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Abstract: Nowadays, among the main causes of blindness in developed countries are age-related
macular degeneration (AMD) and the diabetic macular edema (DME). Both diseases present, as
a common symptom, the appearance of cystoid fluid regions inside the retinal layers. Optical
coherence tomography (OCT) image modality was one of the main medical imaging techniques
for the early diagnosis and monitoring of AMD and DME via this intraretinal fluid detection
and characterization. We present a novel methodology to identify these fluid accumulations by
means of generating binary maps (offering a direct representation of these areas) and heat maps
(containing the region confidence). To achieve this, a set of 312 intensity and texture-based
features were studied. The most relevant features were selected using the sequential forward
selection (SFS) strategy and tested with three archetypal classifiers: LDC, SVM and Parzen
window. Finally, the most proficient classifier is used to create the proposed maps. All of the
tested classifiers returned satisfactory results, the best classifier achieving a mean test accuracy
higher than 94% in all of the experiments. The suitability of the maps was evaluated in a context
of a screening issue with three different datasets obtained with two different devices, testing the
capabilities of the system to work independently of the used OCT device. The experiments with
the map creation were performed using 323 OCT images. Using only the binary maps, more
than 91.33% of the images were correctly classified. With only the heat maps, the proposed
methodology correctly separated 93.50% of the images.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Thanks to the advances in medical imaging, their use spread over many clinical specialties in
combination with classical medical procedures. This significantly facilitates the detection and
diagnosis of a large variability of pathologies. Additionally, many medical image modalities
permitted to discover relationships between conditions that could have never been revealed
without this new point of view. A representative example can be observed in the field of
ophthalmic imaging: the study of eye structures can return valuable information regarding not
only specific afflictions of the eye but others of general impact. In that sense, alterations in
the retinal layer morphology and the presence of abnormal structures can be a sign of heart
diseases [1, 2], diabetes [3, 4] or even pathologies related to the nervous system [5, 6].
One of the current dominant ophthalmological image modalities is Optical Coherence

Tomography (OCT). It allows the expert to observe, in a non-invasive way, a cross-sectional
visualization of the eye fundus and the structures that conform it [7, 8], which still subject of
investigations focused on identifying the retinal morphology under pathological scenarios [9, 10].
This type of medical screening technique has already left obsolete classical visualization methods,
allowing new advances in the analysis of relevant structures (as the retinal vasculature [11]) or
the identification of pathological conditions (as the epiretinal membrane [12]).

                                                                      Vol. 9, No. 10 | 1 Oct 2018 | BIOMEDICAL OPTICS EXPRESS 4730 

#331429 https://doi.org/10.1364/BOE.9.004730 
Journal © 2018 Received 14 May 2018; revised 16 Jul 2018; accepted 12 Aug 2018; published 11 Sep 2018 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.9.004730&domain=pdf&date_stamp=2018-09-11


The scope of this work is related with the intraretinal fluid that may be present inside the retinal
layers with the proposal of a new paradigm for their identification and intuitive visualization.
This fluid is produced by relevant diseases as the Age-related Macular Degeneration (AMD)
or the Diabetic Macular Edema (DME), among the main causes of blindness in developed
countries. These two pathologies have in common the presence of fluid bodies inside the retinal
layers. The progressive fluid accumulation and consequent deformation of the retinal architecture
increasingly diminishes the sight quality of the patient. If no treatment is applied on time, the
accumulated damage will end up rendering him completely blind. That is why the detection of
the indicated fluid has become an impending matter, being the inspection of OCT imaging one of
the most effective ways for it.
Both semiautomatic and automatic works were proposed to segment these fluid regions. For

example, Wang et al. [13] proposed a semiautomatic method for the 3D retinal fluid segmentation
problem. Their proposal uses an interactive graph cuts algorithm for the segmentation of the first
OCT slice. Then, the labeling information is propagated through the slices via motion estimation.
Nonetheless, most of the recent approaches are automatic. De Moura et al. [14] proposed a

methodology based on several texture descriptors to classify OCT image samples depending on
if they contained fluid region or not. Wilkins et al. [15] proposed the segmentation of these fluid
regions via a preprocessing of the OCT image and a posterior thresholding, followed by a false
positive (FP) filtering step based on the segmented area size and intensity constraints that were
empirically set. Roychowdhury et al. [16] further improved the Wilkins et al. [15] approach by
categorizing the candidate regions by shape and size constraints into large, broken large and
small cysts categories. Finally, the candidates are filtered with different rules depending on the
assigned category.
This preprocessing, candidate region finding and final filtering is also followed by González

et al. [17] but, instead of a classical thresholding, they use a watershed algorithm to generate
the candidate setand a trained classifier with texture features to filter the detected FPs. Girish et
al. [18] proposed an unsupervised automatic methodology based on the watershed transform as
González et al. [17], but using k-means clustering for the initial seeds for the watershed algorithm
to reduce the workload of the posterior FP filtering step.
Chen et al. [19] proposed a two-step methodology with also a preprocessing phase. In this

work, the voxels of the image are firstly classified to find pathological points using a supervised
classification approach. Then, using graph-search and graph-cut methods combined, they segment
both intraretinal and subretinal fluid regions in the 3D space. Xu et al. [20] followed a similar
strategy as Chen et al. [19], using the same 52 texture, Hessian matrices eigenvalues and distance
descriptors to perform a voxel classification. This work adds layer dependent information and
sample balancing between the three considered stratum to improve the detection sensitivity
(specially in smaller fluid regions). Montuoro et al. [10] proposes a methodology also based
in voxel classification, but they do not define a set of image features. Instead, they generated
convolution kernels using principal component analysis in cubic patches around the training
set voxels. Having into account the layer structural relationship, they use a graph theory based
algorithm to segment the results, using the probabilities of the classifications as region costs.
Finally, they use an auto-context loop (iterative approach that includes spatial context from
previous classifications) to refine the results.

Wang et al. [21] fully took advantage on the volumetric information by using two orientations
of B-Scans and a C-Scan. The fluid regions were segmented using a fuzzy C-means algorithm
for the initial fluid region clustering and the boundaries detected with a level-set method. These
segmentations are combined to generate the 3D volumetric segmentation. Finally, as the other
presented methods, a FP filtering step is used to remove undesired detected artifacts. Moreover,
this proposal uses OCT angiographies taken from the same scan to help in this final filtering
step, removing vascular shadowing artifacts. Esmaeili et al. [22], on the other hand, took
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advantage of this 3D data to further improve the denoising step. In their approach, they use a
curvelet-based technique to transform the image and K-SVD dictionary learning to modify the
curvelet coefficients, reducing the original image noise when reconstructed. Finally, they use
an empirically set thresholding and a posterior candidate filtering step based to obtain the final
segmentation.

Chiu et al. [23] estimate the approximate position of the fluid and retinal layers with a kernel
regression based classification to, then, use their graph theory and dynamic programming
framework to obtain a precise segmentation. As features, they use pixel intensity, gradient and
location descriptors, as well as Law’s texture energy measures.
Rashno et al. [24] used a novel approximation to the segmentation problem based on

transforming the image into the neutrosophic domain. This transformation maps the OCT image
gray levels into three sets: T, I and F. The T (true) set is assigned to white pixels, I (indeterminate)
is assigned to noise pixels and F (false) set is assigned to black pixels. A probability for belonging
to each one of the three considered sets is assigned to each pixel. A correction is applied to pixels
with a high-level of indeterminacy to reduce the image noise. For the segmentation inside the
region of interest, an unsupervised clustering method is applied where the number of clusters
is automatically determined. As in other works, a final candidate filtering step removes false
positives based on the region size and the layer where the candidate is positioned in. Rashno et
al. [25] also proposed an alternative to this methodology, using also the neutrosophic sets but
segmenting the fluid regions with a graph-cut approach instead of the aforementioned clustering
method. Sahoo et al. [26] proposed the Retinal Fluid Automatic Detection (RFAD) algorithm.
This proposal firstly performs a k-means clustering to, then, apply a complex set of decision rules
to further adjust the segmentation.
Other works, like the one proposed by Wu et al. [27] focus on a particular case of fluid

accumulation. Wu et al. focused on segmenting the Neurosensory Retinal Detachment related
fluid accumulations. They use a k-means clustering algorithm to classify the pixels into three
categories depending on their thickness and a graph-cut segmentation method in the enface
fundus image. Finally, using these regions found in the enface OCT scan, they limit the region
of interest for the B-Scan segmentation. For this secondary segmentation they follow a fuzzy
C-means and posterior level set method, similar to the proposal of Wang et al. [21].
Recently, deep learning-based techniques have been introduced satisfactorily to the fluid

segmentation problem. Lee et al. [28], as reference, proposed an automatic segmentation
methodology using convolutional neural networks (CNN). Schlegl et al. [29] used a neural
network comprising two processing components, an encoder to obtain the abstract information
of the image and a decoder to map that information into a final segmentation. Gopinath and
Sivaswamy [30] proposed a method also using a CNN implementation for the segmentation
of cystoid macular edemas, followed by a post-processing step using clustering to refine the
previously identified cystoid regions. Roy et al. [31] propose a new fully convolutional deep
architecture named ReLayNet, formed by a series of encoder blocks relaying the intermittent
feature representations to their matched decoder blocks through concatenation layers. Venhuizen
et al. [32] proposes a fully convolutional neural network (FNCC) where every pixel in the
volume is analyzed and given a probability of belonging to the fluid region. It is composed of a
cascade of two FCNNs with two complementary tasks. The first extracts the region of interest,
whereas the second actually segments the fluid regions. Both architectures are based on the U-net,
proposed by Ronneberger et al. [33] specially for biomedical image segmentation. Similarly,
Tennakoon et al. [34] used a deep neural net also inspired by U-Net architecture, but adding
a batch normalization layer and an adversarial network to encode higher order relationships.
This approach also applied a preprocessing step to the dataset and a median filter to reduce the
speckle noise. Finally, Girish et al. [35] also recently proposed an approach based on the U-Net
fully convolutional network to automatically capture both micro and macro-level features for the
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characterization of the fluid structures.
In Table 1, the reader can see a summary of all the main works presented above from the state

of the art. It is specified the type of learning followed (supervised if labeled samples were used to
train the method and unsupervised if the methodology is capable of separate the classes without
labeled examples), the type of algorithm (semiautomatic if it needs the intervention of the user to
generate the result, automatic if no further input is needed), type of pathology the system was
tested with (if specified by the authors) and the knowledge domain that the methodology analyzes
to generate the final result (2D if only features from a scan are used at a time and 3D if features
from multiple consecutive OCT scans are considered).

Table 1. Comparative taxonomy of the state of the art. NS = not specified.

Year Proposal Supervised/Unsupervised Automatic/Semiautomatic AMD/DME 2D/3D

2012 Wilkins et al. [15] Unsupervised Automatic NS 2D

2012 Chen et al. [19] Supervised Automatic AMD 3D

2013 Roychowdhury et al. [16] Unsupervised Automatic DME 2D

2013 González et al. [17] Supervised Automatic NS 2D

2015 Chiu et al. [23] Supervised Automatic DME 2D

2015 Xu et al. [20] Supervised Automatic AMD 3D

2016 Wang et al. [21] Unsupervised Automatic DME 3D

2016 Wang et al. [13] Unsupervised Semiautomatic AMD/DME 3D

2016 Esmaeili et al. [22] Unsupervised Automatic NS 3D

2016 Girish et al. [18] Unsupervised Automatic NS 2D

2017 Montuoro et al. [10] Unsupervised Automatic DME 3D

2017 Rashno et al. [24] Unsupervised Automatic DME 2D

2017 Rashno et al. [25] Unsupervised Automatic AMD 2D

2017 de Moura et al. [14] Supervised Automatic NS 2D

2017 Sahoo et al. [26] Unsupervised Automatic NS 2D

2017 Lee et al. [28] Supervised Automatic NS 2D

2017 Roy et al. [31] Supervised Automatic DME 2D

2018 Wu et al. [27] Unsupervised Automatic NS 3D

2018 Schlegl et al. [29] Supervised Automatic AMD / DME 2D

2018 Gopinath et al. [30] Supervised Automatic AMD / DME 3D

2018 Venhuizen et al. [32] Supervised Automatic AMD 2D

2018 Tennakoon et al. [34] Supervised Automatic AMD 3D

2018 Girish et al. [35] Supervised Automatic NS 2D

As the reader can see, the state of the art is currently following a classical segmentation
paradigm, obtaining satisfactory results (as shown, for example, in the benchmarking test by
Girish et al. [36]) even with recent deep learning approximations. Nonetheless, an accurate
segmentation is not always attainable in the case of retinal fluid accumulations. Some fluid
regions, like the ones presented in Fig. 1, do not have an entire defined border that can be
segmented or also appear in nearby groups that interfere with their individual segmentation.
Moreover, most of the proposed works require a preprocessing step to filter the typically existing
noise of the OCT images and a posterior phase of FP removal. Finally, in these particular cases
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where there is no clear segmentation, different experts may create different ground truths. This
makes more difficult to train and/or evaluate an automated procedure based on the classical
segmentation paradigm.

Fig. 1. OCT image portions with hardly to segment fluid areas.

In this work, we faced the issue of the intraretinal cystoid fluid identification with a new and
alternative paradigm. Instead of segmenting candidates, we perform a regional analysis taking
advantage of the texture differences between the fluid regions and the healthy retinal tissue
without any kind of preprocessing. This alternative paradigm of regional analysis, in contrast
to the classical specific segmentations, is able to offer robust results despite the lack of defined
borders, as it identifies the pathological regions and not the precise contour. Moreover, as we
study regional properties, the system can be trained using representative samples instead of an
accurately segmented ground truth, reducing the dependency and influence of the clinicians
when training the models. Additionally, this paradigm and texture analysis is resilient to the
variability of the OCT image conditions, being able to work without preprocessing steps or
posterior filtering of FPs, very common in the state of the art and also relevant for the clinical
usage.

These regions, given their fluid nature, present more homogeneous patterns than the samples
coming from healthy (or other kind of pathological) zones. To take advantage of this, a
representative variability of characteristics were used. These characteristics involved both
intensity and texture-based features. The defined set of features was analyzed with a feature
selector to identify those with the highest discriminative power. These selected features, derived
from representative sets of fluid and non-fluid regions, were employed to train and test the
representative classifiers. This way, we construct models that are able to classify different samples
into the two possible categories (cystoid fluid region if they had fluid-like structures inside it and
non-fluid region if they were clear of them), evaluating its viability and robustness through several
tests, models and a feature selection technique without the need of any kind of preprocessing step.
Next, these trained models are exploited to create the proposed maps, representing the

information contained in the entire OCT images. In particular, two different complementary
maps algorithms are constructed indicating the cystoid fluid presence over the entire OCT scan.
The creation of these explicit maps will reduce the workload of the clinicians, increasing their
productivity and improving the diagnostic quality of pathologies related to these fluid bodies (as
well as allowing an early detection of them). Pathologies as relevant as the previously indicated
AMD and DME (among others).

The present work is divided in three following sections: Section 2, Proposed methodology,
offers a detailed explanation on the steps that were followed to train the models and create the
maps, as well as the design decisions that were made. Section 3, Results and discussion, presents
and comments the experiments, tests and their outcomes product of the method implementation
and validation. Finally, Section 4, Conclusions, expresses a resolution on the final results and
possible future work lines.
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Fig. 2. Stages of the proposed methodology and respective steps.

2. Proposed methodology

The main stages of the proposed methodology are depicted in Fig. 2. Firstly, the system finds
the region of interest (ROI), which corresponds to the retinal area where the fluid regions may
appear. Then, a model is trained with representative square samples that were extracted from the
identified ROI from a set of OCT images. Finally, using this trained model, we can create two
different complementary maps to graphically represent the fluid regions in OCT images and test
their possible usefulness for the analysis of the expert clinician. In the following sections, each
step will be explained with further details.

2.1. Retinal layer extraction
Given the fluid is produced inside the retinal layers, the method firstly identifies this region to
restrict the ROI for the rest of the process. By removing the choroid and the vitreous humor we
can leverage feature qualities that are common in both the excluded areas and the fluid cystoid
regions, helping the model to better discern the fluid and non-fluid samples. Also, regarding
the map generation step, by only analyzing the retinal area (where the fluid leakages occur), we
reduce considerably the total computational workload and time spent to obtain the desired cystoid
fluid maps.

As seen in Fig. 3, the ROI is delimited by the Inner Limiting Membrane (ILM) and the Retinal
Pigment Epithelium (RPE). To extract these layers, we based our approach in the work of Chiu
et al. [37]. This method represents the image as a graph, where the nodes correspond to the
image pixels and the edge weights to their gradients. Then, using the Dijkstra’s algorithm [38],
the minimum weighted paths between both sides of the OCT image are found. These paths
correspond to each one of the retinal layers. This way, we obtain both limiting ILM and RPE
layers.

2.2. Trained model creation

This stage of the methodology [14, 39], as illustrated in Fig. 2, is divided in three main steps.
These steps produce the model and the set of features that are used afterwards as the core for
the fluid map generation stage. To find the most proficient configuration for this task, a suitable
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Fig. 3. ILM and RPE retinal layers in an OCT scan.

feature selection, posterior model training and a comparison between the trained classifiers were
made.

2.2.1. Extraction of representative samples

First, from the identified ROI, several representative squared samples of a defined size are
extracted. Each of the samples is characterized afterwards by a vector of 312 relevant features
for medical imaging issues, including statistics that describe the frequency distribution of the
gray levels and texture-based descriptors. As seen in the complete list of features of Table 2,
the descriptors were chosen considering different characteristic aspects of the possible patterns
of fluid and normal tissues that the system may face in the OCT images. Additionally, if a
chosen sample falls partially outside the ROI, the features are extracted only from the maximum
rectangular subsample that exclusively contains ROI. This way, we ensure that both the spatial
pixel distribution is maintained for the texture descriptors to analyze and only relevant patterns
are considered by the machine learning algorithms.

2.2.2. Selection of relevant features

Given that the set of 312 features is considerable, we can assume that this subset of features
contains redundant and useless information. To filter these less relevant markers and improve
the model performance we use a dimensionality reduction technique: Sequential Forward
Selection (SFS). This algorithm finds the best subset of features that are able to separate both
considered classes. SFS, as a forward-oriented selection method, begins from an empty set.
Then, increasingly, the selector adds features that better satisfy the specified criterion. In our
case, this criterion consists in the subset that maximizes the between scatter while minimizing
the within one (inter-intra distance).

2.2.3. Classifier training

Finally, using the reduced feature vector matrices, a collection of representative classifiers are
trained and tested to further study the system behavior over different classifying strategies.
The chosen models for these tests were the Linear Discriminant Classifier (LDC), the Support
Vector Machines (SVM) and the Parzen window method. The LDC classifier finds the direction
along which the two classes are best separated. In this work, we assume same covariance
matrices between classes. Thus, we are able to approximate Fisher’s criterion using minimum
squared-error procedures. SVMs, on the other hand, approximate the best hyperplane that
separates the two most proximal samples and uses it to discriminate future observations. For
this work, an exponential kernel function was used with θ = 1. Finally, the Parzen window
classifier uses the density estimation for each class on a given point to infer the final classification.
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Table 2. Brief descriptions of the defined feature categories.

Category Features

Global Intensity-Based

Features (GIBS)

[1 − 15]

Gray-level global distribution statistics. Typically, cystoid

fluid areas present higher irregularities in their gray level

frequency distribution than the normal retinal tissue.

Gray-level Intensity

Histogram (GLIH)

[16 − 20]

Using the same logic as the GIBS features, we study the

histogram properties to identify irregularities in the sample

intensities distribution.

Histogram of Oriented

Gradients (HOG) [40]

[21 − 101]

81 features describing texture-based information on the

gradient orientations. Cystoid fluid areas tend to have

more variety of gradient orientations than the regular

retinal tissue, which usually presents horizontal or vertical

(shadows) patterns.

Local Binary

Patterns (LBP) [41]

[102 − 165]

Texture-based feature descriptors of the patterns that are

present in the retinal tissue and the irregularities of

pathological zones. Also, it is resilient to the frequent

brightness changes of the OCT images.

Gabor filters

[42] [43]

[166 − 293]

Represented by a Gaussian kernel function modulated by a

complex sinusoidal wave, Gabor filters offer a robust texture

representation even facing noisy or distorted images

capturing brightness variations and gradient orientations

with different complexity levels.

Gray-Level Co-Occurrence

Matrix (GLCM) [44]

[294 − 309]

Set of extracted statistics from matrices that describe texture

via the probability of two gray levels to appear at a certain

distance and angle from each other. A distance of two pixels

and four directions were used.

Fractal dimension

[45] [46]

[310 − 312]

A texture self-similarity descriptor. Useful in undefined cyst

border zones, where texture becomes grainy and its

pattern fills more space than in a more homogeneous zone.

                                                                      Vol. 9, No. 10 | 1 Oct 2018 | BIOMEDICAL OPTICS EXPRESS 4737 



The Parzen window smoothing parameter was calculated using Lissack & Fu’s leave-one-out
estimate [47].

2.3. Fluid maps generation

To create the cystoid fluid maps, the OCT image is divided into overlapping windows. Then,
for each sample, a feature vector is extracted and classified using the model that was trained in
the previous stage. To reduce the algorithm workload, the samples are obtained only from the
minimum rectangular area that contains the ROI. Fig. 4 presents an example of this rectangular
region.
Depending on the retinal morphology, some samples may partially or completely contain

regions outside the retinal layers. These samples, if they do not entirely contain ROI, should
be discarded. Otherwise, if they partially contain ROI, we should filter those who do not have
enough information to return an accurate result in the posterior classification step. Consequently,
we verify for each sample that its center pixel falls inside the ROI (represented in Fig. 4 as green).
If this condition is not met, the sample is discarded. This way, we ensure a minimal amount of
ROI inside each sample to be analyzed by the system, preventing misclassifications for scarcity
of information.
As this solution also allows certain area from outside the ROI in the accepted samples, the

texture features are only extracted from the maximum rectangular section inside each sample
that contains valid ROI pixels. This way, we diminish the information loss in the retinal borders
compared to if we directly discarded these samples for being partially outside the defined ROI.

Fig. 4. Original image and a representation of the minimum rectangular area that contains
the ROI, represented as green (retinal ROI) and blue (non ROI area contained in the sampling
area).

2.3.1. Construction of the binary maps

Binary maps offer a simple and direct representation of the identified cystoid fluid presence using
the classification results. Also, this visualization method offers robustness to the sample overlap
variations used in the image sampling step. Each positive sample marks as fluid presence its
central position and its closest pixels, which are assumed to be part of the same category. This
process is depicted in Fig. 5. The higher the overlap chosen, the smaller the area that is assigned
to the same category as its closest classified sample. This is also what gives the binary maps
the mentioned robustness to the overlap change, helping to offer similar results with different
sample overlap configurations. Fig. 6 shows a representative example of the resulting binary
map compared to the original OCT image.
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Fig. 5. Binary map creation steps. With the classification results (a), we identify their
original positions (b) in the OCT image and assign the surrounding pixels to their category
(c).

(a)

(b)

Fig. 6. Original retinal image ROI (a) and the resulting binary map (b), generated with a
sample overlap of 52px.
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2.3.2. Construction of the heat maps

This approach offers a complementary representation of the cystoid fluid information, indicated
to be used along with the binary maps. Heat maps represent the confidence of the model on
the overlapped area of belonging to a fluid region. To create these maps, following a voting
strategy, each sample that is overlapping a certain pixel acts as a ballot: for each pixel, the voting
is performed by accumulating the number of superimposed samples that considered the pixel as
part of a fluid pattern. An example of this process and the corresponding final result is illustrated
in Fig. 7.

Fig. 7. Voting process steps. First, the classification results (a) are projected into the original
image (b). Then, each window votes for their overlapping pixels (c). The resulting image of
this voting process can be seen in (d).

This way of sampling presents, however, a biased result (that is, some pixels are overlapped by
more windows than others). This creates the lattice pattern shown in the final result of Fig. 7
and the dimness present in detections that are close to the borders. To balance the results, the
number of positive votes for each pixel is divided by the total number of windows that voted in
that given position. Hence, each pixel in the confidence map contains the proportion of windows
that were considered as pathological by the trained model. Moreover, as these maps are destined
to ease the workload of an expert clinician, a complementary color mapping is applied after the
normalization, for a better visualization of the map values. This heat map is more intuitive and
easier to revise by the expert clinician than a grayscale visualization. The proposed color scale
(compared in Fig. 8 with the normalized grayscale map) offers sharper and more distinctive
gradients between confidence levels. Consequently, an human expert could easily understand the
displayed classification results. Note the detection on the right border that, without normalization
[Fig. 7(d)], was almost impossible to perceive. It now offers a higher intensity range of values
despite the lesser number of overlapping window voters. Also, the lattice pattern product of
rounding error disappeared completely thanks to this process.
In Fig. 9, a representative result of this entire process overlapped with the original image is
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Fig. 8. Comparison between the grayscale normalized map and the complementary color
scale proposed (heat map).

presented. Also, a color scale showing the relation between the color levels and the confidence
values is added, helping the specialist to better assess the presented map. We can see one of the
advantages of this method versus the binary approach: the false positives, product of retinal
zones with complex patterns receive less votes than areas that truly belong to fluid regions. In the
binary approach, despite having a more adjusted map, the information is given as received, only
knowing that those areas were marked as pathological by the model. Heat maps, in contrast, show
that despite the model considered some samples as pathological, the majority of the windows
which overlapped that zone considered it as healthy. This approach offers more robustness from
the model errors and a more adjusted idea about the confidence of the model in the pathological
detection.
On the other hand, binary maps are less dependent on the used overlap. In both cases, the

quantity of extracted samples (via adjusting the number of pixels the windows overlap between
each other) determines the roughness of the map borders. However, the resolution of the color
scale of the heat maps also depends on this number of samples. The higher the overlap, the more
discrete values will be available to approximate a continuous confidence function. Binary maps
always offer a somewhat consistent result, but heat maps suffer more in quality as the number of
samples diminish. As seen in Fig. 10, higher overlap values result in smoother map edges and
color gradients while lower values create block-like maps with more abrupt color level transitions.

3. Results and discussion

The methodology is organized in two main parts: definition and training of the models and their
use in the construction of the proposed cystoid fluid maps. In that sense, specific validation
processes were organized for each one of these parts. The validation of the system was done
using 100 OCT images captured by a CIRRUS HD-OCT Carl Zeiss Meditec confocal scanning
laser ophtalmoscope and 223 OCT images from a Spectralis OCT confocal scanning laser
ophtalmoscope from Heidelberg Engineering, summing a total of 323 OCT images provided by
the opthalmologic services of the Complejo Hospitalario Universitario de Santiago (CHUS) and
the Complejo Hospitalario Universitario de Ferrol (CHUF) from Galicia (Spain). Both capture
devices are among the mostly used over the healthcare services. All these OCT images were
taken centered in the macula, from different patients and also from both left and right eyes. The
OCT images range in resolution from 924 × 279 to 1680 × 1050 pixels. A subset of these images
from both devices was used to train and test the candidate models (the entire set is posteriorly
used in the fluid map validation process).
The image dataset includes a significant variability of intensity and contrast configurations.

The images were used directly to test the system without any preprocessing stage in order to
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Fig. 9. Final heat map, overlapped with the original OCT image. The color scale and its
relationship with the resulting confidence values is also presented in the results.

(a)

(b)

Fig. 10. Heat maps generated with a different sample overlap: 32px (a) and 56px (b).
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preserve the original characteristics of the retinal tissue as observed in the images. Additionally,
the images were labeled by an expert clinician, identifying the presence of cystoid fluid. This
ground truth served as reference for the entire validation process. The dataset images contained
healthy tissue and fluid regions, as well as other pathological structures. Only the fluid regions
were considered for this work, but samples of these non-fluid pathological structures were also
included in the possible patterns as non-fluid regions so the system could differentiate them in
case they were both present in the analyzed OCT images.
All the experiments were repeated with three different configurations of the used datasets

to test the capabilities of the methodology with the different tested devices. One of them only
considered images of the Cirrus device, other containing only images of the Spectralis device
and, finally, a third experiment branch conducted with all the images from both. Therefore, at the
end of the first stage, we obtained three trained models: one for each device and a third combined
one, trained with images from both capture devices. This way, the potential and capabilities of
the proposed methodology were measured individually for each capture device but also for the
simultaneous learning of both devices.

3.1. Validation of the construction and training of the models

From each of the considered datasets, a series of 61 × 61 representative samples were obtained
for the two studied classes (fluid and non-fluid regions) as well as the total roster of 312 features
that are extracted for each case. Then, a ranking of the 100 most representative features is created
with the SFS algorithm (optimal selections were identified with lower sizes). This selector
mostly chose, with the three tested datasets, the following characteristics: HOG, Gabor and LBP
features. Regarding their relevance, different HOG markers and the skewness of the gray level
distribution in the samples were always amongst the five highest ranked markers with the three
tested configurations.

Finally, for each ordered increasing subset of this feature ranking, 50 randomly chosen divisions
of the dataset in half for the training and testing were used to find the most suitable model. Each
training partition was trained and evaluated using a 10-fold cross-validation with all the three
classifiers (LDC, SVM and Parzen window). The resulting models were evaluated with the
corresponding test subset. For each classifier type and studied image dataset (Cirrus, Spectralis
and combined), the trained model with the subset of features that obtained the lowest minimum
mean test error of the 50 iterations is chosen.
As said, a representative subset of images of each capture device was used to train and test

the three models. From the Cirrus device 83 OCT histological images were considered, from
where 1613 samples were extracted: 806 from fluid regions and 807 from non-fluid regions.
The Spectralis subset for the testing and training of the models consisted of 73 representative
histological images. From this image subset, 1634 samples were extracted: 778 containing fluid
regions and 856 from the opposite class.
In Figs. 11, 12 and 13 the mean test error for each feature subset is displayed, with a vertical

bar indicating the number of features that achieved the minimum test error for each classifier.
The three experiments returned satisfactory results, achieving a maximum mean test success
rate of 94.18% with the Cirrus images, 95.59% with the Spectralis images and 94.01% with the
combination of both previous subsets (all these results reached with the LDC classifier).

3.2. Validation of the cystoid fluid maps

As indicated, the trained models are used to generate the cystoid fluid maps. As the proposed
methodology is a novel paradigm and offers an alternative to the classical segmentation, metrics
related to it (like the Dice coefficient) can not be applied. Thus, as these representations are
intended to ease the workload of an expert clinician facilitating the early diagnosis, we measure
its utility in a real clinical screening scenario that was set in collaboration with the ophthalmic
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Fig. 11. Mean test error per feature subset of 50 iterations for the dataset trained with the
Cirrus images. Vertical lines indicate the number of features that achieved the minimum
mean test error value for each classifier.

Fig. 12. Mean test error per feature subset of 50 iterations for the dataset trained with the
Spectralis images. Vertical lines indicate the number of features that achieved the minimum
mean test error value for each classifier.

                                                                      Vol. 9, No. 10 | 1 Oct 2018 | BIOMEDICAL OPTICS EXPRESS 4744 



Fig. 13. Mean test error per feature subset of 50 iterations for the dataset trained with
images coming from both capture devices. Vertical lines indicate the number of features that
achieved the minimum mean test error value for each classifier.

services from two different public hospital services.
In these experiments, all the images from each category (Cirrus, Spectralis and, consequently,

the combined dataset) were classified into two categories based on the expert criteria: images
which did not contain clinically relevant fluid regions and images with a significant amount
of fluid presence in-between the retinal layers. That is, a clinically relevant / non-relevant
pathological scenario. This distinction has into account the distribution of the fluid regions in
addition to its amount, as groups of microcyst represent more severe clinical scenarios than other
cases of fluid bodies distributed along the retina.
After the identification of all the images into these two categories (clinically relevant fluid

presence / healthy or non-relevant fluid presence), the binary and heat maps are created for each
analyzed image with the corresponding trained model. In particular, we generated two pairs of
binary / heat maps: one of them using the trained model of the specific capture device used to
create the OCT image and other pair using the trained model of the combined image dataset.
For the binary maps, we consider as significantly pathological when the area of the biggest

identified fluid region presents a minimum established size.
To evaluate the heat maps, we studied the two variables that define them: the confidence

values (reflected in the map as the different colors) and the pathological area in each confidence
level that could be considered clinically relevant. All the maps were generated using an overlap
between samples of 52px.
Figs. 14 and 15 present the results of this screening scenario in the determination of the

minimum significant pathological size. In this case, we show the results using only the models
trained exclusively with each device (and tested with images from the same device). As we can
see, the use of both maps obtained satisfactory results. Cirrus binary maps correctly separated
80% of the images with their optimal configuration, while the Spectralis maps reached higher
rates with a 92.83% of accuracy. Regarding heat maps, with their best configurations, Cirrus heat
maps correctly classified 94% of the images, while the Spectralis heat maps reached a success
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rate of 95.96%. These tests showed how the methodology is valid and capable of solving this
screening problem separately for each capture device.

Additionally, Fig. 16 presents the results of this experiment using the maps that were created
with the combined image dataset. In this case, the binary maps reached an accuracy of 91.33%,
significantly higher than the original Cirrus maps and slightly lower than the Spectralis individual
test. Heat maps also successfully separated a 93.50% of the cases with their optimal configurations.
Note how the approach presented in this work is able to simultaneously learn the fluid and the
retinal patterns independently of the capture device with their respective noise patterns and
visualization of the eye fundus characteristics.

(a) (b)

Fig. 14. Accuracy achieved using (a) the binary fluid maps and (b) the heat maps for the
Cirrus image dataset. The color scale in the heat map test represents the percentage of
correctly classified maps.

3.3. Discussion

Regarding the first stage (model training), in Fig. 17 we can see different representative image
sections with windows that were correctly and incorrectly classified with each of the models. The
colored square represents the 61 × 61 sample, from where the features set is extracted to classify
the sample into a fluid (green) or non-fluid region (red). As seen in Figs. 17(c) and 17(d), the
system is able to correctly identify as non-fluid even other pathological structures that present
gray levels and patterns that could be confused with fluid regions. The model errors are usually
related to windows particularly matching homogeneous dark areas with round edges [Fig. 17(e)],
but the proposed visualization methods are robust to these misclassifications as they both also
examine the surrounding regions to generate the final map. Nonetheless, the combined approach
successfully learned the patterns from both devices, being able to identify the fluid and retinal
tissue patterns independently of the capture device varying characteristics (like the retinal tissue
representation, noise pattern, image resolution or possible irregularities in the capture process).
Regarding the map tests, as predicted, the results were susceptible to the model coverage.

Depending on the focus of the samples used to train the models, the maps will show different
confidence values and identification extensions. For this reason, the quality test of the maps
evaluated the existence of a configuration that could separate the two considered classes rather
than setting a predetermined one to test. The three tested models used to generate the maps
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(a) (b)

Fig. 15. Accuracy achieved using (a) the binary fluid maps and (b) the heat maps for the
Spectralis image dataset. The color scale in the heat map test represents the percentage of
correctly classified maps.

(a) (b)

Fig. 16. Accuracy achieved using (a) the binary fluid maps and (b) the heat maps for the
combined image dataset. The color scale in the heat map test represents the percentage of
correctly classified maps.
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Fig. 17. Examples of true positive (green) classified samples (a) and (b), true negative (red)
classified samples (c) and (d) and misclassified samples (e) for each of the considered trained
models.

presented a zone where both categories were separated successfully. The Cirrus trained dataset
obtained the lowest values of the three models with broader and softer accuracy value gradients.
If we compare both the Spectralis and the Cirrus binary map tests, we can see how the Spectralis
maps achieved a more narrow peak shape. This means, for a human expert analyzing the results,
that the maps created with the Spectralis model are easier to inspect (as the area threshold is more
differentiated). Nonetheless, the hybrid dataset was able to improve the Cirrus results thanks to
the help of the patterns also present in the Spectralis samples, obtaining the desired peak-shape.
A similar scenario happened with the heat maps. While the three models achieved satisfactory
accuracy measures (95.96% for the Spectralis maps, 94% for the Cirrus ones and 93.50% for
the combined dataset), a more spread in the accuracies of the Cirrus test configurations show
how the generated Spectralis maps hold a better understanding of the fluid and retinal patterns.
However, the hybrid model was able to compensate this difference in coverage, represented in the
graphs by the similar narrow pattern in the heat map tests and a higher minimum accuracy.
Apart from the presented statistics, an example of several obtained maps using each of the

generated models can be seen in Figs. 18, 19 and 20. Each figure presents a small representative
subset of images from the variety of cases that were used to train and evaluate the models and
maps used in this work.
All these maps are easy and intuitive to revise by the human expert, facilitating enormously

the analysis and diagnosis of the fluid presence, even in complex scenarios [Figs. 18(c6), 18(s3),
18(s6)], [Figs. 19(c6), 19(s3), 19(s6)] and [Figs. 20(c6), 20(s3), 20(s6)]. Moreover, this
identifications can serve as input to posterior automatic procedures, as they serve as an abstraction
of the image texture and regional information. Also, binary maps serve as a good indicator of
where the models are getting confused and help to improve their weaknesses. In the Cirrus
results, in the image Fig. 19(c4), we can see how the shadows show a bit of response despite
not being fluid bodies; or the case of Fig. 18(s4), where dark areas of exudates present also
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Fig. 18. Representative map results of different complexities with images from the Spectralis
capture device and the specific trained model.

small responses. Moreover, the maps show how the combination of both datasets helped in some
cases. As reference, Fig. 20(c4) has less FPs than Fig. 19(c4). Also, Fig. 20(c6) shows a more
adjusted map to the fluid pattern than Fig. 19(c6). On the other hand, this combined dataset
slightly altered too the already well defined ones as a result of the learning process with both
capture device images. As an example, Fig. 20(c3) presents an extended pattern in the darker
foveal area that is nonexistent in the Cirrus maps. Also, Fig. 20(s4) shows a larger dark area
surrounding the exudates being marked as cystoid fluid.

Despite this, heat maps still present in all three cases the relevant fluid areas as high-confidence
values, with negligible variations between the single device trained model and the hybrid one.
As seen in these examples, binary and heat maps offer robust results independently of the capture
device that was used for training and show how both map approaches are complementary, helping
to rapidly assess the presence and complexity of these fluid pathological structures.

4. Conclusions

The detection of fluid bodies is critical for the early diagnosis of pathologies like macular
edema or age-related macular degeneration, among the main causes of blindness in developed
countries. To date, most of the proposed methodologies that try to identify the pathological fluid
accumulations in the intraretinal layers follow a classical segmentation approach.

While the state of the art obtained satisfactory results in the segmentation of the fluid regions,
we propose an alternative paradigm that we consider also adequate for the clinical practice. As
fluid accumulations may appear mixed with other pathologies, structures and shadows projected
by the own capturing technique, a perfect segmentation is not always possible or at least extremely
complicated. The borders in these cases appear to be merged, diffuse or even nonexistent.
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Fig. 19. Representative map results of different complexities with images from the Cirrus
capture device and the specific trained model.

The novel paradigm herein proposed, instead of cystoid fluid segmentation trains models to
identify the presence or absence of intraretinal fluid by the analysis of squared regions. Then,
using the trained models, the method automatically generates complementary binary and heat
maps that offer a clean, direct and intuitive idea about the fluid accumulation in the eye fundus
using the OCT scans as source of information.
Moreover, the proposed paradigm can be adapted to other pathologies and medical imaging

modalities without extensive effort from the expert clinicians, as there is no need for a perfectly
segmented ground truth. The models can be trained with a reduced set of representative samples
from both healthy and pathological regions.
The methodology was validated in two stages: First, the training and test of the models were

performed with a representative subset of 156 OCT images from both devices where we selected
3247 squared samples from both fluid and non-fluid regions. From these samples, 312 features
are extracted and filtered using a Sequential Forward Selector (SFS) algorithm to identify the most
discriminative ones. Then, an individual model for each analyzed capture device and a third one
with both were trained using the features that were selected with the SFS. Three representative
classifier types were tested for each dataset: an LDC, an SVM and a Parzen window. All the
three configurations achieved satisfactory results with all the considered datasets, reaching with
the combined dataset models a satisfactory 94.01% of mean test accuracy.
Secondly, we performed the map evaluation using the complete dataset of 323 OCT images.
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Fig. 20. Representative map results of different complexities with images from both capture
devices and the combined trained model.
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For this purpose, a real medical screening scenario was established to test the suitability of the
maps to identify the clinically relevant fluid presence from a non-relevant one, using only the
generated maps.
With the models that achieved the best results with each used dataset, both binary and heat

maps were created for each tested image. The optimal configuration of binary maps using the
combined image dataset successfully differentiated a 91.33% of the images whereas the optimal
configuration of heat maps using images from both devices achieved a 93.50% of accuracy.
As these results show, in a medical screening scenario made in collaboration with two of the

main medical public opthalmologic services from Galicia (Spain) and tested with two of the main
OCT devices of the market, our proposal is suitable for a clinical domain and returns satisfactory
results even with contourless fluid regions.
Moreover, this proposal was trained without needing a precise ground truth, and only with

representative samples from a selection of the images. This means the system could be adapted to
other pathologies or medical imaging domains with a reduced workload by the expert clinicians.

Being patent the ability of these maps for detecting these fluid regions and their usefulness for
the clinical practice, as future work we plan to study the possibility of increasing the domain of
the methodology to multiple pathological structures also present in the retina (like serous retinal
detachment or diffuse retinal thickening). Moreover, to increase the sensibility of the system
to the presence of microcysts, a specific window size and classifiers can be studied to create
a two-step map creation. Additionally, we plan to use the cystoid fluid maps as input for the
calculation of representative biomarkers for its use in the specific assessment of the pathological
severity. Finally, to allow further comparison with alternate approaches, we plan to reassure the
medical screening scenario testing with publicly available benchmarking datasets.
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