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Abstract: Single-valued neutrosophic hesitant fuzzy set (SVNHFS) is a combination of single-valued
neutrosophic set and hesitant fuzzy set, and its aggregation tools play an important role in the
multiple criteria decision-making (MCDM) process. This paper investigates the MCDM problems in
which the criteria under SVNHF environment are in different priority levels. First, the generalized
single-valued neutrosophic hesitant fuzzy prioritized weighted average operator and generalized
single-valued neutrosophic hesitant fuzzy prioritized weighted geometric operator are developed
based on the prioritized average operator. Second, some desirable properties and special cases of
the proposed operators are discussed in detail. Third, an approach combined with the proposed
operators and the score function of single-valued neutrosophic hesitant fuzzy element is constructed
to solve MCDM problems. Finally, an example of investment selection is provided to illustrate the
validity and rationality of the proposed method.

Keywords: multiple criteria decision-making (MCDM); single-valued neutrosophic hesitant
fuzzy set (SVNHFS); generalized single-valued neutrosophic hesitant fuzzy prioritized weighted
average operator; generalized single-valued neutrosophic hesitant fuzzy prioritized weighted
geometric operator

1. Introduction

In daily life, MCDM problems happen in many fields; decision makers determine the best one
from several alternatives through evaluating them with respect to the corresponding criteria. Due to
the high complexity of the social environment, the evaluation information given by decision makers is
often uncertain, incomplete, and inconsistent. With the demand for accuracy of decision-making results
is getting higher and higher, much research in recent years has focused on the MCDM problems under
fuzzy environment [1]. In 1965, Zadeh [2] developed the fuzzy set (FS) theory, which is a powerful
tool to express the fuzzy information. However, there are several obvious limitations of FS theory in
expressing uncertain information, which are attracting widespread interest in improving FS theory.

Atanassov [3] introduced the non-membership function to extend FS theory and proposed the
intuitionistic fuzzy set (IFS) theory. IFS can express the membership and non-membership information
simultaneously; the property can deal with some applications effectively, which FS cannot. For example,
ten decision makers vote for an affair, four present agreement, three suggest different opinions, and the
others choose to give up. The example above can be characterized by IFS, i.e., the value of membership
is 0.4, and the value of non-membership is 0.3. However, expressing the voting information by FS
is impossible. To describe the fuzziness of evaluation information more effective, Atanassov and
Gargov [4] utilized the interval number to extend the membership and non-membership functions
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and put forward the interval-valued intuitionistic fuzzy set (IVIFS) theory. Nevertheless, in the real
decision-making process, only considering the membership and non-membership information is not
comprehensive sometimes. For instance, a decision maker gives her/his evaluation on a viewpoint,
she/he may think the positive probability is 0.5, the false probability is 0.6, and the indeterminacy
probability is 0.2 [5]. Obviously, IFS and IVIFS theory cannot deal with this situation. Therefore,
Smarandache [6] defined the neutrosophic set (NS), which can be regarded as a generalization of
FS and IFS [7]. NS consists of three independent membership functions, namely, truth-membership,
indeterminacy-membership, and falsity-membership functions. Whereas, NS theory was originally
proposed from a philosophical point of view, and it is difficult to apply NS theory in the field of science
and engineering. To solve this problem, Wang [8,9] defined the concepts of interval neutrosophic
set (INS) and single-valued neutrosophic set (SVNS), which are specific cases of NS.

Another drawback of FS is that its membership value is single; while determining the exact
value of membership may be difficult for decision makers due to doubt. To deal with this situation,
Torra and Narukawa [10] and Torra [11] extended the FS theory to hesitant fuzzy set (HFS) theory
through allowing decision makers to give several different values of membership. Furthermore,
Chen [12] defined the concept of interval-valued hesitant fuzzy set (IVHFS), in which the possible
membership values can be expressed by interval numbers. Considering the complex information given
by decision makers, Zhu [13] introduced the non-membership hesitancy function to propose the dual
hesitant fuzzy set (DHFS) theory. According to the aforementioned analysis of improved FS theory
from two directions, Ye [14] developed the single-valued neutrosophic hesitant fuzzy set (SVNHFS)
combined with NS and HFS theory, in addition, Liu and Shi [7] extended the SVNHFS to interval
neutrosophic hesitant fuzzy set (INHFS). Consequently, SVNHFS and INHFS not only can characterize
the inconsistent and indeterminate information but also allow decision makers to give several possible
values of truth-membership, indeterminacy-membership, and falsity-membership functions.

Besides the evaluation information, aggregation tools also are important parts of MCDM process.
Ye [14] developed the operational laws and cosine measure of single-valued neutrosophic hesitant fuzzy
elements (SVNHFEs), and proposed the single-valued neutrosophic hesitant fuzzy weighted average
(SVNHFWA) operator and single-valued neutrosophic hesitant fuzzy weighted geometric (SVNHFWG)
operator to aggregate SVNHFEs. Şahin and Liu [15] constructed the decision-making approach based
on the correlation coefficient and weighted correlation coefficient of SVNHFEs. Biswas et al. [16]
put forward several approaches for decision-making under SVNHF environment by using distance
measures of SVNHFEs. Liu and Luo [17] proposed the single-valued neutrosophic hesitant fuzzy
ordered weighted average (SVNHFOWA) operator and single-valued neutrosophic hesitant fuzzy
hybrid weighted average (SVNHFHWA) operator, and applied them into MCDM process. Liu and
Zhang [18] developed the single-valued neutrosophic hesitant fuzzy Heronian mean aggregation
operators to deal with MCDM problems. Liu and Shi [7] defined the operational laws of INHFSs and
proposed interval neutrosophic hesitant fuzzy generalized weighted average (INHFGWA) operator,
interval neutrosophic hesitant fuzzy generalized ordered weighted average (INHFGOWA) operator,
and interval neutrosophic hesitant fuzzy generalized hybrid weighted average (INHFGHWA) operator.
Ye [19] determined the ranking of alternatives combined with the correlation coefficient of INHFSs.

The aforementioned decision-making methods are applied to the situation of the aggregated
arguments and are in the same priority; whereas, in many real situations, criteria always have different
priorities. For example, a mother chooses the dried milk for her baby, the criteria she considers
are price and safety. Obviously, a prioritization ordering exists between the criteria, i.e., safety is
much more important than price [20]. To deal with this situation, Yager [21] proposed the prioritized
average (PA) operator to aggregate the evaluation information concerning the criteria of different
priorities. Since the PA operator was presented, many scholars have focused on extending the
PA operator into the fuzzy environment. For instance, Yu [20] proposed the intuitionistic fuzzy
prioritized weighted average (IFPWA) operator and intuitionistic fuzzy prioritized weighted geometric
(IFPWG) operator, and investigated their properties. Yu et al. [22] extended the PA operator into IVIF
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environment and developed the interval-valued intuitionistic fuzzy prioritized weighted average
(IVIFPWA) operator and interval-valued intuitionistic fuzzy prioritized weighted geometric (IVIFPWG)
operator. Liu and Wang [23] studied the aggregation operator under IN environment and put forward
the interval neutrosophic prioritized ordered weighted average (INPOWA) operator. Furthermore,
Wei [24] extended the PA operator into hesitant fuzzy MCDM problems. Jin et al. [25] developed
interval-valued hesitant fuzzy Einstein prioritized weighted average (IVHFEPWA) operator and the
interval-valued hesitant fuzzy Einstein prioritized weighted geometric (IVHFEPWG) operator through
improving the operations of IVHFSs. However, to our best knowledge, little attention has been paid to
the prioritized aggregation operators under SVNHF environment.

This paper proposes the aggregation operators for SVNHFEs, in which the aggregation arguments
have different priority levels, and develops an approach for decision-making. To do this, the rest
of this paper is organized as follows. Section 2 briefly introduces some basic concepts of SVNS,
HFS, SVNHFS, and the PA operator. Section 3 develops the generalized single-valued neutrosophic
hesitant fuzzy prioritized weighted average (GSVNHFPWA) operator and generalized single-valued
neutrosophic hesitant fuzzy prioritized weighted geometric (GSVNHFPWG) operator, and investigates
some desirable properties and special cases of the proposed operators. Section 4 constructs an approach
for decision-making based on the proposed operators. Section 5 provides a numerical example
to illustrate the applications and advantages of the proposed method. Section 6 summarizes the
conclusions of this research.

2. Preliminaries

In this section, we briefly introduce some basic concepts, including the definitions of NS, SVNS,
HFS, and SVNHFS. The operations of SVNHFEs and the PA operator are also presented, which are
used in the subsequent discussion.

2.1. The Single-Valued Neutrosophic Set

Definition 1. Ref. [6] Let X be a universe of discourse, with a generic element in X denoted by x.
An NS A in X is characterized by a truth-membership function TA(x), an indeterminacy-membership
function IA(x), and a falsity-membership function FA(x). The functions TA(x), IA(x), and FA(x)
are real standard or non-standard subsets of ]−0, 1+[, i.e., TA(x) : X →]−0, 1+[ , IA(x) : X →]−0, 1+[ ,
and FA(x) : X →]−0, 1+[ . Thus, the sum of three aforementioned functions satisfies the condition of
−0 ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+.

NS theory was originally proposed from the angle of philosophy and can be regarded as
a generalization of FS, IFS, and IVIFS. However, the NS is not easily used for real scientific and
engineering decision-making problems. To solve this limitation, Wang [8] defined the concept of SVNS,
which is a special case of NS.

Definition 2. Ref. [8] Let X be a universe of discourse, with a generic element in X denoted by x. An SVNS A
is given by

A = {〈x, TA(x), IA(x), FA(x)〉|x ∈ X }, (1)

where TA(x) is the truth-membership function, IA(x) is the indeterminacy-membership function, and FA(x)
is the falsity-membership function. For each point x in X, the functions TA(x), IA(x), and FA(x) satisfy the
conditions of TA(x), IA(x), FA(x) ∈ [0, 1] and 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

2.2. The Hesitant Fuzzy Set

During the decision-making process, decision makers sometimes may be confused when
determining the exact membership value of an element to the set because of the existing several
possible membership values. Considering this situation, Torra and Narukawa [10] defined the concept
of HFS.



Information 2018, 9, 10 4 of 19

Definition 3. Ref. [10] Let X be a non-empty and finite set, an HFS A on X is defined by a function hA(x)
that when applied to X returns a finite subset of [0, 1], which can be expressed as

A = {〈x, hA(x)〉|x ∈ X }, (2)

where hA(x) is a set of some different values in [0, 1], indicating the possible membership degrees of the element
x ∈ X to A.

2.3. The Single-Valued Neutrosophic Hesitant Fuzzy Set

Based on the combination of SVNS and HFS, Ye [14] proposed the concept of SVNHFS.

Definition 4. Ref. [14] Let X be a non-empty and finite set, an SVNHFS N on X is expressed as

N =
{〈

x, t̃(x), ĩ(x), f̃ (x)
〉
|x ∈ X

}
, (3)

where t̃(x) =
{

γ
∣∣γ ∈ t̃(x)

}
, ĩ(x) =

{
δ
∣∣∣δ ∈ ĩ(x)

}
, and f̃ (x) =

{
η
∣∣∣η ∈ f̃ (x)

}
are three sets of some

different values in [0, 1], denoting the possible truth-membership hesitant, possible indeterminacy-membership
hesitant, and possible falsity-membership hesitant degrees of the element x ∈ X to N. And they satisfy the
conditions of γ, δ, η ⊆ [0, 1] and 0 ≤ supγ+ + supδ+ + supη+ ≤ 3, where γ+ = ∪γ∈t̃(x)max{γ},

δ+ = ∪
δ∈ĩ(x)max{δ}, and η+ = ∪

η∈ f̃ (x)max{η} for x ∈ X. For convenience, we call ñ =
{̃

t(x), ĩ(x), f̃ (x)
}

is an SVNHFE, denoted by ñ =
{

t̃, ĩ, f̃
}

.

Definition 5. Ref. [14] Let ñ =
{

t̃, ĩ, f̃
}

, ñ1 =
{

t̃1, ĩ1, f̃1

}
and ñ2 =

{
t̃2, ĩ2, f̃2

}
be three SVNHFEs, λ > 0,

then the basic operations of SVNHFEs are defined as

ñ1 ⊕ ñ2 =
{

t̃1 ⊕ t̃2, ĩ1 ⊗ ĩ2, f̃1 ⊗ f̃2

}
= ∪

γ1∈t̃1,δ1∈ĩ1,η1∈ f̃1,γ2∈t̃2,δ2∈ĩ2,η2∈ f̃2

{{γ1 + γ2 − γ1γ2}, {δ1δ2}, {η1η2}}; (4)

ñ1 ⊗ ñ2 =
{

t̃1 ⊗ t̃2, ĩ1 ⊕ ĩ2, f̃1 ⊕ f̃2

}
= ∪

γ1∈t̃1,δ1∈ĩ1,η1∈ f̃1,γ2∈t̃2,δ2∈ĩ2,η2∈ f̃2

{{γ1γ2}, {δ1 + δ2 − δ1δ2}, {η1 + η2 − η1η2}}; (5)

λñ = ∪
γ∈t̃,δ∈ĩ,η∈ f̃

{{
1− (1− γ)λ

}
,
{

δλ
}

,
{

ηλ
}}

; (6)

ñλ = ∪
γ∈t̃,δ∈ĩ,η∈ f̃

{{
γλ
}

,
{

1− (1− δ)λ
}

,
{

1− (1− η)λ
}}

. (7)

Definition 6. Ref. [18] Let ñ =
{

t̃, ĩ, f̃
}

be an SVNHFE, then the score function s(ñ) of ñ is given by

s(ñ) =
[

1
l ∑l

i=1 γi +
1
p∑p

i=1 (1− δi) +
1
q ∑q

i=1(1− ηi)

]/
3 , (8)

where l, p, q are the numbers of values in t̃, ĩ, f̃ , respectively. Obviously, the range of s(ñ) is limited to [0, 1].

Definition 7. Ref. [18] Let ñ1 =
{

t̃1, ĩ1, f̃1

}
and ñ2 =

{
t̃2, ĩ2, f̃2

}
be two SVNHFEs, then the comparison

method of them is expressed by

(1) If s(ñ1) > s(ñ2), then ñ1 > ñ2;
(2) If s(ñ1) < s(ñ2), then ñ1 < ñ2;
(3) If s(ñ1) = s(ñ2), then ñ1 = ñ2.
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2.4. The Prioritized Average Operator

Aggregation operators play an important role in group decision-making to fusion the evaluation
information. In view of priority relations between the criteria, Yager [21] developed the PA operator to
solve this problem.

Definition 8. Ref. [21] Let C = {C1, C2, . . . , Cn} be a collection of criteria, and priority relations between the
criteria exist which can be expressed by the ordering of C1 � C2 � C3 � · · · � Cn. That means criteria Cj has
a higher priority level than criteria Ck if j < k. The value Cj(x) is the evaluation information of alternative x
with respect to criteria Cj. Thus, if

PA
(
Cj(x)

)
= ∑n

j=1 wjCj(x), (9)

then the function PA is called the prioritized average (PA) operator, where wj = Tj/∑n
j=1Tj,Tj = ∏

j−1
k=1 Ck(x),

T1 = 1.

3. Generalized Single-Valued Neutrosophic Hesitant Fuzzy Prioritized Aggregation Operators

The PA operator can effectively solve the decision-making problems that the criteria have different
priorities; however, it can only be used in the situation where the aggregated arguments are exact values.
Combined with the PA operator and the generalized mean operators [26], we extend the PA operator to
deal with the decision-making problems under SVNHF environment. In this section, the GSVNHFPWA
operator and GSVNHFPWG operator are proposed, and their properties are presented simultaneously.
Besides, several special cases of the GSVNHFPWA operator and GSVNHFPWG operator are also
discussed through changing the values of the parameter λ.

3.1. Generalized Single-Valued Neutrosophic Hesitant Fuzzy Prioritized Average Operator

Definition 9. Let ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) be a collection of SVNHFEs, and let GSVNHFPWA :

Ωn → Ω , if

GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) =

(
T1

∑n
j=1 Tj

ñλ
1 ⊕

T2

∑n
j=1 Tj

ñλ
2 ⊕ · · · ⊕

T1

∑n
j=1 Tj

ñλ
n

)1/λ

, (10)

then the function GSVNHFPWA is called the GSVNHFPWA operator. Where Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n),

T1 = 1, and s(ñk) is the score function value of SVNHFE ñk.

According to the operational laws of SVHFEs in Definition 5, we can obtain the theorem as follows.

Theorem 1. Let ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) be a collection of SVNHFEs, then their aggregated value by

using the GSVNHFPWA operator is also an SVNHFE, and

GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) =

(
T1

∑n
j=1 Tj

ñλ
1 ⊕

T2

∑n
j=1 Tj

ñλ
2 ⊕ · · · ⊕

Tn

∑n
j=1 Tj

ñλ
n

)1/λ

= ∪
γ̃1∈t̃1,γ̃2∈t̃2,...,γ̃n∈t̃n ,δ̃1∈ĩ1,δ̃2∈ĩ2,...,δ̃n∈ĩn ,η̃1∈ f̃1,η̃2∈ f̃2,...,η̃n∈ f̃n



1−

n
∏
j=1

(
1− γλ

j

) Tj
∑n

j=1 Tj

1/λ
,

1−

1−
n
∏
j=1

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj

1/λ
 ,

1−

1−
n
∏
j=1

(
1−

(
1− ηj

)λ
) Tj

∑n
j=1 Tj


1/λ

.

(11)

where Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n), T1 = 1, and s(ñk) is the score function value of SVNHFE ñk.
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Proof. We can use mathematical induction to prove the Theorem 1:

(a) For n = 1, since

GSVNHFPWAλ(ñ1) =

(
T1

∑n
j=1 Tj

ñλ
1

)1/λ

=

(
T1

T1
ñλ

1

)1/λ

= ñ1.

Obviously, Equation (11) holds for n = 1.
(b) For n = 2, since

ñλ
1 = ∪

γ1∈t̃1,δ1∈ĩ1,η1∈ f̃1

{{
γλ

1

}
,
{

1− (1− δ1)
λ
}

,
{

1− (1− η1)
λ
}}

,

ñλ
2 = ∪

γ2∈t̃2,δ2∈ĩ2,η2∈ f̃2

{{
γλ

2

}
,
{

1− (1− δ2)
λ
}

,
{

1− (1− η2)
λ
}}

,

Then

T1
∑n

j=1 Tj
ñλ

1 = ∪
γ1∈t̃1,δ1∈ĩ1,η1∈ f̃1

{{
1−

(
1− γλ

1
) T1

∑n
j=1 Tj

}
,

{(
1− (1− δ1)

λ
) T1

∑n
j=1 Tj

}
,

{(
1− (1− η1)

λ
) T1

∑n
j=1 Tj

}}
,

T2
∑n

j=1 Tj
ñλ

2 = ∪
γ2∈t̃2,δ2∈ĩ2,η2∈ f̃2

{{
1−

(
1− γλ

2
) T2

∑n
j=1 Tj

}
,

{(
1− (1− δ2)

λ
) T2

∑n
j=1 Tj

}
,

{(
1− (1− η2)

λ
) T2

∑n
j=1 Tj

}}
.

We have

T1

∑n
j=1 Tj

ñλ
1 ⊕

T2

∑n
j=1 Tj

ñλ
2 =

∪
γ1∈t̃1,δ1∈ĩ1,η1∈ f̃1,γ2∈t̃2,δ2∈ĩ2,η2∈ f̃2

{{
1−

(
1− γλ

1
) T1

∑n
j=1 Tj + 1−

(
1− γλ

2
) T2

∑n
j=1 Tj −

(
1−

(
1− γλ

1
) T1

∑n
j=1 Tj

)(
1−

(
1− γλ

2
) T2

∑n
j=1 Tj

)}
,

{((
1− (1− δ1)

λ
) T1

∑n
j=1 Tj

)((
1− (1− δ2)

λ
) T2

∑n
j=1 Tj

)}
,

{((
1− (1− η1)

λ
) T1

∑n
j=1 Tj

)((
1− (1− η2)

λ
) T2

∑n
j=1 Tj

)}
.

= ∪
γ1∈t̃1,δ1∈ĩ1,η1∈ f̃1,γ2∈t̃2,δ2∈ĩ2,η2∈ f̃2

{{
1−

(
1− γλ

1
) T1

∑n
j=1 Tj

(
1− γλ

2
) T2

∑n
j=1 Tj

}
,

{((
1− (1− δ1)

λ
) T1

∑n
j=1 Tj

)((
1− (1− δ2)

λ
) T2

∑n
j=1 Tj

)}
,

{((
1− (1− η1)

λ
) T1

∑n
j=1 Tj

)((
1− (1− η2)

λ
) T2

∑n
j=1 Tj

)}
.

Thus

GSVNHFPWAλ(ñ1, ñ1) =

(
T1

∑n
j=1 Tj

ñλ
1 ⊕

T2

∑n
j=1 Tj

ñλ
2

)1/λ

=

∪
γ1∈t̃1,δ1∈ĩ1,η1∈ f̃1,γ2∈t̃2,δ2∈ĩ2,η2∈ f̃2



1−

(
1− γλ

1
) T1

∑n
j=1 Tj (1− γλ

2
) T2

∑n
j=1 Tj


1/λ
 ,

1−
(

1−
((

1− (1− δ1)
λ
) T1

∑n
j=1 Tj

)((
1− (1− δ2)

λ
) T2

∑n
j=1 Tj

))1/λ
,

1−
(

1−
((

1− (1− η1)
λ
) T1

∑n
j=1 Tj

)((
1− (1− η2)

λ
) T2

∑n
j=1 Tj

))1/λ
.

i.e., Equation (11) holds for n = 2.
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(c) If Equation (11) holds for n = k, we have

GSVNHFPWAλ(ñ1, ñ2, . . . , ñk) =

(
T1

∑n
j=1 Tj

ñλ
1 ⊕

T2

∑n
j=1 Tj

ñλ
2 ⊕ · · · ⊕

Tk

∑n
j=1 Tj

ñλ
k

)1/λ

= ∪
γ̃1∈t̃1,γ̃2∈t̃2,...,γ̃k∈t̃k ,δ̃1∈ĩ1,δ̃2∈ĩ2,...,δ̃k∈ĩk ,η̃1∈ f̃1,η̃2∈ f̃2,...,η̃k∈ f̃k



1−

k
∏
j=1

(
1− γλ

j

) Tj
∑n

j=1 Tj


1/λ
,

1−

1−
k

∏
j=1

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj


1/λ
 ,

1−

1−
k

∏
j=1

(
1−

(
1− ηj

)λ
) Tj

∑n
j=1 Tj


1/λ

.

When n = k + 1, combined with the operations of SVNHFE in Definition 5, we have

T1

∑n
j=1 Tj

ñλ
1 ⊕

T2

∑n
j=1 Tj

ñλ
2 ⊕ · · · ⊕

Tk

∑n
j=1 Tj

ñλ
k ⊕

Tk+1

∑n
j=1 Tj

ñλ
k+1 =

= ∪
γ̃1∈t̃1,γ̃2∈t̃2,...,γ̃k∈t̃k ,δ̃1∈ĩ1,δ̃2∈ĩ2,...,δ̃k∈ĩk ,η̃1∈ f̃1,η̃2∈ f̃2,...,η̃k∈ f̃k


1−

k
∏
j=1

(
1− γλ

j

) Tj

∑n
j=1 Tj

 ,


k

∏
j=1

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj

,


k

∏
j=1

(
1−

(
1− ηj

)λ
) Tj

∑n
j=1 Tj

⊕

∪
γk+1∈t̃k+1,δk+1∈ĩk+1,ηk+1∈ f̃k+1


1−

(
1− γλ

k+1

) Tk+1

∑n
j=1 Tj

,


(

1− (1− δk+1)
λ
) Tk+1

∑n
j=1 Tj

,


(

1− (1− ηk+1)
λ
) Tk+1

∑n
j=1 Tj




= ∪
γ̃1∈t̃1,γ̃2∈t̃2,...,γ̃k+1∈t̃k+1,δ̃1∈ĩ1,δ̃2∈ĩ2,...,δ̃k+1∈ĩk+1,η̃1∈ f̃1,η̃2∈ f̃2,...,η̃k+1∈ f̃k+1


1−

k+1
∏
j=1

(
1− γλ

j

) Tj
∑n

j=1 Tj

 ,

k+1
∏
j=1

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj

,

k+1
∏
j=1

(
1−

(
1− ηj

)λ
) Tj

∑n
j=1 Tj

.

Then

GSVNHFPWAλ(ñ1, ñ2, . . . , ñk+1) =

(
T1

∑n
j=1 Tj

ñλ
1 ⊕

T2

∑n
j=1 Tj

ñλ
2 ⊕ · · · ⊕

Tk+1

∑n
j=1 Tj

ñλ
k+1

)1/λ

= ∪
γ̃1∈t̃1,γ̃2∈t̃2,...,γ̃k+1∈t̃k+1,δ̃1∈ĩ1,δ̃2∈ĩ2,...,δ̃k+1∈ĩk+1,η̃1∈ f̃1,η̃2∈ f̃2,...,η̃k+1∈ f̃k+1



1−

k+1
∏
j=1

(
1− γλ

j

) Tj
∑n

j=1 Tj


1/λ
,

1−

1−
k+1
∏
j=1

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj


1/λ
 ,

1−

1−
k+1
∏
j=1

(
1−

(
1− ηj

)λ
) Tj

∑n
j=1 Tj


1/λ

.

i.e., Equation (11) holds for n = k + 1, thus we can confirm Equation (11) holds for all n. The proof
of Theorem 1 is completed. �

Some desirable properties of the GSVNHFPWA operator are presented as below.

Theorem 2. (Idempotency) Let ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) be a collection of SVNHFEs, where

Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n), T1 = 1, and s(ñk) is the score function value of SVNHFE ñk. If all

ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) are equal, i.e., ñj = ñ =

{
t̃, ĩ, f̃

}
, t̃ = γ, ĩ = δ, and f̃ = η, then

GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) = ñ =
{

t̃, ĩ, f̃
}

. (12)
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Proof. Since ñj = ñ =
{

t̃, ĩ, f̃
}

, by Theorem 1, we have

GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) =

(
T1

∑n
j=1 Tj

ñλ ⊕ T2

∑n
j=1 Tj

ñλ ⊕ · · · ⊕ Tn

∑n
j=1 Tj

ñλ

)1/λ

= ∪
γ̃∈t̃,δ̃∈ĩ,η̃∈ f̃



1−

n
∏
j=1

(
1− γλ

) Tj
∑n

j=1 Tj

1/λ
,

1−

1−
n
∏
j=1

(
1− (1− δ)λ

) Tj
∑n

j=1 Tj

1/λ
 ,

1−

1−
n
∏
j=1

(
1− (1− η)λ

) Tj
∑n

j=1 Tj

1/λ



= ∪
γ̃∈t̃,δ̃∈ĩ,η̃∈ f̃



1−

(
1− γλ

) ∑n
j=1 Tj

∑n
j=1 Tj

1/λ
,

1−

1−
(

1− (1− δ)λ
) ∑n

j=1 Tj
∑n

j=1 Tj

1/λ
 ,

1−

1−
(

1− (1− η)λ
) ∑n

j=1 Tj
∑n

j=1 Tj

1/λ



= ∪
γ̃∈t̃,δ̃∈ĩ,η̃∈ f̃

{{(
γλ
)1/λ

}
,
{

1−
(
(1− δ)λ

)1/λ
}

,
{

1−
(
(1− η)λ

)1/λ
}}

= ∪
γ̃∈t̃,δ̃∈ĩ,η̃∈ f̃

{{γ}, {δ} , {η}} = ñ =
{

t̃, ĩ, f̃
}

.

Then, the proof of Theorem 2 is completed. �

Theorem 3. (Boundedness) Let ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) be a collection of SVNHFEs, where

Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n), T1 = 1, and s(ñk) is the score function value of SVNHFE ñk.

And let ñ− = {{γ−}, {δ+}, {η+}} and ñ+ = {{γ+}, {δ−}, {η−}}, where γ+ = ∪γj∈t̃j
max

{
γj
}

,

δ+ = ∪
δj∈ĩj

max
{

δj
}

, η+ = ∪
ηj∈ f̃ j

max
{

ηj
}

, γ− = ∪γj∈t̃j
min

{
γj
}

, δ− = ∪
δj∈ĩj

min
{

δj
}

,

and η− = ∪
ηj∈ f̃ j

min
{

ηj
}

. Then

ñ− ≤ GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) ≤ ñ+. (13)

Proof. Since γ− ≤ γj ≤ γ+, δ− ≤ δj ≤ δ+, and η− ≤ ηj ≤ η+. First, when λ ∈ (0, ∞), then

γλ
j ≥

(
γ−
)λ, 1− γλ

j ≤ 1−
(
γ−
)λ,
(

1− γλ
j

) Tj
∑n

j=1 Tj ≤
(

1−
(
γ−
)λ
) Tj

∑n
j=1 Tj ,

n

∏
j=1

(
1− γλ

j

) Tj
∑n

j=1 Tj ≤
n

∏
j=1

(
1−

(
γ−
)λ
) Tj

∑n
j=1 Tj

,

1−
n

∏
j=1

(
1− γλ

j

) Tj
∑n

j=1 Tj ≥ 1−
n

∏
j=1

(
1−

(
γ−
)λ
) Tj

∑n
j=1 Tj

,

1−
n

∏
j=1

(
1− γλ

j

) Tj
∑n

j=1 Tj


1/λ

≥

1−
n

∏
j=1

(
1−

(
γ−
)λ
) Tj

∑n
j=1 Tj


1/λ

= γ−.

Similarly, we have1−
n

∏
j=1

(
1− γλ

j

) Tj
∑n

j=1 Tj


1/λ

≤

1−
n

∏
j=1

(
1−

(
γ+
)λ
) Tj

∑n
j=1 Tj


1/λ

= γ+.

And as δ− ≤ δj ≤ δ+, then

1− δj ≤ 1− δ−,
(
1− δj

)λ ≤
(
1− δ−

)λ, 1−
(
1− δj

)λ ≥ 1−
(
1− δ−

)λ,

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj ≥

(
1−

(
1− δ−

)λ
) Tj

∑n
j=1 Tj ,
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n

∏
j=1

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj ≥

n

∏
j=1

(
1−

(
1− δ−

)λ
) Tj

∑n
j=1 Tj

,

1−
n

∏
j=1

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj ≤ 1−

n

∏
j=1

(
1−

(
1− δ−

)λ
) Tj

∑n
j=1 Tj

,

1−
n

∏
j=1

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj


1/λ

≤

1−
n

∏
j=1

(
1−

(
1− δ−

)λ
) Tj

∑n
j=1 Tj


1/λ

,

1−

1−
n

∏
j=1

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj


1/λ

≥ 1−

1−
n

∏
j=1

(
1−

(
1− δ−

)λ
) Tj

∑n
j=1 Tj


1/λ

= δ−.

Similarly, we have

1−

1−
n

∏
j=1

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj


1/λ

≤ 1−

1−
n

∏
j=1

(
1−

(
1− δ+

)λ
) Tj

∑n
j=1 Tj


1/λ

= δ+.

On the other hand,

η− ≤ 1−

1−
n

∏
j=1

(
1−

(
1− δj

)λ
) Tj

∑n
j=1 Tj


1/λ

≤ η+.

Let GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) = ñ = {{γ}, {δ}, {η}}, then

s(ñ) =
1
l ∑l

i=1 γi +
1
p ∑

p
i=1 (1− δi) +

1
q ∑

q
i=1(1− ηi)

3
≥

1
l−∑l−

i=1 γ−i + 1
p−∑

p−

i=1

(
1− δ+i

)
+ 1

q−∑
q−

i=1

(
1− η+

i
)

3
= s(ñ−),

And

s(ñ) =
1
l ∑l

i=1 γi +
1
p ∑

p
i=1 (1− δi) +

1
q ∑

q
i=1(1− ηi)

3
≤

1
l+ ∑l+

i=1 γ+
i + 1

p+ ∑
p+

i=1

(
1− δ−i

)
+ 1

q+ ∑
q+

i=1

(
1− η−i

)
3

= s(ñ+).

If s(ñ−) < s(ñ) < s(ñ+), we have

ñ− < GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) < ñ+.

If s(ñ) = s(ñ−), i.e.,

1
l ∑l

i=1 γi +
1
p ∑

p
i=1 (1− δi) +

1
q ∑

q
i=1(1− ηi)

3
=

1
l−∑l−

i=1 γ−i + 1
p−∑

p−

i=1

(
1− δ+i

)
+ 1

q−∑
q−

i=1

(
1− η+

i
)

3
,

Then
GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) = ñ−.

If s(ñ) = s(ñ−), i.e.,

1
l ∑l

i=1 γi +
1
p ∑

p
i=1 (1− δi) +

1
q ∑

q
i=1(1− ηi)

3
≤

1
l+ ∑l+

i=1 γ+
i + 1

p+ ∑
p+

i=1

(
1− δ−i

)
+ 1

q+ ∑
q+

i=1

(
1− η−i

)
3

,
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Then
GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) = ñ+.

Based on analysis above, we have

ñ− ≤ GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) ≤ ñ+λ ∈ (0, ∞).

Similarly, we can obtain

ñ− ≤ GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) ≤ ñ+λ ∈ (−∞, 0).

The proof of Theorem 3 is completed. �

Theorem 4. (Monotonicity) Let ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) and ñ∗j =

{
t̃∗j , ĩ∗j , f̃ ∗j

}
(j = 1, 2, . . . , n)

be two collections of SVNHFEs, where Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n), T∗j = ∏

j−1
k=1 s

(
ñ∗k
)
(j = 2, . . . , n),

T1 = T∗1 = 1, s(ñk) and s
(
ñ∗k
)

are the score values of SVNHFE ñk and ñ∗k , respectively. If ñj ≤ ñ∗j
(j = 1, 2, . . . , n), then

GSVNHFPWAλ(ñ1, ñ2, . . . , ñn) ≤ GSVNHFPWAλ(ñ∗1 , ñ∗2 , . . . , ñ∗n). (14)

Proof. It directly follows from Theorem 3. �

Special cases of the GSVNHFPWA operator are shown as follows.

(1) If λ = 1, then the GSVNHFPWA operator is reduced to the single-valued neutrosophic hesitant
fuzzy prioritized weighted average (SVNHFPWA) operator:

SVNHFPWA(ñ1, ñ2, . . . , ñn) =

(
T1

∑n
j=1 Tj

ñ1 ⊕
T2

∑n
j=1 Tj

ñ2 ⊕ · · · ⊕
Tn

∑n
j=1 Tj

ñn

)
. (15)

(2) If λ→ 0 , then the GSVNHFPWA operator is reduced to the single-valued neutrosophic hesitant
fuzzy prioritized weighted geometric (SVNHFPWG) operator:

SVNHFPWG(ñ1, ñ2, . . . , ñn) =

(
(ñ1)

T1
∑n

j=1 Tj ⊗ (ñ2)

T2
∑n

j=1 Tj ⊗ · · · ⊗ (ñn)
Tn

∑n
j=1 Tj

)
. (16)

(3) If λ = 2, then the GSVNHFPWA operator is reduced to the single-valued neutrosophic hesitant
fuzzy prioritized weighted quadratic average (SVNHFPWQA) operator:

SVNHFPWQA(ñ1, ñ2, . . . , ñn) =

(
T1

∑n
j=1 Tj

ñ2
1 ⊕

T2

∑n
j=1 Tj

ñ2
2 ⊕ · · · ⊕

Tn

∑n
j=1 Tj

ñ2
n

)1/2

. (17)

(4) If λ = 3, then the GSVNHFPWA operator is reduced to the single-valued neutrosophic hesitant
fuzzy prioritized weighted cubic average (SVNHFPWCA) operator:

SVNHFPWCA(ñ1, ñ2, . . . , ñn) =

(
T1

∑n
j=1 Tj

ñ3
1 ⊕

T2

∑n
j=1 Tj

ñ3
2 ⊕ · · · ⊕

Tn

∑n
j=1 Tj

ñ3
n

)1/3

. (18)
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(5) If λ = 1 and the aggregated arguments are in the same priority level, then the GSVNHFPWA
operator is reduced to the single-valued neutrosophic hesitant fuzzy weighted average
(SVNHFWA) operator [14]:

SVNHFWA(ñ1, ñ2, . . . , ñn) = (w1ñ1 ⊕ w2ñ2 ⊕ · · · ⊕ wnñn). (19)

(6) If λ→ 0 and the aggregated arguments are in the same priority level, then the GSVNHFPWA
operator is reduced to the single-valued neutrosophic hesitant fuzzy weighted geometric
(SVNHFWG) operator [14]:

SVNHFWG(ñ1, ñ2, . . . , ñn) =
(
ñw1

1 ⊗ ñw2
2 ⊗ · · · ⊗ ñwn

n
)
. (20)

(7) If w = (1/n, 1/n, . . . , 1/n)T , λ = 1, and the aggregated arguments are in the same priority level,
then the GSVNHFPWA operator is reduced to the single-valued neutrosophic hesitant fuzzy
arithmetic average (SVNHFAA) operator:

SVNHFAA(ñ1, ñ2, . . . , ñn) =
1
n
(ñ1 ⊕ ñ2 ⊕ · · · ⊕ ñn). (21)

(8) If w = (1/n, 1/n, . . . , 1/n)T , λ→ 0 , and the aggregated arguments are in the same priority level,
then the GSVNHFPWA operator is reduced to the single-valued neutrosophic hesitant fuzzy
geometric average (SVNHFGA) operator:

SVNHFGA(ñ1, ñ2, . . . , ñn) = (ñ1 ⊗ ñ2 ⊗ · · · ⊗ ñn)
1/n. (22)

3.2. Generalized Single-Valued Neutrosophic Hesitant Fuzzy Prioritized Geometric Operator

Based on the GSVNHFPWA operator investigated above, we develop the GSVNHFPWG operator
as the following.

Definition 10. Let ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) be a collection of SVNHFEs, and let GSVNHFPWG :

Ωn → Ω , if

GSVNHFPWGλ(ñ1, ñ2, . . . , ñn) =
1
λ

(
(λñ1)

T1
∑n

j=1 Tj ⊗ (λñ2)

T2
∑n

j=1 Tj ⊗ · · · ⊗ (λñn)
Tn

∑n
j=1 Tj

)
, (23)

then the function GSVNHFPWG is called the GSVNHFPWG operator. Where Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n),

T1 = 1, and s(ñk) is the score function value of SVNHFE ñk.

Similarly, according to the operations of SVHFEs in Definition 5, the theorem is obtained as below.

Theorem 5. Let ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) be a collection of SVNHFEs, then their aggregated value by

using the GSVNHFPWG operator is also an SVNHFE, and

GSVNHFPWGλ(ñ1, ñ2, . . . , ñn) =
1
λ

(λñ1)

T1

∑n
j=1 Tj ⊗ (λñ2)

T2

∑n
j=1 Tj ⊗ · · · ⊗ (λñn)

Tn
∑n

j=1 Tj



= ∪
γ̃1∈t̃1,γ̃2∈t̃2,...,γ̃n∈t̃n ,δ̃1∈ĩ1,δ̃2∈ĩ2,...,δ̃n∈ĩn ,η̃1∈ f̃1,η̃2∈ f̃2,...,η̃n∈ f̃n


1−

1−
n
∏
j=1

(
1−

(
1− γj

)λ
) Tj

∑n
j=1 Tj

1/λ
,


1−

n
∏
j=1

(
1− δλ

j

) Tj
∑n

j=1 Tj

1/λ
 ,


1−

n
∏
j=1

(
1− ηλ

j

) Tj
∑n

j=1 Tj

1/λ

.

(24)

where Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n), T1 = 1, and s(ñk) is the score function value of SVNHFE ñk.
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Proof. The proof procedure of Theorem 5 is similar to Theorem 1. �

Some desirable properties of the GSVNHFPWG operator are presented as below.

Theorem 6. (Idempotency) Let ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) be a collection of SVNHFEs, where

Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n), T1 = 1, and s(ñk) is the score function value of SVNHFE ñk. If all

ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) are equal, i.e., ñj = ñ =

{
t̃, ĩ, f̃

}
, t̃ = γ, ĩ = δ, and f̃ = η, then

GSVNHFPWGλ(ñ1, ñ2, . . . , ñn) = ñ =
{

t̃, ĩ, f̃
}

. (25)

Proof. The proof procedure of Theorem 6 is similar to Theorem 2. �

Theorem 7. (Boundedness) Let ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) be a collection of SVNHFEs,

where Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n), T1 = 1, and s(ñk) is the score value of SVNHFE ñk.

And let ñ− = {{γ−}, {δ+}, {η+}} and ñ+ = {{γ+}, {δ−}, {η−}}, where γ+ = ∪γj∈t̃j
max

{
γj
}

,

δ+ = ∪
δj∈ĩj

max
{

δj
}

, η+ = ∪
ηj∈ f̃ j

max
{

ηj
}

, γ− = ∪γj∈t̃j
min

{
γj
}

, δ− = ∪
δj∈ĩj

min
{

δj
}

, and

η− = ∪
ηj∈ f̃ j

min
{

ηj
}

. Then

ñ− ≤ GSVNHFPWGλ(ñ1, ñ2, . . . , ñn) ≤ ñ+. (26)

Proof. The proof procedure of Theorem 7 is similar to Theorem 3. �

Theorem 8. (Monotonicity) Let ñj =
{

t̃j, ĩj, f̃ j

}
(j = 1, 2, . . . , n) and ñ∗j =

{
t̃∗j , ĩ∗j , f̃ ∗j

}
(j = 1, 2, . . . , n)

be two collections of SVNHFEs, where Tj = ∏
j−1
k=1 s(ñk)(j = 2, . . . , n), T∗j = ∏

j−1
k=1 s

(
ñ∗k
)
(j = 2, . . . , n),

T1 = T∗1 = 1, s(ñk) and s
(
ñ∗k
)

are the score function values of SVNHFE ñk and ñ∗k , respectively.
If ñj ≤ ñ∗j (j = 1, 2, . . . , n), then

GSVNHFPWGλ(ñ1, ñ2, . . . , ñn) ≤ GSVNHFPWGλ(ñ∗1 , ñ∗2 , . . . , ñ∗n). (27)

Proof. It directly follows from Theorem 7. �

Special cases of the GSVNHFPWG operator are shown as follows:

(1) If λ = 1, then the GSVNHFPWG operator is reduced to the single-valued neutrosophic hesitant
fuzzy prioritized weighted geometric (SVNHFPWG) operator:

SVNHFPWG(ñ1, ñ2, . . . , ñn) =

(
(ñ1)

T1
∑n

j=1 Tj ⊗ (ñ2)

T2
∑n

j=1 Tj ⊗ · · · ⊗ (ñn)
Tn

∑n
j=1 Tj

)
. (28)

(2) If λ = 1 and the aggregated arguments are in the same priority level, then the GSVNHFPWG
operator is reduced to the SVNHFWG operator [14]:

SVNHFWG(ñ1, ñ2, . . . , ñn) =
(
(ñ1)

w1 ⊗ (ñ2)
w2 ⊗ · · · ⊗ (ñn)

wn
)
. (29)

(3) If w = (1/n, 1/n, . . . , 1/n)T , λ = 1, and the aggregated arguments are in the same priority level,
then the GSVNHFPWG operator is reduced to the SVNHFGA operator:

SVNHFGA(ñ1, ñ2, . . . , ñn) = (ñ1 ⊗ ñ2 ⊗ · · · ⊗ ñn)
1/n. (30)
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4. An Approach for Decision-Making under Single-Valued Neutrosophic Hesitant
Fuzzy Environment

In this section, we utilize the GSVNHFPWA operator and GSVNHFPWG operator to
solve the MCDM problems under SVNHF environment, respectively. For a MCDM problem,
let A = {A1, A2, . . . Am} be a set of m alternatives to be evaluated, C = {C1, C2, . . . , Cn} be a collection
of criteria that prioritizations between the criteria expressed by the linear ordering C1 � C2 � · · · � Cn

exist, i.e., criteria Cj has a higher priority level than the criteria Ck if j < k. Decision makers evaluates
the alternatives over the criteria by using SVNHFEs, let N =

(
ñij
)

m×n(i = 1, 2, . . . , m; j = 1, 2, . . . , n)

be an SVNHF decision matrix, and ñij =
{

t̃ij, ĩij, f̃ij

}
is the evaluation information given by

decision maker. Where t̃ij =
{

γij
∣∣γij ∈ t̃ij

}
represents the possible degrees that the alternative

Ai satisfies the criteria Cj provided by decision maker, ĩij =
{

δij

∣∣∣δij ∈ ĩij
}

represents the possible
indeterminacy degrees that decision maker judges whether the alternative Ai satisfies the criteria Cj,

and f̃ij =
{

ηij

∣∣∣ηij ∈ f̃ij

}
represents the possible degrees that the alternative Ai does not satisfy the

criteria Cj provided by decision maker.
Based on the assumptions above, we use the GSVNHFPWA operator or GSVNHFPWG operator

to construct an approach for decision-making under SVNHF environment. The main steps are
presented below.

Step 1. Calculate the values of Tij(i = 1, 2, . . . , m; j = 1, 2, . . . , n) by the equations as follows.

Tij = ∏j−1
k=1 s(ñik)(i = 1, 2, . . . , m; j = 1, 2, . . . , n), Ti1 = 1. (31)

Step 2. Utilize the GSVNHFPWA operator:

ñi = GSVNHFPWAλ(ñi1, ñi2, . . . , ñin) =

(
Ti1

∑n
j=1 Tij

(ñi1)
λ ⊕ Ti2

∑n
j=1 Tij

(ñi2)
λ ⊕ · · · ⊕ Tin

∑n
j=1 Tij

(ñin)
λ

)1/λ

= ∪
γ̃i1∈t̃i1,γ̃i2∈t̃i2,...,γ̃in∈t̃in ,δ̃i1∈ĩi1,δ̃i2∈ĩi2,...,δ̃in∈ĩin ,η̃i1∈ f̃i1,η̃i2∈ f̃i2,...,η̃in∈ f̃in



1−

n
∏
j=1

(
1−

(
γij
)λ
) Tij

∑n
j=1 Tij

1/λ
 ,

1−

1−
n
∏
j=1

(
1−

(
1− δij

)λ
) Tij

∑n
j=1 Tij

1/λ
,

1−

1−
n
∏
j=1

(
1−

(
1− ηij

)λ
) Tij

∑n
j=1 Tij

1/λ

.

(32)

or the GSVNHFPWG operator:

ñi = GSVNHFPWGλ(ñi1, ñi2, . . . , ñin) =
1
λ

(λñi1)

Ti1

∑n
j=1 Tij ⊗ (λñi2)

Ti2

∑n
j=1 Tij ⊗ · · · ⊗ (λñin)

Tin
∑n

j=1 Tij



= ∪
γ̃i1∈t̃i1,γ̃i2∈t̃i2,...,γ̃in∈t̃in ,δ̃i1∈ĩi1,δ̃i2∈ĩi2,...,δ̃in∈ĩin ,η̃i1∈ f̃i1,η̃i2∈ f̃i2,...,η̃in∈ f̃in


1−

1−
n
∏
j=1

(
1−

(
1− γij

)λ
) Tij

∑n
j=1 Tij

1/λ
 ,


1−

n
∏
j=1

(
1−

(
δij
)λ
) Tij

∑n
j=1 Tij

1/λ
,


1−

n
∏
j=1

(
1−

(
ηij
)λ
) Tij

∑n
j=1 Tij

1/λ

.

(33)

to aggregate the SVNHF decision matrix N =
(
ñij
)

m×n into the SVNHFE ñi =
{

t̃i, ĩi, f̃i

}
of

each alternative.
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Step 3. Rank all the alternatives by calculating the score function value of the SVNHFE ñi =
{

t̃i, ĩi, f̃i

}
combined with Definition 6.

s(ñi) =

[
1
li
∑γi∈t̃i

γi +
1
pi

∑δi∈ĩi
(1− δi) +

1
qi

∑ηi∈ f̃i
(1− ηi)

]/
3 . (34)

Then the bigger the score function value s(ñi), the higher the ranking of alternative xi will be.

5. Numerical Example

In this section, we apply a numerical example of MCDM problem under SVNHF environment to
illustrate the applications and advantages of the proposed method [14].

5.1. Implementation

Suppose that an investment company wants to invest a sum of money in a target company.
After a market survey, four alternative companies are identified to be chosen from, namely, a car
company (A1), a food company (A2), a computer company (A3), and an arms company (A4).
To evaluate the investment potential of a company needs to consider many aspects, such as the
growth prospects of the company, risk degree of the investment, and the impact of the company on
the environment. Therefore, the investment company shall evaluate the four alternative companies
above with respect to three criteria, namely, the environmental impact (C1), the risk (C2), and the
growth (C3). In the real decision-making process, compared with determining the weights of criteria,
identifying the priority level of criteria is more feasible and accurate. Then, according to the weight
vector of three criteria w = (0.40, 0.35, 0.25)T [14], we set up the criteria C1 with the first priority level,
followed by criteria C2 and C3. Decision makers from the investment company express the evaluation
information combined with SVNHFEs, and the SVNHF decision matrix N =

(
ñij
)

m×n is obtained
shown in Table 1 [14].

Table 1. SVNHF decision matrix.

Alternatives C1 C2 C3

A1 {{0.2, 0.3}, {0.1, 0.2}, {0.5, 0.6}} {{0.3, 0.4, 0.5}, {0.1}, {0.3, 0.4}} {{0.5, 0.6}, {0.2, 0.3}, {0.3, 0.4}}
A2 {{0.6, 0.7}, {0.1, 0.2}, {0.1, 0.2}} {{0.6, 0.7}, {0.1, 0.2}, {0.2, 0.3}} {{0.6, 0.7}, {0.1}, {0.3}}
A3 {{0.5, 0.6}, {0.1}, {0.3}} {{0.5, 0.6}, {0.4}, {0.2, 0.3}} {{0.6}, {0.3}, {0.4}}
A4 {{0.3, 0.5}, {0.2}, {0.1, 0.2, 0.3}} {{0.7, 0.8}, {0.1}, {0.1, 0.2}} {{0.6, 0.7}, {0.1}, {0.2}}

Then, we use the proposed method to determine the ranking result of the four alternative
companies, which are presented as follows.

Step 1. Calculate the values of Tij(i = 1, 2, 3, 4; j = 1, 2, 3) according to Equation (31) as follows:

Tij =


1.000 0.5167 0.3358
1.000 0.7833 0.5875
1.000 0.7167 0.4539
1.000 0.6667 0.5556

.

Step 2. Utilize the GSVNHFPWA operator (which the parameter λ = 1) to aggregate the SVNHF decision

matrix N =
(
ñij
)

m×n(i = 1, 2, 3, 4; j = 1, 2, 3) into the SVNHFE ñi =
{

t̃i, ĩi, f̃i

}
(i = 1, 2, 3, 4) of

each alternative company. Take the alternative company A1 for instance, we have
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ñ1 = GSVNHFPWA1(ñ11, ñ12, ñ13) =

(
T11

∑3
j=1 T1j

(ñ11)
1 ⊕ T12

∑3
j=1 T1j

(ñ12)
1 ⊕ T13

∑3
j=1 T1j

(ñ13)
1

)1/1

= ∪
γ̃11∈t̃11,γ̃12∈t̃12,γ̃13∈t̃13,δ̃11∈ĩ11,δ̃12∈ĩ12,δ̃13∈ĩ13,η̃11∈ f̃11,η̃12∈ f̃12,η̃13∈ f̃13



1−

3
∏
j=1

(
1−

(
γ1j
)1
) T1j

∑3
j=1 T1j


1/1
 ,

1−

1−
3

∏
j=1

(
1−

(
1− δ1j

)1
) T1j

∑3
j=1 T1j


1/1
,

1−

1−
3

∏
j=1

(
1−

(
1− η1j

)1
) T1j

∑3
j=1 T1j


1/1



=
{{

1− (1− 0.2)0.54(1− 0.3)0.28(1− 0.5)0.18 , 1− (1− 0.2)0.54(1− 0.3)0.28(1− 0.6)0.18, 1− (1− 0.2)0.54(1− 0.4)0.28(1− 0.5)0.18,

1− (1− 0.2)0.54(1− 0.4)0.28(1− 0.6)0.18, 1− (1− 0.2)0.54(1− 0.5)0.28(1− 0.5)0.18, 1− (1− 0.2)0.54(1− 0.5)0.28(1− 0.6)0.18,

1− (1− 0.3)0.54(1− 0.3)0.28(1− 0.5)0.18, 1− (1− 0.2)0.54(1− 0.3)0.28(1− 0.6)0.18, 1− (1− 0.2)0.54(1− 0.4)0.28(1− 0.5)0.18,

1− (1− 0.3)0.54(1− 0.4)0.28(1− 0.6)0.18, 1− (1− 0.2)0.54(1− 0.5)0.28(1− 0.5)0.18, 1− (1− 0.2)0.54(1− 0.5)0.28(1− 0.6)0.18
}

,{
1−

(
1− (1− (1− 0.1))0.54(1− (1− 0.1))0.28(1− (1− 0.2))0.18

)
, 1−

(
1− (1− (1− 0.1))0.54(1− (1− 0.1))0.28(1− (1− 0.3))0.18

)
,

1−
(

1− (1− (1− 0.2))0.54(1− (1− 0.1))0.28(1− (1− 0.2))0.18
)

, 1−
(

1− (1− (1− 0.2))0.54(1− (1− 0.1))0.28(1− (1− 0.3))0.18
)}

,{
1−

(
1− (1− (1− 0.5))0.54(1− (1− 0.3))0.28(1− (1− 0.3))0.18

)
, 1−

(
1− (1− (1− 0.5))0.54(1− (1− 0.3))0.28(1− (1− 0.4))0.18

)
,

1−
(

1− (1− (1− 0.5))0.54(1− (1− 0.4))0.28(1− (1− 0.3))0.18
)

, 1−
(

1− (1− (1− 0.5))0.54(1− (1− 0.4))0.28(1− (1− 0.4))0.18
)

,

1−
(

1− (1− (1− 0.6))0.54(1− (1− 0.3))0.28(1− (1− 0.3))0.18
)

, 1−
(

1− (1− (1− 0.6))0.54(1− (1− 0.3))0.28(1− (1− 0.4))0.18
)

,

1−
(

1− (1− (1− 0.6))0.54(1− (1− 0.4))0.28(1− (1− 0.3))0.18
)

, 1−
(

1− (1− (1− 0.6))0.54(1− (1− 0.4))0.28(1− (1− 0.4))0.18
)}

.

and obtain the SVNHFE ñ1 as the following.

ñ1 = {{0.2922, 0.3203, 0.3220, 0.3414, 0.3489, 0.3556, 0.3675, 0.3691, 0.3811, 0.3941,
0.4004, 0.4242}, {0.1134, 0.1220, 0.1648, 0.1774}, {0.3953, 0.4164, 0.4283, 0.4512,

0.4361, 0.4595, 0.4726, 0.4979}}.

Similarly, the SVNHFEs of other alternative companies can be computed as follows:

ñ2 = {{0.6000, 0.6275, 0.6363, 0.6613, 0.6457, 0.6701, 0.6778, 0.7000}, {0.1000, 0.1257,
0.1340, 0.1684}, {0.1651, 0.1887, 0.2211, 0.2528}};

ñ3 = {{0.5228, 0.5567, 0.5694, 0.6000}, {0.1989}, {0.2787, 0.3186}};

ñ4 = {{0.5280, 0.5608, 0.5821, 0.6111, 0.5943, 0.6225, 0.6408, 0.6657}, {0.1366},
{0.1189, 0.1464, 0.1625, 0.2000, 0.1950, 0.2400}}.

Step 3. Calculate the score function value of the SVNHFE ñi by using Equation (34):

s(ñ1) = 0.5902, s(ñ2) = 0.7711, s(ñ3) = 0.6882, s(ñ4) = 0.7623.

Then, we can obtain the ranking order of four alternative companies is A2 � A4 � A3 � A1,
the food company A2 is the best alternative.

If we replace the GSVNHFPWA operator in the aforementioned procedures with the
GSVNHFPWG operator, the decision-making steps of the proposed method can be described as follows.

Step 1′. See Step 1.
Step 2′. Utilize the GSVNHFPWG operator (which the parameter λ = 1) to aggregate the SVNHF decision

matrix N =
(
ñij
)

m×n(i = 1, 2, 3, 4; j = 1, 2, 3) into the SVNHFE ñi =
{

t̃i, ĩi, f̃i

}
(i = 1, 2, 3, 4) of

each alternative company. Take an alternative company A1 for example, we have
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ñ1 = GSVNHFPWG1(ñ11, ñ12, ñ13) =

(ñ11)

T11

∑3
j=1 T1j ⊗ (ñ12)

T12

∑3
j=1 T1j ⊗ (ñ13)

T13

∑3
j=1 T1j



= ∪
γ̃11∈t̃11,γ̃12∈t̃12,γ̃13∈t̃13,δ̃11∈ĩ11,δ̃12∈ĩ12,δ̃13∈ĩ13,η̃11∈ f̃11,η̃12∈ f̃12,η̃13∈ f̃13


1−

1−
3

∏
j=1

(
1−

(
1− γ1j

)1
) T1j

∑3
j=1 T1j


1/1
 ,


1−

3
∏
j=1

(
1−

(
δ1j
)1
) T1j

∑3
j=1 T1j


1/1
,


1−

3
∏
j=1

(
1−

(
η1j
)1
) T1j

∑3
j=1 T1j


1/1



=
{{

1−
(

1− (1− (1− 0.2))0.54(1− (1− 0.3))0.28(1− (1− 0.5))0.18
)

, 1−
(

1− (1− (1− 0.2))0.54(1− (1− 0.3))0.28(1− (1− 0.6))0.18
)

,

1−
(

1− (1− (1− 0.2))0.54(1− (1− 0.4))0.28(1− (1− 0.5))0.18
)

, 1−
(

1− (1− (1− 0.2))0.54(1− (1− 0.4))0.28(1− (1− 0.6))0.18
)

,

1−
(

1− (1− (1− 0.2))0.54(1− (1− 0.5))0.28(1− (1− 0.5))0.18
)

, 1−
(

1− (1− (1− 0.2))0.54(1− (1− 0.5))0.28(1− (1− 0.6))0.18
)

,

1−
(

1− (1− (1− 0.3))0.54(1− (1− 0.3))0.28(1− (1− 0.5))0.18
)

, 1−
(

1− (1− (1− 0.3))0.54(1− (1− 0.3))0.28(1− (1− 0.6))0.18
)

,

1−
(

1− (1− (1− 0.3))0.54(1− (1− 0.4))0.28(1− (1− 0.5))0.18
)

, 1−
(

1− (1− (1− 0.3))0.54(1− (1− 0.4))0.28(1− (1− 0.6))0.18
)

,

1−
(

1− (1− (1− 0.2))0.54(1− (1− 0.5))0.28(1− (1− 0.5))0.18
)

, 1−
(

1− (1− (1− 0.2))0.54(1− (1− 0.5))0.28(1− (1− 0.6))0.18
)}

,{
1− (1− 0.1)0.54(1− 0.1)0.28(1− 0.2)0.18 , 1− (1− 0.1)0.54(1− 0.1)0.28(1− 0.3)0.18, 1− (1− 0.2)0.54(1− 0.1)0.28(1− 0.2)0.18,

1− (1− 0.2)0.54(1− 0.1)0.28(1− 0.3)0.18
}

,
{

1− (1− 0.5)0.54(1− 0.3)0.28(1− 0.3)0.18 , 1− (1− 0.5)0.54(1− 0.3)0.28(1− 0.4)0.18,

1− (1− 0.5)0.54(1− 0.4)0.28(1− 0.3)0.18, 1− (1− 0.5)0.54(1− 0.4)0.28(1− 0.4)0.18, 1− (1− 0.6)0.54(1− 0.3)0.28(1− 0.3)0.18,

1− (1− 0.6)0.54(1− 0.3)0.28(1− 0.4)0.18, 1− (1− 0.6)0.54(1− 0.4)0.28(1− 0.3)0.18, 1− (1− 0.6)0.54(1− 0.4)0.28(1− 0.4)0.18
}

.

and obtain the SVNHFE ñ1 as the following:

ñ1 = {{0.2644, 0.2733, 0.2865, 0.2961, 0.3049, 0.3151, 0.3291, 0.3402, 0.3566, 0.3686,
0.3795, 0.3923}, {0.1190, 0.1401, 0.1733, 0.1931}, {0.4163, 0.4324, 0.4408, 0.4562,

0.4825, 0.4968, 0.5043, 0.5179}}.

Similarly, the SVNHFEs of other alternative companies can be computed as follows:

ñ2 = {{0.6000, 0.6234, 0.6314, 0.6559, 0.6403, 0.6652, 0.6738, 0.7000}, {0.1000, 0.1344,
0.1436, 0.1763}, {0.1866, 0.2217, 0.2260, 0.2594}};

ñ3 = {{0.5194, 0.5517, 0.5649, 0.6000}, {0.2531}, {0.2917, 0.3222}};

ñ4 = {{0.4600, 0.4781, 0.4788, 0.4976, 0.5789, 0.6016, 0.6026, 0.6262}, {0.1465},
{0.1261, 0.1565, 0.1712, 0.2000, 0.2196, 0.2467}}.

Step 3′. Calculate the score function value of the SVNHFE ñi by using Equation (34):

s(ñ1) = 0.5669, s(ñ2) = 0.7622, s(ñ3) = 0.6663, s(ñ4) = 0.7358.

Then, we can obtain the ranking order of four alternative companies is A2 � A4 � A3 � A1,
and the food company A2 is also the best alternative.

In real life, decision makers may determine the value of the parameter λ according to the
decision-making problem itself or their preference. To analyze the influence of the parameter λ on the
final ranking result, we change the parameter λ of the GSVNHFPWA operator and GSVNHFPWG
operator in the numerical example above. Different values of the parameter λ are provided, such as
0.001, 0.5, 1, 2, 3, 5, 10, 20, and 50, which is determined by decision makers in decision-making process.
Combined with the proposed method, we can obtain the score function values of four alternative
companies, then the ranking results are determined as shown in Tables 2 and 3. Tables 2 and 3 show
that when the GSVNHFPWA operator is used to aggregate arguments, the best alternative is the
food company A2 for 0 < λ ≤ 3, but the best alternative is the arms company A4 for 5 ≤ λ ≤ 50.
Besides, when the GSVNHFPWG operator is used to aggregate arguments, the best alternative is
always the food company A2 for 0 < λ ≤ 50, however, there are some differences in specific ranking
for λ = 50. Thus, the different ranking results indicate that the parameter λ plays a very important
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role in the aggregation process; decision makers should be cautious to determine the value of λ in real
decision-making process.

Table 2. Score function values obtained by the GSVNHFPWA operator and the rankings of alternatives
for different values of λ.

The Value of λ s(ñ1) s(ñ2) s(ñ3) s(ñ4) Ranking

λ = 0.001 0.5834 0.7702 0.6856 0.7571 A2 � A4 � A3 � A1
λ = 0.5 0.5866 0.7706 0.6869 0.7596 A2 � A4 � A3 � A1
λ = 1 0.5902 0.7711 0.6882 0.7623 A2 � A4 � A3 � A1
λ = 2 0.5984 0.7721 0.6910 0.7676 A2 � A4 � A3 � A1
λ = 3 0.6071 0.7732 0.6937 0.7727 A2 � A4 � A3 � A1
λ = 5 0.6232 0.7753 0.6991 0.7811 A4 � A2 � A3 � A1
λ = 10 0.6500 0.7810 0.7109 0.7954 A4 � A2 � A3 � A1
λ = 20 0.6734 0.7902 0.7253 0.8104 A4 � A2 � A3 � A1
λ = 50 0.6927 0.8023 0.7394 0.8261 A4 � A2 � A3 � A1

Table 3. Score function values obtained by the GSVNHFPWG operator and the rankings of alternatives
for different values of λ.

The Value of λ s(ñ1) s(ñ2) s(ñ3) s(ñ4) Ranking

λ = 0.01 0.5735 0.7667 0.6766 0.7454 A2 � A4 � A3 � A1
λ = 0.5 0.5704 0.7647 0.6718 0.7408 A2 � A4 � A3 � A1
λ = 1 0.5669 0.7622 0.6663 0.7358 A2 � A4 � A3 � A1
λ = 2 0.5592 0.7569 0.6553 0.7251 A2 � A4 � A3 � A1
λ = 3 0.5512 0.7518 0.6459 0.7152 A2 � A4 � A3 � A1
λ = 5 0.5372 0.7435 0.6324 0.6998 A2 � A4 � A3 � A1
λ = 10 0.5166 0.7317 0.6132 0.6806 A2 � A4 � A3 � A1
λ = 20 0.5013 0.7311 0.5964 0.6686 A2 � A4 � A3 � A1
λ = 50 0.5718 1.0000 0.8765 0.8030 A2 � A3 � A4 � A1

5.2. Comparison and Discussion

To further verify the effectiveness of the proposed method, we compare the aforementioned
ranking order with the results of other decision-making methods for analyzing the same numerical
example as shown in Table 4; these methods include the SVNHFWA operator and SVNHFWG
operator [14], correlation coefficient of DHFSs [27], correlation coefficient of SVNEs [28], and correlation
coefficient of SVNHFEs [15]. From Table 4, we can see that the ranking order of four alternatives
obtained by the SVNHFWA operator is A4 � A2 � A3 � A1 due to the feature of emphasizing
group major points; besides, the ranking order of four alternatives in other methods are always
A2 � A4 � A3 � A1, which is consistent with our proposed method.

Table 4. Comparison result of different decision-making methods.

Decision-Making Method Ranking

The GSVNHFPWA operator (λ = 1) A2 � A4 � A3 � A1
The GSVNHFPWG operator (λ = 1) A2 � A4 � A3 � A1

The SVNHFWA operator A4 � A2 � A3 � A1
The SVNHFWG operator A2 � A4 � A3 � A1

Correlation coefficient of DHFSs A2 � A4 � A3 � A1
Correlation coefficient of SVNEs A2 � A4 � A3 � A1

Correlation coefficient of SVNHFEs A2 � A4 � A3 � A1
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With regard to the existing five decision-making methods above, the methods based on the
correlation coefficient of DHFSs and correlation coefficient of SVNEs are only applicable to the
DHF and SVN environment, respectively, while DHFS and SVNS are the specific cases of SVNHFS.
On the other hand, the other three methods can only solve the decision-making problems that the
criteria are in the same priority level. Therefore, the comparison result indicates that the proposed
method, not only can deal with the decision-making problems effectively but, also has several
advantages as follows: (1) decision makers evaluate the alternatives by using SVNHFEs, which contains
truth-membership, indeterminacy-membership, and falsity-membership degrees, and SVNHFS is
also a generalization of HFS, DHFS, and SVNS; thus, SVNHFEs can express more reliable evaluation
information of decision makers; (2) the GSVNHFPWA operator and GSVNHFPWG operator can solve
the decision-making problems that the criteria are in different priority levels, which is not considered in
other decision-making methods under SVNHF environment; and (3) the GSVNHFPWA operator and
GSVNHFPWG operator can be reduced to several aggregation operators through adjusting the value
of the parameter λ, including the SVNHFWA operator and SVNHFWG operator [14]. Decision makers
can determine the exact value of the parameter λ to respond to the possible situations in real life.

6. Conclusions

This paper studies the MCDM problems under SVNHF environment, while the criteria are in
different priority levels. Motivated by the idea of the PA operator, we develop the GSVNHFPWA
operator and GSVNHFPWG operator for aggregating SVNHFEs based on the related researches
of SVNS and HFS theory. Some desirable properties of the proposed operators are investigated in
detail, such as idempotency, boundedness, and monotonicity. Furthermore, we obtained several
special cases that reduced from the proposed operators by changing the value of the parameter λ.
Then, an approach for MCDM in which the criteria have different priorities is constructed combined
with these operators. Finally, a numerical example is provided to illustrate the applications of the
proposed method, and several advantages are reflected by the comparison between the proposed
method and several existing decision-making methods. In the future, we shall investigate the SVNHF
prioritized aggregation operators according to the different t-norm and t-conorm operational laws,
and develop more aggregation operators for SVNHFSs.
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