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Abstract
In this paper, inspired by the concept of generalized single-valued neutrosophic 

graphs(GSVNG) of the first type, we define yet another generalization of neutrosophic graph 
called the generalized interval- valued neutrosophic graph of 1 type (GIVNG1) in addition 
to our previous work on complex neutrosophic graph (CNG1) in [47]. We will also show a 
matrix representation for this new generalization. Many of the fundamental properties and 
characteristics of this new concept is also studied. Like the concept CNG1 in [47], the concept 
of GIVNG1 is another extension of generalized fuzzy graphs 1 (GFG1) and GSVNG1.

Subject Classification: (2000) 03E72, 05C72, 68R10

Keywords: Interval-Valued Neutrosophic Graph, Generalized Interval Valued Neutrosophic Graph 
Of First Type, Matrix Representation; Neutrosophic Graph

1. Introduction

In order to efficiently handle real life scenarios that conatins uncertain 
information,neutrosophic set(NS) theory, established by Smarandache 
[32], is put forward from the perspective of philosophical standpoints 
through regarding the degree of indeterminacy or neutrality as an 
independent element. As a result, many extended forms of fuzzy sets such 
as classical fuzzy sets [45], intuitionistic fuzzy sets [3-4], interval-valued 
fuzzy sets [40] and interval-valued intuitionistic fuzzy sets [5] could be 
seen as reduced forms of NS theory. In a NS, a true membership degree 
T, an indeterminacy membership degree I and a falsity membership 
degree F constitute the whole independent membership degrees owned 
by each element. However, it is noticed that the range of T , I and F falls 
within a real standard or nonstandard unit interval]−0, 1+[, hence it is 
difficult in applying NSs to many kinds of real world situations due to 
the limitation of T , I and F . Therefore, an updated form called single 

⩽E-mail:  ganeshsree86@yahoo.com
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valued neutrosophic sets (SVNSs) was designed by Smarandache firstly 
[32]. Then, several properties in terms of SVNSs were further explored by 
Wang et al. [43]. In addition, it is relatively tough for experts to provide 
the three membership degrees with exact values, sometimes the form of 
interval numbers outperform the exact values in many practical situations. 
Inspired by this issue, Wang et al. [43] constructed interval neutrosophic 
sets concept (INSs) that performs better in precision and flexibility. Thus, 
INSs could be regarded as an extension of SVNSs. Moreover, some recent 
works about NSs, INSs and SVNSs along with their applications could be 
found in [13-15, 22,35, 53-59].

To studying the relationship between objects or events, the concept 
of Graph is thus created. In classical crisp graph theory, each of the two 
vertices (representing object or event) can assign two crisp value, 0 (not 
related/connected) or 1 (related/connected). The approach of fuzzy 
graph is a generalization the classical graph by allowing the degree of 
relationship (i.e. the membership value) to be anywhere in [0,1] for the 
edges, and it also assign membership values for the vertices. In the context 
of fuzzy graph, there is a rule that must be satisfied by all the edges and 
vertices, as follows:

the membership value of an edge must always be less than or equal to both the 
membership values of its two adjacent vertices. (*)

In over one hundred research papers, the further generalization of 
fuzzy graphs were studied, such as intuitionistic graphs, interval valued 
fuzzy graphs [7, 25, 28, 29]and interval-valued intuitionistic fuzzy graphs 
[24].However, such generalization still preserve (*) that was established 
since the period of fuzzy graphs.

As a result, Samanta et al. [39]analysed the concept of generalized 
fuzzy graphs (GFG), which was derived from the concept of fuzzy graph 
while removing the confinement of (*) . He had also studied some major 
advantages of GFG, such as completeness and regularity, by some proven 
facts. These authors had further developed GFG into two types, namely: 
generalized fuzzy graphs of first type (GFG1), generalized fuzzy graphs 
based on second type (GFG2). Each type of GFG can likewise be created 
by matrices just as in the case of some fuzzy graphs. The authors had 
also justified that the concept of fuzzy graphs on previous literatures 
are limited to representing some very particular systems such as social 
network, and therefore GFG is claimed to be capable to put to use on a 
much wider range of different scenario.

On the other hand, when the description of an object or a relation 
is both indeterminate and uncertain, it may be handled by fuzzy[23], 
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intuitionistic fuzzy, interval-valued fuzzy, interval-valued intuitionistic 
fuzzy graphs and Set-valued graphs [2]. So, for this purpose, another 
new concept: neutrosophic graphs based on literal indeterminacy (I),were 
proposed by Smarandache [34]to deal with such situations. Such concept 
was published in a book by the same author collaborating with Vasantha et 
al.[42]. Later on, Smarandache[30-31] further introduced yet a new concept 
for neutrosophic graph theory, this time using the neutrosophic truth-
values (T,I,F). He also gave various characterization on neutrosophicgraph, 
such as theneutrosophic edge graphs, neutrosophic vertex graphs and 
neutrosophic vertex-edge graphs. Later on[33], Smarandache himself 
further generalized the concept of neutrosophic graphs, and yield even 
more new structures such as neutrosophic offgraph, neutrosophic bipolar 
graphs, neutrosophic tripolar graphs and neutrosophic multipolar graphs. 
After which, the study of neutrosophic vertex-edge graphs has captured 
the attention of most researchers, and thus having more generalizations 
derived from it.

In 2016, using the concepts of SVNSs, Broumi et al.[8] investigated 
on the concept of single-valued neutrosophic graphs, and formulated 
certain types of single-valued neutrosophic graphs (SVNGs). After that, 
Broumi et al.introduced in [9,10,16,17,36]: the necessity of neighbourhood 
degree of a vertices and closed neighborhood degree of vertices in single-
valued neutrosophic graph, isolated-SVNGs, Bipolar-SVNGs, complete 
bipolar-SVNGs, regular bipolar-SVNGs, uniform-SVNGs. In[11-12,18], 
also they studied the concept of interval-valued neutrosophic graphs 
and the importance of strong interval-valued neutrosophic graph, where 
different methods such as union, join, intersection and complement have 
been further investigated. In [35], Broumi et al. proposed some computing 
procedure in Matlab for neutrosophic operational matrices. Broumi et 
al.[37] developed a Matlab toolbox for interval valued neutrosophic 
matrices for computer applications. Akram and Shahzadi [6] introduced a 
new version of SVNGs that are different from those proposed in [8,36],and 
studied some of their properties. Ridvan[20] presented a new approach to 
neutrosophic graph theory with applications. Malarvizhi and Divya[38] 
presented the the ideas of antipodal single valued neutrosophic graph. 
Karaaslan and Davvaz[21] explore some interesting properties of single-
valued neutrosophic graphs.Krishnarajet al.[1] introduced the concept of 
perfect and status in single valued neutrosophic graphs and investigated 
some of their properties.

Krishnaraj et al. [26] also analysed the concepts self-centered single 
valued neutrosophic graphs and discussed the properties of this concept 
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with various examples, while Mohmed Ali et al.[41]extended it further 
to interval valued neutrosophic graphs[11].Kalyan and Majumdar [27]
introduce the concept of single valued neutrosophic digraphs and 
implemented it in solving a multicriterion decision making problems.

The interval-valued neutrosophic graphs studied in the literature 
[11, 12], like the concept of fuzzy graph, is nonetheless bounded with the 
following condition familiar to (*): 

The edge membership value is lessser than the minimum of its end vertex 
values, whereas the edge indeterminacy-membership value is lesser than the 
maximum of its end vertex values or greater than the maximum of its end vertex 
values. Also the edge non-membership value is lesser than the minimum of its end 
vertex values or is greater than the maximum of its end vertex values. (**)

Broumi et al.[19]had thus followed the approach of Samanta et al. [39], 
by suggesting the removal of (**) and presented the logic of generalized 
single-valued neutrosophic graph of type1 (GSVNG1). This is also a 
generalization from generalized fuzzy graph of type1 [39].

The main goal of this work is to further generalize the method of 
GSVNG1 to interval-valued neutrosophic graphs of first type (GIVNG1), 
for which all the true, indeterminacy, and false membership values, are 
inconsistent. Similarly, the appropriate matrix representation of GIVNG1 
will also be given.

The results in this article is further derived from a conference paper 
[46] that we have published one year ago in IEEE. On the other hand, we 
have just published a paper on complex neutrosophic graph (CNG1), 
which is another extension of GFG1 and GSVNG1 in [47]. The approach 
ofGIVNG1 and CNG1, however, are distint from one another. This is 
becausethe concept of CNG1 extends the existing theory by generalizing 
real numbers into complex numbers, while all the entries remain single 
valued; whereas in this paper,the concept of GIVNG1 extends the 
existing theory by generalizing the single valued entriesinto inter-valued 
entries,while all those inter-valued entries remains as real numbers

Thus, following the format of our recent conference paper [46], this 
paper has been aligned likewise: In Section 2, the concept on neutrosophic 
sets, single- valued neutrosophic sets, interval valued neutrosophic graph 
and generalized single-valued neutrosophic graphs of type 1are described 
in detail, which serves as cornerstones for all the contents in later parts of 
the article. In Section 3, we present the ideas of GIVNG1 illustrated with 
an example. Section 4 gives the appropriate way to represent the matrix 
of GIVNG1.
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2. Some preliminary results

In this part, we briefly include some basic definitions in [19, 32, 43,47] 
related to NS, SVNSs, interval- valued neutrosophic graphs(IVNG) and 
generalized single-valued neutrosophic graphs of type 1(GSNG1).

Definition 2.1 [32]. Let X be a series of points with basic elements in X 
presented by x; then the neutrosophic set(NS) A (is an object in the form 
A = {< x: TA(x), IA(x), FA(x) >, x ŒX}, defines the functions T, I, F: X → 
]−0,1+[denoted by the truth-membership, indeterminacy-membership, and 
falsity-membership of the element x X to the set A showing the condition:

–0 ( ) ( ) ( )3 . (1)A A AT x I x F x +≤ + +

The functions ( ), ( ) and ( )A A AT x I x F x  are absolute standard or non-
standard subsets of ]−0,1+[.

As it is very complex i applying NSs to real issues, Smarandache [32] 
developed the notion of a SVNS, which is an occurrence of a NS and can 
be employed in practical scientific and engineering applications.

Definition 2.2 [43]. Let X be a series of points (objects) with basic elements 
in X presented by x. A single valued neutrosophic set A (SVNS A) is 
characterized by truth-membership TA(x), an indeterminacy-membership 
IA(x), and a falsity-membership FA(x) .∀x ŒX , TA(x), IA(x), FA(x) Œ[0, 1]. A 
SVNS A can be rewritten as

{  :  ( ),  ( ),  ( ) ,  } (2)A A AA x T x I x F x x X= < > ∈

Definition 2.3 [19] Suppose the following conditions are expected:
a)  V is a null-void set.
b)  ,  ,  : V [0,1]T I Fρ ρ ρ →  
c)  E = {(rT(u),rT(v)) | u, v ŒV},
   F = {(rI(u),rI(v)) | u, v ŒV},
   G = {(rF(u),rF(v)) | u, v ŒV}.
d)  a : E Æ [0, 1] , b : F Æ [0, 1], d : G Æ [0, 1] are three functions.
e)  r = ( rT, rI, rF) ; and 
   w = ( wT, wI, wF) with
   wT (u, v) =  a ((rT(x), rT(v))),
   wI (u, v) =  b ((rI(x), rI(v))),
  wF (u, v) =  d ((rF(x), rF(v))), ∀ u, v ŒV.
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Then:
i)  The structure x = < V, r, w > is considered to a GSVNG1. 
  Remark: r which depends on rT , rI , rF. And w which depends on a, 

b. Hence there are 7 mutually alone parameters in total which make 
up a CNG1: V, rT , rI , rF, a, b, d.

ii)  ∀ ŒV, x is considered to bea vertex of x. The whole set V is termed as 
the vertex set of x. 

iii)  ∀ u, v ŒV, (u, v) is considered to be a directed edge of x . 
 In special, (u, v) is considered to be a loop of x.

iv)  For all vertex : rT(v), rI(v), rF(v) are considered to be the T, I, and F 
membership value, respectively of that vertex v . Moreover, if rT(v) = 
rI(v) = rF(v) = 0, then v is supposed to be a null vertex.

v)  Correspondingly, for all edge (u, v) : wT(u, v), wI(u, v), wF(u, v) 
considered to have T, I, and F respectively membership value, of that 
directed edge (u, v). In addition, if wT(u, v) = wI(u, v) = wF(u, v) = 
0,then (u, v) is considered to be a null directed edge.

Remark : It obeys that: V×V→[0,1].

3.  Concepts related to Generalized Interval Valued Neutrosophic 
Graph of First Type

In the modelling of real life scenarios with neutrosophic system (i.e. 
neutrosophic sets, neutrosophic graphs, etc), the truth-membership value, 
indeterminate-membership value, and false-membership value are often 
taken to mean the ratio out of a population who find reasons to “agree”, “be 
neutral” and “disagree”. It can also by any 3 analogous descriptions, such 
as “seek excitement” “loft around” and “relax”. However, there are real 
life situations where even such ratio out of the population are subject to 
conditions. One typical example will be having the highest and the lowest 
value. For example “It is expected that 20% to 30% of the population of 
country X will disagree with the Prime Minister’s decision”.

To model such an event, therefore, we generalize Definition 2.3 so 
that the truth-membership value, indeterminate-membership value, and 
false-membership value can be any closed subinterval of [0,1], instead of a 
single number from [0,1].Such generalization is further derived from [46], 
which is a conference paper that we have just published on this topic.

Note: For all the other parts of this work, we will define:
D1 = {[x, y]: 0 ≤ x ≤ y ≤ 1} 
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Definition 3.1 [46]. Let the statements below holds good:
a)  V is considered as a non-empty set.
b)  ρT, ρ I, ρF are three functions, eachfrom V to D1.
c)  E  = {(ρT(u), ρT(v)) | u, v ŒV},
   F  = {(ρ I(u), ρ I(v)) | u, v ŒV},
   G = {(ρF(u), ρF(v)) | u, v ŒV}.
d)  a : E Æ D1 , b : F Æ D1, d : G Æ D1 are three functions.
e)  ρ  = ( ρT, ρ I, ρF) ; and 
   ω  = ( ω T, ω I, ω F) with
   ω T(u, v) = a ((ρT(x), ρT(v))),
   ω I (u, v) = a ((ρ I(x), ρ I(v))),,
  ω F(u, v) = a ((ρF(x), ρF(v))),, 
  for every u, v ŒV. 

Then:
i)  The structure x = <V, ρ , ω>is said to be a generalized interval-valued 

neutrosophic graph of type 1 (GIVNG1) . 
ii)  For each ŒV , x is termed to be a vertex of x. The spanned set V is 

named the vertex set of x.
iii)  ∀ u, v ŒV, (u, v) is termed to be a directed edge of x In particular, (u, v) 

is said to be a loop of x .
iv)  ∀ vertex : ρT(v), ρ I(v), ρF(v) are said to be the truth-membership 

value, indeterminate-membership value, and false-membership value, 
respectively, of that vertex v. Moreover, if ρT(v) = ρ I(v) = ρF(v) = [0,0], 
then v is deemed as void vertex.

v)  Similarly, for each edge (u, v) : ω T(u, v), ω I(u, v), ω F(u, v) are said to 
be the T, I, and F membership value respectively of that directed edge 
(u, v). Moreover, if ω T(u, v) = ω I(u, v) = ω F(u, v) = [0,0],then (u, v) is 
said to be a void directed edge.

Remark : It follows that : V × V Æ D1.
Note that every vertex v in a GIVNG1 have a single, undirected 

loop, whether void or not. Also each of the distinct vertices u, v in a 
GIVNG1possses two directed edges, resulting from (u, v) and (v, u), 
whether void or not. 
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We study that in classical graph theory, we handle ordinary (or 
undirected) graphs, and also some simple graphs. Further we relate our 
GIVNG1 with it, we now give the below definition.

Definition 3.2. [46] Given x = <V, ρ , ω> be a GIVNG1.
a)  If ( , ) ( , ), ( , ) , and ( , )) ,( ( , )T T I I F Fa b b a a b b a a b b aω ω ω ω ω ω= = =      then
  {a, b} = {(a, b), (b, a)} is said to be an (ordinary) edge of x. Moreover, {a, b} 

is said to be a void (ordinary) edge if both (a, b) and (b, a) are void.
b)  If ( , ) ( , ), ( , ) ( , ) and ( , ) ( , )T T I I F Fu v v u u v v u u v v uω ω ω ω ω ω= = =       holds 

good for all v ŒV, then x is considered to be ordinary (or undirected), 
else it is considered to be directed. 

c)  When all the loops of x are becoming void, then x is considered to be 
simple. 

In the following section, we discuss a real life scenario, for which 
GSVNG1 is insufficient to model it - it can only be done by using GIVNG1. 

Example 3.3. Part 3.3.1 The scenario

Country X has 4 cities {a, b, c, d}. The cities are connected with each 
other by some roads, there are villages along the four roads (all of them are 
two way) {a, b}, {c, b}, {a, c} and {d, b}. As for the other roads, such as {c, b}, 
they are either non-exitsant, or there are no population living along them 
(e.g. industrial area, national park, or simply forest).The legal driving age 
of Country X is 18.The prime minister of Country X would like to suggest 
an amendment of the legal driving age from 18 to 16. Before conducting a 
countrywide survey involving all the citizens, the prime minister discuss 
with all members of the parliament about the expected outcomes.

The culture and living standard of all the cities and villages differ 
from one another. In particular:

The public transport in c is so developed that few will have to drive. 
The people are rich enough to buy even air tickets. People in d tend to be 
more open minded in culture. Moreover, sports car exhibitions and shows 
are commonly held there. A fatal road accident just happened along 
{c,b}, claiming the lives of five unlicensed teenagers racing at 200km/h. 
{a, c} is governed by an opposition leader who is notorious for being very 
uncooperative in all parliament affairs.

Eventually the parliament meeting was concluded with the following 
predictions:
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Expected percentage of citizens that will -
support be neutral Against

at least at most at least at most at least at most

C
ities

a 0.1 0.4 0.2 0.6 0.3 0.7
b 0.3 0.5 0.2 0.5 0.2 0.5
c 0.1 0.2 0.0 0.3 0.1 0.2
d 0.5 0.7 0.2 0.4 0.1 0.2

V
illages 

along the 
roads

{a,b} 0.2 0.3 0.1 0.4 0.4 0.7
{c,b} 0.1 0.2 0.1 0.2 0.5 0.8
{a,c} 0.1 0.7 0.1 0.8 0.1 0.7
{d,b} 0.2 0.3 0.3 0.6 0.2 0.5

Without loss of generality: It is either {c, d} does not exist, or there are 
no people living there, so all the six values – support (least, most), neutral 
(least, most), against(least, most), are all zero.

Part 3.3.2 Representing with GIVNG1

When we start from step a to e in def. 3.1 , to illustrate the schema with 
a special GIVNG1
a)  TakeV0 = {a, b, c, d}
b)  In line with the scenario, present the three functions
  ρT, ρ I, ρF, as illustrated in the following table.

a b c d
  ρ T [0.1,0.4] [0.3,0.5] [0.1,0.2] [0.5,0.7]
  ρ I [0.2,0.6] [0.2,0.5] [0.0,0.3] [0.2,0.4]
  ρ F [0.3,0.7] [0.2,0.5] [0.1,0.2] [0.1,0.2]

c)  By statement c) from Definition 3.1: Let
  E0 = {(ρT(u), ρT(v)) | u, v Œ{a, b, c, d}}
  F0 = {(ρ I(u), ρ I(v))|u, v Œ{a, b, c, d}} 
  G0 = {(ρF(u), ρF(v))|u, v Œ{a, b, c, d}}
d)  In accordance with the scenario, define
  a : E0 Æ D1, b : F0 Æ D1, d : G0 Æ D1,
  as illustrated in the following tables.
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  a ((ρT(u), ρT(v))) :
v
u

a b c d

a 0 [0.2,0.3] [0.1,0.7] 0
b [0.2,0.3] 0 [0.1,0.2] [0.2,0.3]
c [0.1,0.7] [0.1,0.2] 0 0
d 0 [0.2,0.3] 0 0

a ((ρ I(u), ρ I(v))) :
v
u

a b c d

a 0 [0.1,0.4] [0.1,0.8] 0
b [0.1,0.4] 0 [0.1,0.2] [0.3,0.6]
c [0.1,0.8] [0.1,0.2] 0 0
d 0 [0.3,0.6] 0 0

a ((ρF(u), ρF(v))) :
v
u

a b c d

a 0 [0.4,0.7] [0.1,0.7] 0
b [0.4,0.7] 0 [0.5,0.8] [0.2,0.5]
c [0.1,0.7] [0.5,0.8] 0 0
d 0 [0.2,0.5] 0 0

Figure 1
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e)  By statement e) from Definition 3.1, let
ρ 0 = (ρT, ρ I, ρF) ; and 
ω 0=(ω T, ω I, ω F) with
ω T(u, v) = a ((ρT(u), ρT(v))),
ω T(u, v) = b ((ρ I(u), ρ I(v))),
ω T(u, v) = d ((ρF(u), ρF(v))),

for all u, v ŒV0 . We now have formed <V0, ρ 0, ω 0> , which is a GIVNG1.
The way of showing the concepts of <V0, ρ 0, ω 0> is by exerting a 

diagram that is similar with graphs as in classical graph theory, as given 
in the figure 1 below

That is to say, only the non-void edges (whether directed or ordinary) 
and vertices been drawn in the picture shown above.

Also, understanding the fact that, in classical graph theory GT, a 
graph isdenoted by adjacency matrix, for which the entries are either a 
positive integer (connected) or 0 (which is not connected).

This motivates us to present a GIVNG1, by a matrix as well. However, 
instead of a single value which defines the value that is either 0 or 1, there 
are three values to handle: ω T, ω I, ω F, with each of them being elements of 
D1. Moreover, each of the vertices themselves also contains ρT, ρ I, ρF, which 
should be taken into account as well.

4. Illustration of GIVNG1by virtue adjacency matrix

Section 4.1 Algorithms representing GIVNG1
In light of two ways that are similar to other counterparts, the focal 

point of interest in the following part is to express the notion of GIVNG1.
Suppose x = <V, ρ , ω> is a GIVNG1 where V={v1, v2,…, vn} denotes the 

vertex set (i.e. GIVNG1 has finite vertices). Remember that GIVNG1has 
its edge membership values (T,I,F) depending on the membership values 
(T,I,F) of adjacent vertices, in accordance with the functions a, b, d. 

Furthermore:
ω T(u, v) = a ((ρT(u), ρT(v))) for all v ŒV, where
a : E Æ D1, and E = {(ρT(u), ρT(v)) |u, v ŒV}, 
ω I(u, v) = b ((ρ I(u), ρ I(v))) for all u, v ŒV, where
b : F Æ D1, and F = {(ρ I(u), ρ I(v)) |u, v ŒV}, 
ω F(u, v) = d ((ρF(u), ρF(v))) for all u, v ŒV, where
d : G Æ D1, and G = {(ρF(u), ρF(v)) |u, v ŒV}. 
First we will form an n × n matrix as presented
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1,1 1,2 1,

2,1 2,2 2,
,

,1 ,2 ,

,

n

n
i j n

n n n n

 
 
  = =   
 
 
 



  

  

  





  


a a a
a a a

S a

a a a

For each i, j,
,  ( ( , ), ( , ), ( , ))i j T i j I i j F i jv v v v v vω ω ω=   a  

That is to say, for an element of the matrix S, different from taking 
numbers 0 or 1 according to classical literatures, we usually take the 
element as an ordered set involving 3 closed subintervals of [0,1].

Remark : Due to the fact that x could only have undirected loops, the 
dominating diagonal elements of S is not multiplied by 2, which is shown 
as adjacency matrices from classical literatures. It is noted that 0 represents 
void, 1 for directed ones and 2 for undirected ones.

At the same time, considering ρT, ρ I, ρF is included in x, which also 
deserves to be considered.

Therefore another matrix R is given in the following part.

1

2
,1

,i n

n

 
 
  = =   
  
 







 



r
r

R R

r

Where

( )
( ( ) ( ) ( ))

( ) ( ) [
 , ,

[ , ( ) (], , ,[ , ]  .)] ( ) ( )
i T i I i F i

L U L U L U
T i T i I i I i F i F i

v v v
v v v v v v

ρ ρ ρ

ρ ρ ρ ρ ρ ρ

=

= ∀

   r

In order to complete the task of describing the whole x in our way, the 
matrix R is augmented with S. Then [ R| S] is represented as an adjacency 
matrix of GIVNG, which is presented below.

1 1,1 1,2 1,

2 2,1 2,2 2,

,1 ,2 ,

[ | ] ,

n

n

n n n n n

 
 
 
 =  
 
 
 
 





   

   

  









r a a a
r a a a

R S
r a a a

where ,  ( ( , ), ( , ), ( , )),i j T i j I i j F i jv v v v v vω ω ω=   a

and [ ] ( ( ), ( ) ,[ ( ), ( )],[ ( ), ( )]), and .L U L U L U
i T i T i I i I i F i F iv v v v v v i jρ ρ ρ ρ ρ ρ= ∀r
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It is worth noticing [ R| S] is not a square matrix (n × (n + 1)matrix), 
thus this kind of representation will aid us to save another divided ordered 
set to denote the values of vertices as ρT, ρ I, ρF.

For both edges and vertices, it is imperative to separately handle each 
of three kinds of membership values in several situations. Consequently, 
by means of three n× (n+1) matrices, we aim to give a brand-new way for 
expressing the whole x, denoted as [ R| S]T, [ R| S]I and [ R| S]F,each of them 
is resulted from [ R| S] through taking a single kind of membership values 
from the corresponding elements.

1 1 1 1 2 1

2 2 1 2 2 2

1 2

( ) ( , ) ( , ) ( , )
( ) ( , ) ( , ) ( , )

[ | ] [ | ] ,

( ) ( , ) ( , ) ( , )

T T T T n

T T T T n
T T T

T n T n T n T n n

v v v v v v v
v v v v v v v

v v v v v v v

ρ ω ω ω
ρ ω ω ω

ρ ω ω ω

 
 
 = =  
  
 

   

   

  



 


 



 

R S R S

1 1 1 1 2 1

2 2 1 2 2 2

1 2

( ) ( , ) ( , ) ( , )
( ) ( , ) ( , ) ( , )

[ | ] [ | ] ,

( ) ( , ) ( , ) ( , )

I I I i n

I I I I n
I I I

I n I n I n I n n

v v v v v v v
v v v v v v v

v v v v v v v

ρ ω ω ω
ρ ω ω ω

ρ ω ω ω

 
 
 = =  
  
 

   

   

  



 


 



 

R S R S

1 1 1 1 2 1

2 2 1 2 2 2

1 2

( ) ( , ) ( , ) ( , )
( ) ( , ) ( , ) ( , )

[ | ] [ | ] .

( ) ( , ) ( , ) ( , )

F F F F n

F F F F n
F F F

F n F n F n F n n

v v v v v v v
v v v v v v v

v v v v v v v

ρ ω ω ω
ρ ω ω ω

ρ ω ω ω

 
 
 = =  
  
 

   

   

  



 


 



 

R S R S

 [ R| S]T, [ R| S]I and [ R| S]F should be stated respectively with the 
true adjacency matrix, the indeterminate adjacency matrix, and false adjacency 
matrix of x .

Remark 1 : If [ R| S]I = [ R| S]F = [[0, 0]]n, n+1 , RT = [[1, 1]]n,1, all the entries of  
ST are either [1, 1] or [0, 0] , then x is reduced to a graph in classical literature. 
Moreover, if that ST is symmetric and the main diagonal elements are being 
0, we have x is further condensed to a simple ordinary graph in literature.

Remark 2 : If [ R| S]I = [ R| S]F = [[0, 0]]n, n+1, and all the entries of [ R| S]T = 
[[ai,j, ai,j]]n, n+1, then x is reduced to a generalized fuzzy graph type 1 (GFG1).

Remark 3 : If [ R| S]T = [[ai,j, ai,j]]n, n+1, [ R| S]T = [[bi,j, bi,j]]n, n+1, [ R| S]T = [[ci,j, ci,j]]
n, n+1, then x is thus reduced to GSVNG1.
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Section 4.2 : Case study to illustrate our example in this paper
For our example in the set-up by the last way i.e. with three matrices: 

[ R| S]T, [ R| S]I and [ R| S]F :

[0.1,0.4] [0,0] [0.2,0.3] [0.1,0.7] [0,0]
[0.3,0.5] [0.2,0.3] [0,0] [0.1,0.2] [0.2,0.3]

[ | ]
0.1,0.2 [0.1,0.7] [0.1,0.2] [0,0] [0,0]

[0.1,0.7] [0,0] [0.2,0.3] [0,0] [0,0]
[0.2,0.6] [0,0] [0.1,0.4] [

[ |

[ ]

]

T

I

R S

R S

 
 
 =  
  
 

=

0.1,0.8] [0,0]
[0.2,0.5] [0.1,0.4] [0,0] [0.1,0.2] [0.3,0.6]
[0.0,0.3] [0.1,0.8] [0.1,0.2] [0,0] [0,0]
0.2,0.4 [0,0] [0.3,0.6] [0,0] [0,0]

[0.3,0.7] [0,0] [0.4,0.7] [0.1,0.7] [
[

0,0]
[0.2,0.5] [0.4,0.7]

[ |

]

]FR S

 
 
 
 
  
 

=
[0,0] [0.5,0.8] [0.2,0.5]

[0.1,0.2] [0.1,0.7] [0.5,0.8] [0,0] [0,0]
[0.1,0.2] [0,0] [0.2,0.5] [0,0] [0,0]

 
 
 
 
  
 

 

5. Postulated results on ordinary GIVNG1

We now illustrate some theoretical results that are derived from the 
definition of ordinary GIVNG1, as well as its indication with adjacency 
matrix. Since we focus on the basic GIVNG1, all the edges which we will 
be referring to are termed as ordinary edges.

Definition 5.1 The addition operation + is defined on D1 as follows: [x , y] 
+ [z , t] = [ x + y , z + t] for all x, y, z, t Œ[0,1].

Definition 5.2 Let x = <V, ρ , ω> be an ordinary GIVNG1. Let V = {v1, v2,…, 
vn} to be the vertex set of x. Then, ∀ i, the degree of vi , symbolised as D (vi), 
is well-defined to be the ordered set

( ( ), ( ), ( )),T i I i F iD v D v D v    
for which, D T(vi) represents the degree of vi and 

1 1

1 1

1 1

) ( ) ( , ) ( , ), ( , ) ( , )

) ( ) ( , ) ( , ), ( , ) ( , )

) ( ) ( , ) ( , ), ( , ) 

n n
L L U U

T i T i r T i i T i r T i i
r r

n n
L L U U

I i I i r I i i I i r I i i
r r

n n
L L U U

F i F i r F i i F i r F
r r

a D v v v v v v v v v

b D v v v v v v v v v

c D v v v v v v v

ω ω ω ω

ω ω ω ω

ω ω ω ω

= =

= =

= =

 
= + + 

 
 

= + + 
 

= + +

∑ ∑

∑ ∑

∑ ∑





 ( , )i iv v
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Remark 1 : In resemblance to classical graph theory, each undirected loop 
has both its ends connected to the similar vertex and so is counted twice.

Remark 2 : Every value of D T(vi), D I(vi) and D F(vi) are elements of D1 instead 
of a single number.

Definition 5.3 : Given x = <V, ρ , ω> and V = {v1, v2,…, vn} are respectively 
an ordinary GIVNG1 and the vertex set of x . Then, the quantity of edges in 
x, represented as Ex and we describe the ordered set (ET, E I, EF) for which

{ , } {1,2, , } { , } {1,2, , }

{ , } {1,2, , } { , } {1,2, , }

{ , } {1,2, , } { , } {1,2, , }

) ( , ) , ( , )

) ( , ) , ( , )

) ( , ) , ( , )

L U
Ti T r s T r s

r s n r s n

L U
I I r s I r s

r s n r s n

L U
F F r s F r s

r s n r s n

a E v v v v

b E v v v v

c E v v v v

ω ω

ω ω

ω ω

⊆ … ⊆ …

⊆ … ⊆ …

⊆ … ⊆ …

 
=  

  
 

=  
  


= 


∑ ∑

∑ ∑

∑ ∑










 

Remark 1: We count each edge only once in classical graph theory, as 
given by { , } {1,2, , }.r s n⊆ …

For instance, if ( , )T a bv vω  is added, we will not add ω T (vb, va) again 
since {a,  b} = {b, a} .

Remark 2 : Each values of ET, E I and EF are elements of D1 instead of a 
single number, and need not be 0 or 1 as in classical graph literature. 
Consequently, it is called “amount” of edges, instead of the “number” of 
edges as in the classical reference.

 ET, E I, EF are closed subintervals of [0,1], and D T(vi), D I(vi), D F(vi) are 
also closed subintervals of [0,1] for each vertex vi. These give rise to the 
following lemmas

Lemma 5.4 : Let x = <V, ρ , ω> be an ordinary GIVNG1. Let V = {v1, v2,…, vn} 
to be the vertex set of x . Denote

,( , ) ,( , )

,( , ) ,( , )

,( , ) ,( , )

) ( , ) [ , ]
) ( , ) [ , ]
) ( , ) [ , ], ,

T i j T i j T i j

I i j I i j I i j

F i j F i j F i j

a v v
b v v
c v v i j

ω φ ψ

ω φ ψ

ω φ ψ

=

=

= ∀
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For each i we have:

( )

( ) ( )

( )

,( , ) ,( , ) ,( , ), ,
1 1

,( , ) ,( , ), , , ,
1 1

,( , ) ,( , ) ,( , ), ,
1 1

i) ( ) ,

ii) ( ) ,

ii

,

,

( ,i) ) .

n n

T i T i r T i r T i iT i i
r r

n n

I i I i r I i iI i i I i r
r r

n n

F i F i r F i r F i iT i i
r r

D v

D v

D v

φ φ ψ ψ

φ φ ψ ψ

φ φ ψ ψ

= =

= =

= =

 
=  

 
 

=  


+ +


 

=  


+


+ +

+

∑ ∑

∑ ∑

∑ ∑







Furthermore:

,( , ) ,( , )
{ , } {1,2, , } { , } {1,2, , }

,( , ) ,( , )
{ , } {1,2, , } { , } {1,2, , }

,( , ) ,( , )
{ , } {1,2, , } { , } {1,2, , }

iv) ,

v) ,

v )

,

, .

,

i

Ti T r s T r s
r s n r s n

I I r s I r s
r s n r s n

F F r s F r s
r s n r s n

E

E

E

φ ψ

φ ψ

φ ψ

⊆ … ⊆ …

⊆ … ⊆ …

⊆ … ⊆ …

 
=  

  
 

=  
  
 

=  
  

∑ ∑

∑ ∑

∑ ∑







Proof : We can proof it directly by applying Def.5.1, Def. 5.2 and Def. 5.3.  
In the following two theorems, we introduce two theorems which both as 
a modified version of the well-known theorem in classical graph theory.

“We know that the sum of the degree of invariably its vertices is twice 
the number of its edges for any classical graph.”

Theorem 5.5 : Let x = <V, ρ , ω> bean ordinary GIVNG1. Then

1

( )  2
n

r
r

D v Eξ
=

=∑  

Proof : As ( ) ( ( ), ( ), ( ))i T i I i F iD v D v D v D v=     for all i , and ,( ), .T I FE E E Eξ =     It 
is enough to show that 2ET = 

1
( ) :

n

r
T rD v

=
∑ 

{ , } {1,2, , } { , } {1,2, , }

{ , } {1,2, , } 1

{ , } {1,2, , } 1

( , ),  ( , )

( , )  ( , ),

( , )  ( , )

L U
T T r s T r s

r s n r s n

n
L L
T r s T r r

r s n r
r s

n
U U
T r s T r r

r s n r
r s

E v v v v

v v v v

v v v v

ω ω

ω ω

ω ω

⊆ … ⊆ …

⊆ … =
≠

⊆ … =
≠

 
 
  



= +






+

=





∑ ∑

∑ ∑

∑ ∑
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Since {r, s} = {s, r} for all s and r ,

{ , } {1,2, , } 1

{ , } {1,2, , } 1

{1,2, , } 1
{1,2, , }

{1,2, , }
{1,2

2 ( , )  2 ( , ),

2
2 ( , )  2 ( , )

( , )  2 ( , ), 

n
L L
T r s T r r

r s n r
r s

T n
U U
T r s T r r

r s n r
r s

n
L L
T r s T r r

r n r
s n

r s

r n
s

v v v v

E
v v v v

v v v v

ω ω

ω ω

ω ω

⊆ … =
≠

⊆ … =
≠

∈ … =
∈ …

≠

∈ …
∈

 
+ 

 
 
 
 +
 
 

=

 

+

=

∑ ∑

∑ ∑

∑ ∑



1
, , }

( , ) 2 ) ( ,
n

U U
T r s T r r

r
n

r s

v v v vω ω
=

…
≠

 
 
 
 
 
 

+ 
 
 
  

∑ ∑

{1,2, , } 1
{1,2, , }

{1,2, , } 1
{1,2, , }

1 1 1

1 1 1

( , )   ( , ),

 ( , )   ( , )

( , )   ( , ),   

( , )   

n
L L
T r s T r r

r n r
s n

n
U U
T r s T r r

r n r
s n

n n n
L L
T r s T r r

r s r
n n n

U U
T r s T

r s r

v v v v

v v v v

v v v v

v v

ω ω

ω ω

ω ω

ω ω

∈ … =
∈ …

∈ … =
∈ …

= = =

= = =

 
+ 

 
 =  
 +
 
  

+
=

+

∑ ∑

∑ ∑

∑∑ ∑

∑∑ ∑

1 1

1 1

1

( , )

 ( , )   ( , ) ,  

 ( , )   ( , ) ,

( ).

r r

n n
L L
T r s T r r

r s

n n
U U
T r s T r r

r s

n

T r
r

v v

v v v v

v v v v

D v

ω ω

ω ω

= =

= =

=

 
 
 
 
 
  
  

+     =    +     

=

∑ ∑

∑ ∑

∑ 

 
This finishes the proof.            
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6. Conclusion

The idea of GSVNG1 was extended to introduce the concept of 
generalized interval-valued neutrosophic graph of type 1(GIVNG1). The 
matrix representation of GIVNG1 was also introduced. The future direction 
of this research includes the study of completeness, regularity of GIVNG1, 
and also denote the notion of generalized interval-valued neutrosophic 
graphs of type 2.As GIVNG1 (in this paper) and CNG1 (from [47]) are 
both extensions of the existing concepts of CFG1 and GSVNG1, but in 
two entirely different directions, the future direction of this research also 
includes further extensions from GIVNG1 and CNG1, that incorporates 
both the inter-valued entries (as in GIVNG1) and complexity of numbers 
(as in CNG1), and the study of scenarios that necessitate such extensions 
[48-52].
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