single factors if (Zn,⊗) is a NETG.

Sufficiency: If the factorization of n is a product of some single factors, i.e., n = p1 p2 · · · pk,
where pi(i = 1, 2, · · · , k) is a prime number. We will prove for each [a] ∈ Zn, neut([a]) and
anti([a]) exist.

Let d = gcd(a, n), because n = p1 p2 · · · pk, so gcd(d, n/d) = 1, i.e.,

gcd(gcd(a, n), n/gcd(a, n)) = 1.



Symmetry 2019, 11, 327 6 of 16

From Theorem 4, [a] has the neutral element and opposite element. From the arbitrariness of a, we can
know that (Zn,⊗) is a NETG if the factorization of n is a product of some single factors.

Remark: For an algebra system (Zn,⊗) and n = p1 p2 · · · pk, where pi(i = 1, 2, · · · , k) is a prime number.
From the above analysis, the number of different neutral elements in Zn is 2k.

Example 3. For (Z30,⊗), n = 30 = 213151, so each element in Z30 has its corresponding neutral element.
From the above Remark, the number of different neutral elements in Z30 is 23 = 8. In fact, being different factors
of 30 are 1, 2, 3, 5, 6, 10, 15, and 30. Thus, the different neutral elements are [1], [16], [21], [25], [6], [10], [15] and
[0] respectively. In detail (just consider the neutral element):

(1) [1], [7], [11], [13], [17], [19], [23] and [29] have the same neutral element, which is [1].
(2) [2], [4], [8], [14], [16], [22], [26] and [28] have the same neutral element, which is [16].
(3) [3], [9], [21] and [27] have the same neutral element, which is [21].
(4) [5] and [25] have the same neutral element, which is [25].
(5) [6], [12], [18] and [24] have the same neutral element, which is [6].
(6) [10] and [20] have the same neutral element, which is [10].
(7) [15] has neutral element [15].
(8) [0] has neutral element [0].

4. GNETG and Quasi-Completely Regular Semigroup

Definition 9. Let N be a non-empty set together with a binary operation ∗. Then, N is called a generalized
neutrosophic extended triplet set if for any a ∈ N, there exist at least a positive integer n, such that
an exists neutral element, denoted by neut(an), and opposite element, denoted by anti(an). The triplet
(a, neut(an), anti(an)) is called a generalized neutrosophic extended triplet with degree n.

Definition 10. Let (N, ∗) is a generalized neutrosophic extended triplet set. Then, N is called a GNETG, if the
following conditions are satisfied:
(1) (N, ∗) is well-defined, i.e., for any a, b ∈ N, a ∗ b ∈ N.
(2) (N, ∗) is associative, i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ N.

A GNETG N is called a commutative generalized neutrosophic extended triplet group if for all a, b ∈
N, a ∗ b = b ∗ a.

Remark: From Definition 9, it is obviously that a neutrosophic extended triplet is a generalized neutrosophic
extended triplet with degree 1, so a neutrosophic extended triplet set is a generalized neutrosophic extended
triplet set. Moreover, a NETG is a GNETG, but a GNETG is not a NETG in general.

Example 4. Let S = {a, e, f , g}, an operation ∗ on S is defined as in Table 2. We can see that
(e, e, a), (e, e, e), ( f , f , f ) and (g, g, g) are neutrosophic extended triplets, but a does not exist the neutral
element and opposite element. Thus, S is not a NETG. Moreover, a2 = e has the neutral element and opposite
element, so (S, ∗) is a GNETG. (a, e, a) and (a, e, e) are generalized neutrosophic extended triplets with degree
2. We can infer that (S, ∗) is a GNETG but not a NETG. Moreover, it is not a commutative GNETG being
e ∗ f 6= f ∗ e.

Table 2. A GNETG of Example 4.

∗ a e f g

a e e g e
e e e e e
f f f f f
g g g g g
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Example 5. Consider (Z12,⊗), 12 = 2231. From Theorem 4, we have:

(1) [0], [1], [3], [4], [5], [7], [8], [9] and [11] exist the neutral element and opposite element.
(2) [2] does not exist the neutral element and opposite element, but we can see that [2]2 = [4] exists the

neutral element and opposite element.
(3) [6] does not exist the neutral element and opposite element, but we can see that [6]2 = [0] exists the

neutral element and opposite element.
(4) [10] does not exist the neutral element and opposite element, but we can see that [10]2 = [4] exists the

neutral element and opposite element.

So Z12 is a generalized neutrosophic extended triplet set, but it is not a neutrosophic extended
triplet set. Moreover, (Z12,⊗) is a commutative GNETG. The following theorem shows that for each
positive integer n ≥ 2, (Zn,⊗) is a commutative GNETG.

Theorem 6. For each [a] ∈ Zn, there exists a positive integer m, such that [a]m has the neutral element and
opposite element. That is, (Zn,⊗) is commutative GNETG.

Proof. If the factorization of n is a product of single factors, From Theorem 5, (Zn,⊗) is a NETG,
so [a]1 = [a] has the neutral element and opposite element.

If n = pk1
1 pk2

2 · · · p
kt
t , and ∃i, such that ki ≥ 2. For each [a] ∈ Zn, it is easy to get that there is a

positive integer m, such that

gcd((gcd(am, n)), n/(gcd(am, n))) = 1,

that is [am] = [a]m has the neutral element and opposite element from Theorem 4. So, for each
[a] ∈ Zn, there exists a positive integer m, such that [a]m has the neutral element and opposite element,
i.e., (Zn,⊗) is a commutative GNETG.

Definition 11. [22] Let (S, ∗) be a semigroup, an element x in S is said to be periodic if there exists a positive
integer n such that xn+1 = x. S is pointwise periodic if each x in S is periodic.

Proposition 6. Let (S, ∗) be a pointwise periodic semigroup, then (S, ∗) is a NETG, so it is a GNETG.

Proof. Since (S, ∗) is a pointwise periodic semigroup, so for each element x in a S, there exists a
positive integer n such that xn+1 = x.

If n = 1, then x2 = x, so (x, x, x) is a neutrosophic extended triplet.
If n ≥ 2, so x ∗ xn = xn ∗ x = x and x ∗ xn−1 = xn−1 ∗ x = xn, that is, (x, xn, xn−1) is a neutrosophic

extended triplet.
By the arbitrariness of x, we have (S, ∗) is a NETG. Of course, it is a GNETG.

Example 6. Let S = {a, b, c}, an operation ∗ on S is defined as following Table 3. Because a2 = a, b3 =

b, c2 = c, so (S, ∗) is a pointwise periodic semigroup. Moreover, (a, a, a), (b, a, b), (c, c, a), (c, c, b) and (c, c, c)
are neutrosophic extended triplets, that is (S, ∗) is a NETG.

Table 3. A pointwise periodic semigroup of Example 6.

∗ a b c

a a b c
b b a c
c c c c

From Example 6, we can also see that if (S, ∗) has zero element (c is the zero element in Example 6),
then the neutral element of zero element is itself and the opposite element of zero element is every
element in S.
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Proposition 7. Let (N, ∗) is a GNETG, a ∈ N and (a, neut(an), anti(an)) is a generalized neutrosophic
extended triplet with degree n. We have:
(1) neut(an) is unique.
(2) neut(an) ∗ neut(an) = neut(an).

Proof. Assume c, d ∈ {neut(an)}, so an ∗ c = c ∗ an = an, an ∗ d = d ∗ an = an, and there exists x, y ∈ N
such that

an ∗ x = x ∗ an = c, an ∗ y = y ∗ an = d.

We can obtain
c ∗ d = (x ∗ an) ∗ d = x ∗ (an ∗ d) = x ∗ an = c,

c ∗ d = (an ∗ x) ∗ (an ∗ y) = (an ∗ (x ∗ an)) ∗ y = d.

We have c = d = c ∗ d. So neut(an) is unique and neut(an) ∗ neut(an) = neut(an).

Proposition 8. Let (N, ∗) is a GNETG, a ∈ N and (a, neut(an), anti(an)) is a generalized neutrosophic
extended triplet with degree n. Then
(1) an ∗ x ∗ neut(an) = x ∗ neut(an) ∗ an = neut(an), for any x ∈ {anti(an)}.
(2) an ∗ neut(an) ∗ x = neut(an) ∗ x ∗ an = neut(an) for any x ∈ {anti(an)}.
(3) neut((neut(an))) = neut(x ∗ neut(an)) = neut(an), x ∈ {anti(an)} ∪ {an}.
(4) neut(an) ∗ x = y ∗ neut(an) = z ∗ neut(an), for any x, y, z ∈ {anti(an)}.
(5) anti(x ∗ neut(an)) ∗ neut(x ∗ neut(an)) = an, for any x ∈ {anti(an)}.

Proof. (1) For any x ∈ {anti(an)}, from Definition 9 and Proposition 7, we have

an ∗ x ∗ neut(an) = (an ∗ x) ∗ neut(an) = neut(an) ∗ neut(an) = neut(an),

x ∗ neut(an) ∗ an = x ∗ (neut(an) ∗ an) = x ∗ an = neut(an).

So an ∗ x ∗ neut(an) = x ∗ neut(an) ∗ an = neut(an), for any x ∈ {anti(an)}.
(2) For any x ∈ {anti(an)}, From Definition 9 and Proposition 7, we have

an ∗ neut(an) ∗ x = (an ∗ neut(an)) ∗ x = an ∗ x = neut(an),

neut(an) ∗ x ∗ an = neut(an) ∗ (x ∗ an) = neut(an) ∗ neut(an) = neut(an).

So an ∗ neut(an) ∗ x = neut(an) ∗ x ∗ an = neut(an) for any x ∈ {anti(an)}.
(3) We prove neut(an) = neut((neut(an))) firstly.
For any x ∈ {anti(an)} and y ∈ {anti(neut(an))},

(y ∗ x) ∗ an = y ∗ (x ∗ an) = y ∗ neut(an) = neut(neut(an)).

Moreover,

((y ∗ x) ∗ an) ∗ neut(an) = (y ∗ x) ∗ (an ∗ neut(an)) = (y ∗ x) ∗ an = neut(neut(an)).

Thus, neut(an) = neut(neut(an)) ∗ neut(an) = ((y ∗ x) ∗ an) ∗ neut(an) = neut(neut(an)).
In the following we will prove neut(x ∗ neut(an)) = neut(an), x ∈ {anti(an)} ∪ {an}.
It is obvious that neut(x ∗ neut(an)) = neut(an) when x = an. If x ∈ {anti(an)}, by Proposition 7

we have:
(x ∗ neut(an)) ∗ neut(an) = x ∗ (neut(an) ∗ neut(an)) = x ∗ neut(an),
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neut(an) ∗ (x ∗ neut(an)) = (neut(an) ∗ x) ∗ neut(an) = (x ∗ neut(an)) ∗ neut(an)

= x ∗ (neut(an) ∗ neut(an)) = x ∗ neut(an).

Moreover, we can get

(x ∗ neut(an)) ∗ an = x ∗ (neut(an) ∗ an) = x ∗ an = neut(an),

an ∗ (x ∗ neut(an)) = (an ∗ x) ∗ neut(an) = neut(an) ∗ neut(an) = neut(an).

Thus, neut(an) = neut(x ∗ neut(an)).
(4) For any x, y, z ∈ {anti(an)}, we have

neut(an) ∗ x = (y ∗ an) ∗ x = y ∗ (an ∗ x) = y ∗ neut(an).

Moreover,

y ∗ neut(an) = y ∗ (an ∗ z) = (y ∗ an) ∗ z = neut(an) ∗ z = (z ∗ an) ∗ z = z ∗ (an ∗ z) = z ∗ neut(an).

Thus, (4) holds.
(5) Suppose x ∈ {anti(an)}, for each y ∈ {anti(x ∗ neut(an))}, from (4) we know that anti(x ∗

neut(an)) ∗ neut(x ∗ neut(an)) is unique. Applying (1), an ∈ {anti(x ∗ neut(an))}, that is,

anti(x ∗ neut(an)) ∗ neut(x ∗ neut(an)) = anneut(x ∗ neut(an)).

By (3), neut(x ∗ neut(an)) = neut(an). Thus, anti(x ∗ neut(an)) ∗ neut(x ∗ neut(an)) = an ∗ neut(x ∗
neut(an)) = an ∗ neut(an) = an.

Example 7. Let S = {a, e, b, f , c, g}, an operation ∗ on S is defined as following Table 4. Since neut(e) =

e, {anti(e)} = {a, e}, neut( f ) = f , {anti( f )} = {b, f }, neut(g) = g, {anti(g)} = {a, e, b, f , c, g} and
a2 = e, b2 = f , c2 = g, so (S, ∗) is a GNETG. We can get that (Corresponding to the results of Proposition 8):

Table 4. A GNETG of Example 7.

∗ a e b f c g

a e e c c c g
e e e c c c g
b g g f f g g
f g g f f g g
c g g c c g g
g g g g g g g

(1) Being a2 ∗ a ∗ neut(a2) = a ∗ neut(a2) ∗ a2 = neut(a2), a2 ∗ e ∗ neut(a2) = e ∗ neut(a2) ∗ a2 =

neut(a2), that is, for any x ∈ {anti(a2)}, a2 ∗ x ∗ neut(a2) = x ∗ neut(a2) ∗ a2 = neut(a2).
(2) Being b2 ∗ neut(b2) ∗ b = neut(b2) ∗ b ∗ b2 = neut(b2), b2 ∗ neut(b2) ∗ f = neut(b2) ∗ f ∗ b2 =

neut(b2), that is, for any x ∈ {anti(b2)}, b2 ∗ neut(b2) ∗ x = neut(b2) ∗ x ∗ b2 = neut(b2).
(3) Being neut((neut(a2))) = neut(a ∗ neut(a2)) = neut(a2), neut((neut(a2))) = neut(e ∗

neut(a2)) = neut(a2), that is, for any x ∈ {anti(an)} ∪ {an}, neut((neut(an))) = neut(x ∗
neut(an)) = neut(an).

(4) For each element x, y, z ∈ S, neut(c2) ∗ x = y ∗ neut(c2) = z ∗ neut(c2) = g, that is, for any
x, y, z ∈ {anti(c2)}, neut(c2) ∗ x = y ∗ neut(c2) = z ∗ neut(c2).

(5) Being b ∗ f = b2 = f , f ∗ f = b2 = f , that is, for any x ∈ {anti(b2)}, anti(x ∗ neut(b2)) ∗ neut(x ∗
neut(b2)) = b2.
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Proposition 9. Let (N, ∗) be a commutative GNETG, then ∀a, b ∈ N, there are two positive integers m andn
such that the following hold:
(1) neut(an) ∗ neut(bm) = neut(an ∗ bm).
(2) anti(an) ∗ anti(bm) ∈ {anti(an ∗ bm)}.

Proof. Being (N, ∗) be a commutative GNETG, then for a ∈ N, there is a positive integer n, such that
an exists the neutral element and opposite element, denoted by neut(an) and anti(an) respectively. For
b ∈ N, there is a positive integer m, such that bm exists the and opposite element, denoted by neut(bm)

and anti(bm) respectively. So

(neut(an) ∗ neut(bm)) ∗ (an ∗ bm) = ((neut(an) ∗ neut(bm)) ∗ an) ∗ bm

= ((neut(an) ∗ an) ∗ neut(bm)) ∗ bm

= (an ∗ neut(bm)) ∗ bm

= an ∗ (neut(bm) ∗ bm) = an ∗ bm.

in the same way, we have (an ∗ bm) ∗ (neut(an) ∗ neut(bm)) = an ∗ bm. That is:

(an ∗ bm) ∗ (neut(an) ∗ neut(bm)) = (neut(an) ∗ neut(bm)) ∗ (an ∗ bm) = an ∗ bm.

Moreover, for any anti(an) ∈ {anti(an)} and anti(bm) ∈ {anti(bm)}, we can get,

(anti(an) ∗ anti(bm)) ∗ (an ∗ bm) = ((anti(an) ∗ anti(bm)) ∗ an) ∗ bm

= ((anti(an) ∗ an) ∗ anti(bm)) ∗ bm

= (neut(an) ∗ anti(bm)) ∗ bm

= neut(an) ∗ (anti(bm) ∗ bm) = neut(an) ∗ neut(bm).

Similarly, we have (an ∗ bm) ∗ (anti(an) ∗ anti(bm)) = neut(an) ∗ neut(bm). That is:

(an ∗ bm) ∗ (anti(an) ∗ anti(bm)) = (anti(an) ∗ anti(bm)) ∗ (an ∗ bm) = neut(an) ∗ neut(bm).

Thus, we have
neut(an) ∗ neut(bm) ∈ {neut(an ∗ bm)}.

From this, by Proposition 7, we get: neut(an) ∗ neut(bm) = neut(an ∗ bm). Therefore, we get anti(an) ∗
anti(bm) ∈ {anti(an ∗ bm)}.

Example 8. Consider (Z12,⊗), which is a commutative GNETG from Example 5. Without losing generality,
select [2] and [4], then exist two positive integers 2 and 1, such that neut([2]2) ∗ neut([4]1) = neut([2]2 ∗
[4]1) = [4], so explain (1) of Proposition 9 is correct. Being {anti[4]} = {[1], [4], [7]} and [1], [4], [7] is a sub
algebra structure of (Z12,⊗) by Table 5. So, explain (2) of Proposition 9 is correct.

Table 5. The operator table of {[1], [4], [7]} in (Z12,⊗).

⊗ [1] [4] [7]

[1] [1] [4] [7]
[4] [4] [4] [4]
[7] [1] [4] [1]
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Example 9. Apply the (S, ∗) in Example 7, Since it is not a commutative GNETG, we can get that:

(1) Being for each 2 ≤ n ∈ Z+, an = e, and for each m ∈ Z+, f m = f , so neut(an) ∗ neut( f m) = e ∗ f = c.
On the other hand, neut(an ∗ f m) = neut(e ∗ f ) = neut(c), but neut(c) does not exist, so the (1) of
Proposition 9 does not hold.

(2) Being {anti(an)} = {a, e}, {anti( f m)} = { f }, an ∗ f m = c, but anti(c) does not exist, we can get that
the (2) of Proposition 9 does not hold.

Theorem 7. Let (N, ∗) be a groupoid. Then N is a GNETG if and only if it is a quasi-completely
regular semigroup.

Proof. Necessity: Suppose N is a GNETG, from Definition 10, for each a ∈ N, there is a positive integer
n, such that an exists the neutral element and opposite element, denoted by neut(an) and anti(an)

respectively. Set
(an)−1 = anti(an) ∗ neut(an),

by Proposition 8, (an)−1 is unique and we have

((an)−1)−1 = anti(anti(an) ∗ neut(an)) ∗ neut(anti(an) ∗ neut(an)) = an,

an ∗ (an)−1 ∗ an = an ∗ anti(an) ∗ neut(an) ∗ an = an,

an ∗ anti(an) ∗ neut(an) = anti(an) ∗ neut(an) ∗ an = neut(an), i.e. an ∗ (an)−1 = (an)−1 ∗ an

from Definition 7, N is a quasi-completely regular semigroup.
Sufficiency: If N is a completely quasi-regular semigroup. For any a ∈ N, there is a positive

integer n and (an)−1 ∈ N, such that an ∗ (an)−1 ∗ an = an and an ∗ (an)−1 = (an)−1 ∗ an, set

neut(an) = an ∗ (an)−1,

then
neut(an) ∗ an = an ∗ (an)−1 ∗ an = an,

an ∗ neut(an) = an ∗ an ∗ (an)−1 = an ∗ (an)−1 ∗ an = an,

an ∗ (an)−1 = (an)−1 ∗ an = neut(an).

From Definition 10, we have that N is a GNETG and (an)−1 ∈ {anti(an)}.

Example 10. Apply (S, ∗) in the Example 7, we know that it is a GNETG. We will show that it is a
quasi-completely regular semigroup in the following.

For e, there exists an inverse element e−1 = e, such that (e−1)−1 = e, e ∗ e−1 ∗ e = e, e ∗ e−1 = e−1 ∗ e,
so e is completely regular. f and g are completely regular for the same reason. Moreover, being a2 = e, b2 = f
and c2 = g, so a2, b2 and c2 are completely regular, so (S, ∗) is a quasi-completely regular semigroup by
Definition 7.

Definition 12. Let (N, ∗) is a GNETG. N is called a weak commutative GNETG if there are two positive
integers n, m, such that an ∗ neut(bm) = neut(bm) ∗ an for all a, b ∈ N.

Example 11. Let S = {a, b, c, d, f }, an operation ∗ on S is defined as following Table 6.
Since (a, a, a), (b, a, b), (c, c, c) and ( f , f , f ) are neutrosophic extended triplets, but d does not exist the neutral
element and opposite element. Thus, S is not a NETG. Moreover, d2 = c exists the neutral element and opposite
element, so (S, ∗) is GNETG and (d, c, c) is a generalized neutrosophic extended triplet with degree 2. We can
infer that (S, ∗) is a GNETG but not a NETG. Moreover, it is not a commutative GNETG being b ∗ d 6= d ∗ b,
we can show that it is a weak commutative GNETG.
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For a, b, c, d, and f , there exist positive integers 1, 1, 1, 2, and 1 respectively, so S′ = {a1, b1, c1, d2, f 1} =
{a, b, c, f } being d2 = c. We know that neut(a) = a, neut(b) = a, neut(c) = c, neut( f ) = f ,
so {neut(a), neut(b), neut(c), neut( f )} ∈ S′. From Table 6, we can get the sub algebra system (S′, ∗) of
(S, ∗) as following Table 7, and (S′, ∗) is commutative. Thus, (S, ∗) is a weak commutative GNETG.

Table 6. The operation table of Example 11.

∗ a b c d f

a a b c d f
b b a c d f
c c c c c c
d c c c c c
f f f c d f

Table 7. The sub algebra system S′ of S in Example 11.

∗ a b c f

a a b c f
b b a c f
c c c c c
f f f c f

Example 12. Select the (S, ∗) in Example 4, being en = e, f m = f for every n, m ∈ Z+, en ∗ neut( f m) =

e ∗ f = e, f m ∗ neut(en) = f ∗ e = f , so en ∗ neut( f m) = e 6= f = neut( f m) ∗ en, ∀n, m ∈ Z+. Thus,
the (S, ∗) in Example 4 is not weak commutative GNETG.

Proposition 10. Let (N, ∗) be a GNETG. Then (N, ∗) is a weak commutative GNETG iff there are two positive
integers n and m, such that N satisfies the following conditions:
(1) neut(an) ∗ neut(bm) = neut(bm) ∗ neut(an), for all a, b ∈ N.
(2) neut(an) ∗ neut(bm) ∗ an = an ∗ neut(bm), for all a, b ∈ N.

Proof. Necessity: If (N, ∗) is a weak commutative GNETG, then there are two positive integers n, m,
such that an and bm exist the neutral element and opposite element. So, from Proposition 7 and
Definition 12, we have

neut(an) ∗ neut(bm) = neut(bm) ∗ neut(an), ∀a, b ∈ N.

Moreover,

neut(an) ∗ neut(bm) ∗ an = neut(an) ∗ (neut(bm) ∗ an)

= neut(an) ∗ (an ∗ neut(bm))

= (neut(an) ∗ an) ∗ neut(bm) = an ∗ neut(bm).

Sufficiency: Suppose that N satisfies the conditions (1) and (2) above. Then:

an ∗ neut(bm) = (neut(an) ∗ neut(bm)) ∗ an

= (neut(bm) ∗ neut(an)) ∗ an

= neut(bm) ∗ (neut(an) ∗ an) = neut(bm) ∗ an.

From Definition 12 we know that (N, ∗) is a weak commutative GNETG.
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Proposition 11. Let (N, ∗) be a weak commutative GNETG, then for a, b ∈ N, the following conditions
are satisfied:
(1) neut(an) ∗ neut(bm) = neut(bm ∗ an);
(2) anti(an) ∗ anti(bm) ∈ {anti(bm ∗ an)}.

Proof. If a, b ∈ N, then there are two positive integers m, n, such that an and bm exist the neutral
element and opposite element. We have

(neut(an) ∗ neut(bm)) ∗ (bm ∗ an) = ((neut(an) ∗ neut(bm)) ∗ bm) ∗ an

= (neut(an) ∗ (bm ∗ neut(bm))) ∗ an

= (neut(an) ∗ bm) ∗ an

= (bm ∗ neut(an)) ∗ an = bm ∗ (neut(an) ∗ an) = bm ∗ an.

Similarly, we have (bm ∗ an) ∗ (neut(an) ∗ neut(bm)) = (neut(an) ∗ neut(bm)) ∗ (bm ∗ an) = bm ∗ an.
Moreover, for any anti(an) ∈ {anti(an)} and anti(bm) ∈ {anti(bm)}, we have:

(anti(an) ∗ anti(bm)) ∗ (bm ∗ an) = ((anti(an) ∗ anti(bm)) ∗ bm) ∗ an

= (anti(an) ∗ (anti(bm) ∗ bm)) ∗ an

= (anti(an) ∗ neut(bm)) ∗ an

= anti(an) ∗ (neut(bm) ∗ an)

= anti(an) ∗ (an ∗ neut(bm))

= (anti(an) ∗ an) ∗ neut(bm) = neut(an) ∗ neut(bm).

Similarly, we have (bm ∗ an) ∗ (anti(an) ∗ anti(bm)) = (anti(an) ∗ anti(bm)) ∗ (bm ∗ an) =

neut(an) ∗ neut(bm). So, we have neut(an) ∗ neut(bm) ∈ {neut(bm ∗ an)}. From this, we can get
neut(an) ∗ neut(bm) = neut(bm ∗ an). Thus, we have anti(an) ∗ anti(bm) ∈ anti(bm ∗ an).

Example 13. Let S = {a, e, b, f , c, g}, an operation ∗ on S is defined as following Table 8. Being netu(e) =
e, {anti(e)} = {a, e}, netu( f ) = f , {anti( f )} = {b, f }, netu(g) = g, {anti(g)} = {a, e, b, f , c, g} and
a2 = e, b2 = f , c2 = g, so (S, ∗) is a GNETG. It is easy to verify (S, ∗) is a weak commutative GNETG by
Definition 12. We also can get:

(1) Being neut(b2) ∗ neut(e1) = f ∗ e = g, and neut(e1 ∗ b2) = neut(g) = g, so, neut(b2) ∗ neut(e1) =

neut(e1 ∗ b2).
(2) Being {anti(b2)} = {b, f }, {anti(e1)} = {a, e}, {anti(b2 ∗ e1)} = {anti(g)} = {a, e, b, f , c, g},

thus, anti(b2) ∗ anti(e1) ∈ {anti(b2 ∗ e1)}.

Table 8. The operation table of Example 13.

∗ a e b f c g

a e e c c g g
e e e g g g g
b c g f f c g
f c g f f c g
c g g c c g g
g g g g g g g

Example 14. Apply the (S, ∗) in Example 4, Being it is not a weak commutative GNETG, we can get that:

(1) Being neut(a2) ∗ neut( f 1) = e ∗ f = e, but neut( f 1 ∗ a2) = neut( f ) = f , so, neut(a2) ∗ neut( f 1) 6=
neut( f 1 ∗ a2).
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(2) Being {anti(a2)} = {a, e}, {anti( f 1)} = { f }, {anti( f 1 ∗ a2)} = {anti( f )} = { f }, thus, anti(a2) ∗
anti( f 1) 6∈ {anti( f 1 ∗ a2)}.

Definition 13. A semigroup S is called a quasi-Clifford semigroup, if it is quasi-completely regular and for
any a, b ∈ S, there are two positive integers n, m such that

an ∗ (bm ∗ (bm)−1) = (bm ∗ (bm)−1) ∗ an.

Theorem 8. Let (N, ∗) be a groupoid. Then N is a weak commutative GNETG iff it is a
quasi-Clifford semigroup.

Proof. Necessity: Suppose that N is a weak commutative GNETG. By Theorem 7, we know that N is
a quasi-completely regular semigroup, then there are two positive integers m, n, such that an and bm

exist the neutral element and opposite element. Set

(an)−1 = anti(an) ∗ neut(an).

For any a, b ∈ N, so we have

an ∗ (bm ∗ (bm)−1) = (bm ∗ (bm)−1) ∗ an.

From Definition 13, we know that N is a quasi-Clifford semigroup.
Sufficiency: Assume that N is a quasi-Clifford semigroup, then there are two positive integers m

and n, such that an and bm are completely regular. Then there exists (an)−1 and (bm)−1. Set

neut(an) = an ∗ (an)−1, neut(bm) = bm ∗ (bm)−1.

Applying Definition 13, being an ∗ (bm ∗ (bm)−1) = (bm ∗ (bm)−1) ∗ an, we have an ∗ neut(bm) =

neut(bm) ∗ an, we can get that N is a weak commutative GNETG by Definition 12.

Example 15. Apply the (S, ∗) in Example 11, Being it is a weak commutative GNETG from Example 11.
We show that it is a quasi-Clifford semigroup. From Theorem 7, we can see that (S, ∗) is a quasi-completely
regular semigroup, we just show for any x, y ∈ S, there are two positive integers n and m such that xn ∗ (ym ∗
(ym)−1) = (ym ∗ (ym)−1) ∗ xn.

From Example 11, for a, b, c, d, and f , there exist positive integers 1, 1, 1, 2, and 1 respectively, and set
a−1 = a, b−1 = b, c−1 = c, (d2)−1 = c, f−1 = f . For any x, y ∈ {a1, b1, c1, d2, f 1}, without losing
generality, let x = a, y = b, we can get a1 ∗ (b1 ∗ (b1)−1) = (b1 ∗ (b1)−1) ∗ a1 = b. We can verify other cases,
thus (S, ∗) is a quasi-Clifford semigroup.

Example 16. Apply the (S, ∗) in Example 4, Being it is not a weak commutative GNETG from Example 12.
We show that there exists x, y ∈ S, for any two positive integers n and m such that xn ∗ (ym ∗ (ym)−1) 6=
(ym ∗ (ym)−1) ∗ xn.

From Example 4, for any n, m ∈ Z+, en = e, f m = f and (en)−1 = e, ( f m)−1 = f , but en ∗ ( f m ∗
( f m)−1) = e 6= f = ( f m ∗ ( f m)−1) ∗ en. That is for e, f ∈ S, there are not two positive integers n, m such
that en ∗ ( f m ∗ ( f m)−1) = ( f m ∗ ( f m)−1) ∗ en . So (S, ∗) is not a quasi-Clifford semigroup.

5. Conclusions

In the paper, from the perspective of semigroup theory, we deeply studied the GNETG and
obtained some important results. We proved that the GNETG is equal to the quasi-completely regular
semigroup, and the weak commutative GNETG is equal to the quasi-Clifford semigroup. Moreover,
we investigated the relationship between (Zn,⊗) and a NETG. All these results are interesting for
exploring the structure characterization of GNETG. As the next research topics, we will explore the
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structure of some special GNETG and their relationships with related logic algebras. Moreover, we will
discuss the integration of the related topics, such as the combination of neutrosophic set, fuzzy set,
soft set and algebra systems [23,24].
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