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Abstract: A neutrosophic set is initiated by Smarandache, and it is a novel tool to deal with
vagueness considering the truth, indeterminacy and falsity memberships satisfying the condition
that their sum is less than 3. The concept of neutrosophic quadruple numbers was introduced by
Florentin Smarandache. Using this idea, Jun et al. introduced the notion of neutrosophic quadruple
BCK/BCI-numbers, and studied neutrosophic quadruple BCK/BCI-algebras. As a continuation of
Jun et al.’s paper, the notion of implicative neutrosophic quadruple BCK-algebras is introduced, and
several properties are investigated. Given a set Y, conditions for the neutrosophic quadruple Y-set
Nq(Y) to be a neutrosophic quadruple BCI-algebra are provided. Conditions for the neutrosophic
quadruple Y-set Nq(Y) to be an implicative neutrosophic quadruple BCK-algebra are provided.
Given subsets I and J of a BCK-algebra Y, conditions for the neutrosophic quadruple (I, J)-set
Nq(I, J) to be an implicative ideal of the neutrosophic quadruple BCK-algebra Nq(Y) are discussed.

Keywords: (commutative, implicative) neutrosophic quadruple BCK-algebra; (commutative,
implicative) neutrosophic quadruple ideal; neutrosophic quadruple (I, J)-set

1. Introduction

BCK/BCI-algebras are an algebraic structure, which was introduced by Imai, Iséki and Tanaka
in 1966, that describes fragments of the propositional calculus involving implication known as BCK
and BCI logics. The notion of neutrosophic set, which is developed by Smarandache (see [1–3]),
is a more general platform which extends the notions of (intuitionistic) fuzzy set, interval valued
(intuitionistic) fuzzy set and classic set. Neutrosophic set theory has useful applications in several
branches. Decision-making problems are some of the most widely used phenomena in our real-life
applications or in various fields like science, engineering, operation research, and management sciences.
Garg and Nancy [4] developed a nonlinear programming model based on the technique for order
preference by similarity to ideal solution (TOPSIS), in order to solve decision-making problems in which
criterion values and their importance are given in the form of interval neutrosophic numbers (INNs).
Garg and Nancy [5] presented some new operational laws called logarithm operational laws with
real number base for the single-valued neutrosophic (SVN) numbers, and applied it to multiattribute
decision making. In algebraic structures of BCK/BCI-algebras and semigroup, neutrosophic set theory
is discussed in the papers [6–15]. Smarandache [16] introduced the notion of neutrosophic quadruple
numbers. Akinleye et al. [17] introduced the concept of neutrosophic quadruple algebraic structures.
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Jun et al. [18] studied the neutrosophic quadruple algebraic structures in BCK/BCI-algebras, and they
introduced the notion of neutrosophic quadruple BCK/BCI-algebras.

In this article, we introduce the concept of implicative neutrosophic quadruple BCK-algebras,
and investigate several properties. In the first and second sections, introduction and basic
notions/results are displayed. In the third section, we discuss several properties and (implicative)
neutrosophic quadruple ideals in (implicative) neutrosophic quadruple BCK-algebras. Given a set Y,
we discuss conditions for the neutrosophic quadruple Y-set Nq(Y) to be a neutrosophic quadruple
BCI-algebra. We provide conditions for the neutrosophic quadruple Y-set Nq(Y) to be an implicative
neutrosophic quadruple BCK-algebra. Given subsets I and J of a BCK-algebra Y, we find conditions for
the neutrosophic quadruple (I, J)-set Nq(I, J) to be an implicative ideal of the neutrosophic quadruple
BCK-algebra Nq(Y).

2. Preliminaries

A BCI-algebra (see [19]) is defined to be a set Y with a binary operation ∗ and a special element 0
which satisfies the following conditions:

(I) (∀a, b, c ∈ Y) (((a ∗ b) ∗ (a ∗ c)) ∗ (c ∗ b) = 0),
(II) (∀a ∈ Y) (a ∗ 0 = a),
(III) (∀u, v ∈ Y) (u ∗ v = 0, v ∗ u = 0 ⇒ u = v).

If a BCI-algebra Y satisfies the following identity:

(IV) (∀a ∈ Y) (0 ∗ a = 0),

then Y is called a BCK-algebra. Any BCK/BCI-algebra Y satisfies the following conditions:

a ∗ 0 = a, (1)

a ≤ b ⇒ a ∗ c ≤ b ∗ c, c ∗ b ≤ c ∗ a, (2)

(a ∗ b) ∗ c = (a ∗ c) ∗ b, (3)

(a ∗ c) ∗ (b ∗ c) ≤ a ∗ b (4)

for all a, b, c ∈ Y.
A BCK-algebra Y is said to be

• commutative if the following assertion is valid:

(∀a, b ∈ Y) (a ∗ (a ∗ b) = b ∗ (b ∗ a)) . (5)

• implicative if the following assertion is valid:

(∀a, b ∈ Y) (a ∗ (b ∗ a) = a) . (6)

A subset I of a BCK-algebra Y is called

• an ideal of Y if it satisfies:

0 ∈ I, (7)

(∀a ∈ Y) (∀b ∈ I) (a ∗ b ∈ I ⇒ a ∈ I) , (8)

• a commutative ideal of Y if it satisfies Label (7) and

(∀a, b ∈ Y)(∀c ∈ I) ((a ∗ b) ∗ c ∈ I ⇒ a ∗ (b ∗ (b ∗ a)) ∈ I) . (9)
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• an implicative ideal (see [20]) of Y if it satisfies (7) and

(∀a, b, c ∈ Y)(((a ∗ (b ∗ a)) ∗ c ∈ I, c ∈ I ⇒ a ∈ I) . (10)

We refer the reader to the books [19,20] for further information regarding BCK/BCI-algebras,
and to [2,3] for further information regarding neutrosophic set theory.

Definition 1 ([18]). Let Y be a nonempty set. A neutrosophic quadruple Y-number is an ordered quadruple
(a, xT, yI, zF) where a, x, y, z ∈ Y and T, I, F have their usual neutrosophic logic meanings.

The set of all neutrosophic quadruple Y-numbers is denoted by Nq(Y), that is,

Nq(Y) := {(a, xT, yI, zF) | a, x, y, z ∈ Y},

and it is called the neutrosophic quadruple set based on Y or neutrosophic quadruple Y-set.
Let Y be a set with a binary operation ∗ and a special number 0. We define a binary operation ∗̃

on Nq(Y) by

(a, xT, yI, zF) ∗̃ (b, uT, vI, wF) = (a ∗ b, (x ∗ u)T, (y ∗ v)I, (z ∗ w)F)

for all (a, xT, yI, zF), (b, uT, vI, wF) ∈ Nq(Y). Given x1, x2, x3, x4 ∈ Y, the neutrosophic quadruple
Y-number (x1, x2T, x3 I, x4F) is denoted by x̃, that is,

x̃ = (x1, x2T, x3 I, x4F),

and the zero neutrosophic quadruple Y-number (0, 0T, 0I, 0F) is denoted by 0̃, that is,

0̃ = (0, 0T, 0I, 0F).

If Y has an order relation “≤”, then we define an order relation “�” and the equality “=” on
Nq(Y) as follows:

ã� b̃⇔ ai ≤ bi for i = 1, 2, 3, 4,
ã = b̃⇔ ai = bi for i = 1, 2, 3, 4

for all ã, b̃ ∈ Nq(Y). It is easy to verify that, if “≤” is a partial order on Y, then “�” is a partial order
on Nq(Y).

Definition 2 ([18]). Given a set Y with a binary operation ∗ and a special number 0, the neutrosophic quadruple
Y-set Nq(Y) is called a neutrosophic quadruple BCK/BCI-algebra if (Nq(Y); ∗̃ , 0̃) is a BCK/BCI-algebra.

3. Implicative Neutrosophic Quadruple Ideals

In this section, we first consider conditions for a the neutrosophic quadruple Y-set Nq(Y) to be a
neutrosophic quadruple BCI-algebra. We define the notion of (commutative, implicative) neutrosophic
quadruple BCK-algebra and investigate related properties.

Theorem 1. Given a set Y with a binary operation ∗ and a special number 0, if the neutrosophic quadruple
Y-set Nq(Y) has a binary operation “ ∗̃ ” and a partial ordering “�” such that

(1) (x̃ ∗̃ ỹ) ∗̃ (x̃ ∗̃ z̃)� z̃ ∗̃ ỹ,
(2) x̃ ∗̃ (x̃ ∗̃ ỹ)� ỹ,
(3) x̃ ∗̃ ỹ = 0̃ ⇔ x̃ � ỹ
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for all x̃, ỹ, z̃ ∈ Nq(Y), then Nq(Y) is a neutrosophic quadruple BCI-algebra.

Proof. Let x̃, ỹ, z̃ ∈ Nq(Y). Using conditions (1) and (3) of this theorem, we have

((x̃ ∗̃ ỹ) ∗̃ (x̃ ∗̃ z̃)) ∗̃ (z̃ ∗̃ ỹ) = 0̃. (11)

Assume that x̃ ∗̃ ỹ = 0̃ and ỹ ∗̃ x̃ = 0̃. Then, x̃ � ỹ and ỹ� x̃ by (3), which implies that x̃ = ỹ by the
anti-symmetry of�. By the condition (3) of this theorem and the reflexivity of�, we get x̃ ∗̃ x̃ = 0̃.
Using conditions (2) and (3) of this theorem, we have

(x̃ ∗̃ (x̃ ∗̃ ỹ)) ∗̃ ỹ = 0̃. (12)

Putting ỹ = 0̃ in (12) implies that

(x̃ ∗̃ (x̃ ∗̃ 0̃)) ∗̃ 0̃ = 0̃. (13)

If we substitute x̃ ∗̃ 0̃ and x̃ for ỹ and z̃, respectively, in (11), then

0̃ = ((x̃ ∗̃ (x̃ ∗̃ 0̃)) ∗̃ (x̃ ∗̃ x̃)) ∗̃ (x̃ ∗̃ (x̃ ∗̃ 0̃))

= ((x̃ ∗̃ (x̃ ∗̃ 0̃)) ∗̃ 0̃) ∗̃ (x̃ ∗̃ (x̃ ∗̃ 0̃))

= 0̃ ∗̃ (x̃ ∗̃ (x̃ ∗̃ 0̃)).

Hence, x̃ ∗̃ (x̃ ∗̃ 0̃) = 0̃. On the other hand, we get (x̃ ∗̃ 0̃) ∗̃ x̃ = (x̃ ∗̃ (x̃ ∗̃ x̃)) ∗̃ x̃ = 0̃. It follows that
x̃ ∗̃ 0̃ = x̃. Hence, (Nq(Y); ∗̃ , 0̃) is a BCI-algebra, and therefore Nq(Y) is a neutrosophic quadruple
BCI-algebra.

Definition 3. Given a set Y with a binary operation ∗ and a special number 0, the neutrosophic quadruple
Y-set Nq(Y) is called a (commutative, implicative) neutrosophic quadruple BCK-algebra if (Nq(Y); ∗̃ , 0̃) is a
(commutative, implicative) BCK-algebra.

Example 1. Given a set Y = {0, a}, consider the neutrosophic quadruple Y-set as follows:

Nq(Y) = {α̃0, α̃1, α̃2, α̃3, α̃4, α̃5, α̃6, α̃7, α̃8, α̃9, α̃10, α̃11, α̃12, α̃13, α̃14, α̃15},

where
α̃0 = (0, 0T, 0I, 0F), α̃1 = (0, 0T, 0I, aF), α̃2 = (0, 0T, aI, 0F), α̃3 = (0, 0T, aI, aF),

α̃4 = (0, aT, 0I, 0F), α̃5 = (0, aT, 0I, aF), α̃6 = (0, aT, aI, 0F), α̃7 = (0, aT, aI, aF),

α̃8 = (a, 0T, 0I, 0F), α̃9 = (a, 0T, 0I, aF), α̃10 = (a, 0T, aI, 0F), α̃11 = (a, 0T, aI, aF),

α̃12 = (a, aT, 0I, 0F), α̃13 = (a, aT, 0I, aF), α̃14 = (a, aT, aI, 0F), α̃15 = (a, aT, aI, aF).

Define a binary operation “ ∗̃ ” on Nq(Y) by Table 1.
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Table 1. Binary operation “ ∗̃ ”.

∗̃ α̃0 α̃1 α̃2 α̃3 α̃4 α̃5 α̃6 α̃7 α̃8 α̃9 α̃10 α̃11 α̃12 α̃13 α̃14 α̃15

α̃0 α̃0 α̃0 α̃0 α̃0 α̃0 α̃0 α̃0 α̃0 α̃0 α̃0 α̃0 α̃0 α̃0 α̃0 α̃0 α̃0
α̃1 α̃1 α̃0 α̃1 α̃0 α̃1 α̃0 α̃1 α̃0 α̃1 α̃0 α̃1 α̃0 α̃1 α̃0 α̃1 α̃0
α̃2 α̃2 α̃2 α̃0 α̃0 α̃2 α̃2 α̃0 α̃0 α̃2 α̃2 α̃0 α̃0 α̃2 α̃2 α̃0 α̃0
α̃3 α̃3 α̃2 α̃1 α̃0 α̃3 α̃2 α̃1 α̃0 α̃3 α̃2 α̃1 α̃0 α̃3 α̃2 α̃1 α̃0
α̃4 α̃4 α̃4 α̃4 α̃4 α̃0 α̃0 α̃0 α̃0 α̃4 α̃4 α̃4 α̃4 α̃0 α̃0 α̃0 α̃0
α̃5 α̃5 α̃4 α̃5 α̃4 α̃1 α̃0 α̃1 α̃0 α̃5 α̃4 α̃5 α̃4 α̃1 α̃0 α̃1 α̃0
α̃6 α̃6 α̃6 α̃4 α̃4 α̃2 α̃2 α̃0 α̃0 α̃6 α̃6 α̃4 α̃4 α̃2 α̃2 α̃0 α̃0
α̃7 α̃7 α̃6 α̃5 α̃4 α̃3 α̃2 α̃1 α̃0 α̃7 α̃6 α̃5 α̃4 α̃3 α̃2 α̃1 α̃0
α̃8 α̃8 α̃8 α̃8 α̃8 α̃8 α̃8 α̃8 α̃8 α̃0 α̃0 α̃0 α̃0 α̃0 α̃0 α̃0 α̃0
α̃9 α̃9 α̃8 α̃8 α̃8 α̃9 α̃8 α̃9 α̃8 α̃9 α̃0 α̃1 α̃0 α̃1 α̃0 α̃1 α̃0
α̃10 α̃10 α̃10 α̃8 α̃8 α̃10 α̃10 α̃8 α̃8 α̃2 α̃2 α̃0 α̃2 α̃2 α̃2 α̃0 α̃0
α̃11 α̃11 α̃10 α̃9 α̃8 α̃11 α̃10 α̃9 α̃8 α̃3 α̃2 α̃1 α̃0 α̃3 α̃2 α̃1 α̃0
α̃12 α̃12 α̃12 α̃12 α̃12 α̃8 α̃8 α̃8 α̃8 α̃4 α̃4 α̃4 α̃4 α̃0 α̃0 α̃0 α̃0
α̃13 α̃13 α̃12 α̃13 α̃12 α̃9 α̃8 α̃9 α̃8 α̃5 α̃4 α̃5 α̃4 α̃1 α̃0 α̃1 α̃0
α̃14 α̃14 α̃14 α̃12 α̃12 α̃10 α̃10 α̃8 α̃8 α̃6 α̃6 α̃4 α̃4 α̃2 α̃2 α̃0 α̃0
α̃15 α̃15 α̃14 α̃13 α̃12 α̃11 α̃10 α̃9 α̃8 α̃7 α̃6 α̃5 α̃4 α̃3 α̃2 α̃1 α̃0

Then, Nq(Y) is a (commutative, implicative) neutrosophic quadruple BCK-algebra.

Lemma 1 ([18]). If Y is a BCK/BCI-algebra, then Nq(Y) is a neutrosophic quadruple BCK/BCI-algebra.

Theorem 2. If Y is an implicative BCK-algebra, then the neutrosophic quadruple Y-setNq(Y) is an implicative
neutrosophic quadruple BCK-algebra.

Proof. Let Y be an implicative BCK-algebra. Then, Y is a BCK-algebra, and soNq(Y) is a neutrosophic
quadruple BCK-algebra by Lemma 1. Let x̃, ỹ ∈ Nq(Y). Then, xi ∗ (yi ∗ xi) = xi for all i = 1, 2, 3, 4
since xi, yi ∈ Y and Y is an implicative BCK-algebra. Hence,

x̃ ∗̃ (ỹ ∗̃ x̃) = (x1 ∗ (y1 ∗ x1), (x2 ∗ (y2 ∗ x2))T, (x3 ∗ (y3 ∗ x3))I, (x4 ∗ (y4 ∗ x4))F)

= (x1, x2T, x3 I, x4F) = x̃,

and therefore Nq(Y) is an implicative neutrosophic quadruple BCK-algebra.

Lemma 2 ([21]). If Y is a commutative BCK-algebra, then the neutrosophic quadruple Y-set Nq(Y) is a
commutative neutrosophic quadruple BCK-algebra.

Since every implicative BCK-algebra is a commutative BCK-algebra, we have the following
corollary.

Corollary 1. Every neutrosophic quadruple Y-set Nq(Y) based on an implicative BCK-algebra Y is a
commutative neutrosophic quadruple BCK-algebra.

Proposition 1. The neutrosophic quadruple Y-set Nq(Y) based on an implicative BCK-algebra Y satisfies the
following assertions:

(1) (x̃ ∗̃ (x̃ ∗̃ ỹ)) ∗̃ (x̃ ∗̃ ỹ) = ỹ ∗̃ (ỹ ∗̃ x̃),
(2) (x̃ ∗̃ (x̃ ∗̃ ỹ)) ∗̃ (ỹ ∗̃ x̃) = ỹ ∗̃ (ỹ ∗̃ x̃),
(3) (x̃ ∗̃ (x̃ ∗̃ ỹ)) ∗̃ (x̃ ∗̃ ỹ) = (ỹ ∗̃ (ỹ ∗̃ x̃)) ∗̃ (ỹ ∗̃ x̃)

for all x̃, ỹ ∈ Nq(Y).
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Proof. Let Y be an implicative BCK-algebra. Then,

(xi ∗ (xi ∗ yi)) ∗ (xi ∗ yi) = yi ∗ (yi ∗ xi)

for all xi, yi ∈ Y with i = 1, 2, 3, 4. Thus,

(x̃ ∗̃ (x̃ ∗̃ ỹ)) ∗̃ (x̃ ∗̃ ỹ) =
(
(x1, x2T, x3 I, x4F) ∗̃ ((x1, x2T, x3 I, x4F) ∗̃ (y1, y2T, y3 I, y4F))

)
∗̃
(
(x1, x2T, x3 I, x4F) ∗̃ (y1, y2T, y3 I, y4F)

)
=

(
(x1 ∗ (x1 ∗ y1)) ∗ (x1 ∗ y1), ((x2 ∗ (x2 ∗ y2)) ∗ (x2 ∗ y2))T,

((x3 ∗ (x3 ∗ y3)) ∗ (x3 ∗ y3))I, ((x4 ∗ (x4 ∗ y4)) ∗ (x4 ∗ y4))F
)

=
(
y1 ∗ (y1 ∗ x1), (y2 ∗ (y2 ∗ x2))T, (y3 ∗ (y3 ∗ x3))I, (y4 ∗ (y4 ∗ x4))F

)
= ỹ ∗̃ (ỹ ∗̃ x̃).

This proves (1). Similarly, we can prove (2) and (3).

Theorem 3. If the neutrosophic quadruple Y-set Nq(Y) based on a BCK-algebra Y satisfies the condition (3)
in Proposition 1, then it is an implicative neutrosophic quadruple BCK-algebra.

Proof. By Lemma 1, we know that Nq(Y) is a neutrosophic quadruple BCK-algebra. Let x̃, ỹ ∈ Nq(Y).
Then,

(xi ∗ (xi ∗ yi)) ∗ (xi ∗ yi) = (yi ∗ (yi ∗ xi)) ∗ (yi ∗ xi) (14)

for all i = 1, 2, 3, 4. If we substitute xi ∗ yi for yi in (14), then

xi ∗ yi = ((xi ∗ yi) ∗ 0) ∗ 0 = ((xi ∗ yi) ∗ ((xi ∗ yi) ∗ xi)) ∗ ((xi ∗ yi) ∗ xi)

= (xi ∗ (xi ∗ (xi ∗ yi))) ∗ (xi ∗ (xi ∗ yi))

= (xi ∗ yi) ∗ (xi ∗ (xi ∗ yi))

= (xi ∗ (xi ∗ (xi ∗ yi)) ∗ yi

= (xi ∗ yi) ∗ yi.

(15)

It follows from (15) and (3) in Proposition 1 that

xi ∗ (xi ∗ yi) = (xi ∗ (xi ∗ yi)) ∗ (xi ∗ yi) = (yi ∗ (yi ∗ xi)) ∗ (yi ∗ xi) = yi ∗ (yi ∗ xi). (16)

Using (15) and (16), we have

xi ∗ (xi ∗ (yi ∗ xi)) = (yi ∗ xi) ∗ ((yi ∗ xi) ∗ xi) = ((yi ∗ xi) ∗ xi) ∗ ((yi ∗ xi) ∗ xi) = 0.

Obviously, (xi ∗ (yi ∗ xi)) ∗ xi = 0. Hence, xi ∗ (yi ∗ xi) = xi, and thus

x̃ ∗̃ (ỹ ∗̃ x̃) =
(

x1 ∗ (y1 ∗ x1), (x2 ∗ (y2 ∗ x2))T, (x3 ∗ (y3 ∗ x3))I, (x4 ∗ (y4 ∗ x4))F
)

= (x1, x2T, x3 I, x4F) = x̃.

Hence, (Nq(Y); ∗̃ , 0̃) is an implicative BCK-algebra, and therefore Nq(Y) is an implicative
neutrosophic quadruple BCK-algebra.

Given subsets I and J of a BCK-algebra Y, consider the set

Nq(I, J) := {(a, xT, yI, zF) ∈ Nq(Y) | a, x ∈ I; y, z ∈ J},
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which is called the neutrosophic quadruple (I, J)-set. It is clear that the neutrosophic quadruple (I, J)-set
is a subset of the neutrosophic quadruple Y-set Nq(Y).

Theorem 4. If I and J are implicative ideals of a BCK-algebra Y, then the neutrosophic quadruple (I, J)-set
Nq(I, J) is an implicative ideal of the neutrosophic quadruple BCK-algebra Nq(Y).

Proof. Assume that I and J are implicative ideals of a BCK-algebra Y. Obviously, 0̃ ∈ Nq(I, J).
Let x̃ = (x1, x2T, x3 I, x4F), ỹ = (y1, y2T, y3 I, y4F) and z̃ = (z1, z2T, z3 I, z4F) be elements of Nq(Y)
such that (x̃ ∗̃ (ỹ ∗̃ x̃)) ∗̃ z̃ ∈ Nq(I, J) and z̃ ∈ Nq(I, J). Then,

(x̃ ∗̃ (ỹ ∗̃ x̃)) ∗̃ z̃ =
(
(x1 ∗ (y1 ∗ x1)) ∗ z1, ((x2 ∗ (y2 ∗ x2)) ∗ z2)T,

((x3 ∗ (y3 ∗ x3)) ∗ z3)I, ((x4 ∗ (y4 ∗ x4)) ∗ z4)F
)
∈ Nq(I, J),

and so (x1 ∗ (y1 ∗ x1)) ∗ z1 ∈ I, (x2 ∗ (y2 ∗ x2)) ∗ z2 ∈ I, (x3 ∗ (y3 ∗ x3)) ∗ z3 ∈ J and (x4 ∗ (y4 ∗ x4)) ∗ z4 ∈
J. Since z̃ ∈ Nq(I, J), we have z1, z2 ∈ I and z3, z4 ∈ J. Since I and I are implicative ideals of Y,
it follows that x1, x2 ∈ I and x3, x4 ∈ J. Hence, x̃ = (x1, x2T, x3 I, x4F) ∈ Nq(I, J), and therefore
Nq(I, J) is an implicative ideal of N (Y).

Lemma 3 ([21]). If I and J are commutative ideals of a BCK-algebra Y, then the neutrosophic quadruple
(I, J)-set Nq(I, J) is a commutative ideal of the neutrosophic quadruple BCK-algebra Nq(Y).

Since every implicative ideal is a commutative ideal, we have the following corollary.

Corollary 2. If I and J are implicative ideals of a BCK-algebra Y, then the neutrosophic quadruple (I, J)-set
Nq(I, J) is a commutative ideal of the neutrosophic quadruple BCK-algebra Nq(Y).

The following example illustrates Theorem 4.

Example 2. Consider a BCK-algebra Y = {0, a, b, c} in which the binary operation ∗ is given by Table 2,

Table 2. Binary operation “∗”.

∗ 0 a b c

0 0 0 0 0
a a 0 a 0
b b b 0 0
c c b a 0

Then, the neutrosophic quadruple BCK-algebra Nq(Y) has 256 elements. Note that I := {0, a} and
J := {0, b} are implicative ideals of Y. Hence, the neutrosophic quadruple (I, J)-set Nq(I, J) is given as follows:

Nq(I, J) = {0̃, 1̃, 2̃, 3̃, 4̃, 5̃, 6̃, 7̃, 8̃, 9̃, 1̃0, 1̃1, 1̃2, 1̃3, 1̃4, 1̃5}

and it is an implicative ideal of the neutrosophic quadruple BCK-algebra Nq(Y) where

0̃ = (0, 0T, 0I, 0F), 1̃ = (0, 0T, 0I, bF), 2̃ = (0, 0T, bI, 0F), 3̃ = (0, 0T, bI, bF),

4̃ = (0, aT, 0I, 0F), 5̃ = (0, aT, 0I, bF), 6̃ = (0, aT, bI, 0F), 7̃ = (0, aT, bI, bF),

8̃ = (a, 0T, 0I, 0F), 9̃ = (a, 0T, 0I, bF), 1̃0 = (a, 0T, bI, 0F), 1̃1 = (a, 0T, bI, bF),

1̃2 = (a, aT, 0I, 0F), 1̃3 = (a, aT, 0I, bF), 1̃4 = (a, aT, bI, 0F), 1̃5 = (a, aT, bI, bF).
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Proposition 2. If I and J are implicative ideals of a BCK-algebra Y, then the neutrosophic quadruple (I, J)-set
Nq(I, J) satisfies the following assertion:

(∀x̃, ỹ ∈ Nq(Y))
(
ỹ ∗̃ (ỹ ∗̃ x̃) ∈ Nq(I, J) ⇒ x̃ ∗̃ (x̃ ∗̃ ỹ) ∈ Nq(I, J)

)
. (17)

Proof. Assume that I and J are implicative ideals of a BCK-algebra Y and ỹ ∗̃ (ỹ ∗̃ x̃) ∈ Nq(I, J) for all
x̃, ỹ ∈ Nq(Y). Then,

ỹ ∗̃ (ỹ ∗̃ x̃) = (y1 ∗ (y1 ∗ x1), (y2 ∗ (y2 ∗ x2))T, (y3 ∗ (y3 ∗ x3))I, (y4 ∗ (y4 ∗ x4))F) ∈ Nq(I, J),

and so y1 ∗ (y1 ∗ x1) ∈ I, y2 ∗ (y2 ∗ x2) ∈ I, y3 ∗ (y3 ∗ x3) ∈ J and y4 ∗ (y4 ∗ x4) ∈ J. Since xi ∗ (xi ∗ yi) ≤
xi for i = 1, 2, 3, 4, we have

yi ∗ xi ≤ yi ∗ (xi ∗ (xi ∗ yi)),

which implies that

(xi ∗ (xi ∗ yi)) ∗ (yi ∗ (xi ∗ (xi ∗ yi))) ≤ (xi ∗ (xi ∗ yi)) ∗ (yi ∗ xi)

= (xi ∗ (yi ∗ xi)) ∗ (xi ∗ yi) ≤ yi ∗ (yi ∗ xi),

that is, ((xi ∗ (xi ∗ yi)) ∗ (yi ∗ (xi ∗ (xi ∗ yi)))) ∗ (yi ∗ (yi ∗ xi)) = 0 ∈ I ∩ J for i = 1, 2, 3, 4. Since yi ∗
(yi ∗ xi) ∈ I for i = 1, 2, yj ∗ (yj ∗ xj) ∈ J for j = 3, 4, and I and J are implicative ideals of Y, it follows
from (10) that xi ∗ (xi ∗ yi) ∈ I for i = 1, 2, and xj ∗ (xj ∗ yj) ∈ J for j = 3, 4. Hence,

x̃ ∗̃ (x̃ ∗̃ ỹ) = (x1 ∗ (x1 ∗ y1), (x2 ∗ (x2 ∗ y2))T, (x3 ∗ (x3 ∗ y3))I, (x4 ∗ (x4 ∗ y4))F) ∈ Nq(I, J).

This completes the proof.

Lemma 4 ([18]). If I and J are ideals of a BCK-algebra Y, then the neutrosophic quadruple (I, J)-set Nq(I, J)
is an ideal of Nq(Y).

Theorem 5. Let I and J be ideals of a BCK-algebra Y such that

(x ∗ y) ∗ y ∈ I (resp., J) ⇒ x ∗ y ∈ I (resp., J), (18)

y ∗ (y ∗ x) ∈ I (resp., J) ⇒ x ∗ (x ∗ y) ∈ I (resp., J) (19)

for all x, y ∈ Y. Then, the neutrosophic quadruple (I, J)-set Nq(I, J) is an implicative ideal of Nq(Y).

Proof. If I and J are ideals of a BCK-algebra Y, thenNq(I, J) is an ideal ofNq(Y) by Lemma 4. Suppose
(x̃ ∗̃ (ỹ ∗̃ x̃)) ∗̃ z̃ ∈ Nq(I, J) and z̃ ∈ Nq(I, J) for all x̃, ỹ, z̃ ∈ Nq(Y). Then,

(x̃ ∗̃ (ỹ ∗̃ x̃)) ∗̃ z̃ =
(
(x1 ∗ (y1 ∗ x1)) ∗ z1, ((x2 ∗ (y2 ∗ x2)) ∗ z2)T,

((x3 ∗ (y3 ∗ x3)) ∗ z3)I, ((x4 ∗ (y4 ∗ x4)) ∗ z4)F
)
∈ Nq(I, J)

and z̃ =
(
z1, z2T, z3 I, z4F

)
∈ Nq(I, J). It follows that z1, z2 ∈ I, z3, z4 ∈ J, (x1 ∗ (y1 ∗ x1)) ∗ z1 ∈ I,

(x2 ∗ (y2 ∗ x2)) ∗ z2 ∈ I, (x3 ∗ (y3 ∗ x3)) ∗ z3 ∈ J and (x4 ∗ (y4 ∗ x4)) ∗ z4 ∈ J. Since I and J are
ideals of Y, we have x1 ∗ (y1 ∗ x1) ∈ I, x2 ∗ (y2 ∗ x2) ∈ I, x3 ∗ (y3 ∗ x3) ∈ J and x4 ∗ (y4 ∗ x4) ∈ J.
Since (yi ∗ (yi ∗ xi)) ∗ (yi ∗ xi) ≤ xi ∗ (yi ∗ xi) for i = 1, 2, 3, 4, it follows that (yi ∗ (yi ∗ xi)) ∗ (yi ∗ xi) ∈ I
for i = 1, 2, and (yj ∗ (yj ∗ xj)) ∗ (yj ∗ xj) ∈ J for j = 3, 4. Using (18), we obtain yi ∗ (yi ∗ xi) ∈ I for
i = 1, 2, and yj ∗ (yj ∗ xj) ∈ J for j = 3, 4. It follows from (19) that

xi ∗ (xi ∗ yi) ∈ I for i = 1, 2, and xj ∗ (xj ∗ yj) ∈ J for j = 3, 4. (20)
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Note that (xi ∗ yi) ∗ zi ≤ xi ∗ yi ≤ xi ∗ (yi ∗ xi) for i = 1, 2, 3, 4. Thus, (xi ∗ yi) ∗ zi ∈ I for
i = 1, 2, and (xi ∗ yi) ∗ zi ∈ J for j = 3, 4. Since z1, z2 ∈ I and z3, z4 ∈ J, we obtain xi ∗ yi ∈ I for
i = 1, 2, and xj ∗ yj ∈ J for j = 3, 4, which imply from (20) that x1, x2 ∈ I and x3, x4 ∈ J. Hence,
x̃ = (x1, x2T, x3 I, x4F) ∈ Nq(I, J), and therefore Nq(I, J) is an implicative ideal of Nq(Y).

Theorem 6. Let I and J be ideals of a BCK-algebra Y such that

x ∗ (y ∗ x) ∈ I (resp., J) ⇒ x ∈ I (resp., J) (21)

for all x, y ∈ Y. Then, the neutrosophic quadruple (I, J)-set Nq(I, J) is an implicative ideal of Nq(Y).

Proof. If I and J are ideals of a BCK-algebra Y, then Nq(I, J) is an ideal of Nq(Y) by Lemma 4.
Let x̃, ỹ, z̃ ∈ Nq(Y) be such that (x̃ ∗̃ (ỹ ∗̃ x̃)) ∗̃ z̃ ∈ Nq(I, J) and z̃ ∈ Nq(I, J). Then,

(x̃ ∗̃ (ỹ ∗̃ x̃)) ∗̃ z̃ =
(
(x1 ∗ (y1 ∗ x1)) ∗ z1, ((x2 ∗ (y2 ∗ x2)) ∗ z2)T,

((x3 ∗ (y3 ∗ x3)) ∗ z3)I, ((x4 ∗ (y4 ∗ x4)) ∗ z4)F
)
∈ Nq(I, J)

and z̃ =
(
z1, z2T, z3 I, zF

)
∈ Nq(I, J). It follows that zi ∈ I, (xi ∗ (yi ∗ xi)) ∗ zi ∈ I for i = 1, 2 and

zj ∈ J, (xj ∗ (yj ∗ xj)) ∗ zj ∈ J for j = 3, 4. Since I and J are ideals of Y, we have xi ∗ (yi ∗ xi) ∈ I for
i = 1, 2 and xj ∗ (yj ∗ xj) ∈ J for j = 3, 4. Using (21), we get x1, x2 ∈ I and x3, x4 ∈ J. Hence x̃ =

(x1, x2T, x3 I, x4F) ∈ Nq(I, J), and therefore Nq(I, J) is an implicative ideal of Nq(Y).

Lemma 5 ([20]). If I is an implicative ideal of a BCK-algebra Y, then every ideal A containing I is implicative.

Theorem 7. Let A, B, I and J be ideals of a BCK-algebra Y such that A ⊆ I and B ⊆ J. If A and B are
implicative ideals of Y, then the neutrosophic quadruple (I, J)-set Nq(I, J) is an implicative ideal of Nq(Y).

Proof. If A, B, I and J are ideals of Y, then Nq(A, B) and Nq(I, J) are ideals of Nq(Y) by Lemma 4
and Nq(A, B) ⊆ Nq(I, J). Since A and B are implicative ideals of Y, it follows from Theorem 4 that
Nq(A, B) is an implicative ideal of Nq(Y). Therefore, the neutrosophic quadruple (I, J)-set Nq(I, J) is
an implicative ideal of Nq(Y) by Lemma 5.

4. Conclusions

Based on the concept of neutrosophic quadruple numbers which is introduced by Florentin
Smarandache, Jun et al. have introduced the notion of neutrosophic quadruple BCK/BCI-numbers,
and have studied neutrosophic quadruple BCK/BCI-algebras. As a continuation of Jun et al.’s paper
which has been published in Axioms, we have introduced the notion of implicative neutrosophic
quadruple BCK-algebras and have investigated several properties. Given a set Y, we have provided
conditions for the neutrosophic quadruple Y-set Nq(Y) to be a neutrosophic quadruple BCI-algebra,
and have considered conditions for the neutrosophic quadruple Y-set Nq(Y) to be an implicative
neutrosophic quadruple BCK-algebra. Given subsets I and J of a BCK-algebra Y, we have discussed
conditions for the neutrosophic quadruple (I, J)-set Nq(I, J) to be an implicative ideal of the
neutrosophic quadruple BCK-algebraNq(Y). In the forthcoming research and papers, we will continue
these ideas and will define new notions. We will study several kinds of neutrosophic quadruple ideals
in neutrosophic quadruple BCK/BCI-algebras.
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