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a  b  s  t  r  a  c  t

Granular  computing  is  a computational  paradigm  that  mimics  human  cognition  in terms  of  grouping
similar  information  together.  Compatibility  operators  such  as  cardinality,  orientation,  density,  and  mul-
tidimensional  length  act  on  both  in  raw  data  and  information  granules  which  are  formed  from  raw  data
providing  a framework  for human-like  information  processing  where  information  granulation  is  intrin-
sic. Granular  computing,  as  a computational  concept,  is  not  new,  however  it is  only  relatively  recent  when
this concept  has  been  formalised  computationally  via  the  use  of Computational  Intelligence  methods  such
as Fuzzy  Logic  and  Rough  Sets.  Neutrosophy  is  a unifying  field  in  logics  that extents  the  concept  of fuzzy
sets  into  a three-valued  logic  that  uses  an  indeterminacy  value,  and  it is  the basis  of  neutrosophic  logic,
neutrosophic  probability,  neutrosophic  statistics  and  interval  valued  neutrosophic  theory.  In this  paper
we  present  a new  framework  for  creating  Granular  Computing  Neural-Fuzzy  modelling  structures  via  the
use  of  Neutrosophic  Logic  to  address  the issue  of uncertainty  during  the  data  granulation  process.  The

theoretical  and  computational  aspects  of the approach  are  presented  and  discussed  in  this  paper,  as  well
as  a  case  study  using  real  industrial  data.  The  case  study  under  investigation  is  the  predictive  modelling
of  the  Charpy  Toughness  of  heat-treated  steel;  a process  that  exhibits  very  high  uncertainty  in the mea-
surements  due  to  the  thermomechanical  complexity  of  the  Charpy  test  itself.  The  results  show  that  the
proposed  approach  leads  to more  meaningful  and  simpler  granular  models,  with  a better  generalisation

d  to o
performance  as  compare

. Introduction

Extracting information and converting it to ‘easy to interpret’
nowledge is a very important but not a trivial task in Systems Engi-
eering, in particular in the case of very complex and non-linear
rocesses [1]. Within this context, Soft Computing techniques can
e utilised to offer their transparency and interpretability potential.
ransparency plays a significant role as a measure of interpretabil-
ty and distinguishability, i.e. the more interpretable information of

 system under study, the better its understanding. Unlike popular
lustering approaches such as Fuzzy C-Means, Granular Comput-
ng (GrC) [2,3] groups data not only based on similar mathematical
roperties such as proximity but also it considers the raw data as
onceptual entities that are captured in a compact and transpar-
nt manner [4]. Therefore, such individual entities are merged into
ense information granules whose similarity [3] can be evaluated

n a variety of ways depending on the application at hand. In GrC all

perators act on the information granules and raw data, which can
mbed useful (for the data mining process) granular knowledge

∗ Corresponding author.
E-mail addresses: coq10ar@sheffield.ac.uk (A.R. Solis),

.panoutsos@sheffield.ac.uk (G. Panoutsos).

568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.asoc.2012.09.002
ther  recent  modelling  attempts  on  the  same  data  set.
©  2012  Elsevier  B.V.  All  rights  reserved.

such as the proximity to other information granules, cardinality,
density, function similarity, orientation, overlap, etc.

In literature a number of granular frameworks appeared [5–8]
via the use of Rough Sets, Fuzzy Logic and Neural Networks.

Even though granulation process [8] groups similar entities,
there is not any measure which leads how much a granule must
grow. This phenomenon produces a grade of inclusion uncertainty
among the new granules as a consequence of a ravenous behaviour.
Usually, in fuzzy systems a parsimony model is related to its inter-
pretability as a consequence of a good distinguishability. However,
as it is mentioned in [9] when adaptive learning algorithm is
introduced into a fuzzy inference system, there might be a loss in
the interpretability. We  believe a distinguishable and initial gran-
ular framework can aid in the estimation of the fuzzy inference
parameters. To exemplify a case study model used in this paper
is based on a real industry dataset related to the measurement
of Charpy Toughness in heat-treatment steel and it suffers from
sparsely data set [10,11]. The use of Neutrosophic domain pro-
vides an extra dimension which measures the entropy produced by
the creation of a new granule. And it persuades the compatibility
search in eliminating potential granules to be merged. In this paper

we present a systematic approach for the construction of granular
objects by means of a Neural-Fuzzy modelling structure based on
Radial Basis Functions (RBF) and Neutrosophy. A Neural Fuzzy sys-
tem combines the learning capabilities of Neural-Networks (NN)

dx.doi.org/10.1016/j.asoc.2012.09.002
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:coq10ar@sheffield.ac.uk
mailto:g.panoutsos@sheffield.ac.uk
dx.doi.org/10.1016/j.asoc.2012.09.002
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the problem at hand [4]. In this work, wi is used with the value of 1
in every dimension. In Fig. 1, granules A and B produce the following
values:
A.R. Solis, G. Panoutsos / Applied

nd the advantages of system transparency as offered by Fuzzy-
ogic (FL) systems. Furthermore, a large number of NF approaches
ave been proposed in the past, just to name a few [12–18].

In spite of the functional equivalence between RBF neural
etworks and fuzzy systems (FS) [12,19], fuzzy capabilities such as
ransparency and interpretability loss their real power as a conse-
uence of black-box properties in RBF neural structures. Therefore,
ne of the major objectives in Soft Computing (SC) systems and
odelling, the development of transparent knowledge and rule-

ases is crucial for the interpretation of real world systems. The
otivation behind the research work presented in this paper is

o propose a systematic methodology by using granulation that is
apable of identifying the data uncertainty produced by merging
wo different information granules in a data space. In particular,
hose granules which are quite similar, and how their orientation
an be influenced in order to produce better distinguishability in
he creation of fuzzy partitions.

In this paper, the hesitation produced during information gran-
lation particularly due to the lack of distinguishability in the initial
uzzy partition is measured by the use of a neutrosophic index [20],
hich is a generalization of the Intuitionistic Fuzzy Sets [21]. In

ntuititionistic theory the uncertainty of an element A is produced
y �A = �A + vA ≤ 1, and �A: X → [0,1] and vA: X → [0,1]. In neutro-
ophic sets the tuple <t, i, f> represents the truth, falsehood, and
ndeterminacy, with the latter often used in literature as uncer-
ainty, hesitation, ignorance, etc. From a mathematical point of
iew, neutrosophic sets and the set-theoretic operators should be
efined according to the problem at hand. In this paper we  define
he set-theoretic operators based on the entropy (uncertainty) pro-
uced by the distribution of membership functions in the initial
lustering stage. The neutrosophic components <t, i, f> define the
omain in which an element belongs (t = true = membership) or
ot (f = false = non-membership) to a certain fuzzy set and if the
ompatibility criterion in granulation produces a high indetermi-
ate value (uncertainty). In Fuzzy Logic theory, entropy has been
mployed as a measure of Fuzzy information about a Fuzzy set or
ystem in the universe of discourse. Shannon considered the loga-
ithmic behaviour of the entropy due to its addition property [22],
nd as an information gain from an event that is inversely related
o its occurrence [23].

For example in [24] an ensemble NN was presented to predict
ineral prospectivity into deposit or barren cell. In that work, two
eural Networks were employed to estimate the degree of truth
nd false membership values, and finally calculate the degree of
ndeterminacy by a using an interpolation method. In this paper,
he Neutrosophic scheme is utilised to influence the compatibility

easure between granules by evaluating the uncertainty produced
y the merging of the information granules. This paper is organised
s follows: in the next section, Section 2, a systematic modelling
pproach is presented based on Granular Computing and an RBF
eural-Fuzzy structure. Section 3 presents a Neutrosophic scheme
ased on a version of Shannon’s entropy definition for the formula-
ion of uncertainty to account for any uncertainty produced during
he merging of the information granules. In Section 4, a case study
s presented based on a real industry dataset related to the mea-
urement of Charpy Toughness in heat-treated steel. This process is
nown in the steel industry for the uncertainty induced in the mea-
urements due to complex thermomechanical phenomena during
he mechanical testing of the material. Finally, Section 5 concludes
his paper and suggests possible future research directions.
. Granular computing and RBF neural-fuzzy networks

Granular computing is a computational paradigm that mimics
he cognitive human abstraction in order to group together entities
omputing 13 (2013) 4010–4021 4011

with similar features, i.e. volume, density, geometrical proper-
ties, cardinality, function, overlap, etc. To achieve the information
grouping, granulation employs a criterion measure that calculates a
‘compatibility index’ based on granular similarity. In essence, gran-
ulation is an iterative process, which consists of two main steps. In
this paper, we  will extend a method based on the iterative approach
shown in [4,8]:

• Find the two  most compatible information granules and merge
them together as a new information granule containing both orig-
inal granules.

• Repeat the process of finding the two most compatible granules
until a satisfactory data abstraction level is achieved.

The compatibility index C(A,B), defined as the merging two  dif-
ferent granules A and B is based on various geometrical properties
and the number of elements that form each granule. The compat-
ibility defines the most important concept during the granulation
process.

C(A, B) = DistanceMAX − DistanceA,B · exp(−  ̨ × R) (1)

in which

R = CA,B/CardinalityMAX

LA,B/LengthMAX

DistanceMAX = maximum possible distance in the data set,
DistanceA,B = the multidimensional average distance.

Between two  granules A, B such as:

DistanceA,B =
∑d

i=1wi (D1 − D2)
d

(2)

In which

D1 = max (maxAi, maxBi)

D2 = min (minAi, minBi)

wi: the importance weight for dimension i; d: the number of dimen-
sions; maxXi: max  limit of granule ‘X’ in dimension ‘i’; minXi: min
limit of granule ‘X’ in dimension ‘i’; ˛: weights the requirements
between distance and cardinality/length [8]; CardinalityMAX: the
maximum possible cardinality in the data set; LengthMAX: the
maximum possible length of a granule in the data set; CA,B: the car-
dinality of the resulting granules; LA,B: the multidimensional length
of the resulting granule, where maxXi and minXi are the maximum
and minimum length respectively of the resulting granule at each
dimension i.

LA,B =
d∑

i=1

(maxXi − minXi) (3)

To exemplify the compatibility calculation C(A,B) [4], in Fig. 1 is
given a 2-dimensional granular space where the granule A and B are
merged. The term  ̨ is used as a threshold value in the interval [0–1]
to balance the two  compatibility measures of ‘distance’ and ‘den-
sity’ (cardinality/size), and wi weights each dimension according
DistanceMAX =
d∑

i=1

distancesi =
d=2∑
i=1

(1 − (−1)) = 4;
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Fig. 1. Resulting Granule ‘C’.

istanceA,B = {max(0.9, 0.55) − min(0.4, −0.1)}
2

+ {max(0.2, −0.1) − min(−0.8, −0.2)}
2

= 1

A,B = CardinalityA + CardinalityB = 15 Granules;

ardinalityMAX = GranuleA + GranuleB + GranuleD + GranuleE

+GranuleF + GranuleH = 8 + 7 + 10 + 2 + 6

+8 + 2 = 43 Granules

A,B = 2;

engthMAX = 3.93;
 = 0.35;

(A, B) = 4 − 1 × exp(−0.35 × 0.685) = 3.123

Fig. 2. Compatibility m
omputing 13 (2013) 4010–4021

Since the compatibility criterion in Equation (1) is based on the
multidimensional length of each granule and its cardinality, the
granular index decreases while the numbers of iterations increases,
as less compatible granules are merged. Fig. 2, illustrates a typi-
cal evolution of the compatibility measure. As expected, the index
reduces dramatically (fall-off) which represents less compatible
(dissimilar information) is merged towards the end of the gran-
ulation process. This may  be also used as a criterion to terminate
the iterative process.

For simplicity purposes just two dimensions are used to demon-
strate the granulation concept. Fig. 3 illustrates the granular
compression with a two-dimensional data set at various levels. The
top left graph in Fig. 3 shows the initial raw data, and then the subse-
quent graphs show how such data are merged to form the required
number of final information granules. Moreover, Fig. 3, depicts the
granular process divided into three main steps: (a) raw data; in this
stage each datum is considered as a granule into the input space and
hence compressed in compact and dense granules, (b) input space-
data granulation; during this iterative process the initial number of
granules is reduced according to their compatibility in which vari-
ous similarity measures can be taken into account, such as: the size
of granules, the cardinality, overlapping among granules, orienta-
tion, etc., and finally (c) output space-density function represents
the linguistic interpretation of the final group of dense granules
which preserve the original features of the raw data.

In the first stage of granulation the raw data are compressed in
dense and compact granules. Without loss of generality, as it was
explained in [8] the final geometrical boundaries of each informa-
tion granule are used to estimate the initial value of Cj and �j which
are illustrated in Fig. 4. The average hyper-box boundaries of each
granule are utilised to calculate the initial Cj as follows:

Cj =
[
C11, . . . , Cji, CPn

]
; i = 1, .., n; j = 1, . . . , P (4)

Where j is the jth hidden neuron and i the ith input.
Cji = maxXi − minXi

2
(5)

easure example.
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Fig. 3. Data granula
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Fig. 4. General structure of an RBF-NN.

Here, the width of the Gaussian function in the RBF layer is
stimated by [25] and hence its calculation is done via Equation
6):

j = 1
r

(
r∑

k=1

≥
∥∥Ck − Cj

∥∥2)1/2

(6)

Where Ck is the nearest neighbours of centroid Cj.

.1. Radial basis function neural networks

Considering the equivalence between the Radial Basis Function

eural Networks (RBFNN) and Takagi-Sugeno type-0 fuzzy sys-

ems (or type-1 Mandani inference engine) as expressed in [13,14],
n RBFNN combines the input-output n + 1 dimensional space {x1,
2, . . .,  xi, . . .,  xP, yP+1} where xi represents the input partition and
tion process.

yP+1 the corresponding output as is illustrated in Fig. 4. Due to this
functional equivalence that lies on the fact [13]:

(a) The number of the receptive fields (hidden layer) is equal to the
number of if-then rules.

b) The output of each fuzzy if-then rule is composed of a constant.
(c) The n + 1 dimensional membership is chosen as Gaussian func-

tion with the same variance.
d) The firing strength is based on the t-norm operator.

(e) The RBFNN output is estimated on weighted average or
weighted sum.

The final number of granules (Fig. 3) obtained after granulation
process are used as the Ai initial fuzzy sets to construct the if-then
rules as follows:

Ri: If x1 is A1 and x2 is A2, xi is Aj, . . .,  and xn is AP

Then y is zi; m = 1, . . .,  P = number of hidden neurons
Typically, zj can take any of the following three forms:

(1) Singleton
(2) Fuzzy set
(3) Input-based polynomial function

By assuming a one-to-one relationship between a multidimen-
sional granule and a Fuzzy Logic linguistic rule of the form shown
above, one can construct a whole rule-base using the informa-

tion granules. The extra granular features (e.g. cardinality, centre
of gravity) can be used to estimate an initial centre and width for
the resulting Fuzzy sets of the rule-base as it will be shown over
Section 3.1.
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In this investigation, a system with a centre of gravity defuzzifi-
ation will be used, product-inference rule, and a singleton output
ayer, which are expressed by:

 =
p∑

j=1

zi

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
∏p

j=1�ji(xi)
p∑

j=1

∏P
j=1�ji

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7)

here �ji is the membership value of the input i which is in jth rule.

ji = exp

(
−
(

xj − cij

)2

�2
ji

)
(8)

Thus from (7) it can be written that:

 =
P∑

j=1

zjgj(x) (9)

here gj is defined as:

j(x) = mj(x)
p∑

j=1

mi(x)

(10)

here x is the input vector and m its corresponding membership
valuation which is defined as:

j(x) = e
(||x−Cj ||/�2

j
)

(11)

Once the initial parameters cij and �ij are estimated, their opti-
isation can be carried out by using various algorithms including

uch as algorithms based on gradient descent (GD), or Evolutionary
lgorithms (EA). In this research work an adaptive Back-Error-
ropagation (BEP) algorithm is employed [13–15], which has been
roven in the past to be very efficient in the optimisation of the
roposed type of system.

The update rule for the centre estimation:

j(t + 1, i) = �Cj(t, i)− ∝ egj(yj − y)

(
xi − Cj(t, i)

d2
j

)
(12)

The update rule for the width estimation:

j(t + 1) = �dj(j)− ∝ egj(yj − y)

⎛
⎜⎜⎜⎜⎝

2∑
i=1

(
xi − Cj(t, i)

)2

d3
j

⎞
⎟⎟⎟⎟⎠ (13)

The update rule for the output weight estimation:

j(t + 1) = �wj (t) − ˛gje (14)

here ˛: Learning rate; �: Momentum.e = y − yt =
P∑

j=1

gj · yj − yt

e is the training error of the ith data point; Yj is jth output from
he data; y is output from the model; t is tth training data point; i
s i input to the neural network.

Although, the BEP leads the objective function to a good local
inimum by using a small learning rate, often it does not represent
he optimal performance of the system due to the algorithm ‘getting
tuck’ in local minima. In order to overcome this issue a momentum
ased term and a continuously adaptive version of BEP is used, as
reviously presented in [8].
omputing 13 (2013) 4010–4021

3. Neutrosophic logic in granular computing

The concept of Neutrosophic sets was  introduced by F. Smaran-
dache as a generalisation of fuzzy and intuitionistic logic [26] in
order to deal with the truth (T), falsehood (F) and the indeter-
minacy (I) of an event to happen. In fact, Smarandache used the
concept of infinitesimals in order to define the non-standard [27]
real subsets]−a, b+[. According to [26,27], a number x is said to be
an infinitesimal if and only if for all positive numbers n the number
x is defined as |x| < 1/n. Moreover, the elements of a non-standard
interval are −a = a − x and b+ = b + x. In Neutrosophic logic, its com-
ponents are introduced by using a standard or non-standard unit
interval as follows:

Let T, I, F be standard or non-standard real subsets of]−0, 1+[,
with sup T = tsup, inf T = tinf

sup I = isup, inf I = iinf
sup F = fsup, inf F = finf
where inf]−a, b+[ = −a and sup]−a, b+[ = b+

The elements T, I, F can be interpreted as intervals, standard
or non-standard real sets, discrete, continuous, single-finite sets,
operations under intersection or union, fuzzy numbers, normal dis-
tribution, etc. For this reason the tuple <t, i, f> [26] represents the
truth value, indeterminacy value and falsehood value. In information
theory [28] three basic types of uncertainty are defined, namely:
(a) fuzziness: the lack of definite or sharp distinction, (b) ambi-
guity which is divided into two types (b-1) strife: defined as the
disagreement in choosing several alternatives and (b-2) nonspeci-
ficity when two  or more alternatives are left unspecified. Here, it is
considered the lack of sharpness in the sense if two granules really
belong to each other based on the local entropy produced by their
merging.

The granulation process, as described in [8,29], aims to com-
press the initial data into compact and dense granules based on the
resulting cardinality and the multidimensional length of any two
merged granules. Moreover, this methodology exploits as much
as possible the density (‘richness’ of information) of the granules.
However, sometimes the introduction of a new granule in the input
space produces a lack of distinguishability due to the overlapping
which is not considered into the compatibility Equation (1). In order
to address this issue we propose the introduction of granulation
under a Neutrosophic scheme in order to estimate the uncertainty
in the pattern space. The hypothesis is that if the granulation com-
patibility index ‘favours’ the merging of granules that will lead to
less accumulated uncertainty in the data set then the resulting
multidimensional granules, hence Fuzzy Rules, will have less uncer-
tainty leading to more robust Fuzzy Inference models. On one hand,
in Neutrosophic terms granulation uncertainty or granulation inde-
terminacy represents the ‘hesitation’ of two granules to belong to
each other either as a single point or as an interval in the partition
space. The interpretation of a granule in N dimensional space can be
interpreted as a composition of N standard intervals]−0, L+[where
L ≥ 0. On the other hand, in terms of fuzzy theory, fuzziness has
been defined as a result from the lack of sharpness of relevant dis-
tinctions, and it is different from ambiguity. In [30] the definition of
uncertainty is based on a distance function with the same general
view of fuzziness.

f (A) = −
∑
xεX

A (x) log2A (x) + Ā(x)log2Ā(x) (15)

In [23,31,32] various definitions of uncertainty have been pro-

posed; here we  will employ that defined in [23].

eH = C + pje
(1−pj) + (1 − pj)e

pj , C ∈ [0,  1] (16)
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Where p is the probability of the event j and
∑

j

pj = 1, 0 ≤

j ≤ 1
In order to justify the exponential function, we denote its gain in

nformation corresponding to the occurrence of the ith event [23]
nd its properties as any entropy expression.

P1: eH is defined at all points in [0,1]
P2: lim

pi→0
eH = �eH (pi = 0) = k1, k1 ≥ 0 and finite

P3: eH
(

pj = 1
)

= k2, k2 ≥ 0 and finite
P4: k2 < k1
P5: with increase in eH, �eH decreases exponentially.
In other words with increase in the uncertainty the gain in infor-

ation increases exponentially. In a similar approach to the one
resented in Equation (16), in Fuzzy Set theory pj can represent the
embership of an element �i ∈ Ux where Ux is the set of fuzzy sets.

he aims of granulation in the proposed framework are to (a) define
he linguistic scenario [8] under the compatibility criterion and (b)
efine its potential application in high dimensional variable space.
rom a GrC perspective, the interpretation of the membership in
2 can be considered as shown in Fig. 5.
Fig. 6. Indetermi
embership representation.

Here pj = �j/

n∑
k

�k, n = all the granules k that overlap to granule

j, and �j is defined as

�B = A ∩ B

LB
, LB =

∣∣sup (B) − inf (B)
∣∣ (17)

Referring back to the above equation, the tuple <t, i, f> can be
individually interpreted as

tj = �j; fj = 1 − tj[10]; ij = eH (18)

Therefore, equation (16) can be rewritten as

ij = C + tje
fj + fje

tj , Cε]−0, 1+[ (19)

Fig. 6 shows plot of the evaluation of granular indeterminacy in
terms of t and f. It takes its maximum value imax when the overlap-
ping in granulation is equal to 0.5 and then t = f. In other words, ij
depicts the indeterminacy produced by merging two granules A and
B and how this (union) affects the granular neighbourhood. More-
over, the indeterminacy between two  granules A and B is expressed
by:
iA∪B = 1
d2

d∑
j=1

ij, d = number of dimensions (20)

nacy value.
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Finally, the granular compatibility criterion, Equation (1), can be
ritten as

(A, B) = DistanceMAX − [iA∪B + DistanceA,B × exp (−  ̨ × R)] (21)

The compatibility criterion, as described by Equation (21), will
llow the merging of the most compatible granules while at the

ame time the granular uncertainty is taken into consideration.
quation (21) is a minimisation cost function; hence the gran-
lation will follow the ‘path’ of the minimum uncertainty. The

disorder’ produced during the granulation process in terms of

Fig. 8. Sample granu
ty measure and indeterminacy respectively.

uncertainty/indeterminacy could be evaluated by using the tuple
<t, i, f> as a histogram of such components as follows:

Ni(t) = 1
d × card

e−f (t) × i(t) (22)
Where:
d: number of dimensions.
card: the resulting cardinality of the new merged granule.
t: iteration t

lation scenario.
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Fig. 9. Sample of Charp

.1. Uncertainty in the linguistic scenario and granular
nformation ‘coverage’
Taken in its broad sense, granulation iterative methodology
escribed in [8] considers the proximity between any two entities
nd its cardinality and length as a compatibility measure. However,
ghness data space [6].

there are some situations, in which such a density and distance
measures do not produce the best orientation and distribution

of the new merged granules. More specifically, this can repre-
sent a loss of transparency in the final linguistic rules, and their
characterisation. For instance, in Fig. 7a the two  final granules
produce a misinterpretation of the consequence in the linguistic
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tions by using Granular Compression.
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Table 1
Charpy toughness: input variables.

Chemical composition Test parameters Heat treatment

C, Si, Mn,  S, Cr, Mo, Ni, Al, V Test depth,
Specimen size Test
site

Hardening
temperature

Test temperature Cooling medium
Fig. 10. Initial Membership func

cenario, and hence this composition bears a lack of a parsimo-
ious modelling. The A∪B resulting granule covers an area (lower

eft of the granule) where raw data – information – simply does not
xist despite following the compatibility objective function. One of
he motivations to include the uncertainty under this merging pro-
ess is to eliminate as much as possible this undesirable granulation
ehaviour, and promote a better granular coverage under a Neu-
rosophic scheme, where the granules are strongly linked with the
aw data/information.

As a further example, Fig. 8 illustrates the final granules con-
tructed after applying just the granulation process indicated in
quation (1), and those obtained with the expression shown in
quation (21). The resulting final granules in the second scenario
nclude more granular information on overlapping; however the
ndividual granules represent more accurately the underlying sub-
ranules/data.

. Case study and simulation results

In this section, a case study is provided to evaluate the effective-
ess of the proposed method for improving the interpretability of
he input space partitioning while preserving the global accuracy.
he example consists of a data set related to the impact energy tests
Charpy Toughness) of heat-treated C-Mn grade steel.

.1. Impact energy
One of the most popular and standardized impact techniques
s the Charpy test, which is a toughness measurement, and it is
sually employed in the industry [33]. This technique is used to

Fig. 11. Final Membership functions by using G
Tempering
temperature

ascertain the fracture characteristics of materials; it is mainly used
to estimate the impact energy (Joules) of a standard size/shape bar
of square cross section during its fracture by another standard type
of cantilever equipment.

The load is applied as an impact blow from a weighted pendulum
hammer, which is released from a specific height. The specimen is
placed on a base and suddenly hit by the pendulum that fractures it.
Due to its low repeatability, high cost, and imprecise and scattered
results obtained under the same input conditions this test turns out
within a certain output space region but with high uncertainty and
variability [33] inherited in the measurements.

The Charpy toughness data set used in this work consists of 1661
measurements on heat-treated steel [31] (TATA Steel, Yorkshire).
The data set has 16 input dimensions, and 1 output (Impact Energy,
Joules), the scarcity of some of the data dimensions is illustrated in
Table 1.
For cross-validation purposes the data have been split into train-
ing, checking and testing, in order to avoid over-fitting the model
enhancing its generalisation properties. The initial data used to
train the GrC-NF model consists of 1084 (65%), which are composed

ranular Compression and Neutrosophy.
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Table  2
RMSE performance of 3 similar NF structures using Fuzzy C-means and granular
computing.

Training Checking Testing

NF with Fuzzy C-means 18.78 20.18 21.78
GrC-NF [8] 14.66 21.24 20.42
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Fig. 12. Charpy Toughness model fit.
Neutrosophic GrC-NF 16.10 18.3 19.34

f just raw data. The checking data and testing data are 277 (17%)
nd 300 (18%) respectively.

Unlike the methodology described in [8] the term iA∪B is
ntroduced to estimate the indeterminacy produced by the over-
apping created in each dimension considering just intervals or
imply the corresponding face of a granule. Once, the final com-
ression is obtained this information is captured by the GrC-NF in
rder to train the RBF Neural-Fuzzy structure. In Table 2, it is shown

 comparison of two previously obtained results via other granula-
ion methods and those obtained with the proposed indeterminacy
stimation. Even though, in [8] the training performance is better,
he testing and checking simulation turned out more robust bear-
ng an enhanced generalisation (testing) which is very significant
or this type of industrial data.

As it was also suggested in [34], here a simulation with less than
 or more than 18 granules is not considered due to the poten-
ial over-fitting behaviour or under-representation of the raw data
ccurs during the training stage. In this sense, an RMSE index to
easure the performance during the training, checking and testing

tage by using an initial partition space of 9 granules is suggested.
able 2 indicates a comparison between the granular comput-
ng with uncertainty and those mentioned in [8] and the results
btained by means Fuzzy C-means.

The initial membership functions obtained by just considering
ranular compression are shown in Fig. 9. There, the overlapping
aused by the merging stage is significant and this produces a lack
f sharpness in the distinction of rules. In this sense, we  try to atten-
ate this indeterminacy by persuading the combination of granules
nder a low overlapping scheme. Moreover, we  believe that a bet-
er understanding in granular uncertainty must be studied taken
nto account its compatibility features (Fig. 10).

The membership functions obtained by granular computing
nd uncertainty in Fig. 11 offer a better distinguishability as a
esult of identifying measuring the uncertainty produce during the
ranulation and how this value is used. However, this does not
epresent the best partition; since it is clear there are some input
egions with a lack of good interpretability. Fig. 12, illustrates the
easured-predicted fitness plots as obtained via the GrC-NF Neu-

rosophic approach. Table 2 demonstrates the performance of (a)
 NF model created via a clustering framework based on the well-
nown Fuzzy C-Means algorithm [35,36] (b) A GrC-NF model which
s based on the results obtained in [8], and (c) GrC-NF with the
eutrosophic tuple <t, i, f>. From the results shown in Table 2 one
an notice the improved checking performance and most impor-
antly the improved testing performance (generalisation). Finally,
igs. 13 and 14 show the Neutrosophic index evaluation and the
MSE progression during the optimisation procedure respectively.
he ‘path’ followed by the Neutrosophic GrC-NF model is slower
onvergent however it reaches to a better performing final model,
ossibly by the inclusion of higher quality information granules
rules) which have less inherent uncertainty. The neutrosophic
ndex evaluation plot shows that during the end-stage of the opti-

isation routine the resulting indeterminacy of the final granules
rules) is less on the case of the GrC-NF Neutrosophic model. In

hort, Fig. 13 represents the distribution order of the final granules
n the partition space.
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Fig. 13. Average Neutrosophic perfo
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fuzzy neural networks, IEEE Transactions on Neural Networks 15 (3) (2004)
Fig. 14. Root mean square error performance using <t, i, f>.

This index reflects the behaviour of the compatibility expression
n terms of <t, i, f> and the final distribution of the resulting granules.

. Conclusions

In this paper, a systematic modelling framework based on
ranular Computing, Neural-Fuzzy modelling and Neutrosophic
ogic is proposed. The presented approach mimics the human
ognition in terms of grouping similar information (granules)
ogether based on a number of similarity measures (in the com-
utational case: proximity, cardinality, length). Furthermore, the
roposed approach uses a Neutrosophic Logic concept to esti-
ate inherent information uncertainty/indeterminacy due to the
erging operation during the information granulation process.

he uncertainty/indeterminacy index, calculated via a Shannon
ntropy criterion, is iteratively calculated during the granulation
rocess and this results in a final GrC-NF inference system with

 more robust rule-base with better representation of the raw
ata/information. This approach is applied to a real industrial
ataset, based on the measurement of the Charpy Toughness of
eat-treated steel, a process that is particularly known for the pro-

uction of sparse and uncertain data. The proposed methodology

s successfully applied to the industrial dataset and the results
how an improved generalisation and model interpretability per-
ormance as compared with similar previous modelling attempts

[

rmance of overlap of granules.

based on the exact same dataset. However, further investiga-
tions need to be performed with different datasets and synthetic
benchmarks to establish the overall performance of the proposed
approach under different information granulation conditions. It
would also be interesting to use this new framework presented
in this paper and try to introduce different levels and measures of
information uncertainty, for instance that uncertainty caused by
conflict, congruency, discord, and ambiguity in terms of nonspeci-
ficity, particularly variety and diversity in the creation of granules.
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