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Abstract

Neutrosophic cubic sets can deal with the complex information by combining the neutrosophic sets and cubic sets, the
power average (PA) can weaken some effects of awkward data from biased decision makers, and Heronian mean (HM) can
deal with the interrelationship between the aggregated attributes or arguments. In this article, in order to consider the
advantages of the PA and HM, we combined and extended them to process neutrosophic cubic information. Firstly, we
defined a distance measure for neutrosophic cubic numbers, then we presented the neutrosophic cubic power Heronian
aggregation operator and neutrosophic cubic power weighted Heronian aggregation operator, and some characters and
special cases of these new aggregation operators were investigated. Furthermore, we gave a new approach for multi-
attribute group decision making based on new proposed operators. Finally, two examples were given to explain the validity
and advantages of the developed approach by comparing with the existing method.
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The entire world is designated with complex circum-
stances. In order to process the complexity and uncertainty,
Zadeh (1965) was the first one who introduced the concept
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of fuzzy set (FS), which is described by membership
function (MF) in the closed interval [0, 1]. After then, Fs
theory was successfully applied into various fields, such as
pattern recognition, medical diagnosis, algebra, and deci-
sion making. But in FS, only MF was taken into account
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and it cannot handle the non-membership function (NMF)
degree. To handle this kind of information, Attanassov
(1986) proposed the concept of intuitionistic fuzzy sets
(IFSs) which consisted of both MF and NMF degrees. In
IFS, the hesitation degree can be obtained automatically by
subtracting the sum of MF and NMF degrees from one.
Now, IFS gained more and more attention from the
researchers. Several similarity measures, correlation coef-
ficient, and entropy measures for IFSs were defined by
many researchers and also were applied to various fields
(Szmidt and Kacprzyk 2000, 2001; Xu 2007; Liu et al.
2017). Atanassov and Gargov (1989) further generalized
the concept of IFSs into interval-valued IFSs (IVIFSs),
which extended the MF and NMF of IFSs to an interval
number. Ye (2011) defined the fuzzy cross-entropy of
IVIFSs and applied it to MADM. In IFSs and IVIFSs, the
MF and NMF degrees are defined independently, while
indeterminacy membership function (IMF) is dependent on
MF and NMF degrees. To overcome this limitation of IFSs,
Smarandache (1998) proposed the concept of neutrosophic
sets (NSs) by generalized IFSs. In NSs, MF, NMF, and
IMF are defined independently. Similar to FSs, IFSs,
IVIFSs, and NSs have also some limitations. NSs are dif-
ficult to use in practical and engineering problems due to
the containment of nonstandard united interval. To over-
come this limitation, several subclasses of NSs were pro-
posed by changing the nonstandard unit interval into
standard interval, such as single-valued NSs (SVNSs)
(Wang et al. 2010), interval NSs (INSs) (Wang et al. 2005),
simplified NSs (Ye 2014), and multi-valued NSs (Peng
et al. 2015).

In the recent years, Jun et al. (2012) proposed the con-
cept cubic set (CS), and it is characterized by IVFS
(Turksen 1986) and FS, which is more effective tool to deal
with uncertain and vague information. The hybrid structure
of CS has the advantage that it can contain more infor-
mation than FS and IVFS. Taking the advantages of this
hybrid structure of CS, several scholars extended the con-
cept of CSs and proposed several generalizations of CSs,
such as cubic hesitant fuzzy sets (CHFSs) (Mehmood et al.
2016), cubic soft sets (CFSs) (Muhiuddin and Al-roqi
2014), and neutrosophic cubic sets (NCSs) (Jun et al.
2017). In the above generalizations of CSs, NCSs gained
much attention from the researchers, because they are more
effective and informative by the available information in
the form of INSs and SVNSs.

The information aggregation operator is one of the most
important tools, which receives a great attention from the
researchers in the recent years (Liu and Li 2017; Liu and
Shi 2017; Liu et al. 2016a; Liu and Tang 2016; Liu and
Wang 2017). Zhou and He (2015) and Chen (2014) pre-
sented an ordered precise weighted aggregation operator
and a prioritized aggregation operator for IVIFSs,

respectively. He et al. (2016) presented the concept of
power Bonferroni mean (PBM) for IVIFSs and extended
PBM for interval-valued hesitant fuzzy sets. Liu and Zhang
(2018) proposed MAGDM method-based Bonferroni mean
operator under intuitionistic uncertain linguistic environ-
ment. Liu and Chen (2017) proposed extended PBM for
IVIFSs. Yu and Wu (2012) proposed the concept of HM
operator for IVIFSs. Liu (2017) proposed the concept of
power HM operator (PHM) for IVIFSs by combining the
PA defined by Yager (2001) and the HM operator defined
by Sykora (2009). Ju et al. (2018) proposed a MAGDM
method based on power generalized Heronian mean oper-
ators under hesitant fuzzy linguistic environment.
Recently, Liu et al. (2018) combined PA operator with HM
operators to develop PHM to deal with linguistic neutro-
sophic information. For NSs and their subclasses, several
other studies were made by many researchers, such as
aggregation operators (Zhang et al. 2016), similarity mea-
sures (Ye and Fu 2016; Bolturk and Kahraman 2018),
correlation coefficients (Ye 2013), and entropy measures
(Tian et al. 2016; Wu et al. 2018), that were explored.
Abdel-Basset et al. (2018) developed a novel GDM method
for triangular neutrosophic numbers. Recently, some
studies on NCSs were made. Lu and Ye (2017) proposed
cosine similarity measure for NCSs and applied it to
MADM, and Ali et al. (2016) proposed some similarity
measures for NCSs and applied them to pattern recogni-
tion. Banerjee et al. (2017) proposed GRA for NC envi-
ronment. Igbal et al. (2016) defined NC sub-algebras, and
NC closed ideals in B-algebras. Zhan et al. (2017) and Ye
(2018) defined some operational laws, score, accuracy, and
certainty functions for NCNs and proposed some aggre-
gation operators which considered the relationship between
the input arguments and applied them to MADM under
neutrosophic cubic environment. From the existing studies,
there are no such aggregation operators to deal with NC
information which have the capacity for considering
interrelationship among input arguments and removing the
effect of awkward data at the same time.

Furthermore, in real word, the complexity in MAGDM
problems is increasing day by day. In order to solve a
decision-making problem, it is necessary for us to consider
the following needs for selecting the best alternative.
(a) About how to describe the complex uncertain infor-
mation, as mentioned above, NCS contained more infor-
mation than SVNS and INS. Therefore, NCS is a good tool
to solve this problem; (b) sometimes, due to the partiality
of the DMs, they give some awkward attribute values of
alternatives, which may be unnecessarily low or unneces-
sarily high. In order to reduce these effects, we can choose
PA to attain this function by earmarking the corresponding
weights according to the support degrees; (c) In some sit-
uations, the relationship between the attributes (or input
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arguments) can also be taken under consideration and the
HM or BM can achieve this goal. However, because HM
has more advantages than the BM, we can select HM to
deal with interactions. So the motivation and goal of this
paper are (a) to define some distance and similarity mea-
sures for NCNs; (b) to combine the PA and HM operators,
extend them to neutrosophic cubic environments, further
propose some neutrosophic cubic PHM aggregation oper-
ators, such as NCPHA operator and NCPWHA operator,
and investigate some properties and some special cases of
them; (c) to develop new approach for MAGDM problems
by these operators; (d) to illustrate the validity and
advantages of the developed method.

To finish these goals, the rest of this article is organized
as follows. In Sect. 2, we give some basic definitions and
results of the NCSs, NCNs, PA, and HM. In Sect. 3, some
novel PHM aggregation operators for NCNs are proposed.
In Sect. 4, a novel MAGDM approach based on the pro-
posed operators is developed. In Sect. 5, we explain the
validity of the proposed method by two examples. Sec-
tion 6 gives the conclusions.

2 Preliminaries

In this section, we give some basic definitions and results
of NCSs, PA operator, and HM operator.

2.1 NCSs and their operations

Definition 1 (Jun et al. 2017). Let N be the universe of
discourse set. A NCS in X is a pair N = (®, E), in which ®
is an INS and E is SVNS, and then, n = {([®r, Of],
(0,07, [0rOf)), (Er, B, EF) } is called a NCN.

Definition 2 (Zhan et al.

{{[er.0n]. |0r, Oyl |0n 0 ), En 51 5r)}

and = {(|©r,07], 04,0y |, [0, 0] ). (Er.
E5,,EF,)} be any two NCNs and ¢ > 0. Then, the opera-
tional laws for CNNs are shown as follows:

2017). Let nj =

(1)
ny+n
= {< [G)TIL +07. —07:.071,070 4+ O — ®T1U®T2U} ;
[@,L +©p —0,0,,0, + Oy — @,u@,u} ,
[@FL + O — OO, Oy + Oy — @FUGFU] >
(ErEn, 2L En, 2R ER) | (1)
@)
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ny Xny = {< {G)TIL@TZLv ®T1U®T2U} ) {®11L®I§7 ®11U®12U} )
[®F]L®F§, ®F]U ®F§’} >v
(Er, +Erp,

== = = = = =
T =T =T =1, + —l, T =] =]y —=F,

+Er, ~ErEn) ) (2)
n={{[1- (- (0x) 1= (0~ (o)) ]
-0 ()= (= (or))]
1= (1= () 1= (1~ (o)) T)
(@)% @) ER)) i (3)

Theorem 1 (Zhan et al.

{{[er.0n] |0, ©4, |08 O ), (Er,E1Er))

and ny = {< |:®T2La ®T2“:| ) [®I§v ®[£/:| ) [®F§a ®F§/:| >a <E‘Tz7
EL,EF,)} be any two NCNs. Then, they have the following
properties.

2017). Let n =

(D) ny+ny=my+n; (5)
(2) ny Xny=ny Xny; (6)
3) Y(n +m)=y.n + Yy, > 0; (7)
4 n+ o = (Y +)n, ¥y, P, > 0; (8)
O sl = ()" g, g, > 0; 9)
©) 2 xn? = xm)". (10)
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Definition 2017). Let n =

{< |:®TIL7 ®T]U:| ) |:®IIL ) ®1]U:| ) |:®F1L? ®F]U]>7 <ET1 ) Ell ) EF] >}
be a NCN. Then, the score, accuracy, and certainty func-
tions of NCN are defined as follows:

3 (Zhan et al

ey
S(m)
O +2-0p —Op + O +2-0y — O +E1, +2 -5, —Ep,
- . :
(11)
2
A(m) = O — Opr + Oy — Opv + Ery — Bpy;
(12)
3)
C(m) = O + Ogu + Er,. (13)
Theorem 2 (Zhan et al. 2017). Let ni=

{{[er.0n].|0r. Oyl |0n 0 ), En 5.5}
and ny = {< [@TZL, @TZU} N [®’2L’ @1211} N [®F§7 @Féli| >, <E.T27

EL,, EF,)} be any two NCNs. Then, the comparison rules
for NCNs can be defined as follows:

(1) If S(m) > S(ny), then n; is greater than ny and is
denoted by n; > ny;

(2) If S(n)=S(n) and A(n) > A(ny), then n; is
greater than n, and is denoted by n; > ny;

(3) IfS(ny) = S(m2),A(n1) = A(ny), and C(ny) > C(ny),

0.2]),(0.5,0.1, 0.2)) are two NCNs, then based on Defi-
nition 3, we have the following results:

S(}’ll)
~03+2-02-01+04+2-03-03+02+2-02-03
N 9

=0.6111

and S(ny) = 0.7444 implies that S(n;) <S(n).
So, by Theorem 2, we have n; <n,.

Example 2 1If n; = ({[0.6,0.7],[0.3,0.4],]0.1,0.2]), (0.6,
0.3,0.2)) and n, = ({[0.4,0.6],]0.2,0.3],[0.1,0.2]), (0.5,
0.2,0.1)) are two NCNs, then

S(ny) = S(ny) = 0.7111. So, we need to calculate A(n;)
=14,A(n) = 1.1.
Hence, by Theorem 2, we have n; > n,.

Example 3 1If n; = ({[0.5,0.7],[0.1,0.2],[0.3,0.4]), (0.6,
0.1,0.3)) and m = ({[0.4,0.6],]0.1,0.2],[0.2,0.3]), (0.5,
0.1,0.2)) are two NCNs, then

S(ny) = S(ny) = 0.7111 and A(n;) = A(ny) = 0.8;

so, we need to calculate C(n;) = 1.8, C(ny) = 1.5.
Hence, by Theorem 2, we have n; > n,.

Definition 4 Let n, — {<[®TIL,®TIU}, [@,{4,(9,3], [@F{,
Opl), (., Zr)} and m = {([On, 0], [0,

O], [Op, Opl),(Er,,Er,Ep,)} be any two NCNs.

Then, the Euclidean distance measure between two NCNs
is defined and given as follows:

D(ni,np) = \/% <<®TIL - ®TZL)2+(®T]U - ®r;')2+<@zf - ®:§>2+ (®11“ - ®1§’)z+(®F% - ®Fé)2+(®F%’ - ®F§)2+<ET1 - Bp,)*+(8, — 8)*+(8F, — Er‘z)2>-

then n; is greater than n, and is denoted by n; > ny;

(4) IfS(ny) = S(ny)A(ny) = A(ny), and C(ny) = C(na),
then n; is equal to ny, and is denoted by n; = n,.

Example 1
0.2,0.3)) and

If ny = (([0.3,0.4],0.2,0.3],[0.1,0.3]), (0.2,
ny = ({[0.5,0.6),[0.1,0.2],[0.1,

Example 4 Let n; = (([0.3,0.4],[0.2,0.3],]0.1,0.3]), (0.2,
0.2,0.3)) and n, = ({]0.5,0.6],[0.1,0.2],]0.1,0.2]), (0.5,
0.1,0.2)) be two NCNs. Then, based on Definition 4, we
have the following distance measure:
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D(nl,l’lz)

= \/% ((0.3 —0.5)4(0.4 — 0.6)> + (0.2 — 0.1)*4(0.3 — 0.2)*+(0.1 — 0.1)*+(0.3 — 0.2)*+(0.2 — 0.5)*+(0.2 — 0.1)*4(0.3 — 0.2)2) =0.1563.

2.2 The PA operator

Yagar (2001) was the first one who presented the concept
of the PA which is one of the important aggregation
operators. The PA operator diminishes some negative
effects of unnecessarily high or unnecessarily low argu-
ments given by experts. The conventional PA operator can
only deal with crisp numbers and is defined as follows.

Definition 5 (Yager 2001). Let b;(i =1,2,...,m) be a
group of nonnegative crisp numbers; the PA is a function
defined by

i (L4 T(B:))bi
PA(by,by,....b,) = ZZ":II T3 T0)) (15)
where
T(b) = 3 Sup(by, by) (16)
i

and Sup(b, c) is the support degree for b from ¢, which
satisfies some axioms. (1) Sup(b,c) €[0,1]; (2)
Sup(b,c) = Sup(c,b); (3) Sup(b,c) >Sup(d,e), if
|b—c|<|d—el.

2.3 HM operator
HM (Sykora 2009) is also an important tool, which can

represent the interrelationships of the input values, and it is
defined as follows:

Definition 5 (Sykora 2009). Let I = [0, 1],x,y >0, H* :
I'" — I. If H*Y satisfies
-+
) )

X,y _ x
S D O
then the mapping H*” is said to be HM operator with

i=1 j=i
parameters. The HM satisfies the properties of idem
potency, boundedness, and monotonicity.

3 The neutrosophic cubic PHM operators
In this part, we introduce neutrosophic cubic PHM operator

and the neutrosophic cubic power weighted HM based on
the operational rules for NCNs, shown as follows.

@ Springer

Definition 7 Let n; = {< [®va @Tiu}, [@,,_L, @,,_U}, [@F,_L,
Oy, (Er, B, Er)} (i=1,2,...,m) be a group of
NCNs, x,y>0, and NCPHA : K" — R, if

NCPHA™ (ny,n3, ..., 1n)

2 Z m . m(T D+1) ul o mm(T(n/)Jrl)
TEEE () + 1) > (T(n)+1)
=1 z=1
(18)
where N is the set of all NCNs and

T(n) =Zz¢n Sup(n;, n
IFZ
port degree for n, from n;, which satisfies the following

axioms.

(1) sup(nz, ni) € [0, 1]; (2) sup(nz, n;) = sup(n;,
n); (3) sup(s, 1) = sup(p, q); if D(s,1) <D(p,q), in which
D(s,t) is the distance measure defined in Definition 4, then
NCPHA is called the neutrosophic cubic PHM aggregation
operator.

In order to simplify Eq. (18), we can define

o () )
¢ Z?:l (T(”g) + 1)

and call (¢, @y, ..

;), in which Sup(n,,n;) is the sup-

(19)

., @,,) as the power importance degree,

which satisfies the condition that ¢, >0, Z;n:1 P, =1.
Then, Eq. (18) can be expressed as follows:
NCPHA™ (ny,nz, . . .,y

(20)

1
2 "
B <m2 +m Z Z (meini) @n(men;)” > :

i=1 j=

Based on the operational rules of the NCNs described in
Definition 1, we have the following theorem.

Theorem 3 Let n; = {< |:®TL, ®TU:| 3 |:®1L, ®IU:| y |:®F.L7
O ), (Er, 1, Er)} (i =1,2,...,m) be a group of NCNs

and x,y >0, then the aggregated value from Egq. (20) is
still NCN and even
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NCPHA™ (1,12, . 1)
({0 (- - o™y -0 ) (= (- - oY) )
[ i
[ R ) R O T (R R S R o)

<] B (1 B <HH(1 — (1= @)y (1 - (ET,)"‘”')"')>M) - (1 - <HH(1 — (1= @)y (1~ (s,,)"%)»v)>”' ) ,

Proof Since

me.n; = (<[1 —(1- ®TIL)m¢[, - (1 . @Tiu)mw‘},
[1 - (1 _ @,f)m(p", - (1 _ @,g)mwi},
(o) (1-00)"T).

(Er)™, (&))", (Er)™)),
So,

(1= =E)") 1= (1= (E)") 1= (

=

(o)~ <<K1 ~ (=) ") (1= (1=0n) ™) L [0 - (1=0n) ™) (1= (1= 00) ™) T [(0= (1= 0) ™) (1= (1= 00) ™) ] >)
1= (Er)"))

Similarly, we have

and then
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=
|
—
[
|
—
1]
=
N
3
)
<=
X
—~
[
|
—
1]
-
N
3
S
=
~
=

)
3 o @ (men) = < {1 B Hﬁ (1= (1= (1=0)") < (1= (1-0)"") )1 - Hﬁ (1-(1-(1-0)™Y

=1 =i

(-(-0)"))

IO (0 00 ™) 000 ) -TIIT - (- (-00)™) 51 (-00)"))
ITT(- (1= (1=0n) ™) (= (=00) ™)) =TT (- (- 0 =00) ") x(1- (1=0)")) )

— X
s

— ~.

. I—(1- (Eﬂ)m“"))(x(l — (En)mwr)y)’ﬁﬁ (] -(1- (Eli)mw,)xx(] _ (Elj)mmj)y)-,ﬁﬂ (1 - (EFl)""w.)xX(] - (Eﬂ)m%)y)>>.

Further,

5 o m . )
m”+m ; ; (meni) @y (mo;n))

So,

m

1
2 u A\
(m DD (men)'®; (m<p,.n,-)~‘>

=1 =i

. (< [( (M0 (-00)™) (- (-0)")) )( (A0 0 (- om)™) (1 >>>)) }
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This completes the proof.

In order to obtain the weight vector ¢, it is necessary to
calculate the support degree between NCNs. In general, the
support degree between NCNs can be regarded as simi-
larity degree between NCNs. That is,

D(ni,m) (i,1=1,2,....m). 22)

(
Example 5 Let n; = (([0.4,0.5],[0.2,0.3],]0.3,0.4]), (0.5,
0.2,0.3)), ny = ({[0.5,0.6],10.1,0.2],[0.2,0.3]), (0.6
0.1,0.2)), and n3 = (([0.7,0.8],[0.1,0.2],]0.1,0.2]), (0.8,
0.1,0.2)) be three NCNs, x = 1,y = 2. Then, by Theo-
rem 3 in (21), we can aggregate these three NCNs and
generate the comprehensive value n=
(<[®TL, @TU], [®1L, @11/], [@FL, ®FU]>7 <ET, E[, EF>) which
is calculated as follows.

Sup(ni,m) =1—

Step 1. Calculate the supports Sup(ni,nj),i,j =1,2,3
by using Eq. (22), and then, we get Sup(nj,ny) =
Sup(nz,ny) = 0.9001, Sup(ny,n3) = Sup(ns,n;) =
0.7919, Sup(na, n3) = Sup(ns,ny) = 0.8753.

[®71,070]

[(1(ﬁﬁ(l<l<l@rf>3‘”'>'x<l<I®v>”’>z))ﬁ)%( (A (- (-0 (- -0 )) )
0w (-0 |

(1—(1—(1—0.4)3‘“)l (1 1—04“' ) (1
x (1= (1=(1=04)" ’

(1= (1 a-0a)'( )
17( 053"’>]><(1

07 3"">]><(1

—07 34/’3)

~05 *‘h)z

)
)

~0.7) “”‘)

S}

—0.8)*”

- ( 053‘”')1x(
- ( 1—063‘”>1x(
083(”‘>1><<

—0.8)*” ?

)
~0.6) 3“’2)
)

=1[0.5680,0.6703;

x <1 - (1 - 70.5)3‘“)&(1 —( 70.7>3‘”~’)2)
(1_ -0 _0.5)341.);(1_(1_0.5)3401)2) . (1_ (1-a-05) <1 —(1—06)”)2) é

)
> x (1 -(1-a —0.6)3%>l><(1 _tl _0‘8)3%>2>
)

Step 2. Calculate the power weight vector by using
Eq. (16), and we have

T(n;) = Sup(ny,ny) + Sup(ny,n3) = 1.6920, T (nz)
= Sup(nz, l’l]) + Sup(nz, n3) = 17754, T(I’l';)

= Sllp(l’l37n1) + Sup(n3 n2> = 1.6673
and
- (T(n1) +1) -
T T D+ (T + 1)+ (T(ns) + 1) 0.3309,
(T(n2) +1) -
P2Z ) + 1) + (Ta) + 1) + (T(n3) + 1) = 0.3412,
= (T(n3) +1) -
P3 = (T(ny) + 1)+ (T(np) + 1) + (T(n3) + 1) = 0.3279.

Step 3. Calculate the comprehensive value n =
<<[®TL7®TU]7[®1L7 ®IU]1[®FL7®FU]>7<ET7E‘17‘EF>) by
Eq. (21), and we have

1
3

1
3
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=[0.2074,0.3018];

[1]

S
Il
—_
|
—_
|

,_._
|

(1-0.5)" (1-0.5%)") x (1= (1-05")" (1 - 0.6*)?)
x (1= (1-05)"(1-08")’
(1-06™) (1-08%)") x (1 (1 -08™)' (1 - 08*)")

w
Il
|
T
N
=
Ew
[1]

= (1=02%) " (1-02%)) x (1= (102" (1 - 0.1%)%)

(
—1-|1- [ x (1= (1=02%) (1= 0.0%)7) x (1= (1= 0.1%) (1 - 0.1%%)?)

(1= (=01 (1=01)") x (1= (1= 0.0 (1 = 0.1)?)

3243

o1 (1 (IO - (- o)< @) )

L= (1-03%) (1-03%)7) x (1= (1-03) (1 —02%)%)

/

(1= -0 (1 —02)) x (1- (1 02’ (1 —02)’)

) )
) )
(1 ((1 - (1 — —04)3(“)&(1 —qa —04)3(”‘)2) x (1 - (1 —( —0,4)3(”1)1X(1 — _0_3)”2)2) (1 _ (1 —a _0‘4)3(”.)‘X(1 _a _02)3%)2 X)EJ
SR ERTE RIS R

x (1 —(1-0.6)" (1 - 0.63(,12)2)

Sk

x (1= (1=03) " (1-02%)7) x (1= (1-02)' (1 - 0.2)?)

= 0.6229;

= 0.1234;

= 0.2249.
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So, the  comprehensive  value  n = ({[0.5680,
0.6703],[0.1354,0.2319], [0.2074, 0.3018]), (0.6229,
0.1234, 0.2249)).

So ¢, = Lforall z=1,2,. .,m, and then,

m

NCPHA™ (ny,na,...,n,) = NCPHA™ (n,n,...,n)

= (0= 0=y (1= - @) ] [(1= (1= 05 (1= (1= 05) Y. [(1 = (1= @) (1 - (1= 02)) ] ).
<17((175T)»+‘)+ 1-(1-5% »+>)- 1-(1-%8 X+x) >)

= (([O7,O70], [Op, O], [Of, Opv]), (Er, B, EF)) = n.

Theorem 4 (Idempotency) Let n; — {< {9#7 ®T.U]7 |:®I(~7 This completes the proof of Theorem 4.
Oul, |Op, Op]), (Er,E1,Er)}(i=1,2,...,m) be a Theorem 5 (Boundedness) Let ni = {< [@T#

group of NCNs; if n; = n = ({[@p, O], [O, O], [Op, O], |:®I,Lv @[_U], |:®F.Lv @F_U} ), (Er, By, Ep)}(i=
Oy, (Er,E1, BF)) for all i = 1,2,...,m, then 1,2,...m) be a group of NCNs, and p=

NCPHA™ (ny, na, . .., ny) = n. min(ny, na, . .., nm) = ([, O], [Op,

Proof  Since n =n= ([0, 07],[On, Opl, (O, O], [®FL’_®FU_]>’ (&r. =, :L» 1= m_ax(nl,n_z, 7

Oru)), (Br, 5, EF)) for all i = 1,2,...,m, we have ) = (([Or:,070], [0, Op], [Op,  Op]), (Er,Er,
= e X,y

Sup(ne,m) =1 forallzj=1,2,...m. Er)), then the NCPHA lies: p<NCPHA

(n,n2,...,ny) <q, where
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Proof Since

o= (1 (1-04)™1- (1-00) " 1= (1-00) "1~ (1-0,)"

[1 - (1 B ®FL)m(m 1= ( B ®Fu)mwi} >’ <(ET1)’"¢;7 (‘E‘Ii)mw (Br, ) >) {([1-=(1-0n) el — (1- @Tv)m¢']7
(1= (1= ©)™, 1 — (1= @)™, [1 — (1 = ©p)"" 1 — (1 - Op)"]), (Br)"", (E1)"™ , (Zr)"")),

=/

<m(p,-n,-><<[(1— 1—®T) ) (1= (=en) ™) L L= (=)™ (1= (1=0) ™) L [(1 = (1) ™) (1= (1= 0) ')D’)
(1 (1= ()™ = (1= (21— (1= (Er)™))

><<[<1 (1-0n)™ >< e >H(l—<1—®,L>'"%)",(1—(1—®,u>"'¢'>"y,[(1—<1—®FL>"“"'>*7<1—(1—®Fu>”*‘">ﬂ>,>

S\ @ - - @y - - @,

Similarly, we have Then,

(o' ({[(1 = (1 -0} (1= (1= )Y ] [(1 = (1-04)™)' (1= (1 -0 ™) ] [(1= (1= ) ™) (1= (1 -05) ") )

(= (1= (En)") 1= (1= (E)™) 1= (1= (ER)™)
(1

)
= ([0 = (1 =0p)"), (1= (1= ©7)" )L [(1 = (1= 0)""), (1 = (1 = ©p)")'L [(1 = (1 = ©p)" "), (1 = (1 = ©p)"")']),
(== En)") 1= (1= E)"), 1= (1= (E)"")")).
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ot~ ([0~ 0=0n) ™) (1-(1-05)") (1= (=00 ") (1105 ") L [0~ 0-00)") <~ (-00)")
(

(- (1 @1) V(- (1-ep)” )H( (1 o)) x(1- (1 @,) (1= (1-0m) ) (1= (1= 05) ) ]),
(U= (1= @))% (1= (Br)™)" 1 = (1= (@)™ = (1= (3)"") 1 "Y1 (E6)"))

2(<[<1 (1= )" (1 = (1= ©n)"). (1 <1 ®,) )1 ®,> )][(1 (1= ©)") (1~ (1= ©)"",

(1= (1= ©)")" (1= (1= ©)")'],[(1 = (1 = ©)" ") x (1 = (1 = @)}, (1 = (1 = ©p)"")"x (1 = (1 = ©p2)"")"])

(1= (= @))% (1 = (&)™) 1 - <l—<= >’"”)x<1—<zl>'"‘”f> = (1= @)™ (1= (E)™)))

and

ZZ mon;) @y m(p,n,)

=1 j=i

m

) =TT -0 (- ey <7<1—®ﬂx)’"‘f">-">}

i=1 j=i

_
|
—
-
i~
—~
=
@
S
2
3
Kl
=
’:
@
S
5
3

U TIT0 - 0 0= @p )t — (- @) 1 - [T [T - (1 - (1 - @ (1—(1—®,v>m%>")}

i=1 j=i i=1 j=i

[‘ HH(‘—'—I O )" ") X (1= (1= ©p)")"), 1 = HH (1-@p)")" (1_<1_®FU)M%)")}>7

i=1 =i

TTIT0 -0 - @< - @rn [T o - 0 - @y - <a,>m>v">7ﬁf[ (1= (1= (B (1 - <EF>WJ>’>>>.

T i =1 =i i=1 j=i

Further
- <<[1_ <ﬁﬁ(l_<l_(l_®’)w) X(l_(l‘ef)w)v)>m’l_(ﬁ,ﬁ(“(l—(l—@r) )x(1-(1-e7)") )>}
(B0~ - o)) - ({0 0 00 <0 000

zzzzz
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So,

m m &
< mgg men;) @y (me;n;)’ )

=1 j=i

( (M- 0 - oo (a)’"%)*‘))ﬁ)»)

(ﬁ (1 (1= (1— 0y x(l—<1—@n)m%)’))mw) ’<1_<ﬁﬁ(1—(]—(]—®r )" X (1 = (1= ©70)")’) ) }

(1 <Iﬁ<17<17<17® Yoyt — (1 - @uymryy ) ( 1111« 1<1<1®,.>'““">*x<1<1e,n>""ﬂ/>v“)>mM) }

T
-
Il
N———

=1 j=i

~ (TITI0 - (= (=0 (1= (1 -0py™) | ) (1—( [[a-a-0-e W')*x(l—(1—@mv)m”/)»"))””m) b

=1 =i =1 j=i

) - <1 7 <HH(1 = (1= @)™ x(1 - (El)"w'))m ) :
=1 j=i

In a similar way, we <can show that Then, we can explore some special examples of the
NCPHA™ (ny,na, ..., n,) <gq. NCPHA™ operator based on the parameters x and y.

So, we have p < NCPHA™ (ny,ns, ..., n,) <gq. (1) When y — 0, Eq. (21) degenerates to neutrosophic

However, the NCPHA does not have the property of  cubic power generalized linear descending weighted
monotonicity. operator, and so we have

The main reason is that the weight vector of the two
collections comes from the different support degrees and
they have no constant inequality relationship.
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NCPHA"(ny,ny,. . .,ny)

< 1<ﬁ(1(1(1®#)m¢ x mﬂ,

1

m me;\ X\ m+1—i ’”22“"
S\HO-0-0-en)7)) ,

i

m?

i=1

)

= ({T0-0-0-0™))"")

(100 (-ea™y)) ,( (10-0- (-0 >_>
V) (e

i=1

n m‘/’: m+l 1 m?+m
H 1— 1—(1—®,U)

i=1

m2tm

:js

Il
_

1
Xty

I:ls
w
B

>

=
~—

3

=
Q
by

Il
—_

(2) When x — 0, Eq. (21) degenerates to neutrosophic  ((m¢n;)’, (me,n2)’, ..., (me,n,)’) with heavy weight
cubic power generalized linear ascending weighted opera-  vectors (m,(m —1),...,1) and (1,2,...,m). Hence,
tor, and so we have whenever x = 0ory =0, NCPHA* (n;,n,,...,n,) has

NCPHA"? (ny,ny, . . ., ny)

{( (- (- (o) ™)) ) ) (o= (0 0 (- )
(1<ﬁ<1(1(1®'f)m%)‘>i>m£m>i’ 1( (1—(1f(1f®z,”)m%

From Egs. (23) and (24), we know the linear weighted function. We also know from Egs. (13)
NCPHA"(ny,ny,...,n,) and NCPHA®(n;,n,,...,n,), and (14) the parameters x and y are not interchangeable.
respectively, can weigh the information (3) When x =y = %, Eq. (21) degenerates to neutro-
((mpm)*, (meyna)*, ..., (me,n,)"), sophic cubic power basic Heronian operator; so, we have
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(25)

(4) When x =y =1, Eq. (21) degenerates to neutro-
sophic cubic power line Heronian operator; so, we have

NCPHA"! (ny,na, . .., i)

)
yyyyyyyy

77777

In NCPHA operator, we only take the weight vector
from PA and do not take the weight of each NCN into
consideration. However, in practical decision-making
problem, the weight vector of every NCN plays an
important role. Therefore, to overcome this limitation of
the above aggregation operator, we further propose neu-
trosophic cubic power weighted Heronian aggregation
operator.

Definition 8 Let n; — {< [@T;, @T_U], [@,_L, @,_u}, [@FL,
Orul), (Er, B, Er)} (i =1,2,...,m) be a group of
NCNs, x,y >0, and NCPWHA : X" — XN if

@ Springer

(26)
NCPWHA™ (ny,ny,...,ly)
x y ﬁ
2 m m m(piéi mq)jéj
- m2+mz : a ' il & ’
=1 j=1 Z ([)151 Z (Pzéz
=1 z=1
(27)
where N is the set of all NCNs, P, = % and
ZZ:I (Pg =1. g=1 2
T(n,) = >_'\_ sup(n;,n;), and sup(n,, n;) is the support
i#z

degree for n, from n;, which satisfies the following axioms.
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(1) sup(nz,n;) € [0,1]; (2) sup(n,n;) = sup(n;,
ny); (3) sup(s,t) > sup(p, q), if D(s,7) <D(p,q), in which
D(s,t) is the distance measure from Definition 4. Further,
0= (01,02, 5,,,)T is the importance degree of the NCNs
(m1,ma, .. nm), O €[0,1] and 377, 6, = 1. Then,
NCPWHA is called the neutrosophic cubic power weighted
Heronian aggregation (NCPWHA) operator.

Then, we have the following theorem by the operational
laws of the NCNs described in Definition 8.

w={([enon]. oy,
@,;/],[®F5,®F;/}>,<ET,, 5,50 (i=1,2,....m) be a

group of NCNs and x,y >0, then the aggregated value
from Eq. (27) is still NCN and even

Theorem 6 Let

NCPWHA™ (ny,na,...,ny)

are m alternatives
(B1, B, ..
B;(j=1,2,...,n) is represented by ¢ = (¢, ¢,,..., gon)T
with @, >0, j=1,2,...,n, 377 ¢;=1. Assume that
there are z experts (Vy,Va,...,V;) and the importance
)"
with &, >0(1=1,2,...,2),> ;_, &, = 1. Assume that D' =

(M\,M>,...,M,) and n criteria
.,B,) and the importance degree of the criteria

degree of the expert is denoted by ¢ = (J1,02, ..

ij

NCNs, given by the expert V; for the alternative M; with
respect to criteria B;. Then, the goal of this MAGDM is to
rank the alternatives.

{n’.} is the decision matrix, where nfj takes the form
mxn

(28)

4 A group decision-making approach based
on the NCPWHA operator

In this part, we present the application of the NCPWHA
operator in the MAGDM.

Assume a MAGDM problem with NCNs, in which the
criteria and experts importance degrees are known. There

In the following, we give the decision steps based on the
NCPWHA operator as follows.

Step 1. Normalize the criterion values.

Generally, there are two types of criterion values. The
one is of cost type and the other is of benefit type. We can
change them into the same type. In general, cost-type cri-
teria will be changed into benefit one which is done by
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nl, = O ,0 |,|0:,0: @1 ,@I (B BB
U 7L U I v Y % Ty L Fy
i i i '
0,6 |,|0:,0: |,|[0 0 (8 B B for benefit type
el A o Fl Ty b Fi
1-6 ,1-6: |,[1-6 ,1—-06; [,|1—-06: ,1—06; A1=8 ,1-5 ,1-5 for cost type
o v A

So, the decision matrix D' = [nl} can be changed into
mxn

ij
|
R' = {nu}
m><n

Step 2: Calculate the support Sup( Ry ,k)( =
L2,...oml=1,2,....zj,k=1,2,....n) by
Sup( ij’ lk) =1- ( fjanfk) ) (29)

where D(nﬁj, nfk> is the Euclidean distance from Definition
4.

Step 3: Calculate T( ) by

r(n}) = ZSup( ol ) (i = 2

30
k#] (30)
mil=1,2....zj=12...n)
Step 4: Calculate
¢ (1+T(n
,j:M(i: L2, oml=12,.. kj=12,...n)
o (1+7(n))
(31)
Step 5: Use the NCPWHA operator
l- = @/ @l @I @/ @l .@] N El ,E/ 751
i= (oo ] ooy ool Eomm))
_NCPWHA( My 127" nfn)
to calculate the comprehensive NCNs
nli=1,2,...mk=12,...,2).
Step 6: Calculate the supports
Sup(nl,n?)(i=1,2,....,m;l,h=1,2,...,2) by
Sup( ni,nt) =1 - D(n,nl), (33)

where D(nl, nf’) is the Euclidean distance from Definition
4.
Step 7: Calculate T(nf) by
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ZSup n;, l =1,2,..

h;ét

wmyh=1,2,...2).

Step 8: Calculate

; n5/(l—|—T(nf)) .
= =1.2,..ml=1,2,...2).
TS i Ty T e = )

(35)

Step 9: Use the NCWPHA operator to get calculate the
collective NCNs n;(i = 1,2,...,m).

"= << [@T,‘. @TU} , [@,,, @11/] , [@F‘L, @F;,v] > - EF,,>)
= NCWPHA(n},n},....n%).
(36)

Step 10: Calculate the score values of each NCN by
Definition 3.

Step 11. Rank all the alternatives n; according to their
score values based on the comparison rules from Theo-
rem 2 and select the best alternative.

5 An application example

In this subsection, a practical example is adapted from
Smarandache (1998) to show the effectiveness of the pro-
posed aggregation operator in MAGDM.

Example 6 Assume that there are four alternatives
(My,M,,....M,) expressing the air quality of the
Guangzhou of the years 2006, 2007, 2008, and 2009,
respectively, which are assessed. The three criteria
SO2(B,), NO2(B,), and PM10(B;) are taken under
account. The importance degree of the criteria is given by
¢ =(05,0.3,02)T. The four possible alternatives
M;(i = 1,2,3,4) are evaluated by three air quality stations
regarded as DMs (Vy, V5, V3). The importance degree of
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the DMs is given by & = (0.4,0.3,0.3)". The evaluation
values by the form of NCNs are given in Tables 1, 2 and 3.

The following steps are involved to rank the alternatives
by the proposed method.

Step 1. Change the decision matrix D' = [nfj] into
mxn
ij
Since all the criteria are of benefit type. Hence, there is
no need to change it.

the normalize decision matrix R' = {n’} .
mxn

Step 2. Calculate the supports Sup (nf],nfk)
(i=1,2,3,4;1=1,2,3;j,k = 1,2,3) by formula (29); for
computational simplicity, we shall represent Sup (nf],nfk>
with Sf:].‘ik(j,k =1,2,3;i=1,2,3,4;1=1,2,3). We have
5%1712 = 3{2711 = 0-7946,5}27]3 = 5}37,2 = 0.9058,

Stias = Sisy = 0.8115,
551,22 = Sézm = 0.8269, S§2723 = Séa,zz = 0.9001,
b2 = 553,21 = 0.7841,
S3130 = i3y = 0.8473,83, 33 = Siz 5, = 0.9334,
é1,33 = Sé3,31 = 0.8710,
Szlu.,42 = Szltz,41 = 0.8586, 54112,43 = 54113,42 = 0.9001,
41&1,43 = S}t3,41 = 0.8145,

Stiin =Sty = 0.7841,8%, 15 = ST3 1, = 0.7765,
213 = 8%, = 0.9119,

$3120 = S3501 = 0.8626, 552,23 = 553,22 = (0.8473,
$2123 = 8335, = 0.8799,

S§1,32 = S§2,31 = 0.8799, 552,33 = 553,32 =0.9184,
2133 = Sky5 = 0.8799,

331,42 = 522,41 = 0.7598, 54212,43 = 542;3742 = 0.8586,
$%143 = Sty 41 = 0.8586,

St = 5%2,11 = 0.8115,S?2’13 = 5?3,12 = 0.8029,
5?1,13 = 5?3,11 = 0.7893,

S31 90 = Sk oy = 0.9001, 53, 5 = 3 5, = 0.8029,
531,23 = 533,21 = 0.8402,

S350 = Shy1 = 0.9334,53, ;= 83, 5, = 0.8086,
S§1,33 = 533,31 = 0.8200,

521,42 = 522,41 = 0.8710, 532,43 = 523,42 =0.9119,
S?u,43 = 523741 =0.8237.

Step 3. Calculate T(nf]) G=1,2,3i=1,2, 3,4;1=
1,2,3) by Eq. (30). For simplicity, T(ngj) can be repre-
sented as 7}, We have
T!, = 1.6062, T}, = 1.7173,T}; = 1.7004,

T}, = 1.6110,T), = 1.6841, T3, = 1.7269,
Tl = 1.7183, T}, = 1.8043, T}, = 1.7807,

T} = 1.6732, T}, = 1.7146,T}; = 1.7587,
T? = 1.6959,T% = 1.6884, T = 1.5606,

T2 = 1.7425,T2% = 1.7272, T2 = 1.7100,
T3 = 1.7598,T% = 1.7983, T3, = 1.7983,

T2, = 1.6184,T% = 1.6184,T% = 1.7173,
T3, = 1.6008, T}, = 1.5922, T} = 1.6144,

T3, = 1.7403, T3, = 1.7156, T3, = 1.7754,
Tgl = 1~75407T332 = 1-6292,T333 = 1.7420,

T3, = 1.6947, T3, = 1.7356, T3, = 1.7828.

Step 4.
1,2,3). We have
Kl = 1.4715,x), = 0.6137, !, = 0.9148,

Kb, = 1.4721, 1}, = 0.6054, K}, = 0.9225,
Ky, = 1.4804, 1}, = 0.6109, k3 = 0.9087,

Kb = 1.4812, k), = 0.6017, kly = 0.9172,
K3, = 1.5238, 13, = 0.6078, k75 = 0.8684,

K3, = 1.5070, k3, = 0.5995, k3, = 0.8935,
K3, = 1.4896, 13, = 0.6042, k3, = 0.9062,

K2, = 1.4888, k3, = 0.5955, k3, = 0.8933,
13, = 1.4986, 153, = 0.5975, 13, = 0.9039,

K3, = 1.4969, 13, = 0.5934, 13, = 0.9097,
i3, = 15157, 3, = 0.5788, k3, = 0.9055,

K3, = 1.4810, k3, = 0.6014, K, = 0.9177.

Calculate ;cfj i=1,2,3;i=1,2,3,4;]1=

Step 5. Use NCWPHA operator to determine the com-
prehensive NCNs nf, which is given in Table 4 (assume
x=1,y=2)

Step 6. Calculate the supports Sup (nf,nf‘)
(i=1,2,3,4;1,k = 1,2,3) by formula (33); for computa-
tional ~simplicity, we shall represent Sup(n!,n})
(i=1,2,3,4;k,1=1,2,3) with Sfj,ik(j,k =1,2,3;i=
1,2,3,4;1=1,2,3). We have
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S, =55, =0.8994,8) 5 = S3, = 0.9548,
Si; =53, = 09181,

S, =155, =0.8136,5;; = S5, = 0.919,
Si; =153, =0.8633,

S1, =15, =09370,5;5 = S3, = 0.9463,
15 =53, =09611,

Si, =83, =0.9301,83; = 53, = 0.9559,
St; =53, =09414.

Step 7. Calculate T(nf) by using formula (34); we can
get
T! = 1.8175,T, = 1.8730,T; = 1.8542,

T} = 1.6769,T; = 1.7829, T; = 1.7331,
T} = 1.8981,T; = 1.9074,T; = 1.8833,
T} = 1.8715,T; = 1.8973, T3 = 1.8859.

Step 8. Calculate x/ by using Eq. (35), we have
K} = 1.1883, k) = 0.9088, 3 = 0.9029, k7 = 1.1786,

K3 = 0.9189, k3 = 0.9025,
K = 1.2007, 13 = 0.9189, 13 = 0.8959, x| = 1.1950,
K3 = 0.9043, k3 = 0.9007.

Step 9. Use the NCWPHA operator to get the collective
NCNs n;(i = 1,2,3,4) by Eq. (36), and we can obtain
n; = (([0.3080,0.4044], [0.2017,0.2961],

[0.3589,0.4482]), (0.7772,0.2724,0.3915)),
ny = ({[0.3817,0.4780], [0.1719,0.2648],
[0.2634,0.3559]), (0.3833,0.2488,0.3197)),
ns = (([0.4505,0.5635], [0.1272,0.2387],
[0.1536,0.2682]), (0.5431,0.1572,0.2045)),
ny = ({{0.6044,0.7124],0.1468,0.2304],
[0.1542,0.2475]), (0.6504, 0.1724,0.1942)).

Step 10. Calculate the score values of each NCN by
using Definition 2, and we have

S(M5) = 0.6243,

S(My) = 0.7580.

S(M;) = 0.6134,
S(M3) = 0.7120,

Step 11. Rank all the alternatives n;(1, 2, 3,4) according
to their score values. We have My > M5 > M, > M,. So
M, is the best alternative and the worst one is M.
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5.1 The effect of the parameters x, y on the this
decision-making problem

To perceive the effect of the parameters x, y on the decision
making, we set different values for the parameters x,y in
step 5 and step 9 and then rank the alternatives
M;(1,2,3,4). The ranking order for different parameters
values is given in Table 5.

From Table 5, we can see that the ranking orders
obtained for different values of the parameters x,y are
slightly different, and the best alternative is M4 and the
worst one is M| or M;. The difference in the ranking order
occurs when we take the neutrosophic cubic weighted
power generalized linear descending operator. That is,
when x = 1,y = 0, the ranking order slightly changed to
My > M3 > M; > M,. Otherwise, the ranking orders
remain the same. So, the proposed aggregation operators in
this article are more practical and effective. For computa-
tional simplicity, we set the parameters x =y = 1.

5.2 Comparison with existing methods
5.2.1 Validity of the proposed approach

To further illustrate the validity of the proposed approach,
we solve an example adopted from Zhan et al. (2017) by
comparing our method with that from Zhan et al. (2017).

Example 7 A passenger wants to travel to Karachi in the
available four vans M;(i = 1,2,3,4). The attributes under
consideration are (i) B; is the facility, (ii) B, is the rent
saving, (iii) B3 is the comfort, and (iv) By is the safety. The
importance degree of the attributes is given as
o = (0.5,0.25,0.125,0.125)". The four possible alterna-
tives M;(i = 1,2,3,4) are evaluated, and the assessment
values provided by NCNs for the attributes B;(j =
1,2,3,4) are given in Table 6.

(1) Ranking four vans by the method based on the
NCWA operator (Zhan et al. 2017)

The steps are shown as follows.

Step 1. We use the method based on the NCWA oper-
ator (Zhan et al. 2017) to obtain the comprehensive NCNs,
which are shown as
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Table 1 Air quality data from station V;

B,

B,

B;

M,

M,

M;

M,

(([0.2,0.3],[0.2,0.3],[0.4,0.5]),
(0.3,0.3,0.5))

(([0.3,0.4],]0.1,0.2],[0.2,0.3]),
(0.3,0.2,0.3))

(([0.3,0.4],]0.1,0.2],[0.1,0.2]),
(0.4,0.1,0.1))

(([0.4,0.5],]0.1,0.2],[0.2,0.3]),
(0.5,0.1,0.2))

(([0.3,0.4],]0.2,0.3],[0.1,0.2]),
(0.4,0.2,0.1))

(([0.2,0.3],0.3,0.4],[0.4,0.5]),
(0.2,0.4,0.5))

(([0.5,0.6],0.2,0.3],[0.2,0.3]),
(0.6,0.2,0.3))

(([0.6,0.7],[0.2,0.3],[0.1,0.2]),
(0.7,0.2,0.1))

(([0.4,0.5),[0.1,0.2],[0.2,0.3]),
(0.5,0.2,0.2))

(([0.1,0.2],[0.2,0.3],0.5,0.6]),
(0.1,0.3,0.6))

(([0.5,0.6],0.1,0.2],[0.2,0.3]),
(0.6,0.1,0.2))

((0.7,0.8],0.2,0.3],[0.2,0.3]),
(0.8,0.2,0.3))

Table 2 Air quality data from station V,

B,

B,

Bs

M,

M,

M;

M,

(([0.3,0.4],[0.2,0.3],[0.5,0.6]),
(0.3,0.3,0.6))

(([0.5,0.6],[0.2,0.3],[0.1,0.2]),
(0.5,0.3,0.1))

(([0.4,0.6],[0.1,0.3],[0.2,0.4]),
(0.5,0.2,0.3))

(([0.8,0.9],[0.1,0.1],[0.1,0.2]),
(0.9,0.1,0.1))

(([0.5,0.6],[0.3,0.4],[0.2,0.3]),
(0.5,0.4,0.3))

({(0.4,0.5],[0.1,0.2], [0.3,0.4]),
(0.5,0.2,0.3))

(([0.6,0.7],[0.1,0.2],[0.2,0.3]),
(0.7,0.1,0.2))

(([0.4,0.5],[0.1,0.2],[0.2,0.3]),
(0.5,0.1,0.2))

(([0.2,0.3],0.2,0.3], [0.4,0.5]),
(0.2,0.2,0.5))

((0.6,0.7],0.2,0.3],0.1,0.2]),
(0.6,0.3,0.2))

((0.5,0.6],[0.1,0.2],[0.1,0.2]),
(0.6,0.1,0.1))

(([0.6,0.7],]0.2,0.3],0.1,0.2]),
(0.7,0.2,0.1))

Table 3 Air quality data from station V3

B,

B,

B,

M,

M,

M;

M,

(([0.2,0.3],[0.1,0.2],[0.3,0.4]),
(0.2,0.1,0.4))

(([0.3,0.4],[0.1,0.2],[0.2,0.3]),
(0.4,0.1,0.3))

(([0.4,0.5],[0.1,0.2],[0.1,0.2]),
(0.5,0.1,0.2))

(([0.5,0.6],[0.2,0.3],[0.1,0.2]),
(0.6,0.2,0.3))

(([0.3,0.4],[0.3,0.4],[0.5,0.6]),
(0.3,0.4,0.6))

(([0.4,0.5],[0.2,0.3],[0.3,0.4]),
(0.5,0.2,0.4))

(([0.4,0.5],[0.2,0.3],[0.1,0.2]),
(0.5,0.2,0.1))

(([0.7,0.8],[0.1,0.2],[0.2,0.3]),
(0.7,0.1,0.2))

(([0.5,0.6],0.2,0.3], [0.3,0.4]),
(0.6,0.3,0.4))

(([0.6,0.7],[0.1,0.2], [0.2,0.3]),
(0.6,0.2,0.3))

(([0.7,0.8],[0.1,0.2], [0.2,0.3]),
(0.8,0.1,0.2))

(([0.8,0.9],[0.1,0.2], [0.1,0.2]),
(0.8,0.2,0.1))

ny = (([0.1881,0.5226], [0.3393,0.6760),

[0.2455,0.4709]), (0.7610,0.5835,0.3298)),

ny = (([0.2882,0.8391], [0.3740,0.7551],

0.3529, 0.5838]), (0.5853, 0.5370, 0.600)),

ns3 = ({[0.3380,0.5602], [0.3085, 0.6452],

[0.2410,0.5804]), (0.1996, 0.3557,0.2359)),

ny = (([0.4328,0.7960], [0.3326,0.7461],

[0.2570,0.5281]), (0.1914,0.5131,0.2667)).

Step 2. By the score function from Definition 3, we can
get the score values of the alternatives as follows.

S(ny) = 0.5363,8(ny) = 0.5011, 8(n3) = 0.5257, S(ny)

= 0.5307.

Step 3. The ranking order of their alternatives according

to the score values is
My > My > Mz > M,.

So, the best alternative is M, while the worst one is M,.

@ Springer
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[0.3708,0.4671]), (0.3098, 0.2357,0.4668) )

({[0.4026,0.5038],[0.1378,0.2339],

[0.4106,0.4990)), (0.3381,0.3181,0.4753))

(([0.4854,0.5821],0.1789,0.2732]

[0.3076,0.3915)), (0.3861,0.2562,0.2602))

({0.2494,0.3395], [0.1961,0.2908],

[0.2339,0.3306]), (0.4777,0.1764,0.3492))

({[0.4746,0.5788], [0.1377,0.2340],

[0.1824,0.2745]), (0.5276,0.2827,0.1994))

({[0.4839,0.6196], [0.1009, 0.2582],

0.3382,0.4374]), (0.2166, 0.3004, 0.4231))

({[0.4082, 0.5076], [0.1375,0.2335],

M;

0.1204,0.2182]), (0.5437,0.1516,0.1805))

({[0.6430,0.7553], [0.1657,0.2577),

[0.1889,0.3405]), (0.5784,0.1517,0.2182))

({[0.6425,0.7442], [0.1164,0.1688],

0.1529,0.2503]), (0.5025, 0.1494,0.1998))

({[0.5381,0.6430], [0.1530, 0.2504],

[0.1423,0.2376)), (0.6979,0.1440,0.1518)) [0.1381,0.2342]), (0.6598, 0.1788,0.2180) )

[0.1774,0.2718]), (0.6000, 0.1764,0.1952))

(2) Ranking four vans by the proposed method in this
paper

Now we use the aggregation operators defined in this
article to solve this example.

Step 1. Calculate the support Sup(my,ny)(i =
1,2,3,4;,k=1,2,3,4) by Sup(n,-j,nik) =1 —D(nij,nik)

where D(nij,nik) is the Euclidean distance defined in
Definition 4. We can get

S{le = 5{2,11 = 07946;5‘%1,13 = S%3,11 = 0.7356,
5%1,14 = 5{4,11 = 0-653&5}2,13 = 5}3,12 = 0.7716,
5}2,14 = 5%4712 = 08057,5}3,14 = 5%4,13 = 0.7867,

5%1712 - 5%2711 = 0.7973, 5%1,13 - 5%3,11 = 0.7668,
5%1,14 = 5%4,11 = 0-7271,5%2,13 =
5%3,12 = 0.7507, 5%2,14 = 5%4,12 = 0.7507, 5%3.14

= Si413 = 0.7692,

5?1,12 = 5?2,11 = 0-800175?1,13 = 5?3,11 = 0-592075?1,14
= 81411 = 0.7356,87, 3 = Si34, = 0.6635,87, ,
= Si412 = 0.7115,8; 1, = S}, 15 = 0.7867,

Sll‘]ﬁl2 = Séllz,n = 0.7377,8?17]3 = 913,11 — 0~73777541‘1ﬁ14

= 5?4,11 = 0.6187,8?2’13 =913,12 — 0~764475?2,14
= Si41, = 0.6586, 515 1, = Sy 3 = 0.7153.

Step 2. Caleulate T(n;) by T(ny)=
S h=1 Sup(n,-j,nik)(i: 1,2,3, 4;j,k=1,2,3,4), and we
havke#j
T, = 2.1839, T}, = 2.3719, T}, = 2.2938,

T, = 22462, T} = 2.2914,T%, = 2.2987,

Th = 2.2866,TF, = 2.2471,

T3, =2.1276, T, = 2.1751, T3, = 2.0421,

T}, = 2.2337, T}, = 2.0940, T}, = 2.1607,

T}, =2.2174, T}, = 1.9926.

Step 3. Calculate x;; = M (i=1,2,3,4;j =
1,2,3,4), and we obtain 2y 0:(1+T )
ki, = 1.9579, k], = 1.0367, k{5 = 0.5064,

K1, = 0.4990, 7, = 2.0026, 3, = 1.0035,

K2y = 0.4999, k2, = 0.4937;
K3, = 1.9908, k7, = 1.0105, x}; = 0.4841,
K, = 0.5146, k| = 1.9875, k1, = 1.0152,
K1y = 0.5167, k', = 0.4806.
Step 4. The comprehensive NCNs by the NCWPHA

operator defined in this paper are obtained as follows (as-
sume x =2,y = 2):
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Table 5 Ordering of the alternatives based on NCWPHA by using different values of x,y

X,y Score values Ranking order

x=0y=1 S(My) = 0.6409, S(M>) = 0.6440, S(M3) = 0.7281, S(M,) = 0.7697; My > M3 > My > M,
x=1Ly=0 S(My) = 0.6401, S(M5) = 0.6222, S(M3) = 0.7092, S(M,) = 0.7664; My > M3 > M > M,
x=2y=1 S(My) = 0.6150, S(M>) = 0.6185, S(M3) = 0.7082, S(My) = 0.7551; My > Ms > M, > M,
x=3y=4 S(My) = 0.5685, S(M>) = 0.6144, S(M3) = 0.6936, S(My) = 0.7384; My > Ms > M, > M,
x=Ty=5 S(My) = 0.5493, S(M>) = 0.6121, S(M3) = 0.6832, S(M,) = 0.7276; Ma > Ms > M > M,
x=10,y=1 S(My) = 0.5483, S(M>) = 0.6138, S(M3) = 0.6833, (M) = 0.7301 My > M3 > My > M,

= ((]0.2247,0.5326],[0.3637,0.6790],
0.2521,0.4774]), (0.7504,0.5549, 0.3251)),
ny = (([0.3282,0.8057], [0.4012, 0.7504],
0.3685,0.5873]), (0.5284, 0.5340, 0.5401)),
= ((]0.3593,0.5630], [0.3817,0.6639],
0.2529,0.5924]), (0.2141,0.3413,0.2466)),
ns = (([0.4754,0.7613],0.3650, 0.7337],
0.2785,0.5552]), (0.2231,0.5120,0.2629)).

Step 5. The score values of the alternatives are obtained
by Definition 3 as follows.

S(My) = 0.5395,S(M,) = 0.4979, S(M3) = 0.5175,S(My)
=0.5281.

Step 6. So the ranking order of their alternative
according to the score values is

M, > My > Mz > M,.

There are the same ranking results from the method
proposed in this paper and the method in Zhan et al. (2017),
so this can show that our proposed method is valid.

5.2.2 The advantage of the proposed approach

Example 8 A customer wants to buy Huawei P Series
mobile model in the available four models. The available
four models are as follows: (1) M, is the P7 model, (2) M,
is the P10 model, (3) M3 is the P9 model, and (4) My is the
P8 model. The customer takes the following three attributes
under consideration: (i) B; is the RAM, (ii) B, is the price,
and (iii) B3 is the camera. The importance degree of the
attributes is given as ® = (0.4,0.2, 0.4)T. The four possible
alternatives M;(i =1,2,3,4) are evaluated, and the
assessment values provided by the neutrosophic cubic
information with respect to the attributes B;(j = 1,2, 3) are
given in the following decision matrix D4y3 given in
Table 7.

(1) Ranking four Huawei P Series mobile model by the
proposed method in this paper

Now we use the aggregation operators defined in this
article to solve this example.

Step 1. Calculate the support Sup (n,-j,n[k) (i=1,2,
3,4;j,k =1,2,3) by Sup(nj,nx) = 1 — D(nj, ny)

where D(nij,nik) is the Euclidean distance from Defi-
nition 4. We can get

S}uz 51211 = 0.9001, 51213
Sii13 = Sizn = 0.8895,

S%l 12 = S%z 11 = 0.8368 512 13 = 5%3,12 = 0.8269,
Stiis = Stay = 0.9423,

S = S12 11 = 0.8510 S12 13= S13 1o = 0.8753,
5?1,13 = 513,11 = 0.8301,

Stiin =St = 0.8799,81, 5 = S5 1, = 0.8946,
5?1,13 = 913,11 — 0.9423.

Sls.12 = 0.8586,

Step 2. Calculate  T(n;) by T(ny) =
S Vet Sup(ng,na) (i = 1,2, 3,45,k =1,2,3), and we
havkeﬁ
T}, = 1.7896, T}, = 1.7587, T}, = 1.7482,
T? = 1.7791,T% = 1.6637, T = 1.7692,
T}, = 1.6811,T;, = 1.7263, T}, = 1.7055,
T), = 1.8222, T}, = 1.7745, T}, = 1.8369.
Step 3. Calculate x; = %(z =1,2,3,

4;j=1,2,3), and we obtain
K, =1.2099, k1, = 0.5982, !, = 1.1919,

K2, = 1.2118, 13, = 0.5807, k1, = 1.2075;
K3, = 1.1917, 1}, = 0.6059, 13, = 1.2025,

K}, = 1.2015,x}, = 0.5906, k}; = 1.2078.
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Step 4. The comprehensive NCNs by the NCWPHA
operator defined in this paper are obtained as follows (as-
sume x =1,y =1):

n; = ({[0.4846,0.7207], [0.3038, 0.4024],
[0.2809,0.4208]), (0.5801,0.2793,0.3843)),
ny = ({[0.6724,0.8224], [0.1690, 0.2695],
[0.2205,0.3603]), (0.7743,0.1292,0.2428)),
n3 = ({[0.7012,0.8710], [0.1841, 0.3843],
[0.2060,0.3006]), (0.6960, 0.2341,0.2721)),
ng = ({[0.6545,0.8231], [0.2208,0.3984],
[0.1436,0.2612]), (0.7792,0.1291, 0.2462)).

Step 5. The score values of the alternatives are obtained
by Definition 3 as follows:

S(ny) = 0.6349, S(n,) = 0.7642, S(n3) = 0.7430, S(ny)
= 0.7619.

Step 6. So the ranking order of their alternative
according to the score values is

M, > My > Mz > M,.
So, the best alternative is M5, while the worst one is M.

(2) Ranking four Huawei P Series mobile model by the
method based on the NCWA operator (Zhan et al.
2017)

The steps are shown as follows.

Step 1. We use the method based on the NCWA oper-
ator (Zhan et al. 2017) to obtain the comprehensive NCNs,
which are shown as

ny = (([0.4856,0.7234], [0.3057,0.4067], [0.28110.4215)),

(0.5753,0.2766,0.3728)),

ny = ({[0.6822,0.8259],
[0.1701,0.2718], [0.2211,0.3618])
(0.7765,0.1149,0.2352)),
ns = (([0.7138,0.8851], [0.1835, 0.3847],
[0.2050,0.3057]), (0.6943,0.2297,0.2639) ),

ny = (([0.6896,0.8259], [0.2211,0.4000], [0.1414,0.2616]),

(0.7789,0.1149,0.2297)).

Step 2. By the score function defined in Definition 3, we
can get the score values of the alternatives as follows.

S(ny) = 0.6355,8(n2) = 0.7677, S(n3) = 0.7467, S(n4)
= 0.7695.

Step 3. The ranking order of their alternatives according
to the score values is

My > M, >M3 > M,.

So, the best alternative is My, while the worst one is M.

Obviously, there are the different ranking results pro-
duced by these two methods. In order to explain that our
ranking result is more reasonable than the method in Zhan
et al. (2017), we give the following discussions.

(1) In the above example, we take the weights of PA
operator that are equal to the proposed aggregation oper-

ators and because x =1 and y =0, we can get 3’(n1) =

0.5804,8(ny) =  0.6681,S(n3) = 0.6251,8(ny) = 0.6694
and then My > M, > M3 > M. Obviously, there are the
same ranking orders obtained by the proposed aggregation
operators in this article and in Wu et al. (2018). We can
explain the results as follows.

In this special case, because the weights of PA operator
are equal, the proposed method does not use the PA
operator. In addition, because x =1 and y = 0, the pro-
posed method does not consider the relationship between
the attributes. So in this case, the proposed method is
similar to that proposed by Zhan et al. (2017), and they can
produce

(ii) If we can only set x =0 or y = 0 in the proposed
aggregation operator, then the ranking results obtained for
these two cases by the proposed aggregation operators in
this paper and in Zhan et al. (2017) are the same. Because
in these two cases x = 0 or y = 0, the proposed method
does not consider the relationship between the attributes,
we can get the same ranking results by the proposed
aggregation operator in this paper and in Zhan et al. (2017),
and this can show the PA operator cannot influence the
ranking results.

(iii) For the initial results of this example, we get the
different ranking results. From above (i) and (ii), we can
know the reason produced the different ranking results is
the relationship between the attributes. The proposed
method in this paper considers the relationship between the
attributes, while the method in Wu et al. (2018) does not
take into account. Because this example is with three
attributes, i.e., (i) B; is the RAM, (ii) B, is the price, and
(iii) B3 is the camera. Obviously, there exists the rela-
tionship between the attributes. So, the ranking result
obtained by the proposed method in this paper is more
reasonable than that produced by Zhan et al. (2017), i.e.,
the best alternative is M», not Mj.

Based on the above analysis, the developed aggregation
operators are more practical and effective than the existing
aggregation operators. The main difference between the
developed aggregation operators and the existing aggre-
gation operators is that the proposed aggregation operators
have two characteristics: (1) It can consider the interrela-
tionship among the input argument and (2) it can remove
the influence of awkward data at the same time. Some
developed aggregation operators can only deal with NC
information for one property. That is, they can consider
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interrelationship among input argument or remove the
effect of awkward data. Therefore, the developed method
which is based on the proposed aggregation operator is
more practical and effective for solving MADM and
MAGDM problems.

6 Conclusion

In this paper, firstly we presented the novel comparison
method and distance measure for NCNs and then we pro-
posed the NCPHA operator and NCPWHA operator by
extending the PHM operator to NCNs; further, we explored
some characteristics and special examples for the proposed
operators and developed a new approach for MAGDM
problems with NCNs. Finally, we proved the validity and
showed the advantages of the developed method by some
examples, i.e., the proposed approach has three main
advantages: (1) It adopts novel comparison method and
distance measure for NCNs which can overcome some
existing weaknesses; (2) it can process the relationships
between any two arguments of real decision-making
problems, which makes the decision result more reason-
able; (3) it can eliminate the negative effects because of the
unreasonable attribute values by the power weighting. In a
word, the proposed method is more practical and effective
in solving the MADM and MAGDM problems. In the
future research, we will extend PHM aggregation operator
to some new uncertain environment, such as two-dimen-
sional uncertain linguistic information (Liu and Teng 2016;
Liu et al. 2016b) and so on.
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