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Data  clustering  is  an  important  step  in data  mining  and machine  learning.  It  is  especially  crucial  to analyze
the  data  structures  for further  procedures.  Recently  a new  clustering  algorithm  known  as  ‘neutrosophic
c-means’  (NCM)  was  proposed  in order to alleviate  the  limitations  of the  popular  fuzzy  c-means  (FCM)
clustering  algorithm  by introducing  a  new  objective  function  which  contains  two  types  of rejection.  The
ambiguity  rejection  which  concerned  patterns  lying  near  the  cluster  boundaries,  and  the  distance  rejec-
tion  was  dealing  with  patterns  that  are  far away  from  the clusters.  In  this  paper,  we  extend  the  idea  of  NCM
for  nonlinear-shaped  data  clustering  by incorporating  the  kernel  function  into  NCM.  The  new  clustering
ata clustering
uzzy clustering
eutrosophic c-means
ernel function

algorithm  is called  Kernel  Neutrosophic  c-Means  (KNCM),  and  has  been  evaluated  through  extensive
experiments.  Nonlinear-shaped  toy  datasets,  real  datasets  and  images  were  used  in the experiments  for
demonstrating  the  efficiency  of  the  proposed  method.  A  comparison  between  Kernel  FCM  (KFCM)  and
KNCM  was  also  accomplished  in  order  to visualize  the performance  of  both  methods.  According  to  the

osed
obtained  results,  the  prop

. Introduction

Data clustering, or cluster analysis, is an important research area
n pattern recognition and machine learning which helps the under-
tanding of a data structure for further applications. The clustering
rocedure is generally handled by partitioning the data into differ-
nt clusters where similarity inside clusters and the dissimilarity
etween different clusters are high. K-means clustering is known
s a pioneering algorithm in the area with numerous applications.
ntil now, many variants of the K-means clustering algorithm have
een proposed [1]. K-means algorithm assigns crisp memberships
o all data points according to its nature. After fuzzy set theory
as introduced by Zadeh, instead of using crisp memberships, the
artial memberships described by membership functions sounded
ood in cluster analysis. Ruspini firstly adopted the fuzzy idea
n data clustering [2]. Dunn proposed the popular fuzzy c-means
FCM) algorithm where a new objective function was redefined
nd the memberships were updated according to the distance [3].

 generalized FCM was introduced by Bezdek [4]. Although FCM
as been used in many applications with successful results, it has

everal drawbacks. For example, FCM considers that all data points
ave equal importance. Noise and outlier data points are also issues
hat FCM is unable to handle. To alleviate these drawbacks, several

∗ Corresponding author.
E-mail address: kemal polat2003@yahoo.com (K. Polat).

ttp://dx.doi.org/10.1016/j.asoc.2016.10.001
568-4946/© 2016 Elsevier B.V. All rights reserved.
 KNCM  produced  better  results  than KFCM.
© 2016  Elsevier  B.V.  All  rights  reserved.

attempts have been undertaken in the past. In [5], the authors con-
sidered the Mahalanobis distance in FCM to analyze the effect of
different cluster shapes. Dave et al. [6] proposed a new clustering
algorithm namely ‘fuzzy c-shell’ which was  effective on circular and
elliptic-shaped datasets. On the other hand, the drawback of the
FCM algorithm against the noise was investigated. The paper by [7]
proposed a possibilistic c-means (PCM) algorithm, which was  han-
dled by relaxing the constraint of FCM summation to 1. Pal et al. [8]
considered taking into account of both relative and absolute resem-
blance to cluster centers, which are considered as a combination of
the PCM and FCM algorithms.

Recently, there have been numerous clustering algorithms
which were developed to consider that a data point can belong to
several sub-clusters at the same time [9]. These approaches were
adopted based on evidential theory [10]. Masson and Denoeux pro-
posed the evidential c-means algorithm (ECM) [10]. The authors
then developed the relational-ECM (RECM) algorithm [11]. Based
on neutrosophic logic [12], Guo and Sengur proposed the neutro-
sophic c-means (NCM) and the neutrosophic evidential c-means
(NECM) clustering algorithms [13]. In NCM, a new cost function
was developed to overcome the weakness of the FCM method on
noise and outlier data points. In the NCM algorithm, two  new types
of rejection were developed for both noise and outlier rejections.
Another important drawback of the FCM algorithm is its clus-
tering failure against the nonlinear separability clusters. This
drawback can be alleviated by projecting the data points to a higher
dimensional feature space in a nonlinear manner by considering the

dx.doi.org/10.1016/j.asoc.2016.10.001
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2016.10.001&domain=pdf
mailto:kemal_polat2003@yahoo.com
dx.doi.org/10.1016/j.asoc.2016.10.001
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ercer Kernel in the FCM algorithm [14]. The integration of Mercer
ernel in the FCM algorithm was called Kernel FCM (KFCM) algo-
ithm, and it achieved better clustering results, especially on the
ircular- and elliptic-shaped clusters.

In this paper, by inspiring the KFCM algorithm, a new Kernel
CM (KNCM) algorithm is proposed for improving the NCM method
n the nonlinearly separable datasets. To do this, the NCM algo-
ithm was re-formulated by incorporating the Mercel Kernel into
CM. Therefore, a new cost function was produced to make robust
arameter estimation against noise and outliers. In addition, new
embership and prototype update equations were derived from
inimization of the proposed cost function. As KNCM has three
emberships, T, I and F, T can be considered as the membership

egree to determinant clusters, I is used to show membership
egree to ambiguity cluster, and F can be used to determine outlier
luster for each data point, respectively. The membership values T,

 and F are robust against the noise and outlier because they are
alculated iteratively in the clustering procedure. The developed
NCM method was applied on a variety of applications such as toy
ataset clustering, real dataset clustering, and noisy image segmen-
ation. The obtained results were compared with the KFCM method,
nd showed that the proposed KNCM method yielded better results
han KFCM.

The remainder of this paper is organized as follows. In Section
, the NCM method is described. In Section 3, the related equations
re derived and the algorithm of the proposed KNCM is described.
n Section 4, experiments and the results obtained are reported. In
ddition, the comparison with KFCM is tabulated. Finally, several
onclusions are provided in Section 5.

. Neutrosophic c-Means Clustering (NCM)

Data clustering is an important task in data mining and machine
earning. It classifies input data into different categories based on
ome measures of similarity. In traditional clustering algorithms
uch as K-means and Fuzzy c-means (FCM), samples are regarded
s being of the same importance without considering noise and out-
ier samples. However, in some applications, datasets may  contain
utliers and noises that need to be determined. Recently a new clus-
ering algorithm called neutrosophic c-means (NCM) was  proposed
o handle both the noise and outliers. It considers both degrees of
elonging to determinate and indeterminate clusters, and a new
bjective function and memberships were developed as given in
q. (1):

JNCM (T, I, F, c)

N

=
∑
i=1

C∑
j=1

(
�1Tij

)m
||xi − cj ||2 +

N∑
i=1

(�2Ii)
m||xi − c̄imax ||2 + ı2

N∑
i=1

(�3Fi)
m

(1)

where Tij , Ii and Fi are the membership values belonging to
he determinate clusters, boundary regions and noisy data set.

 < Tij, Ii, Fi < 1, which satisfy with the following formula:

c

j=1

Tij + Fi + Ii = 1 (2)

or each point i, the c̄imax is computed using the clusters’ centers
ith the largest and second largest value of Tij .
¯ i max = cpi + cqi

2
(3)

i = arg max
j=1,2,···C

(Tij) (4)
puting 52 (2017) 714–724 715

qi = arg max
j /=  pi∩j=1,2,···C

(Tij) (5)

where m is a constant. pi and qi are the cluster numbers with the
biggest and second biggest value of T. When the pi and qi are iden-
tified, the c̄i max is calculated and its value is a constant number for
each data point i.

The related membership functions are calculated as follows:

Tij = �2�3(xi − cj)
−
(

2
m−1

)

∑C
j=1

(
xi − cj

)−
(

2
m−1

)
+ (xi − c̄imax)

−
(

2
m−1

)
+ ı

−
(

2
m−1

)

(6)

Ii = �1�3(xi − c̄imax)
−
(

2
m−1

)

∑C
j=1

(
xi − cj

)−
(

2
m−1

)
+ (xi − c̄imax)

−
(

2
m−1

)
+ ı

−
(

2
m−1

)

(7)

Fi = �1�2(ı)
−
(

2
m−1

)

∑C
j=1

(
xi − cj

)−
(

2
m−1

)
+ (xi − c̄imax)

−
(

2
m−1

)
+ ı

−
(

2
m−1

)

(8)

cj =
�N

i=1

(
�1Tij

)m
xi

�N
i=1

(
�1Tij

)m (9)

The partitioning is carried out through an iterative optimization
of the objective function, and the membership Tij , Ii, Fi and the clus-
ter centers cj are updated according to Eqs. (6)–(9) at each iteration.
The c̄i max is calculated by Eqs. (3)–(5) at each iteration. The itera-
tion will not stop until |T (k+1)

ij
− T (k)

ij
| < ε, where ε is a termination

criterion between 0 and 1, and k is the iteration step.

3. Kernel NCM

In nonlinear data clustering, the traditional clustering methods
are not able to categorize the input data into proper clusters due
to the limitation on objective function. So, a mapping procedure
is needed to transfer the input data to a high dimensional feature
space by applying a kernel function. When the kernel function is
applied to the NCM algorithm, the objective function becomes:

JKNCM (T, I, F, c) =
N

∑
i=1

C∑
j=1

(
�1Tij

)m||�(xi) − �(cj)||2

+
N∑

i=1

(�2Ii)
m||� (xi) − �(cimax)||2

+ı2
N∑

i=1

(�3Fi)
m

(10)

and

||�(xi) − �(cj)||2 = K (xi, xi) − 2K
(

xi, cj

)
+ K

(
cj, cj

)
(11)
where K (xi, xi) = �T (xi) � (xi) shows the inner product. If Gaus-
sian function is considered as the kernel function, then K (xi, xi)
and K

(
cj, cj

)
becomes one. Therefore, the new objective function

becomes;
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Fig. 1. Comparison of NCM and KNCM on various t

JKNCM (T, I, F, c) =
N∑

i=1

C∑
j=1

2
(

�1Tij

)m (
1 − K

(
xi, cj

))
+

N∑
i=1

2(�2Ii)
m (1 − K (xi, c̄imax))

+ı2

N∑
i=1

(�3Fi)
m

(12)

A Lagrange objective function is constructed as:

L(T, I, F, c, �) =
N∑

i=1

C∑
j=1

2(�1Tij)
m(1 − K(xi, cj)) +

N∑
i=1

2(�2Ii)
m(1 − K(xi, c̄i max))

+
N∑

i=1

ı2(�3Fi)
m −

N∑
i=1

�i(

C∑
j=1

Tij + Ii + Fi − 1)

(13)

To minimize the Lagrange objective function, the following cal-
ulations are used:

∂L m m−1
∂Tij

= 2m(�1) (Tij) (1 − K(xi, cj)) − �i (14)

∂L

∂Ii
= 2m(�2)m(Ii)

m−1(1 − K(xi, c̄i max)) − �i (15)
asets a) raw data, b) NCM results, c) KNCM results.

∂L

∂Fi

= ı2m(�3)m(Fi)
m−1 − �i (16)

∂L

∂cj

= −2
N∑

i=1

(�1Tij)
mK

′
(xi, cj) (17)

The norm is specified as the Euclidean norm. Let ∂L
∂Tij

= 0, ∂L
∂Ii

=
0, ∂L

∂Fi
= 0, and ∂L

∂ci
= 0, the membership functions and centers of

clusters are re-arranged as follows;

Tij = �2�3K(xi, cj)
−
(

2
m−1

)

∑C
j=1K

(
xi, cj

)−
(

2
m−1

)
+ K(xi, c̄imax)

−
(

2
m−1

)
+ ı

−
(

2
m−1

)

(18)

Ii = �1�3K(xi, c̄imax)
−
(

2
m−1

)

∑C
j=1K

(
xi, cj

)−
(

2
m−1

)
+ K(xi, c̄imax)

−
(

2
m−1

)
+ ı

−
(

2
m−1

)

(19)

( ) (
2

)

Fi =

�1�2 ı
−

m−1

∑C
j=1K

(
xi, cj

)−
(

2
m−1

)
+ K(xi, c̄imax)

−
(

2
m−1

)
+ ı

−
(

2
m−1

)

(20)
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Fig. 2. Comparison of KFCM and KNCM on two-cluster toy datasets a) raw data, b) KFCM results, c) KNCM results.
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Fig. 3. Comparison of KFCM and KNCM on other to

j =
∑N

i=1(�1Tij)
mK(xi, xi)∑N

i=1(�1Tij)
m

(21)

The above equations allow the formulation of the KNCM algo-
ithm, which can be summarized in the following steps:

Step 1. Initialize T (0), I(0), and F (0);
Step 2. Initialize the C, m,  ı, ε, �1, �2, �3 parameters;
Step 3. Choose kernel function and its parameters;
Step 4. Calculate the centers vectors c(k) at k step using Eq. (18);
Step 5. Compute the c̄i max using the clusters’ centers with the

argest andsecond largest value of Tij as Eq. (3);
Step 6. Update T (k) to T (k+1) using Eq. (15), I(k) to I(k+1) using Eq.

16), and F (k) to F (k+1) using Eq. (17);
(k+1) (k)
Step 7. If |T − T | < ε then stop; otherwise return to Step 4;

Step 8. Assign each data into the class with the largest TM = [T, I,

] value:x (i) ∈ kth class if k = arg max
(

TMij

)
j = 1, 2, , C + 2
sets a) raw data, b) KFCM results, c) KNCM results.

4. Experiments and results

In this section, a variety of experiments were conducted in
order to compare the performances of the KNCM and kernel FCM
methods. The experiments were performed on toy datasets, real
datasets, and images. Both KNCM and KFCM methods were run
under the same initial parameters such as �= 10−5. In addition,
the weighting parameters of the KNCM was set to �1 = 0.75,
�2 = 0.125, �3 = 0.125, respectively, which were obtained from
trial and error. A grid search of the trade-off constant delta
on {10(̂−2),10(̂−1),. . .,102̂, 103̂} and w1, w2 and w3  on {0.01,
0.02,0.03,. . .,  0.96,0.97, 0.98,} was  conducted in seek of the optimal
results.

The radial basis function (RBF) was  considered as the kernel
function for both methods. The parameter of the RBF kernel for
KFCM was  obtained by an interval search method. For a given
interval, the KFCM clustering algorithm was  run with a proper
incremental value, and the optimum RBF parameter was  chosen
where the clustering error was  minimized. The same procedure

was considered for KNCM. As KNCM has two adjustable parame-
ters, namely RBF kernel parameter and delta, a 2D interval search
was considered with proper incremental values. The platform for
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 datas

e
a

Fig. 4. Comparison of SC, SMMC,  and KNCM methods on six toy
xperiment is under MATLAB 2014b software on a computer having
n Intel Core i7-4810 CPU and 32 GB memory.
ets a) raw data, b) SC results, c) SMMC  results, d) KNCM results.
Experimental works started with a comparison between NCM
and KNCM, in order to show the effect of the kernel idea on NCM
clustering. As it is obvious K-means, FCM, and NCM type clustering
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Fig. 5. KNCM clustering resul

lgorithms cannot properly cluster nonlinear datasets. To show this
ffect, several nonlinear toy datasets were used, as shown in Fig. 1,
hich contains three different shaped datasets. In Fig. 1, column (a)

hows the raw data, where columns (b) and (c) show the NCM and
NCM results respectively. According to the obtained results, while
NCM obtained the ground-truth clustering results, NCM failed to
btain the exact clusters.

.1. Toy-data example 1

In the first type of experiment, the two-cluster datasets were
onsidered as shown in Fig. 2. In the first column of Fig. 2, the raw
atasets are illustrated. In the second column, the clustering results
f kernel FCM are given and, in the third column, the KNCM results
re shown. In the first row of Fig. 2, the ‘two kernel’  dataset is shown,
nd is composed of 200 samples. Each cluster has 100 samples. The
earch procedure automatically selected 223 for the RBF parameter
or kernel FCM and similarly 280 was found for the RBF param-
ter and 100 was assigned to the value of delta parameter. The
btained clusters are shown with different colors. As can be seen
n Figs. 2 and 3, the KFCM method did not produce valid cluster-

ng. Some of the samples were wrongly clustered; especially, some
f the inner samples were mis-clustered. On the other hand, KNCM
lassified both clusters error-free. It is worth mentioning that when
NCM was run several times, each time KNCM always produced
noisy and outlier data points.

the correct clusters. Another example is shown in the second row
of Fig. 2.

This dataset called ‘half-moons’. Two  half-moon-shaped
datasets, which is nonlinearly separable, contain 1000 samples.
For KFCM, the RBF kernel parameter was  obtained as 9.3, and
for kernel NCM, the RBF kernel parameter and delta value was
assigned as 2.5 and 10, respectively. KFCM did not classify some
of the data samples correctly. Especially, the data points in the
inner tail part of the half-moons were misclassified. Similar to the
previous dataset, kernel NCM performed the clustering error free.
All data points assigned to the correct clusters.

Another popular non-linear dataset, the ‘two-spirals’, was  also
considered in the experiments. The raw dataset can be seen in the
third row of Fig. 2. A RBF kernel parameter of 1.7 was  generated
by the search algorithm for both kernel FCM and NCM, and the
delta value was 7.0. As the clustering results are shown in the third
row of Fig. 2, both methods did not produce the correct clusters.
Especially, the KFCM method produced meaningless clusters. There
were misclassified points in both clusters. On the other hand, KNCM
produced more reasonable results. One of the clusters was  classified
correctly (the points labeled in green). Moreover, only a part of the
other cluster (the points labeled in red) was  misclassified. In the

last two  rows of Fig. 2, similar datasets were experimented with.
In both cases, there were circular clusters where both kernel FCM
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nd NCM produced clear clusters. The clustering accuracies for both
ethods were 100%.

.2. Toy-data example 2

Further experiments were performed on toy-datasets where the
umber of clusters was greater than two. The related results are
hown in Fig. 3. Similar to Fig. 2, the first column of Fig. 3 shows
he raw toy-datasets. The second column of Fig. 3 shows the KFCM
lustering results, and the third column shows the clustering results
f the proposed kernel NCM. The toy-datasets, which contained
hree and four clusters, were considered in the experiments. When
he obtained results were evaluated, it was seen that except ‘ear’
ata, both methods produced 100% correct clustering results for
ll toy-datasets. For ‘ear’ dataset, KNCM produced more accurate
lustering than kernel FCM method. The kernel parameter and the
elta value were set similar to the first experiments.

.3. Comparison with spectral clustering methods
The KCNM method was also compared with two eigenvalue-
ased clustering methods, namely “Spectral Clustering” (SC) [15]
nd “Spectral Multi-Manifold Clustering” (SMMC) [16]. SC is a pop-
h different kernel functions.

ular clustering algorithm which makes use of the eigenvalues of
the similarity matrix of the input data. The main purpose of using
eigenvalues is to perform dimensionality reduction before cluster-
ing. Finally, k-means algorithm is used for clustering the reduced
dataset. SMMC  algorithm is also a SC-based clustering method
which improves the SC performance by integrating the multiple
smooth low-dimensional manifolds into SC algorithm. SMMC  then
uses the local geometric information of the sampled data to con-
struct a suitable affinity matrix. Finally, SC is used with this affinity
matrix to group the data. The comparisons were made on six toy
datasets which are shown in Fig. 4. While the first column shows the
raw toy datasets, the second, third, and fourth columns show the
SC, SMMC,  and KNCM results, respectively. As can be seen, all meth-
ods produced ground-truth clustering results for the toy datasets,
as can be seen in the first, third, and fifth rows of Fig. 4. On the
other hand, only the KNCM method yielded ground-truth cluster-
ing results for the toy datasets, as seen in the second, fourth, and
sixth rows of Fig. 4. These results show that both SC and SMMC
methods are not able to cluster the datasets which contains noise
cluster. In other words, KNCM produces similar performance on the

nonlinear datasets. In addition, KCNM outperforms on data which
contains noise clusters.
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Fig. 7. Comparison of KFCM and KNCM on image segmentation application a) original image, b) KFCM results, c) KNCM results.
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Fig. 8. Comparison of kernel FCM and NCM on image segmentation a

.4. Toy datasets with noise and outlier

As mentioned earlier, NCM algorithm showed better perfor-
ance in the clustering of noisy and outlier data points. In order to

emonstrate that KNCM algorithm works well with datasets which

ontain noisy and outlier data points, several experiments were
onducted on various toy datasets. The obtained results are tab-
lated in Fig. 5, which shows (a) the ‘corner’ dataset where four

inearly-separable clusters are located. A data point in the middle
ation a) original image, b) Kernel FCM results, c) Kernel NCM results.

of the four clusters was  artificially located. Moreover, we located
four more data points as illustrated in Fig. 5(a). For the ‘corner’
dataset, KNCM algorithm not only clustered correctly all four clus-
ters, but also detected the noise and outlier data points. The black
and magenta colors represent noise and outlier data points respec-

tively. A similar scenario was established for a two-clusters case, as
shown in Fig. 5(b), and similar successful clustering results were
also obtained for this scenario. In Fig. 5(c), circular outlier data
points are considered which surrounds two  linearly separable clus-
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Table  1
KNCM clustering results of the IRIS dataset.

Actual
setosa versicolor virginica
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Table 2
KNCM clustering results of the wine dataset.

Actual
Class 1 Class 2 Class 3

Clustered Class 1 57 7 0
Class 2 2 58 1
Class 3 0 6 47

Table 3
KNCM clustering results of the Parkinson dataset.

Actual
PD Healthy

Clustered PD 118 4
Healthy 29 44

Table 4
Performance comparisons of both methods on real datasets.

KFCM KNCM

Iris 95.33 96.67
Clustered setosa 50 0 0
versicolor 0 49 4
virginica 0 1 46

ers. In addition, in Fig. 5(d), another toy dataset with many outliers
as illustrated. For these two toy datasets (Fig. 5(c) and (d)), the
roposed KNCM algorithm found reasonable clusters.

.5. Using different kernels on various toy datasets

Although RBF kernel-based KNCM yielded better results; in this
ection, it is demonstrated that KNCM produces better results with
arious kernels for various toy datasets. To this end, “poly”, “wave”,
nd “linear” kernels are used, respectively. The definition of the
ernel functions (RBF, Linear, Poly, and Wave) that were used in
ach experiment are given as;

RBF (x, xi) = e

(
−

‖x−xi‖2
2

�2

)
(22)

lin (x, xi) = xT
i x (23)

Poly (x, xi) = (xT
i x + 	)

d
(24)

Wave (x, xi) = cos(
˛ (x − xi)

ˇ
)e

(
−

‖x−xi‖2
2

�2

)
(25)

As can be seen in Eq. (22), “RBF” kernel has only one adjustable
arameter. Eq. (23) shows that “linear” kernel does not have any
djustable parameter, whereas. “poly” and “wave” kernels have two
nd three adjustable parameters respectively.

The parameters of these kernels were also tuned. Several clus-
ering results are shown in Fig. 6. The results, which were obtained
ith “Wave” kernel, were deemed to be quite successful. The “poly”

ernels also yielded better results, with only a few data points mis-
lustered. The “Linear” kernel obtained the worst clustering; with
nly the linearly-separable dataset (“corners”) clustered correctly.
he “Linear” kernel could not separate the clusters correctly which
ave a circular data structure.

.6. Real dataset example 1

Various real datasets were also used in order to evaluate and
ompare the obtained clustering results with both methods. To
his end, first of all the famous ‘iris’ dataset was considered. The
RIS dataset contains three classes, i.e., three varieties of Iris flow-
rs, namely, Iris Setosa, Iris Versicolor, and Iris Virginica, consisting
f 50 samples each. Each sample has four features, namely, sepal
ength (SL), sepal width (SW), petal length (PL), and petal width
PW). One of the three clusters is clearly separated from the other
wo, while these two classes admit some overlap. The RBF kernel
arameter was 0.001 and delta was 3. As can be seen from Table 1,
he Setosa is clustered with a 100% correct clustering rate, but other
lusters such as Versicolor and Virginica are not clustered exactly.
our Virginica samples were wrongly clustered as Versicolor and
ne Versicolor sample was clustered as Virginica. The total accuracy
as 96.67%.

.7. Real dataset example 2
Experiments on the second real dataset were conducted our on
he ‘wine’ dataset. The ‘wine’ dataset was constructed based on the
esults of chemical analysis of wines grown in the same region of
Wine 89.89 91.01
Parkinson 80.00 83.08

Italy, but derived from three different cultivars. The dataset con-
tains 13 attributes and three clusters. The total number of the
sample is 178 and each cluster has 59, 71, and 48 samples, respec-
tively. The RBF kernel parameter was  0.0095 and delta was  100.
The obtained results are given in Table 2, where none of the clusters
were classified 100% correctly, and the total number of misclassified
samples was  16. Thus, the overall accuracy was 91.01%.

4.8. Real dataset example 3

The third experiment on a real dataset was performed on the
‘Parkinson’ dataset. The dataset contains 22 attributes, and the total
number of samples is 195; of which, 147 are Parkinson and the rest
48 are healthy. The data is used to discriminate healthy people from
those with Parkinson disease (PD). In other words, there are two
clusters.

The RBF kernel parameter was  0.005 and delta was 10. The
obtained results are given in Table 3, in which 29 PD are clustered
as healthy and 4 healthy samples were clustered as PD. Thus, the
total accuracy was 83.08%.

The same experiments were also performed with KFCM and the
accuracy comparisons of both methods are given in Table 4. It is evi-
dent that for all real datasets, the proposed KNCM produced better
results than KFCM.

4.9. Image segmentation example 1

Before describing the image segmentation experiments, it
should be mentioned that spatial information was used for both
kernel methods. The spatial information [17] was considered for
both KNCM and KFCM experiments.

Two  different synthesized images were used. The first has four
classes of size 100 × 100, and the corresponding gray values are
50 (upper left, UL), 100 (upper right, UR), 150 (low left, LL) and 200
(low right, LR), respectively. The image is degraded by the Gaussian
noise with � = 0, � = 25. The second image has two clusters. The
corresponding gray values are 30 for the left column and 80 for the
right column. The image is degraded by the Gaussian noise with
� = 0, � = 15.
The obtained results are given in Fig. 7. The original images are
illustrated (a) in the first column, with the second column (b) show-
ing the KFCM results, and column three (c) for the KNCM results.
With visual inspection, the proposed method yielded exact seg-
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[16] Yong Wang, et al., Spectral clustering on multiple manifolds, IEEE Trans.
Neural Networks 22 (7) (2011) 1149–1161.

[17] Miin-Shen Yang, Hsu-Shen Tsai, A Gaussian kernel-based fuzzy c-means
algorithm with a spatial bias correction, Pattern Recognit. Lett. 29 (12) (2008)
1713–1725.
24 Y. Akbulut et al. / Applied So

entations and KFCM produced several misclassified pixels for
oth cases.

.10. Image segmentation example 2

In the second image segmentation experiment, the ‘eight’ image
as used with different noise types and levels. The noise types were

salt and pepper’ and ‘Gaussian’, the noise density for ‘salt and pep-
er’ was 0.04, and the noise parameters for ‘Gaussian’ were 0 mean
nd 0.1 variance, respectively.

The obtained results for real image are also given in Fig. 8. Upon
isual inspection, the proposed KNCM yielded better results for
oth noise types and levels than KFCM.

. Conclusions

In this paper, a new data clustering algorithm KNCM has been
roposed and its efficiency tested through extensive experimenta-
ion. Incorporating kernel information to NCM made it available
n nonlinear-shaped data clustering. The proposed scheme was
uite successful on clustering a variety of toy and real datasets. In
ddition, image segmentation applications of the proposed method
ere also promising. Besides it efficiency, the proposed method can
andle noise and outlier data points due to its new objective and
embership functions. KNCM will find more applications in data
ining and machine learning with its ability to handle indetermi-

acy information efficiently.
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