Interval-Valued Neutrosophic Competition Graphs

Muhammad Akram and Maryam Nasir
Department of Mathematics, University of the Punjab, New Campus, Lahore, Pakistan.
E-mail: m.akram@pucit.edu.pk, maryamnasir912@gmail.com

April 18, 2017

Abstract

We first introduce the concept of interval-valued neutrosophic competition graphs. We then discuss certain types, including k-competition interval-valued neutrosophic graphs, p-competition interval-valued neutrosophic graphs and m-step interval-valued neutrosophic competition graphs. Moreover, we present the concept of m-step interval-valued neutrosophic neighbouhood graphs.

Key-words: Interval-valued neutrosophic digraphs, Interval-valued neutrosophic competition graphs. 2010 Mathematics Subject Classification: 03E72, 68R10, 68R05

1 Introduction

In 1975, Zadeh [26] introduced the notion of interval-valued fuzzy sets as an extension of fuzzy sets [25] in which the values of the membership degrees are intervals of numbers instead of the numbers. Interval-valued fuzzy sets provide a more adequate description of uncertainty than traditional fuzzy sets. It is therefore important to use interval-valued fuzzy sets in applications, such as fuzzy control. One of the computationally most intensive part of fuzzy control is defuzzification [13]. Atanassov [10] proposed the extended form of fuzzy set theory by adding a new component, called, intuitionistic fuzzy sets. Smarandache [19, 20] introduced the concept of neutrosophic sets by combining the non-standard analysis. In neutrosophic set, the membership value is associated with three components: truth-membership (t), indeterminacy-membership (i) and falsity-membership (f), in which each membership value is a real standard or non-standard subset of the non-standard unit interval $] 0^{-}, 1^{+}[$and there is no restriction on their sum. Wang et al. [21] presented the notion of single-valued neutrosophic sets to apply neutrosophic sets in real life problems more conveniently. In single-valued neutrosophic sets, three components are independent and their values are taken from the standard unit interval [0, 1]. Wang et al. [22] presented the concept of interval-valued neutrosophic sets, which is more precise and more flexible than the single-valued neutrosophic set. An interval-valued neutrosophic set is a generalization of the concept of single-valued neutrosophic set, in which three membership (t, i, f) functions are independent, and their values belong to the unit interval $[0,1]$.
Kauffman [12] gave the definition of a fuzzy graph. Fuzzy graphs were narrated by Rosenfeld [15]. After that, some remarks on fuzzy graphs were represented by Bhattacharya [11]. He showed that all the concepts on crisp graph theory do not have similarities in fuzzy graphs. Wu [24] discussed fuzzy digraphs. The concept of fuzzy k-competition graphs and p-competition fuzzy graphs was first developed by Samanta and Pal in [16], it was further studied in [9, 18, 14]. Samanta et al. [17] introduced the generalization of fuzzy competition graphs, called m-step fuzzy competition graphs. Samanta et al. [17] also introduced the concepts of fuzzy m-step neighbouthood graphs, fuzzy economic competition graphs, and m-step economic competitions graphs. The concepts of bipolar fuzzy competition graphs and intuitionistic fuzzy competition graphs are discussed in [14, 18]. Akram and Shahzadi [8] studied properties of single-valued neutrosophic graphs by level graphs. Akram et al. [1, 2, 3, 4] have introduced several
concepts on interval-valued fuzzy graphs and interval-valued neutrosophic graphs. Akram and Shahzadi [6] introduced the notion of neutrosophic soft graphs with applications. Akram [7] introduced the notion of single-valued neutrosophic planar graphs. Recently, Akram and Nasir [5] have discussed some concepts of interval-valued neutrosophic graphs. In this paper, we first introduce the concept of interval-valued neutrosophic competition graphs. We then discuss certain types, including k-competition interval-valued neutrosophic graphs, p-competition interval-valued neutrosophic graphs and m-step interval-valued neutrosophic competition graphs. Moreover, we present the concept of m-step interval-valued neutrosophic neighbouhood graphs.

2 Interval-Valued Neutrosophic Competition Graphs

Definition 2.1. [26] The interval-valued fuzzy set A in X is defined by

$$
A=\left\{\left(s,\left[t_{A}^{l}(s), t_{A}^{u}(s)\right]\right): s \in X\right\}
$$

where, $t_{A}^{l}(s)$ and $t_{A}^{u}(s)$ are fuzzy subsets of X such that $t_{A}^{l}(s) \leq t_{A}^{u}(s)$ for all $x \in X$. An interval-valued fuzzy relation on X is an interval-valued fuzzy set B in $X \times X$.

Definition 2.2. [22, 23] The interval-valued neutrosophic set (IVN-set) A in X is defined by

$$
A=\left\{\left(s,\left[t_{A}^{l}(s), t_{A}^{u}(s)\right],\left[i_{A}^{l}(s), i_{A}^{u}(s)\right],\left[f_{A}^{l}(s), f_{A}^{u}(s)\right]\right): s \in X\right\}
$$

where, $t_{A}^{l}(s), t_{A}^{u}(s), i_{A}^{l}(s), i_{A}^{u}(s), f_{A}^{l}(s)$, and $f_{A}^{u}(s)$ are neutrosophic subsets of X such that $t_{A}^{l}(s) \leq t_{A}^{u}(s)$, $i_{A}^{l}(s) \leq i_{A}^{u}(s)$ and $f_{A}^{l}(s) \leq f_{A}^{u}(s)$ for all $s \in X$. An interval-valued neutrosophic relation (IVN-relation) on X is an interval-valued neutrosophic set B in $X \times X$.

Definition 2.3. [5] An interval-valued neutrosophic digraph (IVN-digraph) on a non-empty set X is a pair $G=(A, \vec{B})$, (in short, G), where $A=\left(\left[t_{A}^{l}, t_{A}^{u}\right],\left[i_{A}^{l}, i_{A}^{u}\right],\left[f_{A}^{l}, f_{A}^{u}\right]\right)$ is an IVN-set on X and $B=$ $\left(\left[l_{B}^{l}, t_{B}^{u}\right],\left[l_{B}^{l}, i_{B}^{u}\right],\left[f_{B}^{l}, f_{B}^{u}\right]\right)$ is an IVN-relation on X, such that:

1. $t_{B}^{l} \overrightarrow{(s, w)} \leq t_{A}^{l}(s) \wedge t_{A}^{l}(w), \quad t_{B}^{u} \overrightarrow{(s, w)} \leq t_{A}^{u}(s) \wedge t_{A}^{u}(w)$,
2. $i_{B}^{l} \overrightarrow{(s, w)} \leq i_{A}^{l}(s) \wedge i_{A}^{l}(w), \quad i_{B}^{u} \overrightarrow{(s, w)} \leq i_{A}^{u}(s) \wedge i_{A}^{u}(w)$,
3. $f_{B}^{l} \overrightarrow{(s, w)} \leq f_{A}^{l}(s) \wedge f_{A}^{l}(w), \quad f_{B}^{u} \overrightarrow{(s, w)} \leq f_{A}^{u}(s) \wedge f_{A}^{u}(w), \quad$ for all $s, w \in X$.

Example 2.1. We construct an IVN-digraph $G=(A, \vec{B})$ on $X=\{a, b, c\}$ as shown in Fig. 1 .

Figure 1: IVN-digraph

Definition 2.4. Let \vec{G} be an IVN-digraph then interval-valued neutrosophic out-neighbourhoods (IVN-out-neighbourhoods) of a vertex x is an IVN-set

$$
\mathbb{N}^{+}(s)=\left(X_{s}^{+},\left[t_{s}^{(l)^{+}}, t_{s}^{(u)^{+}}\right],\left[i_{s}^{(l)^{+}}, i_{s}^{(u)^{+}}\right],\left[f_{s}^{(l)^{+}}, t_{s}^{(u)^{+}}\right]\right),
$$

where,

$$
X_{s}^{+}=\left\{w \mid\left[t_{B}^{l} \overrightarrow{(s, w)}>0, t_{B}^{u} \overrightarrow{(s, w)}>0\right],\left[i_{B}^{l} \overrightarrow{(s, w)}>0, i_{B}^{u} \overrightarrow{(x, w)}>0\right],\left[f_{B}^{l} \overrightarrow{(s, w)}>0, f_{B}^{u} \overrightarrow{(s, w)}>0\right]\right\}
$$

such that $t_{s}^{(l)^{+}}: X_{s}^{+} \rightarrow[0,1]$, defined by $t_{s}^{(l)^{+}}(w)=t_{B}^{l} \overrightarrow{(s, w)}, t_{s}^{(u)^{+}}: X_{s}^{+} \rightarrow[0,1]$, defined by $t_{s}^{(u)^{+}}(w)=$ $t_{B}^{u} \overrightarrow{(s, w)}, i_{s}^{(l)^{+}}: X_{s}^{+} \rightarrow[0,1]$, defined by $i_{s}^{(l)^{+}}(w)=i_{B}^{l} \overrightarrow{(s, w)}, i_{s}^{(u)^{+}}: X_{s}^{+} \rightarrow[0,1]$, defined by $i_{s}^{(u)^{+}}(w)=$ $i_{B}^{u} \xrightarrow[(s, w)]{ }, f_{s}^{(l)^{+}}: X_{s}^{+} \rightarrow[0,1]$, defined by $f_{s}^{(l)^{+}}(w)=f_{B}^{l} \overrightarrow{(s, w)}, f_{s}^{(u)^{+}}: X_{s}^{+} \rightarrow[0,1]$, defined by $f_{s}^{(u)^{+}}(w)=$ $f_{B}^{u} \overrightarrow{(s, w)}$.
Definition 2.5. Let \vec{G} be an IVN-digraph then interval-valued neutrosophic in-neighbourhoods (IVN-in-neighbourhoods) of a vertex x is an IVN-set

$$
\mathbb{N}^{-}(s)=\left(X_{s}^{-},\left[t_{s}^{(l)^{-}}, t_{s}^{(u)^{-}}\right],\left[i_{s}^{(l)^{-}}, i_{s}^{(u)^{-}}\right],\left[f_{s}^{(l)^{-}}, t_{s}^{(u)^{-}}\right]\right)
$$

where,

$$
X_{s}^{-}=\left\{w \mid\left[t_{B}^{l} \overrightarrow{(s, w)}>0, t_{B}^{u} \overrightarrow{(s, w)}>0\right],\left[i_{B}^{l} \overrightarrow{(s, w)}>0, i_{B}^{u} \overrightarrow{(s, w)}>0\right],\left[f_{B}^{l} \overrightarrow{(s, w)}>0, f_{B}^{u} \overrightarrow{(s, w)}>0\right]\right\}
$$

such that $t_{s}^{(l)^{-}}: X_{s}^{-} \rightarrow[0,1]$, defined by $t_{s}^{(l)^{-}}(w)=t_{B}^{l} \overrightarrow{(s, w)}, t_{s}^{(u)^{-}}: X_{s}^{-} \rightarrow[0,1]$, defined by $t_{s}^{(u)^{-}}(w)=$ $t_{B}^{u} \overrightarrow{(s, w)}, i_{s}^{(l)^{-}}: X_{s}^{-} \rightarrow[0,1]$, defined by $i_{s}^{(l)^{-}}(w)=i_{B}^{l} \overrightarrow{(s, w)}, i_{s}^{(u)^{-}}: X_{s}^{-} \rightarrow[0,1]$, defined by $i_{s}^{(u)^{-}}(w)=$ $i_{B}^{u} \xrightarrow[(s, w)]{ }, f_{s}^{(l)^{-}}: X_{s}^{-} \rightarrow[0,1]$, defined by $f_{s}^{(l)^{-}}(w)=f_{B}^{l} \overrightarrow{(s, w)}, f_{s}^{(u)^{-}}: X_{s}^{-} \rightarrow[0,1]$, defined by $f_{s}^{(u)^{-}}(w)=$ $f_{B}^{u} \overrightarrow{(s, w)}$.
Example 2.2. Consider an IVN-digraph $G=(A, \vec{B})$ on $X=\{a, b, c\}$ as shown in Fig. 2.

Figure 2: IVN-digraph
We have Table 1 and Table 2 representing interval-valued neutrosophic out and in-neighbourhoods, respectively.

Table 1: IVN-out-neighbourhoods

s	$\mathbb{N}^{+}(s)$
a	$\{(\mathrm{b},[0.1,0.2],[0.2,0.3],[0.1,0.6]),(\mathrm{c},[0.1,0.2],[0.1,0.3],[0.2,0.6])\}$
b	\emptyset
c	$\{(\mathrm{b},[0.1,0.2],[0.2,0.3],[0.2,0.5])\}$

Table 2: IVN-in-neighbourhoods

s	$\mathbb{N}^{-}(s)$
a	\emptyset
b	$\{(\mathrm{a},[0.1,0.2],[0.2,0.3],[0.1,0.6]),(\mathrm{c},[0.1,0.2],[0.2,0.3],[0.2,0.5])\}$
c	$\{(\mathrm{a},[0.1,0.2],[0.1,0.3],[0.2,0.6])\}$

Definition 2.6. The height of IVN-set $A=\left(s,\left[t_{A}^{l}, t_{A}^{u}\right],\left[i_{A}^{l}, i_{A}^{u}\right],\left[f_{A}^{l}, f_{A}^{u}\right]\right)$ in universe of discourse X is defined as,

$$
\begin{aligned}
h(A) & =\left(\left[h_{1}^{l}(A), h_{1}^{u}(A)\right],\left[h_{2}^{l}(A), h_{2}^{u}(A)\right],\left[h_{3}^{l}(A), h_{3}^{u}(A)\right]\right), \\
& =\left(\left[\sup _{s \in X} t_{A}^{l}(s), \sup _{s \in X} t_{A}^{u}(s)\right],\left[\sup _{s \in X} i_{A}^{l}(s), \sup _{s \in X} i_{A}^{u}(s)\right],\left[\inf _{s \in X} f_{A}^{l}(s), \inf _{s \in X} f_{A}^{u}(s)\right]\right), \quad \text { for all } \quad s \in X .
\end{aligned}
$$

Definition 2.7. An interval-valued neutrosophic competition graph (IVNC-graph) of an interval-valued neutrosophic graph (IVN-graph) $\vec{G}=(A, \vec{B})$ is an undirected IVN-graph $\mathbb{C}(G)=(A, W)$ which has the same vertex set as in \vec{G} and there is an edge between two vertices s and w if and only if $\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w) \neq \emptyset$. The truth-membership, indeterminacy-membership and falsity-membership values of the edge (s, w) are defined as,

1. $t_{W}^{l}(s, w)=\left(t_{A}^{l}(s) \wedge t_{A}^{l}(w)\right) h_{1}^{l}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w), \quad t_{W}^{u}(s, w)=\left(t_{A}^{u}(s) \wedge t_{A}^{u}(w)\right) h_{1}^{u}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right.\right.$,
2. $i_{W}^{l}(s, w)=\left(i_{A}^{l}(s) \wedge i_{A}^{l}(w)\right) h_{2}^{l}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w), \quad i_{W}^{u}(s, w)=\left(i_{A}^{u}(s) \wedge i_{A}^{u}(w)\right) h_{2}^{u}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right.\right.$,
3. $f_{W}^{l}(s, w)=\left(f_{A}^{l}(s) \wedge f_{A}^{l}(w)\right) h_{3}^{l}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w), \quad f_{W}^{u}(s, w)=\left(f_{A}^{u}(s) \wedge f_{A}^{u}(w)\right) h_{3}^{u}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right.\right.$, for all $x, y \in X$.
Example 2.3. Consider an IVN-digraph $G=(A, \vec{B})$ on $X=\{a, b, c\}$ as shown in Fig. 3.

Figure 3: IVN-digraph
We have Table 3 and Table 4 representing interval-valued neutrosophic out and in-neighbourhoods, respectively.

Table 3: IVN-out-neighbourhoods

s	$\mathbb{N}^{+}(s)$
a	$\{(\mathrm{b},[0.1,0.2],[0.2,0.3],[0.1,0.6]),(\mathrm{c},[0.1,0.2],[0.1,0.3],[0.2,0.6])\}$
b	\emptyset
c	$\{(\mathrm{b},[0.1,0.2],[0.2,0.3],[0.2,0.5])\}$

Table 4: IVN-in-neighbourhoods

s	$\mathbb{N}^{-}(s)$
a	\emptyset
b	$\{(\mathrm{a},[0.1,0.2],[0.2,0.3],[0.1,0.6]),(\mathrm{c},[0.1,0.2],[0.2,0.3],[0.2,0.5])\}$
c	$\{(\mathrm{a},[0.1,0.2],[0.1,0.3],[0.2,0.6])\}$

Then IVNC-graph of Fig. 3 is shown in Fig. 4.

Figure 4: IVNC-graph
Definition 2.8. Consider an IVN-graph $G=(A, B)$, where $A=\left(\left[A_{1}^{l}, A_{1}^{u}\right],\left[A_{2}^{l}, A_{2}^{u}\right],\left[A_{3}^{l}, A_{3}^{u}\right)\right]$, and $B=\left(\left[B_{1}^{l}, B_{1}^{u}\right],\left[B_{2}^{l}, B_{2}^{u}\right],\left[B_{3}^{l}, B_{3}^{u}\right)\right]$ then, an edge $(s, w), s, w \in X$ is called independent strong if

$$
\begin{array}{ll}
\frac{1}{2}\left[A_{1}^{l}(s) \wedge A_{1}^{l}(w)\right]<B_{1}^{l}(s, w), & \frac{1}{2}\left[A_{1}^{u}(s) \wedge A_{1}^{u}(w)\right]<B_{1}^{u}(s, w) \\
\frac{1}{2}\left[A_{2}^{l}(s) \wedge A_{2}^{l}(w)\right]<B_{2}^{l}(s, w), & \frac{1}{2}\left[A_{2}^{u}(s) \wedge A_{2}^{u}(w)\right]<B_{2}^{u}(s, w) \\
\frac{1}{2}\left[A_{3}^{l}(s) \wedge A_{3}^{l}(w)\right]>B_{3}^{l}(s, w), & \frac{1}{2}\left[A_{3}^{u}(s) \wedge A_{3}^{u}(w)\right]>B_{3}^{u}(s, w)
\end{array}
$$

Otherwise, it is called weak.
We state the following theorems without thier proofs.
Theorem 2.1. Suppose \vec{G} is an IVN-digraph. If $\mathbb{N}^{+}(x) \cap \mathbb{N}^{+}(y)$ contains only one element of \vec{G}, then the edge (s, w) of $\mathbb{C}(\vec{G})$ is independent strong if and only if

$$
\begin{array}{ll}
\left|\left[\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right]\right|_{l^{l}}>0.5, & \left|\left[\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right]\right|_{t^{u}}>0.5 \\
\left|\left[\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right]\right|_{i^{l}}>0.5, & \left|\left[\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right]\right|_{i^{u}}>0.5 \\
\left|\left[\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right]\right|_{f^{l}}<0.5, & \left|\left[\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right]\right|_{f^{u}}<0.5
\end{array}
$$

Theorem 2.2. If all the edges of an IVN-digraph \vec{G} are independent strong, then

$$
\begin{array}{cl}
\frac{B_{1}^{l}(s, w)}{\left(A_{1}^{l}(s) \wedge A_{1}^{l}(w)\right)^{2}}>0.5, & \frac{B_{1}^{u}(s, w)}{\left(A_{1}^{u}(s) \wedge A_{1}^{u}(w)\right)^{2}}>0.5 \\
\frac{B_{2}^{l}(s, w)}{\left(A_{2}^{l}(s) \wedge A_{2}^{l}(w)\right)^{2}}>0.5, & \frac{B_{2}^{u}(s, w)}{\left(A_{2}^{u}(s) \wedge A_{2}^{u}(w)\right)^{2}}>0.5 \\
\frac{B_{3}^{l}(s, w)}{\left(A_{3}^{l}(s) \wedge A_{3}^{l}(w)\right)^{2}}<0.5, & \frac{B_{3}^{u}(s, w)}{\left(A_{3}^{u}(s) \wedge A_{3}^{u}(w)\right)^{2}}<0.5
\end{array}
$$

for all edges (s, w) in $\mathbb{C}(\vec{G})$.
Definition 2.9. The interval-valued neutrosophic open-neighbourhood (IVN-open-neighbourhood) of a vertex s of an IVN-graph $G=(A, B)$ is IVN-set $\mathbb{N}(s)=\left(X_{s},\left[t_{s}^{l}, t_{s}^{u}\right],\left[i_{s}^{l}, i_{s}^{u}\right],\left[f_{s}^{l}, f_{s}^{u}\right]\right)$, where,

$$
X_{s}=\left\{w \mid\left[B_{1}^{l}(s, w)>0, B_{1}^{u}(s, w)>0\right],\left[B_{2}^{l}(s, w)>0, B_{2}^{u}(s, w)>0\right],\left[B_{3}^{l}(s, w)>0, B_{3}^{u}(s, w)>0\right]\right\}
$$

and $t_{s}^{l}: X_{s} \rightarrow[0,1]$ defined by $t_{s}^{l}(w)=B_{1}^{l}(s, w), t_{s}^{u}: X_{s} \rightarrow[0,1]$ defined by $t_{s}^{u}(w)=B_{1}^{u}(s, w), i_{s}^{l}: X_{s} \rightarrow$ $[0,1]$ defined by $i_{s}^{l}(w)=B_{2}^{l}(s, w), i_{s}^{u}: X_{s} \rightarrow[0,1]$ defined by $i_{s}^{u}(w)=B_{2}^{u}(s, w), f_{s}^{l}: X_{s} \rightarrow[0,1]$ defined by $f_{s}^{l}(w)=B_{3}^{l}(s, w), f_{s}^{u}: X_{s} \rightarrow[0,1]$ defined by $f_{s}^{u}(w)=B_{3}^{u}(s, w)$. For every vertex $s \in X$, the intervalvalued neutrosophic singleton set, $\breve{A}_{s}=\left(s,\left[A_{1}^{l \prime}, A_{1}^{u \prime}\right],\left[A_{2}^{l \prime}, A_{2}^{u \prime}\right],\left[A_{3}^{l \prime}, A_{3}^{u \prime}\right)\right.$ such that: $A_{1}^{l \prime}:\{s\} \rightarrow[0,1]$, $A_{1}^{u \prime}:\{s\} \rightarrow[0,1], A_{2}^{l \prime}:\{s\} \rightarrow[0,1], A_{2}^{u \prime}:\{s\} \rightarrow[0,1], A_{3}^{l \prime}:\{s\} \rightarrow[0,1], A_{3}^{u \prime}:\{s\} \rightarrow[0,1]$, defined by $A_{1}^{l \prime}(s)=A_{1}^{l}(s), A_{1}^{u \prime}(s)=A_{1}^{u}(s), A_{2}^{l \prime}(s)=A_{2}^{l}(s), A_{2}^{u \prime}(s)=A_{2}^{u}(s), A_{3}^{l \prime}(s)=A_{3}^{l}(s)$ and $A_{3}^{u \prime}(s)=A_{3}^{u}(s)$, respectively. The interval-valued neutrosophic closed-neighbourhood (IVN-closed-neighbourhood) of a vertex s is $\mathbb{N}[s]=\mathbb{N}(s) \cup A_{s}$.

Definition 2.10. Suppose $G=(A, B)$ is an IVN-graph. Interval-valued neutrosophic open-neighbourhood graph (IVN-open-neighbourhood-graph) of G is an IVN-graph $\mathbb{N}(G)=\left(A, B^{\prime}\right)$ which has the same IVNset of vertices in G and has an interval-valued neutrosophic edge between two vertices $s, w \in X$ in $\mathbb{N}(G)$ if and only if $\mathbb{N}(s) \cap \mathbb{N}(w)$ is a non-empty IVN-set in G. The truth-membership, indeterminacy-membership, falsity-membership values of the edge (s, w) are given by:

$$
\begin{array}{ll}
B_{1}^{l \prime}(s, w)=\left[A_{1}^{l}(s) \wedge A_{1}^{l}(w)\right] h_{1}^{l}(\mathbb{N}(s) \cap \mathbb{N}(w)), & B_{1}^{u \prime}(s, w)=\left[A_{1}^{u}(s) \wedge A_{1}^{u}(w)\right] h_{1}^{u}(\mathbb{N}(s) \cap \mathbb{N}(w)) \\
B_{2}^{l \prime}(s, w)=\left[A_{2}^{l}(s) \wedge A_{2}^{l}(w)\right] h_{2}^{l}(\mathbb{N}(s) \cap \mathbb{N}(w)), & B_{2}^{u \prime}(s, w)=\left[A_{2}^{u}(s) \wedge A_{2}^{u}(w)\right] h_{2}^{u}(\mathbb{N}(s) \cap \mathbb{N}(w)) \\
B_{3}^{l \prime}(s, w)=\left[A_{3}^{l}(s) \wedge A_{3}^{l}(w)\right] h_{3}^{l}(\mathbb{N}(s) \cap \mathbb{N}(w)), & B_{3}^{u \prime}(s, w)=\left[A_{3}^{u}(s) \wedge A_{3}^{u}(w)\right] h_{3}^{u}(\mathbb{N}(s) \cap \mathbb{N}(w)), \text { respectively. }
\end{array}
$$

Definition 2.11. Suppose $G=(A, B)$ is an IVN-graph. Interval-valued neutrosophic closed-neighbourhood graph (IVN-closed-neighbourhood-graph) of G is an IVN-graph $\mathbb{N}(G)=\left(A, B^{\prime}\right)$ which has the same IVNset of vertices in G and has an interval-valued neutrosophic edge between two vertices $s, w \in X$ in $\mathbb{N}[G]$ if and only if $\mathbb{N}[s] \cap \mathbb{N}[w]$ is a non-empty IVN-set in G. The truth-membership, indeterminacy-membership, falsity-membership values of the edge (s, w) are given by:

$$
\begin{array}{ll}
B_{1}^{l \prime}(s, w)=\left[A_{1}^{l}(s) \wedge A_{1}^{l}(w)\right] h_{1}^{l}(\mathbb{N}[s] \cap \mathbb{N}[w]), & B_{1}^{u \prime}(s, w)=\left[A_{1}^{u}(s) \wedge A_{1}^{u}(w)\right] h_{1}^{u}(\mathbb{N}[s] \cap \mathbb{N}[w]) \\
B_{2}^{l \prime}(s, w)=\left[A_{2}^{l}(s) \wedge A_{2}^{l}(w)\right] h_{2}^{l}(\mathbb{N}[s] \cap \mathbb{N}[w]), & B_{2}^{u \prime}(s, w)=\left[A_{2}^{u}(s) \wedge A_{2}^{u}(w)\right] h_{2}^{u}(\mathbb{N}[s] \cap \mathbb{N}[w]), \\
B_{3}^{l \prime}(s, w)=\left[A_{3}^{l}(s) \wedge A_{3}^{l}(w)\right] h_{3}^{l}(\mathbb{N}[s] \cap \mathbb{N}[w]), & B_{3}^{u \prime}(s, w)=\left[A_{3}^{u}(s) \wedge A_{3}^{u}(w)\right] h_{3}^{u}(\mathbb{N}[s] \cap \mathbb{N}[w]), \text { respectively. }
\end{array}
$$

We now discuss the method of construction of interval-valued neutrospohic competition graph of the Cartesian product of IVN-digraph in following theorem which can be proof using similar method as used in [14], hence we omit its proof.

Theorem 2.3. Let $\mathbb{C}\left(\overrightarrow{G_{1}}\right)=\left(A_{1}, B_{1}\right)$ and $\mathbb{C}\left(\overrightarrow{G_{2}}\right)=\left(A_{2}, B_{2}\right)$ be two IVNC-graphs of IVN-digraphs $\overrightarrow{G_{1}}=\left(A_{1}, \overrightarrow{L_{1}}\right)$ and $\overrightarrow{G_{2}}=\left(A_{2}, \overrightarrow{L_{2}}\right)$, respectively. Then $\mathbb{C}\left(\overrightarrow{G_{1}} \square \overrightarrow{G_{2}}\right)=G_{\mathbb{C}\left(\overrightarrow{G_{1}}\right) * \square \mathbb{C}\left(\overrightarrow{G_{2}}\right)^{*}} \cup G^{\square}$ where, $G_{\mathbb{C}\left(\overrightarrow{G_{1}}\right)^{*} \square \mathbb{C}\left(\overrightarrow{G_{2}}\right)^{*}}$ is an IVN-graph on the crisp graph $\left(X_{1} \times X_{2}, E_{\mathbb{C}\left(\overrightarrow{G_{1}}\right)^{*}} \square E_{\mathbb{C}\left(\overrightarrow{G_{2}}\right)^{*}}\right), \mathbb{C}\left(\overrightarrow{G_{1}}\right)^{*}$ and $\mathbb{C}\left(\overrightarrow{G_{2}}\right)^{*}$ are the crisp competition graphs of $\overrightarrow{G_{1}}$ and $\overrightarrow{G_{2}}$, respectively. G^{\square} is an IVN-graph on $\left(X_{1} \times X_{2}, E^{\square}\right)$ such that:

$$
\begin{aligned}
& \text { 1. } E^{\square}=\left\{\left(s_{1}, s_{2}\right)\left(w_{1}, w_{2}\right): w_{1} \in \mathbb{N}^{-}\left(s_{1}\right)^{*}, w_{2} \in \mathbb{N}^{+}\left(s_{2}\right)^{*}\right\} \\
& E_{\mathbb{C}}\left(\overrightarrow{\left.G_{1}\right)^{*}} \square E_{\mathbb{C}\left(\overrightarrow{G_{2}}\right)^{*}}=\left\{\left(s_{1}, s_{2}\right)\left(s_{1}, w_{2}\right): s_{1} \in X_{1}, s_{2} w_{2} \in E_{\mathbb{C}\left(\overrightarrow{G_{2}}\right)^{*}}\right\} \cup\left\{\left(s_{1}, s_{2}\right)\left(w_{1}, s_{2}\right): s_{2} \in X_{2}, s_{1} w_{1} \in\right.\right. \\
& \left.E_{\mathbb{C}\left(\overrightarrow{G_{1}}\right)^{*}}\right\} \text {. } \\
& \text { 2. } t_{A_{1} \square A_{2}}^{l}=t_{A_{1}}^{l}\left(s_{1}\right) \wedge t_{A_{2}}^{l}\left(s_{2}\right), \quad i_{A_{1} \square A_{2}}^{l}=i_{A_{1}}^{l}\left(s_{1}\right) \wedge i_{A_{2}}^{l}\left(s_{2}\right), \quad f_{A_{1} \square A_{2}}^{l}=f_{A_{1}}^{l}\left(s_{1}\right) \wedge f_{A_{2}}^{l}\left(s_{2}\right), \\
& t_{A_{1} \square A_{2}}^{u}=t_{A_{1}}^{u}\left(s_{1}\right) \wedge t_{A_{2}}^{u}\left(s_{2}\right), \quad i_{A_{1} \square A_{2}}^{u}=i_{A_{1}}^{u}\left(s_{1}\right) \wedge i_{A_{2}}^{u}\left(s_{2}\right), \quad f_{A_{1} \square A_{2}}^{u}=f_{A_{1}}^{u}\left(s_{1}\right) \wedge f_{A_{2}}^{u}\left(s_{2}\right) . \\
& \text { 3. } t_{B}^{l}\left(\left(s_{1}, s_{2}\right)\left(s_{1}, w_{2}\right)\right)=\left[t_{A_{1}}^{l}\left(s_{1}\right) \wedge t_{A_{2}}^{l}\left(s_{2}\right) \wedge t_{A_{2}}^{l}\left(w_{2}\right)\right] \times \vee_{a_{2}}\left\{t_{A_{1}}^{l}\left(s_{1}\right) \wedge t_{\overrightarrow{L_{2}}}^{l}\left(s_{2} a_{2}\right) \wedge t_{\overrightarrow{L_{2}}}^{l}\left(w_{2} a_{2}\right)\right\}, \\
& \left(s_{1}, s_{2}\right)\left(s_{1}, w_{2}\right) \in E_{\mathbb{C}\left(\overrightarrow{G_{1}}\right)^{*}} \square E_{\mathbb{C}\left(\overrightarrow{G_{2}}\right)^{*}}, \quad a_{2} \in\left(\mathbb{N}^{+}\left(s_{2}\right) \cap \mathbb{N}^{+}\left(w_{2}\right)\right)^{*} . \\
& \text { 4. } i_{B}^{l}\left(\left(s_{1}, s_{2}\right)\left(s_{1}, w_{2}\right)\right)=\left[i_{A_{1}}^{l}\left(s_{1}\right) \wedge i_{A_{2}}^{l}\left(s_{2}\right) \wedge i_{A_{2}}^{l}\left(w_{2}\right)\right] \times \vee_{a_{2}}\left\{i_{A_{1}}^{l}\left(s_{1}\right) \wedge i_{\overrightarrow{L_{2}}}^{l}\left(s_{2} a_{2}\right) \wedge i_{\overrightarrow{L_{2}}}^{l}\left(w_{2} a_{2}\right)\right\}, \\
& \left(s_{1}, s_{2}\right)\left(s_{1}, w_{2}\right) \in E_{\mathbb{C}\left(\overrightarrow{\left.G_{1}\right)^{*}}\right.} \square E_{\mathbb{C}\left(\overrightarrow{G_{2}}\right)^{*}}, \quad a_{2} \in\left(\mathbb{N}^{+}\left(s_{2}\right) \cap \mathbb{N}^{+}\left(w_{2}\right){)^{*} .}^{l o l}\right.
\end{aligned}
$$

5. $f_{B}^{l}\left(\left(s_{1}, s_{2}\right)\left(s_{1}, w_{2}\right)\right)=\left[f_{A_{1}}^{l}\left(s_{1}\right) \wedge f_{A_{2}}^{l}\left(s_{2}\right) \wedge f_{A_{2}}^{l}\left(w_{2}\right)\right] \times \vee_{a_{2}}\left\{f_{A_{1}}^{l}\left(s_{1}\right) \wedge f_{\overrightarrow{L_{2}}}^{l}\left(s_{2} a_{2}\right) \wedge f_{\overrightarrow{L_{2}}}^{l}\left(w_{2} a_{2}\right)\right\}$, $\left(s_{1}, s_{2}\right)\left(s_{1}, w_{2}\right) \in E_{\mathbb{C}\left(\overrightarrow{G_{1}}\right)^{*}} \square E_{\mathbb{C}\left(\overrightarrow{G_{2}}\right)^{*}}, \quad a_{2} \in\left(\mathbb{N}^{+}\left(s_{2}\right) \cap \mathbb{N}^{+}\left(w_{2}\right)\right)^{*}$.
6. $t_{B}^{u}\left(\left(s_{1}, s_{2}\right)\left(s_{1}, w_{2}\right)\right)=\left[t_{A_{1}}^{u}\left(s_{1}\right) \wedge t_{A_{2}}^{u}\left(s_{2}\right) \wedge t_{A_{2}}^{u}\left(w_{2}\right)\right] \times \vee_{a_{2}}\left\{t_{A_{1}}^{u}\left(s_{1}\right) \wedge t_{\overrightarrow{L_{2}}}^{u}\left(s_{2} a_{2}\right) \wedge t_{\overrightarrow{L_{2}}}^{u}\left(w_{2} a_{2}\right)\right\}$, $\left(s_{1}, s_{2}\right)\left(s_{1}, w_{2}\right) \in E_{\mathbb{C}\left(\overrightarrow{G_{1}}\right)^{*}} \square E_{\mathbb{C}\left(\overrightarrow{G_{2}}\right)^{*}}, \quad a_{2} \in\left(\mathbb{N}^{+}\left(s_{2}\right) \cap \mathbb{N}^{+}\left(w_{2}\right)\right)^{*}$.
7. $i_{B}^{u}\left(\left(s_{1}, s_{2}\right)\left(s_{1}, w_{2}\right)\right)=\left[i_{A_{1}}^{u}\left(s_{1}\right) \wedge i_{A_{2}}^{u}\left(s_{2}\right) \wedge i_{A_{2}}^{u}\left(w_{2}\right)\right] \times \vee_{a_{2}}\left\{i_{A_{1}}^{u}\left(s_{1}\right) \wedge i \underset{L_{2}}{u}\left(s_{2} a_{2}\right) \wedge i \underset{\overrightarrow{L_{2}}}{u}\left(w_{2} a_{2}\right)\right\}$, $\left(s_{1}, s_{2}\right)\left(s_{1}, w_{2}\right) \in E_{\mathbb{C}\left(\overrightarrow{G_{1}}\right)^{*}} \square E_{\mathbb{C}\left(\overrightarrow{G_{2}}\right)^{*}}, \quad a_{2} \in\left(\mathbb{N}^{+}\left(s_{2}\right) \cap \mathbb{N}^{+}\left(w_{2}\right)\right)^{*}$.
8. $f_{B}^{u}\left(\left(s_{1}, s_{2}\right)\left(s_{1}, w_{2}\right)\right)=\left[f_{A_{1}}^{u}\left(s_{1}\right) \wedge f_{A_{2}}^{u}\left(s_{2}\right) \wedge f_{A_{2}}^{u}\left(w_{2}\right)\right] \times \vee_{a_{2}}\left\{f_{A_{1}}^{u}\left(s_{1}\right) \wedge f \stackrel{L_{2}}{u}\left(s_{2} a_{2}\right) \wedge f \underset{\overrightarrow{L_{2}}}{u}\left(w_{2} a_{2}\right)\right\}$, $\left(s_{1}, s_{2}\right)\left(s_{1}, w_{2}\right) \in E_{\mathbb{C}\left(\overrightarrow{G_{1}}\right)^{*}} \square E_{\mathbb{C}\left(\overrightarrow{G_{2}}\right)^{*}}, \quad a_{2} \in\left(\mathbb{N}^{+}\left(s_{2}\right) \cap \mathbb{N}^{+}\left(w_{2}\right)\right)^{*}$.
9. $t_{B}^{l}\left(\left(s_{1}, s_{2}\right)\left(w_{1}, s_{2}\right)\right)=\left[t_{A_{1}}^{l}\left(s_{1}\right) \wedge t_{A_{1}}^{l}\left(w_{1}\right) \wedge t_{A_{2}}^{l}\left(s_{2}\right)\right] \times \vee_{a_{1}}\left\{t_{A_{2}}^{l}\left(s_{2}\right) \wedge t_{\overrightarrow{L_{1}}}^{l}\left(s_{1} a_{1}\right) \wedge t_{\overrightarrow{L_{1}}}^{l}\left(w_{1} a_{1}\right)\right\}$, $\left(s_{1}, s_{2}\right)\left(w_{1}, s_{2}\right) \in E_{\mathbb{C}\left(\overrightarrow{G_{1}}\right)^{*}} \square E_{\mathbb{C}\left(\overrightarrow{G_{2}}\right)^{*}}, \quad a_{1} \in\left(\mathbb{N}^{+}\left(s_{1}\right) \cap \mathbb{N}^{+}\left(w_{1}\right)\right)^{*}$.
10. $i_{B}^{l}\left(\left(s_{1}, s_{2}\right)\left(w_{1}, s_{2}\right)\right)=\left[i_{A_{1}}^{l}\left(s_{1}\right) \wedge i_{A_{1}}^{l}\left(w_{1}\right) \wedge i_{A_{2}}^{l}\left(s_{2}\right)\right] \times \vee_{a_{1}}\left\{i_{A_{2}}^{l}\left(s_{2}\right) \wedge i_{\overrightarrow{L_{1}}}^{l}\left(s_{1} a_{1}\right) \wedge i_{\overrightarrow{L_{1}}}^{l}\left(w_{1} a_{1}\right)\right\}$, $\left(s_{1}, s_{2}\right)\left(w_{1}, s_{2}\right) \in E_{\mathbb{C}\left(\overrightarrow{G_{1}}\right)^{*}} \square E_{\mathbb{C}\left(\overrightarrow{G_{2}}\right)^{*}}, \quad a_{1} \in\left(\mathbb{N}^{+}\left(s_{1}\right) \cap \mathbb{N}^{+}\left(w_{1}\right)\right)^{*}$.
11. $f_{B}^{l}\left(\left(s_{1}, s_{2}\right)\left(w_{1}, s_{2}\right)\right)=\left[f_{A_{1}}^{l}\left(s_{1}\right) \wedge f_{A_{1}}^{l}\left(w_{1}\right) \wedge f_{A_{2}}^{l}\left(s_{2}\right)\right] \times \vee_{a_{1}}\left\{t_{A_{2}}^{l}\left(s_{2}\right) \wedge f_{\overrightarrow{L_{1}}}^{l}\left(s_{1} a_{1}\right) \wedge f_{\overrightarrow{L_{1}}}^{l}\left(w_{1} a_{1}\right)\right\}$, $\left(s_{1}, s_{2}\right)\left(w_{1}, s_{2}\right) \in E_{\mathbb{C}\left(\overrightarrow{G_{1}}\right)^{*}} \square E_{\mathbb{C}\left(\overrightarrow{G_{2}}\right)^{*}}, \quad a_{1} \in\left(\mathbb{N}^{+}\left(s_{1}\right) \cap \mathbb{N}^{+}\left(w_{1}\right)\right)^{*}$.
12. $t_{B}^{u}\left(\left(s_{1}, s_{2}\right)\left(w_{1}, s_{2}\right)\right)=\left[t_{A_{1}}^{u}\left(s_{1}\right) \wedge t_{A_{1}}^{u}\left(w_{1}\right) \wedge t_{A_{2}}^{u}\left(s_{2}\right)\right] \times \vee_{a_{1}}\left\{t_{A_{2}}^{u}\left(s_{2}\right) \wedge t_{\overrightarrow{L_{1}}}^{u}\left(s_{1} a_{1}\right) \wedge t \underset{\overrightarrow{L_{1}}}{u}\left(w_{1} a_{1}\right)\right\}$, $\left(s_{1}, s_{2}\right)\left(w_{1}, s_{2}\right) \in E_{\mathbb{C}\left(\overrightarrow{G_{1}}\right)^{*}} \square E_{\mathbb{C}\left(\overrightarrow{G_{2}}\right)^{*}}, \quad a_{1} \in\left(\mathbb{N}^{+}\left(s_{1}\right) \cap \mathbb{N}^{+}\left(w_{1}\right)\right)^{*}$.
13. $i_{B}^{u}\left(\left(s_{1}, s_{2}\right)\left(w_{1}, s_{2}\right)\right)=\left[i_{A_{1}}^{u}\left(s_{1}\right) \wedge i_{A_{1}}^{u}\left(w_{1}\right) \wedge i_{A_{2}}^{u}\left(s_{2}\right)\right] \times \vee_{a_{1}}\left\{i_{A_{2}}^{u}\left(s_{2}\right) \wedge i \underset{L_{1}}{u}\left(s_{1} a_{1}\right) \wedge i \underset{\overrightarrow{L_{1}}}{u}\left(w_{1} a_{1}\right)\right\}$, $\left(s_{1}, s_{2}\right)\left(w_{1}, s_{2}\right) \in E_{\mathbb{C}\left(\overrightarrow{G_{1}}\right)^{*}} \square E_{\mathbb{C}\left(\overrightarrow{G_{2}}\right)^{*}}, \quad a_{1} \in\left(\mathbb{N}^{+}\left(s_{1}\right) \cap \mathbb{N}^{+}\left(w_{1}\right)\right)^{*}$.
14. $f_{B}^{u}\left(\left(s_{1}, s_{2}\right)\left(w_{1}, s_{2}\right)\right)=\left[f_{A_{1}}^{u}\left(s_{1}\right) \wedge f_{A_{1}}^{u}\left(w_{1}\right) \wedge f_{A_{2}}^{u}\left(s_{2}\right)\right] \times \vee_{a_{1}}\left\{t_{A_{2}}^{u}\left(s_{2}\right) \wedge f \underset{\overrightarrow{L_{1}}}{u}\left(s_{1} a_{1}\right) \wedge f \underset{\overrightarrow{L_{1}}}{u}\left(w_{1} a_{1}\right)\right\}$, $\left(s_{1}, s_{2}\right)\left(w_{1}, s_{2}\right) \in E_{\mathbb{C}\left(\overrightarrow{G_{1}}\right)^{*}} \square E_{\mathbb{C}\left(\overrightarrow{G_{2}}\right)^{*}}, \quad a_{1} \in\left(\mathbb{N}^{+}\left(s_{1}\right) \cap \mathbb{N}^{+}\left(w_{1}\right)\right)^{*}$.
15. $t_{B}^{l}\left(\left(s_{1}, s_{2}\right)\left(w_{1}, w_{2}\right)\right)=\left[t_{A_{1}}^{l}\left(s_{1}\right) \wedge t_{A_{1}}^{l}\left(w_{1}\right) \wedge t_{A_{2}}^{l}\left(s_{2}\right) \wedge t_{A_{2}}^{l}\left(w_{2}\right)\right] \times\left[t_{A_{1}}^{l}\left(s_{1}\right) \wedge t_{\overrightarrow{L_{1}}}^{l}\left(w_{1} s_{1}\right) \wedge t_{A_{2}}^{l}\left(w_{2}\right) \wedge\right.$ $\left.t_{\overrightarrow{L_{2}}}^{l}\left(s_{2} w_{2}\right)\right]$,
$\left(s_{1}, w_{1}\right)\left(s_{2}, w_{2}\right) \in E^{\square}$.
16. $i_{B}^{l}\left(\left(s_{1}, s_{2}\right)\left(w_{1}, w_{2}\right)\right)=\left[i_{A_{1}}^{l}\left(s_{1}\right) \wedge i_{A_{1}}^{l}\left(w_{1}\right) \wedge i_{A_{2}}^{l}\left(s_{2}\right) \wedge i_{A_{2}}^{l}\left(w_{2}\right)\right] \times\left[i_{A_{1}}^{l}\left(s_{1}\right) \wedge i_{\overrightarrow{L_{1}}}^{l}\left(w_{1} s_{1}\right) \wedge i_{A_{2}}^{l}\left(w_{2}\right) \wedge\right.$ $\left.i_{\overrightarrow{L_{2}}}^{l}\left(s_{2} w_{2}\right)\right]$,
$\left(s_{1}, w_{1}\right)\left(s_{2}, w_{2}\right) \in E^{\square}$.
17. $f_{B}^{l}\left(\left(s_{1}, s_{2}\right)\left(w_{1}, w_{2}\right)\right)=\left[f_{A_{1}}^{l}\left(s_{1}\right) \wedge f_{A_{1}}^{l}\left(w_{1}\right) \wedge f_{A_{2}}^{l}\left(s_{2}\right) \wedge f_{A_{2}}^{l}\left(w_{2}\right)\right] \times\left[f_{A_{1}}^{l}\left(s_{1}\right) \wedge f_{\overrightarrow{L_{1}}}^{l}\left(w_{1} s_{1}\right) \wedge f_{A_{2}}^{l}\left(w_{2}\right) \wedge\right.$ $\left.f_{\overrightarrow{L_{2}}}^{l}\left(s_{2} w_{2}\right)\right]$,
$\left(s_{1}, w_{1}\right)\left(s_{2}, w_{2}\right) \in E^{\square}$.
18. $t_{B}^{u}\left(\left(s_{1}, s_{2}\right)\left(w_{1}, w_{2}\right)\right)=\left[t_{A_{1}}^{u}\left(s_{1}\right) \wedge t_{A_{1}}^{u}\left(w_{1}\right) \wedge t_{A_{2}}^{u}\left(s_{2}\right) \wedge t_{A_{2}}^{u}\left(w_{2}\right)\right] \times\left[t_{A_{1}}^{u}\left(s_{1}\right) \wedge t_{\overrightarrow{L_{1}}}^{u}\left(w_{1} s_{1}\right) \wedge t_{A_{2}}^{u}\left(w_{2}\right) \wedge\right.$ $\left.t_{\overrightarrow{L_{2}}}^{u}\left(s_{2} w_{2}\right)\right]$,
$\left(s_{1}, w_{1}\right)\left(s_{2}, w_{2}\right) \in E^{\square}$.
19. $i_{B}^{u}\left(\left(s_{1}, s_{2}\right)\left(w_{1}, w_{2}\right)\right)=\left[i_{A_{1}}^{u}\left(s_{1}\right) \wedge i_{A_{1}}^{u}\left(w_{1}\right) \wedge i_{A_{2}}^{u}\left(s_{2}\right) \wedge i_{A_{2}}^{u}\left(w_{2}\right)\right] \times\left[i_{A_{1}}^{u}\left(s_{1}\right) \wedge i_{\overrightarrow{L_{1}}}^{u}\left(w_{1} s_{1}\right) \wedge i_{A_{2}}^{u}\left(w_{2}\right) \wedge\right.$ $\left.i \underset{\overrightarrow{L_{2}}}{u}\left(s_{2} w_{2}\right)\right]$,
$\left(s_{1}, w_{1}\right)\left(s_{2}, w_{2}\right) \in E^{\square}$.
20. $f_{B}^{u}\left(\left(s_{1}, s_{2}\right)\left(w_{1}, w_{2}\right)\right)=\left[f_{A_{1}}^{u}\left(s_{1}\right) \wedge f_{A_{1}}^{u}\left(w_{1}\right) \wedge f_{A_{2}}^{u}\left(s_{2}\right) \wedge f_{A_{2}}^{u}\left(w_{2}\right)\right] \times\left[f_{A_{1}}^{u}\left(s_{1}\right) \wedge f_{\overrightarrow{L_{1}}}^{u}\left(w_{1} s_{1}\right) \wedge f_{A_{2}}^{u}\left(w_{2}\right) \wedge\right.$ $\left.f_{\overrightarrow{L_{2}}}^{u}\left(s_{2} w_{2}\right)\right]$,
$\left(s_{1}, w_{1}\right)\left(s_{2}, w_{2}\right) \in E^{\square}$.

A. k-Competition Interval-Valued Neutrosophic Graphs

We now discuss an extension of IVNC-graphs, called k-competition IVN-graphs.
Definition 2.12. The cardinality of an IVN-set A is denoted by

$$
|A|=\left(\left[|A|_{t^{l}},|A|_{t^{u}}\right],\left[|A|_{i^{l}},|A|_{i^{u}}\right],\left[|A|_{f^{l}},|A|_{f^{u}}\right]\right)
$$

Where $\left[|A|_{t^{l}},|A|_{t^{u}}\right],\left[|A|_{i^{l}},|A|_{i^{u}}\right]$ and $\left[|A|_{f^{l}},|A|_{f^{u}}\right]$ represent the sum of truth-membership values, indeterminacy-membership values and falsity-membership values, respectively, of all the elements of A.

Example 2.4. The cardinality of an IVN-set $A=\{(a,[0.5,0.7],[0.2,0.8],[0.1,0.3]),(b,[0.1,0.2],[0.1$, $0.5],[0.7,0.9]),(c,[0.3,0.5],[0.3,0.8],[0.6,0.9])\}$ in $X=\{a, b, c\}$ is

$$
\begin{aligned}
|A| & =\left(\left[|A|_{t^{l}},|A|_{t^{u}}\right],\left[|A|_{i^{l}},|A|_{i^{u}}\right],\left[|A|_{f^{l}},|A|_{f^{u}}\right]\right) \\
& =([0.9,1.4],[0.6,2.1],[1.4,2.1])
\end{aligned}
$$

We now discuss k-competition IVN-graphs.
Definition 2.13. Let k be a non-negative number. Then k-competition IVN-graph $\mathbb{C}_{k}(\vec{G})$ of an IVNdigraph $\vec{G}=(A, \vec{B})$ is an undirected IVN-graph $G=(A, B)$ which has same IVN-set of vertices as in \vec{G} and has an interval-valued neutrosophic edge between two vertices $s, w \in X$ in $\mathbb{C}_{k}(\vec{G})$ if and only if $\left|\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|_{t^{l}}>k,\left|\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|_{t^{u}}>k,\left|\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|_{i^{l}}>k,\left|\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|_{i^{u}}>k$, $\left|\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|_{f^{l}}>k$ and $\left|\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|_{f^{u}}>k$. The interval-valued truth-membership value of edge (s, w) in $\mathbb{C}_{k}(\vec{G})$ is $t_{B}^{l}(s, w)=\frac{k_{1}^{l}-k}{k_{1}^{l}}\left[t_{A}^{l}(s) \wedge t_{A}^{l}(w)\right] h_{1}^{l}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)$, where $k_{1}^{l}=\mid\left(\mathbb{N}^{+}(s) \cap\right.$ $\left.\mathbb{N}^{+}(w)\right)\left.\right|_{t^{l}}$ and $t_{B}^{u}(s, w)=\frac{k_{1}^{u}-k}{k_{1}^{u}}\left[t_{A}^{u}(s) \wedge t_{A}^{u}(w)\right] h_{1}^{u}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)$, where $k_{1}^{u}=\left|\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|_{t^{u}}$, the interval-valued indeterminacy-membership value of edge (s, w) in $\mathbb{C}_{k}(\vec{G})$ is $i_{B}^{l}(s, w)=\frac{k_{2}^{l}-k}{k_{2}^{l}}\left[i_{A}^{l}(s) \wedge\right.$ $\left.i_{A}^{l}(w)\right] h_{2}^{l}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)$, where $k_{2}^{l}=\left|\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|_{i^{l}}$, and $i_{B}^{u}(s, w)=\frac{k_{2}^{u}-k}{k_{2}^{u}}\left[i_{A}^{u}(s) \wedge i_{A}^{u}(w)\right] h_{2}^{u}\left(\mathbb{N}^{+}(s) \cap\right.$ $\left.\mathbb{N}^{+}(w)\right)$, where $k_{2}^{u}=\left|\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|_{i^{u}}$, the interval-valued falsity-membership value of edge (s, w) in $\mathbb{C}_{k}(\vec{G})$ is $f_{B}^{l}(s, w)=\frac{k_{3}^{l}-k}{k_{3}^{l}}\left[f_{A}^{l}(s) \wedge f_{A}^{l}(w)\right] h_{3}^{l}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)$, where $k_{3}^{l}=\left|\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|_{f^{l}}$, and $f_{B}^{u}(s$, $w)=\frac{k_{3}^{u}-k}{k_{3}^{u}}\left[f_{A}^{u}(s) \wedge f_{A}^{u}(w)\right] h_{3}^{u}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)$, where $k_{3}^{u}=\left|\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|_{f^{u}}$.
Example 2.5. Consider an IVN-digraph $G=(A, \vec{B})$ on $X=\{s, w, a, b, c\}$, such that $A=\{(s,[0.4,0.5]$, $[0.5,0.7],[0.8,0.9]),(w,[0.6,0.7],[0.4,0.6],[0.2,0.3]),(a,[0.2,0.6],[0.3,0.6],[0.2,0.6]),(b,[0.2,0.6]$, $\xrightarrow{[0.1,0.6]},[0.2,0.6]),(c,[0.2,0.7],[0.3,0.5],[0.2,0.6])\}$, and $B=\{(\overrightarrow{(s, a)},[0.1,0.4],[0.3,0.6],[0.2,0.6])$, $(\overrightarrow{(s, b)},[0.2,0.4],[0.1,0.5],[0.2,0.6]),(\overrightarrow{(s, c)},[0.2,0.5],[0.3,0.5],[0.2,0.6]),(\overrightarrow{(w, a)},[0.2,0.5],[0.2,0.5]$, $[0.2,0.3]),(\overrightarrow{(w, b)},[0.2,0.6],[0.1,0.6],[0.2,0.3]),(\overrightarrow{(w, c)},[0.2,0.7],[0.3,0.5],[0.2,0.3])\}$, as shown in Fig. 5.

Figure 5: IVN-digraph
We calculate $\mathbb{N}^{+}(s)=\{(a,[0.1,0.4],[0.3,0.6],[0.2,0.6]),(b,[0.2,0.4],[0.1,0.5],[0.2,0.6]),(c,[0.2,0.5]$, $[0.3,0.5],[0.2,0.6])\}$ and $\mathbb{N}^{+}(w)=\{(a,[0.2,0.5],[0.2,0.5],[0.2,0.3]),(b,[0.2,0.6],[0.1,0.6],[0.2,0.3])$, $(c,[0.2,0.7],[0.3,0.5],[0.2,0.3])\}$. Therefore, $\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)=\{(a,[0.1,0.4],[0.2,0.5],[0.2,0.3]),(b$, $[0.2,0.4],[0.1,0.5],[0.2,0.3]),(c,[0.2,0.5],[0.3,0.5],[0.2,0.3)\}$. So, $k_{1}^{l}=0.5, k_{1}^{u}=1.3, k_{2}^{l}=0.6, k_{2}^{u}=1.5$, $k_{3}^{l}=0.6$ and $k_{3}^{u}=0.9$. Let $k=0.4$, then, $t_{B}^{l}(s, w)=0.02, t_{B}^{u}(s, w)=0.56, i_{B}^{l}(s, w)=0.06, i_{B}^{u}(s$, $w)=0.82, f_{B}^{l}(s, w)=0.02$ and $f_{B}^{u}(s, w)=0.11$. This graph is depicted in Fig. 6.

Figure 6: 0.4-Competition IVN-graph
Theorem 2.4. Let $\vec{G}=(A, \vec{B})$ be an IVN-digraph. If

$$
\begin{array}{lll}
h_{1}^{l}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)=1, & h_{2}^{l}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)=1, & h_{3}^{l}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)=1 \\
h_{1}^{u}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)=1, & h_{2}^{u}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)=1, & h_{3}^{u}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)=1
\end{array}
$$

and

$$
\begin{array}{lll}
\left|\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|_{t^{l}}>2 k, & \left|\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|_{i^{l}}>2 k, & \left|\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|_{f^{l}}<2 k \\
\left|\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|_{t^{u}}>2 k, & \left|\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|_{i^{u}}>2 k, & \left|\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|_{f^{u}}<2 k,
\end{array}
$$

Then the edge (s, w) is independent strong in $\mathbb{C}_{k}(\vec{G})$.
Proof. Let $\vec{G}=(A, \vec{B})$ be an IVN-digraph. Let $\mathbb{C}_{k}(\vec{G})$ be the corresponding k-competition IVN-graph.

If $h_{1}^{l}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)=1$ and $\left|\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|_{t^{l}}>2 k$, then $k_{1}^{l}>2 k$ and therefore,

$$
\begin{aligned}
t_{B}^{l}(s, w) & =\frac{k_{1}^{l}-k}{k_{1}^{l}}\left[t_{A}^{l}(s) \wedge t_{A}^{l}(w)\right] h_{1}^{l}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right) \\
\text { or, } \quad t_{B}^{l}(s, w) & =\frac{k_{1}^{l}-k}{k_{1}^{l}}\left[t_{A}^{l}(s) \wedge t_{A}^{l}(w)\right] \\
\frac{t_{B}^{l}(s, w)}{\left[t_{A}^{l}(s) \wedge t_{A}^{l}(w)\right]} & =\frac{k_{1}^{l}-k}{k_{1}^{l}}>0.5
\end{aligned}
$$

If $h_{1}^{u}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)=1$ and $\left|\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|_{t^{u}}>2 k$, then $k_{1}^{u}>2 k$ and therefore,

$$
\begin{aligned}
t_{B}^{u}(s, w) & =\frac{k_{1}^{u}-k}{k_{1}^{u}}\left[t_{A}^{u}(s) \wedge t_{A}^{u}(w)\right] h_{1}^{u}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right) \\
\text { or, } \quad t_{B}^{u}(s, w) & =\frac{k_{1}^{u}-k}{k_{1}^{u}}\left[t_{A}^{u}(s) \wedge t_{A}^{u}(w)\right] \\
\frac{t_{B}^{u}(s, w)}{\left[t_{A}^{u}(s) \wedge t_{A}^{u}(w)\right]} & =\frac{k_{1}^{u}-k}{k_{1}^{u}}>0.5
\end{aligned}
$$

If $h_{2}^{l}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)=1$ and $\left|\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|_{i^{l}}>2 k$, then $k_{2}^{l}>2 k$ and therefore,

$$
\begin{aligned}
i_{B}^{l}(s, w) & =\frac{k_{2}^{l}-k}{k_{2}^{l}}\left[i_{A}^{l}(s) \wedge i_{A}^{l}(w)\right] h_{2}^{l}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right) \\
\text { or, } \quad i_{B}^{l}(s, w) & =\frac{k_{2}^{l}-k}{k_{2}^{l}}\left[i_{A}^{l}(s) \wedge i_{A}^{l}(w)\right] \\
\frac{i_{B}^{l}(s, w)}{\left[i_{A}^{l}(s) \wedge i_{A}^{l}(w)\right]} & =\frac{k_{2}^{l}-k}{k_{2}^{l}}>0.5
\end{aligned}
$$

If $h_{2}^{u}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)=1$ and $\left|\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|_{i^{u}}>2 k$, then $k_{2}^{u}>2 k$ and therefore,

$$
\begin{aligned}
i_{B}^{u}(s, w) & =\frac{k_{2}^{u}-k}{k_{2}^{u}}\left[i_{A}^{u}(s) \wedge i_{A}^{u}(w)\right] h_{2}^{u}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right) \\
\text { or, } \quad i_{B}^{u}(s, w) & =\frac{k_{2}^{u}-k}{k_{2}^{u}}\left[i_{A}^{u}(s) \wedge i_{A}^{u}(w)\right] \\
\frac{i_{B}^{u}(s, w)}{\left[i_{A}^{u}(s) \wedge i_{A}^{u}(w)\right]} & =\frac{k_{2}^{u}-k}{k_{2}^{u}}>0.5
\end{aligned}
$$

If $h_{3}^{l}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)=1$ and $\left|\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|_{f^{l}}<2 k$, then $k_{3}^{l}<2 k$ and therefore,

$$
\begin{aligned}
f_{B}^{l}(s, w) & =\frac{k_{3}^{l}-k}{k_{3}^{l}}\left[f_{A}^{l}(s) \wedge f_{A}^{l}(w)\right] h_{3}^{l}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right) \\
\text { or, } \quad f_{B}^{l}(s, w) & =\frac{k_{3}^{l}-k}{k_{3}^{l}}\left[f_{A}^{l}(s) \wedge f_{A}^{l}(w)\right] \\
\frac{f_{B}^{l}(s, w)}{\left[f_{A}^{l}(s) \wedge f_{A}^{l}(w)\right]} & =\frac{k_{3}^{l}-k}{k_{3}^{l}}<0.5
\end{aligned}
$$

If $h_{3}^{u}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)=1$ and $\left|\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|_{f^{u}}<2 k$, then $k_{3}^{u}<2 k$ and therefore,

$$
\begin{aligned}
f_{B}^{u}(s, w) & =\frac{k_{3}^{u}-k}{k_{3}^{u}}\left[f_{A}^{u}(s) \wedge f_{A}^{u}(w)\right] h_{3}^{u}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right) \\
\text { or, } \quad f_{B}^{u}(s, w) & =\frac{k_{3}^{u}-k}{k_{3}^{u}}\left[f_{A}^{u}(s) \wedge f_{A}^{u}(w)\right] \\
\frac{f_{B}^{u}(s, w)}{\left[f_{A}^{u}(s) \wedge f_{A}^{u}(w)\right]} & =\frac{k_{3}^{u}-k}{k_{3}^{u}}<0.5
\end{aligned}
$$

Hence, the edge (s, w) is independent strong in $\mathbb{C}_{k}(\vec{G})$.

B. p-Competition Interval-Valued Neutrosophic Graphs

We now define another extension of IVNC-graphs, called p-competition IVN-graphs.
Definition 2.14. The support of an IVN-set $A=\left(s,\left[t_{A}^{l}, t_{A}^{u}\right],\left[i_{A}^{l}, i_{A}^{u}\right],\left[f_{A}^{l}, f_{A}^{u}\right]\right)$ in X is the subset of X defined by

$$
\operatorname{supp}(A)=\left\{s \in X:\left[t_{A}^{l}(s) \neq 0, t_{A}^{u}(s) \neq 0\right],\left[i_{A}^{l}(s) \neq 0, i_{A}^{u}(s) \neq 0\right],\left[f_{A}^{l}(s) \neq 1, f_{A}^{u}(s) \neq 1\right]\right\}
$$

and $|\operatorname{supp}(A)|$ is the number of elements in the set.
Example 2.6. The support of an IVN-set $A=\{(a,[0.5,0.7],[0.2,0.8],[0.1,0.3]),(b,[0.1,0.2],[0.1$, $0.5],[0.7,0.9]),(c,[0.3,0.5],[0.3,0.8],[0.6,0.9]),(d,[0,0],[0,0],[1,1])\}$ in $X=\{a, b, c, d\}$ is $\operatorname{supp}(A)=\{a, b, c\}$ and $|\operatorname{supp}(A)|=3$.

We now define p-competition IVN-graphs.
Definition 2.15. Let p be a positive integer. Then p-competition IVN-graph $\mathbb{C}^{p}(\vec{G})$ of the IVN-digraph $\vec{G}=(A, \vec{B})$ is an undirected IVN-graph $G=(A, B)$ which has same IVN-set of vertices as in \vec{G} and has an interval-valued neutrosophic edge between two vertices $s, w \in X$ in $\mathbb{C}^{p}(\vec{G})$ if and only if $\left|\operatorname{supp}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right| \geq p$. The interval-valued truth-membership value of edge (s, w) in $\mathbb{C}^{p}(\vec{G})$ is $t_{B}^{l}(s$, $w)=\frac{(i-p)+1}{i}\left[t_{A}^{l}(s) \wedge t_{A}^{l}(w)\right] h_{1}^{l}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)$, and $t_{B}^{u}(s, w)=\frac{(i-p)+1}{i}\left[t_{A}^{u}(s) \wedge t_{A}^{u}(w)\right] h_{1}^{u}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)$, the interval-valued indeterminacy-membership value of edge (s, w) in $\mathbb{C}^{p}(\vec{G})$ is $i_{B}^{l}(s, w)=\frac{(i-p)+1}{i}\left[i_{A}^{l}(s) \wedge\right.$ $\left.i_{A}^{l}(w)\right] h_{2}^{l}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)$, and $i_{B}^{u}(s, w)=\frac{(i-p)+1}{i}\left[i_{A}^{u}(s) \wedge i_{A}^{u}(w)\right] h_{2}^{u}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)$, the interval-valued falsity-membership value of edge (s, w) in $\mathbb{C}^{p}(\vec{G})$ is $f_{B}^{l}(s, w)=\frac{(i-p)+1}{i}\left[f_{A}^{l}(s) \wedge f_{A}^{l}(w)\right] h_{3}^{l}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)$, and $f_{B}^{u}(s, w)=\frac{(i-p)+1}{i}\left[f_{A}^{u}(s) \wedge f_{A}^{u}(w)\right] h_{3}^{u}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)$, where $i=\left|\operatorname{supp}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|$.

Example 2.7. Consider an IVN-digraph $G=(A, \vec{B})$ on $X=\{s, w, a, b, c\}$, such that $A=\{(s,[0.4,0.5]$, $[0.5,0.7],[0.8,0.9]),(w,[0.6,0.7],[0.4,0.6],[0.2,0.3]),(a,[0.2,0.6],[0.3,0.6],[0.2,0.6]),(b,[0.2,0.6]$, $[0.1,0.6],[0.2,0.6]),(c,[0.2,0.7],[0.3,0.5],[0.2,0.6])\}$, and $B=\{(\overrightarrow{(s, a)},[0.1,0.4],[0.3,0.6],[0.2,0.6])$, $(\overrightarrow{(s, b)},[0.2,0.4],[0.1,0.5],[0.2,0.6]),(\overrightarrow{(s, c)},[0.2,0.5],[0.3,0.5],[0.2,0.6]),(\overrightarrow{(w, a)},[0.2,0.5],[0.2,0.5]$, $[0.2,0.3]),(\overrightarrow{(w, b)},[0.2,0.6],[0.1,0.6],[0.2,0.3]),(\overrightarrow{(w, c)},[0.2,0.7],[0.3,0.5],[0.2,0.3])\}$, as shown in Fig. 7.

Figure 7: IVN-digraph
We calculate $\mathbb{N}^{+}(s)=\{(a,[0.1,0.4],[0.3,0.6],[0.2,0.6]),(b,[0.2,0.4],[0.1,0.5],[0.2,0.6]),(c,[0.2,0.5]$, $[0.3,0.5],[0.2,0.6])\}$ and $\mathbb{N}^{+}(w)=\{(a,[0.2,0.5],[0.2,0.5],[0.2,0.3]),(b,[0.2,0.6],[0.1,0.6],[0.2,0.3])$,
$(c,[0.2,0.7],[0.3,0.5],[0.2,0.3])\}$. Therefore, $\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)=\{(a,[0.1,0.4],[0.2,0.5],[0.2,0.3]),(b$, $[0.2,0.4],[0.1,0.5],[0.2,0.3]),(c,[0.2,0.5],[0.3,0.5],[0.2,0.3)\}$. Now, $i=\left|\operatorname{supp}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|=3$. For $p=3$, we have, $t_{B}^{l}(s, w)=0.02, t_{B}^{u}(s, w)=0.08, i_{B}^{l}(s, w)=0.04, i_{B}^{u}(s, w)=0.1, f_{B}^{l}(s, w)=0.01$ and $f_{B}^{u}(s, w)=0.03$. This graph is depicted in Fig. 8.

Figure 8: 3-Competition IVN-graph
We state the following theorem without its proof.
Theorem 2.5. Let $\vec{G}=(A, \vec{B})$ be an IVN-digraph. If

$$
\begin{array}{lll}
h_{1}^{l}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)=1, & h_{2}^{l}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)=1, & h_{3}^{l}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)=0 \\
h_{1}^{u}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)=1, & h_{2}^{u}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)=1, & h_{3}^{u}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)=0,
\end{array}
$$

in $\mathbb{C}^{\left[\frac{i}{2}\right]}(\vec{G})$, then the edge (s, w) is strong, where $i=\left|\operatorname{supp}\left(\mathbb{N}^{+}(s) \cap \mathbb{N}^{+}(w)\right)\right|$. (Note that for any real number $s,[s]=$ greatest integer not esceeding s.)
C. m-Step Interval-Valued Neutrosophic Competition Graphs

We now define another extension of IVNC-graph known as m-step IVNC-graph. We will use the following notations:
$P_{s, w}^{m} \quad:$ An interval-valued neutrosophic path of length m from s to w.
$\vec{P}_{s, w}^{m}$: A directed interval-valued neutrosophic path of length m from s to w.
$\mathbb{N}_{m}^{+}(s): m$-step interval-valued neutrosophic out-neighbourhood of vertex s.
$\mathbb{N}_{m}^{-}(s): m$-step interval-valued neutrosophic in-neighbourhood of vertex s.
$\mathbb{N}_{m}(s): m$-step interval-valued neutrosophic neighbourhood of vertex s.
$\mathbb{N}_{m}(G): m$-step interval-valued neutrosophic neighbourhood graph of the IVN-graph G.
$\mathbb{C}_{m} \overrightarrow{(G)}$: m-step IVNC-graph of the IVN-digraph \vec{G}.

Definition 2.16. Suppose $\vec{G}=(A, \vec{B})$ is an IVN-digraph. The m-step IVN-digraph of \vec{G} is denoted by $\vec{G}_{m}=(A, B)$, where IVN-set of vertices of \vec{G} is same with IVN-set of vertices of \vec{G}_{m} and has an edge between s and w in \vec{G}_{m} if and only if there exists an interval-valued neutrosophic directed path $\vec{P}_{s, w}^{m}$ in \vec{G}.

Definition 2.17. The m-step interval-valued neutrosophic out-neighbourhood (IVN-out-neighbourhood) of vertex s of an IVN-digraph $\vec{G}=(A, \vec{B})$ is IVN-set

$$
\mathbb{N}_{m}^{+}(s)=\left(X_{s}^{+},\left[t_{s}^{(l)^{+}}, t_{s}^{(u)^{+}}\right],\left[i_{s}^{(l)^{+}}, i_{s}^{(u)^{+}}\right],\left[f_{s}^{(l)^{+}}, f_{s}^{(u)^{+}}\right]\right), \quad \text { where }
$$

$X_{s}^{+}=\left\{w \mid\right.$ there exists a directed interval-valued neutrosophic path of length m from s to $\left.w, \vec{P}_{s, w}^{m}\right\}$, $t_{s}^{(l)^{+}}: X_{s}^{+} \rightarrow[0,1], t_{s}^{(u)^{+}}: X_{s}^{+} \rightarrow[0,1], i_{s}^{(l)^{+}}: X_{s}^{+} \rightarrow[0,1], i_{s}^{(u)^{+}}: X_{s}^{+} \rightarrow[0,1], f_{s}^{(l)^{+}}: X_{s}^{+} \rightarrow[0,1] f_{s}^{(u)^{+}}:$
$X_{s}^{+} \rightarrow[0,1]$ are defined by $t_{s}^{(l)^{+}}=\min \left\{t^{l} \overrightarrow{\left(s_{1}, s_{2}\right)},\left(s_{1}, s_{2}\right)\right.$ is an edge of $\left.\vec{P}_{s, w}^{m}\right\}, t_{s}^{(u)^{+}}=\min \left\{t^{u} \overrightarrow{\left(s_{1}, s_{2}\right)}\right.$, $\left(s_{1}, s_{2}\right)$ is an edge of $\left.\vec{P}_{s, w}^{m}\right\}, i_{s}^{(l)^{+}}=\min \left\{i^{l} \overrightarrow{\left(s_{1}, s_{2}\right)},\left(s_{1}, s_{2}\right)\right.$ is an edge of $\left.\vec{P}_{s, w}^{m}\right\}, i_{s}^{(u)^{+}}=\min \left\{i^{u} \overrightarrow{\left(s_{1}, s_{2}\right)}\right.$, $\left(s_{1}, s_{2}\right)$ is an edge of $\left.\vec{P}_{s, w}^{m}\right\}, f_{s}^{(l)^{+}}=\min \left\{f^{l} \overrightarrow{\left(s_{1}, s_{2}\right)},\left(s_{1}, s_{2}\right)\right.$ is an edge of $\left.\vec{P}_{s, w}^{m}\right\}, f_{s}^{(u)^{+}}=\min \left\{f^{u} \overrightarrow{\left(s_{1}, s_{2}\right)}\right.$, $\left(s_{1}, s_{2}\right)$ is an edge of $\left.\vec{P}_{s, w}^{m}\right\}$, respectively.
Example 2.8. Consider an IVN-digraph $G=(A, \vec{B})$ on $X=\{s, w, a, b, c, d\}$, such that $A=\{(s$, $[0.4,0.5],[0.5,0.7],[0.8,0.9]),(w,[0.6,0.7],[0.4,0.6],[0.2,0.3]),(a,[0.2,0.6],[0.3,0.6],[0.2,0.6]),(b$, $[0.2,0.6],[0.1,0.6],[0.2,0.6]),(c,[0.2,0.7],[0.3,0.5],[0.2,0.6]), d([0.2,0.6],[0.3,0.6],[0.2,0.6])\}$, and $B=$ $\{(\overrightarrow{(s, a)},[0.1,0.4],[0.3,0.6],[0.2,0.6]),(\overrightarrow{(a, c)},[0.2,0.6],[0.3,0.5],[0.2,0.6]),(\overrightarrow{(a, d)},[0.2,0.6],[0.3,0.5]$, $[0.2,0.4]),(\overrightarrow{(w, b)},[0.2,0.6],[0.1,0.6],[0.2,0.3]),(\overrightarrow{(b, c)},[0.2,0.4],[0.1,0.2],[0.1,0.3]),(\overrightarrow{(b, d)},[0.1,0.3]$, $[0.1,0.2],[0.2,0.4])\}$, as shown in Fig. 9.

Figure 9: IVN-digraph
We calculate 2-step IVN-out-neighbourhoods as, $\mathbb{N}_{2}^{+}(s)=\{(c,[0.1,0.4],[0.3,0.5],[0.2,0.6]),(d$, $[0.1,0.4],[0.3,0.5],[0.2,0.4])\}$ and $\mathbb{N}_{2}^{+}(w)=\{(c,[0.2,0.4],[0.1,0.2],[0.1,0.3]),(d,[0.1,0.3],[0.1,0.2]$, $[0.2,0.3])\}$.
Definition 2.18. The m-step interval-valued neutrosophic in-neighbourhood (IVN-in-neighbourhood) of vertex s of an IVN-digraph $\vec{G}=(A, \vec{B})$ is IVN-set

$$
\mathbb{N}_{m}^{-}(s)=\left(X_{s}^{-},\left[t_{s}^{(l)^{-}}, t_{s}^{(u)^{-}}\right],\left[i_{s}^{(l)^{-}}, i_{s}^{(u)^{-}}\right],\left[f_{s}^{(l)^{-}}, f_{s}^{(u)^{-}}\right]\right), \quad \text { where }
$$

$X_{s}^{-}=\left\{w \mid\right.$ there exists a directed interval-valued neutrosophic path of length m from s to $\left.w, \vec{P}_{s, w}^{m}\right\}$, $t_{s}^{(l)^{-}}: X_{s}^{-} \rightarrow[0,1], t_{s}^{(u)^{-}}: X_{s}^{-} \rightarrow[0,1], i_{s}^{(l)^{-}}: X_{s}^{-} \rightarrow[0,1], i_{s}^{(u)^{-}}: X_{s}^{-} \rightarrow[0,1], f_{s}^{(l)^{-}}: X_{s}^{-} \rightarrow[0,1] f_{s}^{(u)^{-}}:$ $X_{s}^{-} \rightarrow[0,1]$ are defined by $t_{s}^{(l)^{-}}=\min \left\{t^{l} \overrightarrow{\left(s_{1}, s_{2}\right)},\left(s_{1}, s_{2}\right)\right.$ is an edge of $\left.\vec{P}_{s, w}^{m}\right\}, t_{s}^{(u)^{-}}=\min \left\{t^{u} \overrightarrow{\left(s_{1}, s_{2}\right)}\right.$, $\left(s_{1}, s_{2}\right)$ is an edge of $\left.\vec{P}_{s, w}^{m}\right\}, i_{s}^{(l)^{-}}=\min \left\{i^{l} \overrightarrow{\left(s_{1}, s_{2}\right)},\left(s_{1}, s_{2}\right)\right.$ is an edge of $\left.\vec{P}_{s, w}^{m}\right\}, i_{s}^{(u)^{-}}=\min \left\{i^{u} \overrightarrow{\left(s_{1}, s_{2}\right)}\right.$, $\left(s_{1}, s_{2}\right)$ is an edge of $\left.\vec{P}_{s, w}^{m}\right\}, f_{s}^{(l)^{-}}=\min \left\{f^{l} \overrightarrow{\left(s_{1}, s_{2}\right)},\left(s_{1}, s_{2}\right)\right.$ is an edge of $\left.\vec{P}_{s, w}^{m}\right\}, f_{s}^{(u)^{-}}=\min \left\{f^{u} \overrightarrow{\left(s_{1}, s_{2}\right)}\right.$, $\left(s_{1}, s_{2}\right)$ is an edge of $\left.\vec{P}_{s, w}^{m}\right\}$, respectively.

Example 2.9. Consider an IVN-digraph $G=(A, \vec{B})$ on $X=\{s, w, a, b, c, d\}$, such that $A=\{(s$, $[0.4,0.5],[0.5,0.7],[0.8,0.9]),(w,[0.6,0.7],[0.4,0.6],[0.2,0.3]),(a,[0.2,0.6],[0.3,0.6],[0.2,0.6]),(b$, $[0.2,0.6],[0.1,0.6],[0.2,0.6]),(c,[0.2,0.7],[0.3,0.5],[0.2,0.6]), d([0.2,0.6],[0.3,0.6],[0.2,0.6])\}$, and $B=$ $\{(\overrightarrow{(s, a)},[0.1,0.4],[0.3,0.6],[0.2,0.6]),(\overrightarrow{(a, c)},[0.2,0.6],[0.3,0.5],[0.2,0.6]),(\overrightarrow{(a, d)},[0.2,0.6],[0.3,0.5]$,
$[0.2,0.4]),(\overrightarrow{(w, b)},[0.2,0.6],[0.1,0.6],[0.2,0.3]),(\overrightarrow{(b, c)},[0.2,0.4],[0.1,0.2],[0.1,0.3]),(\overrightarrow{(b, d)},[0.1,0.3]$, $[0.1,0.2],[0.2,0.4])\}$, as shown in Fig. 10.

Figure 10: IVN-digraph
We calculate 2-step IVN-in-neighbourhoods as, $\mathbb{N}_{2}^{-}(s)=\{(c,[0.1,0.4],[0.3,0.5],[0.2,0.6]),(d,[0.1,0.4]$, $[0.3,0.5],[0.2,0.4])\}$ and $\mathbb{N}_{2}^{-}(w)=\{(c,[0.2,0.4],[0.1,0.2],[0.1,0.3]),(d,[0.1,0.3],[0.1,0.2],[0.2,0.3])\}$.

Definition 2.19. Suppose $\vec{G}=(A, \vec{B})$ is an IVN-digraph. The m-step IVNC-graph of IVN-digraph \vec{G} is denoted by $\mathbb{C}_{m}(\vec{G})=(A, B)$ which has same IVN-set of vertices as in \vec{G} and has an edge between two vertices $s, w \in X$ in $\mathbb{C}_{m}(\vec{G})$ if and only if $\left(\mathbb{N}_{m}^{+}(s) \cap \mathbb{N}_{m}^{+}(w)\right)$ is a non-empty IVN-set in \vec{G}. The intervalvalued truth-membership value of edge (s, w) in $\mathbb{C}_{m}(\vec{G})$ is $t_{B}^{l}(s, w)=\left[t_{A}^{l}(s) \wedge t_{A}^{l}(w)\right] h_{1}^{l}\left(\mathbb{N}_{m}^{+}(s) \cap \mathbb{N}_{m}^{+}(w)\right)$, and $t_{B}^{u}(s, w)=\left[t_{A}^{u}(s) \wedge t_{A}^{u}(w)\right] h_{1}^{u}\left(\mathbb{N}_{m}^{+}(s) \cap \mathbb{N}_{m}^{+}(w)\right)$, the interval-valued indeterminacy-membership value of edge (s, w) in $\mathbb{C}_{m}(\vec{G})$ is $i_{B}^{l}(s, w)=\left[i_{A}^{l}(s) \wedge i_{A}^{l}(w)\right] h_{2}^{l}\left(\mathbb{N}_{m}^{+}(s) \cap \mathbb{N}_{m}^{+}(w)\right)$, and $i_{B}^{u}(s, w)=\left[i_{A}^{u}(s) \wedge\right.$ $\left.i_{A}^{u}(w)\right] h_{2}^{u}\left(\mathbb{N}_{m}^{+}(s) \cap \mathbb{N}_{m}^{+}(w)\right)$, the interval-valued falsity-membership value of edge (s, w) in $\mathbb{C}_{m}(\vec{G})$ is $f_{B}^{l}(s$, $w)=\left[f_{A}^{l}(s) \wedge f_{A}^{l}(w)\right] h_{3}^{l}\left(\mathbb{N}_{m}^{+}(s) \cap \mathbb{N}_{m}^{+}(w)\right)$, and $f_{B}^{u}(s, w)=\left[f_{A}^{u}(s) \wedge f_{A}^{u}(w)\right] h_{3}^{u}\left(\mathbb{N}_{m}^{+}(s) \cap \mathbb{N}_{m}^{+}(w)\right)$.

The 2-step IVNC-graph is illustrated by the following example.
Example 2.10. Consider an IVN-digraph $G=(A, \vec{B})$ on $X=\{s, w, a, b, c, d\}$, such that $A=\{(s$, $[0.4,0.5],[0.5,0.7],[0.8,0.9]),(w,[0.6,0.7],[0.4,0.6],[0.2,0.3]),(a,[0.2,0.6],[0.3,0.6],[0.2,0.6]),(b$, $[0.2,0.6],[0.1,0.6],[0.2,0.6]),(c,[0.2,0.7],[0.3,0.5],[0.2,0.6]), d([0.2,0.6],[0.3,0.6],[0.2,0.6])\}$, and $B=$ $\{(\overrightarrow{(s, a)},[0.1,0.4],[0.3,0.6],[0.2,0.6]),(\overrightarrow{(a, c)},[0.2,0.6],[0.3,0.5],[0.2,0.6]),(\overrightarrow{(a, d)},[0.2,0.6],[0.3,0.5]$, $[0.2,0.4]),(\overrightarrow{(w, b)},[0.2,0.6],[0.1,0.6],[0.2,0.3]),(\overrightarrow{(b, c)},[0.2,0.4],[0.1,0.2],[0.1,0.3]),(\overrightarrow{(b, d)},[0.1,0.3]$, $[0.1,0.2],[0.2,0.4])\}$, as shown in Fig. 11.

Figure 11: IVN-digraph
We calculate $\mathbb{N}_{2}^{+}(s)=\{(c,[0.1,0.4],[0.3,0.5],[0.2,0.6]),(d,[0.1,0.4],[0.3,0.5],[0.2,0.4])\}$ and $\mathbb{N}_{2}^{+}(w)=$ $\{(c,[0.2,0.4],[0.1,0.2],[0.1,0.3]),(d,[0.1,0.3],[0.1,0.2],[0.2,0.3])\}$. Therefore, $\mathbb{N}_{2}^{+}(s) \cap \mathbb{N}_{2}^{+}(w)=\{(c$, $[0.1,0.4],[0.1,0.2],[0.2,0.6]),(d,[0.1,0.3],[0.1,0.2],[0.2,0.4])\}$. Thus, $t_{B}^{l}(s, w)=0.04, t_{B}^{u}(s, w)=0.20$, $i_{B}^{l}(s, w)=0.04, i_{B}^{u}(s, w)=0.12, f_{B}^{l}(s, w)=0.04$ and $f_{B}^{u}(s, w)=0.12$. This graph is depicted in Fig. 12.

Figure 12: 2-Step IVNC-graph
If a predator s attacks one prey w, then the linkage is shown by an edge $\overrightarrow{(s, w)}$ in an IVN-digraph. But, if predator needs help of many other mediators $s_{1}, s_{2}, \ldots, s_{m-1}$, then linkage among them is shown by interval-valued neutrosophic directed path $\vec{P}_{s, w}^{m}$ in an IVN-digraph. So, m-step prey in an IVN-digraph is represented by a vertex which is the m-step out-neighbourhood of some vertices. Now, the strength of an IVNC-graphs is defined below.
Definition 2.20. Let $\vec{G}=(A, \vec{B})$ be an IVN-digraph. Let w be a common vertex of m-step outneighbourhoods of vertices $s_{1}, s_{2}, \ldots, s_{l}$. Also, let $\overrightarrow{B_{1}^{l}}\left(u_{1}, v_{1}\right), \overrightarrow{B_{1}^{l}}\left(u_{2}, v_{2}\right), \ldots, \overrightarrow{B_{1}^{l}}\left(u_{r}, v_{r}\right)$ and $\overrightarrow{B_{1}^{l}}\left(u_{1}, v_{1}\right)$, $\overrightarrow{B_{1}^{u}}\left(u_{2}, v_{2}\right), \ldots, \overrightarrow{B_{1}^{u}}\left(u_{r}, v_{r}\right)$ be the minimum interval-valued truth-membership values, $\overrightarrow{B_{2}^{l}}\left(u_{1}, v_{1}\right), \overrightarrow{B_{2}^{l}}\left(u_{2}, v_{2}\right), \ldots$, $\overrightarrow{B_{2}^{t}}\left(u_{r}, v_{r}\right)$ and $\overrightarrow{B_{2}^{\vec{t}}}\left(u_{1}, v_{1}\right), \overrightarrow{B_{2}^{\vec{t}}}\left(u_{2}, v_{2}\right), \ldots, \overrightarrow{B_{2}^{\vec{t}}}\left(u_{r}, v_{r}\right)$ be the minimum indeterminacy-membership values, $\overrightarrow{B_{3}^{l}}\left(u_{1}, v_{1}\right), \overrightarrow{B_{3}^{l}}\left(u_{2}, v_{2}\right), \ldots, \overrightarrow{B_{3}^{l}}\left(u_{r}, v_{r}\right)$ and $\xrightarrow{\overrightarrow{B_{3}^{t}}}\left(u_{1}, v_{1}\right), \overrightarrow{B_{3}^{t}}\left(u_{2}, v_{2}\right), \ldots, \overrightarrow{B_{3}^{t h}}\left(u_{r}, v_{r}\right)$ be the maximum false-membership values, of edges of the paths $\vec{P}_{s_{1}, w}^{m}, \vec{P}_{s_{2}, w}^{m}, \ldots, \vec{P}_{s_{r}, w}^{m}$, respectively. The m-step prey
$w \in X$ is strong prey if

$$
\begin{array}{lll}
\overrightarrow{B_{1}^{l}}\left(u_{i}, v_{i}\right)>0.5, & \overrightarrow{B_{2}^{t}}\left(u_{i}, v_{i}\right)>0.5, & \overrightarrow{B_{3}^{l}}\left(u_{i}, v_{i}\right)<0.5, \\
\overrightarrow{B_{1}^{\vec{u}}}\left(u_{i}, v_{i}\right)>0.5, & \overrightarrow{B_{2}^{\vec{u}}}\left(u_{i}, v_{i}\right)>0.5, & \overrightarrow{B_{3}^{\vec{u}}}\left(u_{i}, v_{i}\right)<0.5, \text { for all } i=1,2, \ldots, r .
\end{array}
$$

The strength of the prey w can be measured by the mapping $S: X \rightarrow[0,1]$, such that:

$$
\begin{aligned}
S(w)= & \frac{1}{r}\left\{\sum_{i=1}^{r}\left[\overrightarrow{B_{1}^{l}}\left(u_{i}, v_{i}\right)\right]+\sum_{i=1}^{r}\left[\overrightarrow{B_{1}^{\vec{u}}}\left(u_{i}, v_{i}\right)\right]+\sum_{i=1}^{r}\left[\overrightarrow{B_{2}^{l}}\left(u_{i}, v_{i}\right)\right]\right. \\
& \left.+\sum_{i=1}^{r}\left[\overrightarrow{B_{2}^{u}}\left(u_{i}, v_{i}\right)\right]-\sum_{i=1}^{r}\left[\overrightarrow{B_{3}^{l}}\left(u_{i}, v_{i}\right)\right]-\sum_{i=1}^{r}\left[\overrightarrow{B_{3}^{u}}\left(u_{i}, v_{i}\right)\right]\right\} .
\end{aligned}
$$

Example 2.11. Consider an IVN-digraph $\vec{G}=(A, \vec{B})$ as shown in Fig. 11, the strength of the prey c is equal to

$$
\frac{(0.2+0.2)+(0.6+0.4)+(0.1+0.1)+(0.6+0.2)-(0.2+0.1)-(0.3+0.3)}{2}=1.5>0.5
$$

Hence, c is strong 2-step prey.
We state the following theorem without its proof.
Theorem 2.6. If a prey w of $\vec{G}=(A, \vec{B})$ is strong, then the strength of $w, S(w)>0.5$.
Remark: The converse of the above theorem is not true, i.e. if $S(w)>0.5$, then all preys may not be strong. This can be explained as:
Let $S(w)>0.5$ for a prey w in \vec{G}. So,

$$
\begin{aligned}
S(w)= & \frac{1}{r}\left\{\sum_{i=1}^{r}\left[\overrightarrow{B_{1}^{l}}\left(u_{i}, v_{i}\right)\right]+\sum_{i=1}^{r}\left[\overrightarrow{B_{1}^{u}}\left(u_{i}, v_{i}\right)\right]+\sum_{i=1}^{r}\left[\overrightarrow{B_{2}^{l}}\left(u_{i}, v_{i}\right)\right]\right. \\
& \left.+\sum_{i=1}^{r}\left[\overrightarrow{B_{2}^{u}}\left(u_{i}, v_{i}\right)\right]-\sum_{i=1}^{r}\left[\overrightarrow{B_{3}^{l}}\left(u_{i}, v_{i}\right)\right]-\sum_{i=1}^{r}\left[\overrightarrow{B_{3}^{u}}\left(u_{i}, v_{i}\right)\right]\right\} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left\{\sum_{i=1}^{r}\left[\overrightarrow{B_{1}^{l}}\left(u_{i}, v_{i}\right)\right]+\sum_{i=1}^{r}\left[\overrightarrow{B_{1}^{u}}\left(u_{i}, v_{i}\right)\right]+\sum_{i=1}^{r}\left[\overrightarrow{B_{2}^{l}}\left(u_{i}, v_{i}\right)\right]\right. \\
& \left.+\sum_{i=1}^{r}\left[\overrightarrow{B_{2}^{u}}\left(u_{i}, v_{i}\right)\right]-\sum_{i=1}^{r}\left[\overrightarrow{B_{3}^{l}}\left(u_{i}, v_{i}\right)\right]-\sum_{i=1}^{r}\left[\overrightarrow{B_{3}^{u}}\left(u_{i}, v_{i}\right)\right]\right\}>\frac{r}{2}
\end{aligned}
$$

This result does not necessarily imply that

$$
\begin{array}{lll}
\overrightarrow{B_{1}^{l}}\left(u_{i}, v_{i}\right)>0.5, & \overrightarrow{B_{2}^{l}}\left(u_{i}, v_{i}\right)>0.5, & \overrightarrow{B_{3}^{l}}\left(u_{i}, v_{i}\right)<0.5, \\
\overrightarrow{B_{1}^{u}}\left(u_{i}, v_{i}\right)>0.5, & \overrightarrow{B_{2}^{u}}\left(u_{i}, v_{i}\right)>0.5, & \overrightarrow{B_{3}^{u}}\left(u_{i}, v_{i}\right)<0.5, \text { for all } i=1,2, \ldots, r .
\end{array}
$$

Since, all edges of the directed paths $\vec{P}_{s_{1}, w}^{m}, \vec{P}_{s_{2}, w}^{m}, \ldots, \vec{P}_{s_{r}, w}^{m}$, are not strong. So, the converse of the above statement is not true i.e., if $S(w)>0.5$, the prey w of \vec{G} may not be strong.

Now, m-step interval-valued neutrosophic neighbouhood graphs are defines below.
Definition 2.21. The m-step IVN-out-neighbourhood of vertex s of an IVN-digraph $\vec{G}=(A, \vec{B})$ is IVN-set

$$
\mathbb{N}_{m}(s)=\left(X_{s},\left[t_{s}^{l}, t_{s}^{u}\right],\left[i_{s}^{l}, i_{s}^{u}\right],\left[f_{s}^{l}, f_{s}^{u}\right]\right), \quad \text { where }
$$

$X_{s}=\left\{w \mid\right.$ there exists a directed interval-valued neutrosophic path of length m from s to $\left.w, \mathbb{P}_{s, w}^{m}\right\}$, $t_{s}^{l}: X_{s} \rightarrow[0,1], t_{s}^{u}: X_{s} \rightarrow[0,1], i_{s}^{l}: X_{s} \rightarrow[0,1], i_{s}^{u}: X_{s} \rightarrow[0,1], f_{s}^{l}: X_{s} \rightarrow[0,1], f_{s}^{u}: X_{s} \rightarrow[0$, 1], are defined by $t_{s}^{l}=\min \left\{t^{l}\left(s_{1}, s_{2}\right),\left(s_{1}, s_{2}\right)\right.$ is an edge of $\left.\mathbb{P}_{s, w}^{m}\right\}, t_{s}^{u}=\min \left\{t^{u}\left(s_{1}, s_{2}\right),\left(s_{1}, s_{2}\right)\right.$ is an edge of $\left.\mathbb{P}_{s, w}^{m}\right\}, i_{s}^{l}=\min \left\{i^{l}\left(s_{1}, s_{2}\right),\left(s_{1}, s_{2}\right)\right.$ is an edge of $\left.\mathbb{P}_{s, w}^{m}\right\}, i_{s}^{u}=\min \left\{i^{u}\left(s_{1}, s_{2}\right),\left(s_{1}, s_{2}\right)\right.$ is an edge of $\left.\mathbb{P}_{s, w}^{m}\right\}, f_{s}^{l}=\min \left\{f^{l}\left(s_{1}, s_{2}\right),\left(s_{1}, s_{2}\right)\right.$ is an edge of $\left.\mathbb{P}_{s, w}^{m}\right\}, f_{s}^{u}=\min \left\{f^{u}\left(s_{1}, s_{2}\right),\left(s_{1}, s_{2}\right)\right.$ is an edge of $\left.\mathbb{P}_{s, w}^{m}\right\}$, respectively.
Definition 2.22. Suppose $G=(A, B)$ is an IVN-graph. Then m-step interval-valued neutrosophic neighbouhood graph $\mathbb{N}_{m}(G)$ is defined by $\mathbb{N}_{m}(G)=(A, \dot{B})$ where $A=\left(\left[A_{1}^{l}, A_{1}^{u}\right],\left[A_{2}^{l}, A_{2}^{u}\right],\left[A_{3}^{l}, A_{3}^{u}\right]\right)$, $\dot{B}=\left(\left[\dot{B}_{1}^{l}, \dot{B}_{1}^{u}\right],\left[\dot{B}_{2}^{l}, \dot{B}_{2}^{u}\right],\left[\dot{B}_{3}^{l}, \dot{B}_{3}^{u}\right]\right), \dot{B}_{1}^{l}: X \times X \rightarrow[0,1], \dot{B}_{1}^{u}: X \times X \rightarrow[0,1], \dot{B}_{2}^{l}: X \times X \rightarrow[0,1]$, $\dot{B}_{2}^{u}: X \times X \rightarrow[0,1], \dot{B}_{3}^{l}: X \times X \rightarrow[0,1]$, and $\dot{B}_{3}^{u}: X \times X \rightarrow[0,-1]$ are such that:
$\dot{B}_{1}^{l}(s, w)=A_{1}^{l}(s) \wedge A_{1}^{l}(w) h_{1}^{l}\left(\mathbb{N}_{m}(s) \cap \mathbb{N}_{m}(w)\right), \quad \dot{B}_{1}^{u}(s, w)=A_{1}^{u}(s) \wedge A_{1}^{u}(w) h_{1}^{u}\left(\mathbb{N}_{m}(s) \cap \mathbb{N}_{m}(w)\right)$,
$\dot{B}_{2}^{l}(s, w)=A_{2}^{l}(s) \wedge A_{2}^{l}(w) h_{2}^{l}\left(\mathbb{N}_{m}(s) \cap \mathbb{N}_{m}(w)\right), \quad \dot{B}_{2}^{u}(s, w)=A_{2}^{u}(s) \wedge A_{2}^{u}(w) h_{2}^{u}\left(\mathbb{N}_{m}(s) \cap \mathbb{N}_{m}(w)\right)$,
$\dot{B}_{3}^{l}(s, w)=A_{3}^{l}(s) \wedge A_{3}^{l}(w) h_{3}^{l}\left(\mathbb{N}_{m}(s) \cap \mathbb{N}_{m}(w)\right), \quad \dot{B}_{3}^{u}(s, w)=A_{3}^{u}(s) \wedge A_{3}^{u}(w) h_{3}^{u}\left(\mathbb{N}_{m}(s) \cap \mathbb{N}_{m}(w)\right)$, respectively.
We state the following theorems without thier proofs.
Theorem 2.7. If all preys of $\vec{G}=(A, \vec{B})$ are strong, then all edges of $\mathbb{C}_{m}(\vec{G})=(A, B)$ are strong.
A relation is established between m-step IVNC-graph of an IVN-digraph and IVNC-graph of m-step IVN-digraph.
Theorem 2.8. If \vec{G} is an IVN-digraph and $\overrightarrow{G_{m}}$ is the m-step IVN-digraph of \vec{G}, then $\mathbb{C}\left(\vec{G}_{m}\right)=\mathbb{C}_{m}(\vec{G})$.
Theorem 2.9. Let $\vec{G}=(A, \vec{B})$ be an IVN-digraph. If $m>|X|$ then $\mathbb{C}_{m}(\vec{G})=(A, B)$ has no edge.
Theorem 2.10. If all the edges of IVN-digraph $\vec{G}=(A, \vec{B})$ are independent strong, then all the edges of $\mathbb{C}_{m}(\vec{G})$ are independent strong.

3 Conclusion

Graph theory is an enjoyable playground for the research of proof techniques in discrete mathematics. There are many applications of graph theory in different fields. We have introduced IVNC-graphs and k-competition IVN-graphs, p-competition IVN-graphs and m-step IVNC-graphs as the generalized structures of IVNC-graphs. We have described interval-valued neutrosophic open and closed-neighbourhood. Also we have established some results related to them. We aim to extend our research work to (1) Intervalvalued fuzzy rough graphs; (2) Interval-valued fuzzy rough hypergraphs, (3) Interval-valued fuzzy rough neutrosophic graphs, and (4) Decision support systems based on IVN-graphs.

References

[1] M. Akram and W.A. Dudek, Interval-valued fuzzy graphs, Computers Math. Appl., 61 (2011) 289-299.
[2] M. Akram, Interval-valued fuzzy line graphs, Neural Computing \& Applications, 21 (2012) 145-150.
[3] M. Akram, N.O. Al-Shehrie and W.A. Dudek, Certain types of interval-valued fuzzy graphs, Journal of Applied Mathematics, Volume 2013 Article ID 857070(2013) 11 pages.
[4] M. Akram, W.A. Dudek and M. Murtaza Yousaf, Self centered interval-valued fuzzy graphs, Afrika Matematika, 26(5-6) (2015) 887-898.
[5] M. Akram and M. Nasir, Concepts of interval-valued neutrosophic graphs, International Journal of Algebra and Statistics, 6(1-2) (2017) 22-41 DOI :10.20454/ijas.2017.1235.
[6] M. Akram and S. Shahzadi, Neutrosophic soft graphs with application, Journal of Intelligent \& Fuzzy Systems, 32(1) (2017) 841-858.
[7] M. Akram, Single-valued neutrosophic planar graphs, International Journal of Algebra and Statistics, $\mathbf{5}(2)$ (2016) 157-167.
[8] M. Akram and G. Shahzadi, Operations on single-valued neutrosophic graphs, Journal of Uncertain System, 11(2) (2017) 1-26.
[9] N.O. Al-Shehrie and M. Akram, Bipolar fuzzy competition graphs, Ars Combinatoria, 121 (2015), 385-402.
[10] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems, 20 (1986) 87-96.
[11] P. Bhattacharya, Some remark on fuzzy graphs, Pattern Recognition Letters, 6 (1987) 297-302.
[12] A. Kauffman, Introduction a la theorie des sousemsembles flous, Masson et cie Paris, (1973).
[13] J.M. Mendel, Uncertain rule-based fuzzy logic systems: Introduction and new directions, PrenticeHall, Upper Saddle River, New Jersey, (2001).
[14] M. Nasir, S. Siddique and M. Akram, Novel properties of intuitionistic fuzzy competition graphs, Journal of Uncertain Systems, 2(1) (2017) 49-67.
[15] A. Rosenfeld, Fuzzy graphs, Fuzzy Sets and their Application, Academic press New York, (1975) 77-95.
[16] S. Samanta and M. Pal, Fuzzy k-competition graphs and p-competition fuzzy graphs, Fuzzy Information and Engineering, 5 (2013) 191-204.
[17] S. Samanta, M. Akram and M. Pal, m-step fuzzy competition graphs, Journal of Applied Mathematics and Computing, 47 (2015) 461-472.
[18] M. Sarwar and M. Akram, Novel concepts of bipolar fuzzy competition graphs, Journal of Applied Mathematics and Computing, (2016), DOI 10.1007/s12190-016-1021-z.
[19] F. Smarandache, A unifying field in logics. neutrosophy: neutrosophic probability, set and logic. Rehoboth:, American Research Press, (1999).
[20] F. Smarandache, Neutrosophic set- a generalization of the intuitionistic fuzzy set, Granular Computing. 2006 IEEE International Conference, (2006) 38-42 DOI: 10.1109/GRC.2006.1635754.
[21] H. Wang, F. Smarandache, Y.Q. Zhang and R. Sunderraman, Single-valued neutrosophic sets, Multisspace and Multistruct, 4 (2010) 410-413.
[22] H. Wang, Y. Zhang and R. Sunderraman, Truth-value based interval neutrosophic sets, Granular Computing, 2005 IEEE International Conference, 1 (2005) 274-277 DOI: 10.1109/GRC.2005.1547284.
[23] H. Wang, F. Smarandache, Y.Q. Zhang and R. Sunderram, An Interval neutrosophic sets and logic: theory and applications in computing, Hexis Arizona, (2005).
[24] S.Y. Wu, The compositions of fuzzy digraphs, Journal of Research in Education Science, 31 (1986) 603-628.
[25] L.A. Zadeh, Fuzzy sets, Information and Control, 08(3) (1965) 338-353.
[26] L.A. Zadeh, The concept of a linguistic and application to approximate reasoning I, Information Sci., 8 (1975) 199-249.

