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Abstract

In this paper, we introduce the notion of MBJ-
neutrosophic sub-algebra and MBJ-neutrosophic filter on
equality algebras and investigate some equivalence defi-
nitions, properties and the relation between them. Also,
by using the notion of MBJ-neutrosophic filter, we intro-
duce a congruence relation on equality algebra and show
that the quotient is an equality algebra.
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A Title

1 Introduction

Non-classical logic has become a considerable formal tool for computer science and artificial in-
telligence to deal with fuzzy information and uncertainty information. Many-valued logic, a great
extension and development of classical logic, has always been a crucial direction in non-classical
logic. A crucial question for every many-valued logic is, what should be structure of its truth val-
ues. It is generally accepted that in fuzzy logic, it should be a residuated lattice, possibly fulfilling
some additional properties. On the basis of that, we may now distinguish various kinds of formal
fuzzy logics. Most important among them seem to be BL-, MTL-, IMTL- logics. The answer to
the above question is positive and the fuzzy type theory (FTT) has indeed been introduced in [20].
However, the basic connective in FTT is a fuzzy equality since it is developed as a generalization
of the elegant classical formal system originated by Henkin (see [7]). So Novák in [21] introduced a
special algebra that is called EQ-algebra and that reflects directly the syntax of FTT. Viewing the
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axioms of EQ-algebras with a purely algebraic eye it appears that unlike in the case of residuated
lattices where the adjointness condition ties product with implication, the product in EQ-algebras
is quite loosely related to the other connectives. For instance, a moments reflection shows that
one can replace the product of an EQ-algebra by any other binary operation which is smaller or
equal than the original product (viewed as a two-place function) and still obtains an EQ-algebra.
However, the huge freedom in choosing the product might prohibit to find deep related algebraic
results, hence our aim was to find something similar to EQ-algebras but without a product: an
axiomatic treatment of equality/equivalence. Becuase of that Jeni in [10] introduced a new struc-
ture, called equality algebras. It has two connectives, a meet operation and an equivalence, and a
constant 1.

Neutrosophic set theory was introduced by Smarandache in 1998 ([23]). Neutrosophic sets
are a new mathematical tool for dealing with uncertainties which are free from many difficulties
that have troubled the usual theoretical approaches. Research works on neutrosophic set theory for
many applications such as information fussion, probability theory, control theory, decision making,
measurement theory, etc. Kandasamy and Smarandache introduced the concept of neutrosophic
algebraic structures ([15, 16]). Since then many researchers worked in this area and lots of litera-
tures had been produced about the theory of neutrosophic set. The notion of MBJ-neutrosophic
sets is introduced as another generalization of neutrosophic set, it is applied to BCK/BCI-algebras.
Mohseni et al.[19] introduced the concept of MBJ-neutrosophic subalgebras in BCK/BCI-algebras,
and investigated related properties. They gave a characterization of MBJ-neutrosophic subalgebra,
and established a new MBJ-neutrosophic subalgebra by using an MBJ-neutrosophic subalgebra of
a BCI-algebra. They considered the homomorphic inverse image of MBJ-neutrosophic subalgebra,
and discussed translation of MBJ-neutrosophic subalgebra.
In this paper, the notion of MBJ-neutrosophic filter on equality algebras is introduced and in-
vestigated some equivalence definitions and some properties of it. Also, by using the notion of
MBJ-neutrosophic filter, a congruence relation on equality algebra is introduced.

2 Preliminaries

In this section, we give some basic definitions and results of equality algebras which will be used
in this paper.

Definition 2.1. [9] An algebraic structure (X,∧,∼, 1) is called equality algebra, if for any a, b, c ∈
X, it satisfies the following conditions.

(E1) (X,∧, 1) is a commutative idempotent integral monoid,

(E2) the operation “∼” is commutative,

(E3) a ∼ a = 1,

(E4) a ∼ 1 = a,

(E5) if a ≤ b ≤ c, then a ∼ c ≤ b ∼ c and a ∼ c ≤ a ∼ b,

(E6) a ∼ b ≤ (a ∧ c) ∼ (b ∧ c),

(E7) a ∼ b ≤ (a ∼ c) ∼ (b ∼ c),

where a ≤ b if and only if a ∧ b = a.
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In an equality algebra X = (X,∧,∼, 1), we define two operations “→” and “↔” on X as
follows:

a→ b := a ∼ (a ∧ b) and a↔ b := (a→ b) ∧ (b→ a).

Proposition 2.2. [9] Let X := (X, ∧, ∼, 1) be an equality algebra. Then for any a, b, c ∈ X, the
following assertions are valid:
(i) a→ b = 1 if and only if a ≤ b,
(ii) a→ (b→ c) = b→ (a→ c),
(iii) 1→ a = a, a→ 1 = 1 and a→ a = 1,
(iv) a ≤ b→ c if and only if b ≤ a→ c,
(v) a ≤ b→ a,
(vi) a ≤ (a→ b)→ b,
(vii) a→ b ≤ (b→ c)→ (a→ c),
(viii) If b ≤ a, then a↔ b = a→ b = a ∼ b,
(ix) a ∼ b ≤ a if and only if b ≤ a→ b,
(x) If a ≤ b, then b→ c ≤ a→ c and c→ a ≤ c→ b.

An equality algebra X := (X, ∧, ∼, 1) is said to be bounded if there exists an element 0 ∈ X
such that 0 ≤ a, for all a ∈ X. In a bounded equality algebra X := (X, ∧, ∼, 1), we define the
negation “¬” on X by ¬a = a→ 0 = a ∼ 0 for all a ∈ X.

A subset F of X is called a deductive system (or filter) of X (see [10]) if for any a, b ∈ X, it
satisfies:

(F1) 1 ∈ F ,
(F2) if a ∈ F and a ≤ b, then b ∈ F ,
(F3) if a ∈ F and a ∼ b ∈ F , then b ∈ F .
The set of all deductive systems of X is denoted by DS(X).

Lemma 2.3. [8] Let X be an equality algebra. A subset F of X is called a deductive system of X
if and only if it satisfies (F1) and for any a, b ∈ X,

(F ) if a ∈ F and a→ b ∈ F , then b ∈ F .

Definition 2.4. [27] An equality algebra X = (X,∧,∼, 1) is called a commutative if for any
a, b ∈ X, (a→ b)→ b = (b→ a)→ a.

Definition 2.5. [1] An equality algebra X = (X, ∧, ∼, 1) is called a positive implicative if for
any a, b, c ∈ X, a→ (b→ c) = (a→ b)→ (a→ c).

By an interval number we mean a closed subinterval ã = [a−, a+] of I = [0, 1], where 0 ≤ a− ≤
a+ ≤ 1. Denote by [I] the set of all interval numbers. Let us define what is known as refined
minimum (briefly, rmin) and refined maximum (briefly, rmax) of two elements in [I]. We also
define the symbols “�”, “�”, “=” in case of two elements in [I]. Consider two interval numbers
ã1 :=

[
a−1 , a

+
1

]
and ã2 :=

[
a−2 , a

+
2

]
. Then

rmin {ã1, ã2} =
[
min

{
a−1 , a

−
2

}
,min

{
a+

1 , a
+
2

}]
,

rmax {ã1, ã2} =
[
max

{
a−1 , a

−
2

}
,max

{
a+

1 , a
+
2

}]
,

ã1 � ã2 ⇔ a−1 ≥ a
−
2 , a

+
1 ≥ a

+
2 ,

and similarly we may have ã1 � ã2 and ã1 = ã2. To say ã1 � ã2 (resp. ã1 ≺ ã2) we mean ã1 � ã2

and ã1 6= ã2 (resp. ã1 � ã2 and ã1 6= ã2). Let ãi ∈ [I] where i ∈ Λ. We define

rinf
i∈Λ

ãi =

[
inf
i∈Λ

a−i , inf
i∈Λ

a+
i

]
and rsup

i∈Λ
ãi =

[
sup
i∈Λ

a−i , sup
i∈Λ

a+
i

]
.
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Let X be a nonempty set. A function A : X → [I] is called an interval-valued fuzzy set (briefly,
an IVF set) in X. Let [I]X stand for the set of all IVF sets in X. For every A ∈ [I]X and x ∈ X,
A(x) = [A−(x), A+(x)] is called the degree of membership of an element x to A, where A− : X → I
and A+ : X → I are fuzzy sets in X which are called a lower fuzzy set and an upper fuzzy set in
X, respectively. For simplicity, we denote A = [A−, A+].

Let X be a non-empty set. A neutrosophic set (NS) in X (see [24]) is a structure of the form:

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X},

where AT : X → [0, 1] is a truth membership function, AI : X → [0, 1] is an indeterminate
membership function, and AF : X → [0, 1] is a false membership function.

Let X be a non-empty set. By an MBJ-neutrosophic set in X (see [19]), we mean a structure
of the form:

A := {〈x;MA(x), B̃A(x), JA(x)〉 | x ∈ X},

where MA and JA are fuzzy sets in X, which are called a truth membership function and a false
membership function, respectively, and B̃A is an IVF set in X which is called an indeterminate
interval-valued membership function.

We use the symbol A = (MA, B̃A, JA) for the MBJ-neutrosophic set

A := {〈x;MA(x), B̃A(x), JA(x)〉 | x ∈ X}.

Note. From now on, we let X = (X,∧,∼, 1) or X as an equality algebra unless otherwise
state.

3 MBJ-neutrosophic sub-algberas and filters

In this section we define the notion of MBJ-neutrosophic sub-algebra and MBJ-neutrosophic filter
of X and investigate some equivalence definitions and some propoerties of them.

Definition 3.1. An MBJ-neutrosophic set A = (MA, B̃A, JA) in X is called an MBJ-neutrosophic
sub-algebra of X if it satisfies

(∀x, y, z ∈ X)

 MA(x ∼ y) ≥ min{MA(x),MA(y)}
B̃A(x ∼ y) � rmin{B̃A(x), B̃A(y)}
JA(x ∼ y) ≤ max{JA(x), JA(y)}

 , (3.1)

and

(∀x, y, z ∈ X)

 MA(x ∧ y) ≥ min{MA(x),MA(y)}
B̃A(x ∧ y) � rmin{B̃A(x), B̃A(y)}
JA(x ∧ y) ≤ max{JA(x), JA(y)}

 . (3.2)

Example 3.2. Let X = {0, a, b, 1} be a set with the following Hasse diagram.

rr rr

0

a b

1

�
�

A
A
�
�
A
A
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Then (X,∧, 1) is a commutative idempotent integral monoid. We define a binary operation ∼
on X by Table 1.

∼ 0 a b 1

0 1 b a 0
a b 1 0 a
b a 0 1 b
1 0 a b 1

Table 1: Cayley table for the implication “∼”

Then E = (X,∧,∼, 1) is an equality algebra. Let define A = (MA, B̃A, JA) in X as Table 2.

X MA B̃A JA
0 0.4 [0.4, 0.5] 0.5
a 0.5 [0.3, 0.45] 0.5
b 0.4 [0.3, 0.45] 0.5
1 0.7 [0.7, 0.8] 0.2

Table 2: Cayley table for the implication “A”

By routine calculation, we can see that A = (MA, B̃A, JA) is an MBJ-neutrosophic sub-algebra
of X.

Proposition 3.3. If A = (MA, B̃A, JA) is an MBJ-neutrosophic sub-algebra of X, then MA(1) ≥
MA(x), B̃A(1) � B̃A(x) and JA(1) ≤ JA(x), for all x ∈ X.

Proof. For any x ∈ X, we get

MA(1) = MA(x ∼ x) ≥ min{MA(x),MA(x)} = MA(x),

B̃A(1) = B̃A(x ∼ x) � rmin{B̃A(x), B̃A(x)} = B̃A(x),

and
JA(1) = JA(x ∼ x) ≤ max{JA(x), JA(x)} = JA(x).

In the following example we show that the converse of above proposition may not be true, in
general.

Example 3.4. Let X be the equality algebra as Example 3.2. Define A = (MA, B̃A, JA) in X as
Table 3.

X MA B̃A JA
0 0.4 [0.2, 0.3] 0.5
a 0.5 [0.4, 0.5] 0.5
b 0.4 [0.5, 0.6] 0.5
1 0.7 [0.7, 0.8] 0.2

Table 3: Cayley table for the implication “A”
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It is clear that for all x ∈ X, MA(1) ≥ MA(x), B̃A(1) � B̃A(x) and JA(1) ≤ JA(x). But
A = (MA, B̃A, JA) is not an MBJ-neutrosophic sub-algebra of X, because

[0.2, 0.3] = B̃A(0) = B̃A(a ∧ b) � rmin{B̃A(a), B̃A(b)} = B̃A(a) = [0.4, 0.5].

Theorem 3.5. Let A = (MA, B̃A, JA) be an MBJ-neutrosophic sub-algebra of X. Then the
following staements hold:

(∀x, y ∈ X)

 MA(x→ y) ≥ min{MA(x),MA(y)}
B̃A(x→ y) � rmin{B̃A(x), B̃A(y)}
JA(x→ y) ≤ max{JA(x), JA(y)}

 . (3.3)

Proof. Let A = (MA, B̃A, JA) be an MBJ-neutrosophic sub-algebra of X and x, y ∈ X. Then by
Definition 3.1, we have

MA(x→ y) = MA(x ∼ (x ∧ y)) ≥ min{MA(x),MA(x ∧ y)} ≥ min{MA(x),MA(y)},
B̃A(x→ y) = B̃A(x ∼ (x ∧ y)) � rmin{B̃A(x), B̃A(x ∧ y)} � rmin{B̃A(x), B̃A(y)},
JA(x→ y) = JA(x ∼ (x ∧ y)) ≤ max{JA(x), JA(x ∧ y)} ≤ max{JA(x), JA(y)}.

Hence (3.3) holds.

In the following example we show that the converse of Theorem 3.5 may not be true, in general.

Example 3.6. Let X be the equality algebra as Example 3.2. It is clear that the table of implication
is as Table 4:

→ 0 a b 1

0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

Table 4: Cayley table for the implication “→”

Define A = (MA, B̃A, JA) in X as Table 5.

X MA B̃A JA
0 0.3 [0.4, 0.5] 0.5
a 0.5 [0.3, 0.45] 0.5
b 0.4 [0.3, 0.45] 0.5
1 0.7 [0.7, 0.8] 0.2

Table 5: Cayley table for the implication “A”

Routine calculation show that the condition (3.3) holds but A = (MA, B̃A, JA) is not an
MBJ-neutrosophic sub-algebra of X, because

0.3 = MA(0) = MA(a ∧ b) � min{MA(a),MA(b)} = MA(b) = 0.4.
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Theorem 3.7. Let X be a linearly order equality algebra and A = (MA, B̃A, JA) be an MBJ-
neutrosophic set in X which satisfies in condition (3.3). Then A = (MA, B̃A, JA) is an MBJ-
neutrosophic sub-algebra in X.

Proof. Let x, y ∈ X and A = (MA, B̃A, JA) be an MBJ-neutrosophic set in X. Since X is a
linearly order equality algebra, we get x ≤ y or y ≤ x. Suppose x ≤ y. Then by Proposition
2.2(viii) and (E2), we have y → x = y ∼ x = x ∼ y. Thus

MA(x ∼ y) = MA(y → x) ≥ min{MA(x),MA(y)},
B̃A(x ∼ y) = B̃A(y → x) � rmin{B̃A(x), B̃A(y)},
JA(x ∼ y) = JA(y → x) ≤ max{JA(x), JA(y)}.

Moreover, since x ≤ y, we have x ∧ y = x and it is clear that

MA(x ∧ y) ≥ min{MA(x),MA(y)},
B̃A(x ∧ y) � rmin{B̃A(x), B̃A(y)},
JA(x ∧ y) ≤ max{JA(x), JA(y)}.

Therefore, A = (MA, B̃A, JA) is an MBJ-neutrosophic sub-algebra in X.

In the following we introduce the notion of MBJ-neutrosophic filters of equality algebras.

Definition 3.8. An MBJ-neutrosophic set A = (MA, B̃A, JA) in X is called an MBJ-neutrosophic
filter of X if it satisfies

(∀x ∈ X)
(
MA(x) ≤MA(1), B̃A(x) � B̃A(1), JA(x) ≥ JA(1)

)
, (3.4)

(∀x, y, z ∈ X)

 MA(y) ≥ min{MA(x),MA(x ∼ y)}
B̃A(y) � rmin{B̃A(x), B̃A(x ∼ y)}
JA(y) ≤ max{JA(x), JA(x ∼ y)}

 , (3.5)

and

(∀x, y ∈ X)

 x ≤ y ⇒


MA(y) ≥MA(x)

B̃A(y) � B̃A(x)
JA(y) ≤ JA(x)

 . (3.6)

Example 3.9. Let X be the equality algebra as Example 3.2. Define A = (MA, B̃A, JA) in X as
Table 6.

X MA B̃A JA
0 0.4 [0.3, 0.4] 0.6
a 0.5 [0.4, 0.5] 0.4
b 0.4 [0.4, 0.5] 0.5
1 0.7 [0.7, 0.8] 0.2

Table 6: Cayley table for the implication “A”

Then routine calculations show that A = (MA, B̃A, JA) is an MBJ-neutrosophic filter in X.
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Now, in the follow, we discuss characterizations of an MBJ-neutrosophic filter;

Theorem 3.10. Let A = (MA, B̃A, JA) be an MBJ-neutrosophic set in X. Then A is an MBJ-
neutrosophic filter of X if and only if it satisfies (3.4) and the following condition:

(∀x, y ∈ X)

 MA(y) ≥ min{MA(x),MA(x→ y)}
B̃A(y) � rmin{B̃A(x), B̃A(x→ y)}
JA(y) ≤ max{JA(x), JA(x→ y)}

 . (3.7)

Proof. Assume that A is an MBJ-neutrosophic filter of X. It is clear that the condition (3.4)
holds. Let x, y ∈ X. By Definition 3.8, for all x, y ∈ X, we get

min{MA(x),MA(x→ y)} = min{MA(x),MA(x ∼ (x ∧ y))} ≤MA(x ∧ y) ≤MA(y),

rmin{B̃A(x), B̃A(x→ y)} = rmin{B̃A(x), B̃A(x ∼ (x ∧ y))} � B̃A(x ∧ y) � B̃A(y),
max{JA(x), JA(x→ y)} = max{JA(x), JA(x ∼ (x ∧ y))} ≥ JA(x ∧ y) ≥ JA(y).

Hence, for all x, y ∈ X, we have

MA(y) ≥ min{MA(x),MA(x→ y)},
B̃A(y) � rmin{B̃A(x), B̃A(x→ y)},
JA(y) ≤ max{JA(x), JA(x→ y)}.

Conversly, suppose that A satisfies in (3.4) and (3.7). Let x, y ∈ X. If x ≤ y, then x → y = 1
and by (3.4) and (3.7), we get

MA(x) = min{MA(x),MA(1)} = min{MA(x),MA(x→ y)} ≤MA(y),

B̃A(x) = rmin{B̃A(x), B̃A(1)} = rmin{B̃A(x), B̃A(x→ y)} � B̃A(y),
JA(x) = max{JA(x), JA(1)} = max{JA(x), JA(x→ y)} ≥ JA(y),

and so for all x, y ∈ X, MA(y) ≥ MA(x), B̃A(y) � B̃A(x) and JA(y) ≤ JA(x). By (3.7) and
by Proposition 2.2(ix), we have MA(x ∼ y) ≤ MA(x → y), B̃A(x ∼ y) � B̃A(x → y) and
JA(x ∼ y) ≥ JA(x→ y), and so

min{MA(x),MA(x ∼ y)} ≤ min{MA(x),MA(x→ y)} ≤MA(y),

rmin{B̃A(x), B̃A(x ∼ y)} � rmin{B̃A(x), B̃A(x→ y)} � B̃A(y),
max{JA(x), JA(x ∼ y)} ≥ max{JA(x), JA(x→ y)} ≥ JA(y).

Therefore, A = (MA, B̃A, JA) is an MBJ-neutrosophic filter of X.

In the following example we show that every MBJ-neutrosophic filter in X is not an MBJ-
neutrosophic sub-algebra, in general.

Example 3.11. Let X be the equality algebra as Example 3.2 and A = (MA, B̃A, JA) be an
MBJ-neutrosophic filter of X as Example 3.9. It is clear that A = (MA, B̃A, JA) is not an
MBJ-neutrosophic sub-algebra of X, because

[0.3, 0.4] = B̃A(0) = B̃A(a ∼ b) � rmin{B̃A(a), B̃A(b)} = B̃A(a) = [0.4, 0.5].

Theorem 3.12. In a linearly order equality algebra, every MBJ-neutrosophic filter is an MBJ-
neutrosophic sub-algebra.
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Proof. Let A = (MA, B̃A, JA) be an MBJ-neutrosophic filter of X. Since for all x, y ∈ X, we have
y ≤ x→ y, then by (3.6), MA(y) ≤ MA(x→ y), B̃A(y) � B̃A(x→ y) and JA(y) ≥ JA(x→ y). It
follows from the assumption that for all x, y ∈ X

MA(x→ y) ≥MA(y) ≥ min{MA(x),MA(x→ y)} ≥ min{MA(x),MA(y)},
B̃A(x→ y) � B̃A(y) � rmin{B̃A(x), B̃A(x→ y)} � rmin{B̃A(x), B̃A(y)},
JA(x→ y) ≤ JA(y) ≤ max{JA(x), JA(x→ y)} =≤ max{JA(x), JA(y)}.

Hence by Theorem 3.7, A = (MA, B̃A, JA) is an MBJ-neutrosophic sub-algebra of X.

Theorem 3.13. An MBJ-neutrosophic set A = (MA, B̃A, JA) in X is an MBJ-neutrosophic filter
of X if and only if it satisfies:

(∀x, y, z ∈ X)

 x ≤ y → z ⇒


MA(z) ≥ min{MA(x),MA(y)}
B̃A(z) � rmin{B̃A(x), B̃A(y)}
JA(z) ≤ max{JA(x), JA(y)}

 . (3.8)

Proof. Suppose A is an MBJ-neutrosophic filter of X. Let x, y, z ∈ X such that x ≤ y → z. Then
MA(x) ≤MA(y → z), B̃A(x) � B̃A(y → z) and JA(x) ≥ JA(y → z). Thus

min{MA(y),MA(x)} ≤ min{MA(y),MA(y → z)} ≤MA(z),

rmin{B̃A(y), B̃A(x)} � rmin{B̃A(y), B̃A(y → z)} � B̃A(z),
max{JA(y), JA(x)} ≥ max{JA(y), JA(y → z)} ≥ JA(z).

Conversly, suppose that A satisfies in (3.8). Since x ≤ 1 and for any x ∈ X, 1 = x → 1, we have
x ≤ x→ 1. Then by (3.8) we have,

MA(1) ≥ min{MA(x),MA(x)} = MA(x),

B̃A(1) � rmin{B̃A(x), B̃A(x)} = B̃A(x),
JA(1) ≤ max{JA(x), JA(x)} = JA(x).

Since for any x, y ∈ X,x→ y ≤ x→ y, we have

min{MA(x),MA(x→ y)} ≤MA(y),

rmin{B̃A(x), B̃A(x→ y)} � B̃A(y),
max{JA(x), JA(x→ y)} ≥ JA(y).

Hence by Theorem 3.10, A is an MBJ-neutrosophic filter of X.

Proposition 3.14. Let X be a positive implicative equality algebra and A = (MA, B̃A, JA) be an
MBJ-neutrosophic set of X. Then for any x, y, z ∈ X, the following statements are equivalent:
(i) A = (MA, B̃A, JA) is an MBJ-neutrosophic filter of X,
(ii)

min{MA(x→ (y → z)),MA(x→ y)} ≤MA(x→ z),

rmin{B̃A(x→ (y → z)), B̃A(x→ y)} � B̃A(x→ z),
max{JA(x→ (y → z)), JA(x→ y)} ≥ JA(x→ z),

(iii)

min{MA(z → (y → (y → x))),MA(z)} ≤MA(y → x),

rmin{B̃A(z → (y → (y → x))), B̃A(z)} � B̃A(y → x),
max{JA(z → (y → (y → x))), JA(z)} ≥ JA(y → x).
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Proof. (i⇒ iii) Let A = (MA, B̃A, JA) be an MBJ-neutrosophic filter of X. Since X is a positive
implicative equality algebra, we have

min{MA(z → (y → (y → x))),MA(z)} ≤MA(y → (y → x)) = MA(y → x),

rmin{B̃A(z → (y → (y → x))), B̃A(z)} � B̃A(y → (y → x)) = B̃A(y → x),
max{JA(z → (y → (y → x))), JA(z)} ≥ JA(y → (y → x)) = JA(y → x).

(iii⇒ ii) Since X is a positive implicative equality algebra, we have

min{MA(x→ (y → z)),MA(x→ y)} = min{MA((x→ y)→ (x→ z)),MA(x→ y)}
= min{MA((x→ y)→ (x→ (x→ z)),MA(x→ y)} ≤MA(x→ z),

rmin{B̃A(x→ (y → z)), B̃A(x→ y)} = min{B̃A((x→ y)→ (x→ z)), B̃A(x→ y)}
= min{B̃A((x→ y)→ (x→ (x→ z)), B̃A(x→ y)} � B̃A(x→ z),

max{JA(x→ (y → z)), JA(x→ y)} = max{JA((x→ y)→ (x→ z)), JA(x→ y)}
= max{JA((x→ y)→ (x→ (x→ z)), JA(x→ y)} ≥ JA(x→ z).

(ii⇒ i) It is enough to let x = 1.

Proposition 3.15. Let A be an MBJ-neutrosophic filter of X. Then for any x, y, z, s, t ∈ X the
following statements hold:

(1) If MA(x→ y) = MA(1), then MA(x) ≤MA(y).

(2) If B̃A(x→ y) = B̃A(1), then B̃A(x) � B̃A(y).

(3) If JA(x→ y) = JA(1), then JA(x) ≥ JA(y).

(4) min{MA(x),MA(x→ y)} ≤MA(x ∧ y),

(5) rmin{B̃A(x), B̃A(x→ y)} � B̃A(x ∧ y),

(6) max{JA(x), JA(x→ y)} ≥ JA(x ∧ y),

(7) min{MA(x),MA(y)} = MA(x ∧ y),

(8) rmin{B̃A(x), B̃A(y)} = B̃A(x ∧ y),

(9) max{JA(x), JA(y)} = JA(x ∧ y),

(10) min{MA(x ∼ y),MA(y ∼ z)} ≤MA(x ∼ z),

(11) rmin{B̃A(x ∼ y), B̃A(y ∼ z)} � B̃A(x ∼ z),

(12) max{JA(x ∼ y), JA(y ∼ z)} ≥ JA(x ∼ z),

(13) min{MA(x→ y),MA(y → z)} ≤MA(x→ z),

(14) rmin{B̃A(x→ y), B̃A(y → z)} � B̃A(x→ z),

(15) max{JA(x→ y), JA(y → z)} ≥ JA(x→ z),

(16) If y ≤ x, then MA(y) = min{MA(x),MA(x→ y)}.
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(17) If y ≤ x, then B̃A(y) = rmin{B̃A(x), B̃A(x→ y)}.

(18) If y ≤ x, then JA(y) = max{JA(x), JA(x→ y)}.

Proof. (1), (2) and (3) by Theorem 3.10 and assumptions MA(x → y) = MA(1), B̃A(x → y) =
B̃A(1) and JA(x→ y) = JA(1), we have

MA(x) = min{MA(x),MA(1)} = min{MA(x),MA(x→ y)} ≤MA(y),

B̃A(x) = rmin{B̃A(x), B̃A(1)} = rmin{B̃A(x), B̃A(x→ y)} � B̃A(y),
JA(x) = max{JA(x), JA(1)} = max{JA(x), JA(x→ y)} ≥ JA(y).

(4), (5) and (6) by Definition 3.8, we have

min{MA(x),MA(x→ y)} = min{MA(x),MA(x ∼ (x ∧ y))} ≤MA(x ∧ y),

rmin{B̃A(x), B̃A(x→ y)} = rmin{B̃A(x), B̃A(x ∼ (x ∧ y))} � B̃A(x ∧ y),
max{JA(x), JA(x→ y)} = max{JA(x), JA(x ∼ (x ∧ y))} ≥ JA(x ∧ y).

(7), (8) and (9) this is clear thatMA(x∧y) ≤ min{MA(x),MA(y)}, B̃A(x∧y) � rmin{B̃A(x), B̃A(y)}
and JA(x ∧ y) ≥ max{JA(x), JA(y)}. Conversly, by Proposition 2.2(v) and items (4),(5) and (6),
we obtain

min{MA(x),MA(y)} ≤ min{MA(x),MA(x→ y)} ≤MA(x ∧ y),

rmin{B̃A(x), B̃A(y)} � rmin{B̃A(x), B̃A(x→ y)} � B̃A(x ∧ y),
max{JA(x), JA(y)} ≥ max{JA(x), JA(x→ y)} ≥ JA(x ∧ y).

(10), (11) and (12) since x ∼ y ≤ (y ∼ z) ∼ (x ∼ z), by Definition 2.1 (E7) and Definition 3.8,
we get

min{MA(x ∼ y),MA(y ∼ z)} ≤ min{MA((y ∼ z) ∼ (x ∼ z)),MA(y ∼ z)} ≤MA(x ∼ z),
rmin{B̃A(x ∼ y), B̃A(y ∼ z)} � rmin{B̃A((y ∼ z) ∼ (x ∼ z)), B̃A(y ∼ z)} � B̃A(x ∼ z),
max{JA(x ∼ y), JA(y ∼ z)} ≥ max{JA((y ∼ z) ∼ (x ∼ z)), JA(y ∼ z)} ≥ JA(x ∼ z).

(13), (14) and (15) by Proposition 2.2(vii), we have x → y ≤ (y → z) → (x → z), then by
Definition 3.8 and Theorem 3.10 we get

min{MA(x→ y),MA(y → z)} ≤ min{MA((y → z)→ (x→ z)),MA(y → z)} ≤MA(x→ z),

rmin{B̃A(x→ y), B̃A(y → z)} � rmin{B̃A((y → z)→ (x→ z)), B̃A(y → z)} � B̃A(x→ z),
max{JA(x→ y), JA(y → z)} ≥ max{JA((y → z)→ (x→ z)), JA(y → z)} ≥ JA(x→ z).

(16), (17) and (18) since y ≤ x, y ≤ x→ y and A is an MBJ-neutrosophic filter of X, we have

MA(y) ≤ min{MA(x→ y),MA(x)} ≤MA(y),

B̃A(y) � rmin{B̃A(x→ y), B̃A(x)} � B̃A(y),
JA(y) ≥ max{JA(x→ y), JA(x)} ≥ JA(y).

Proposition 3.16. Let {Fi}i∈Λ be a family of MBJ-neutrosophic filters of X. Then infinite
intersection (

∧
i∈Λ

) of Fi is an MBJ-neutrosophic filter of X.
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Proof. Suppose that for any x, y, z ∈ X,x ≤ y → z. Since Fi are an MBJ-neutrosophic filters of
X, by Theorem 3.13 for all x, y, z ∈ X, we have

MA(z) ≥ min{MA(x),MA(y)},
B̃A(z) � rmin{B̃A(x), B̃A(y)},
JA(z) ≤ max{JA(x), JA(y)},

Thus, ∧
i∈Λ

M i
A(z) = inf

i∈Λ
M i

A(z) ≥ inf
i∈Λ

(min{M i
A(x),M i

A(y)}) = min{inf
i∈Λ

M i
A(x), inf

i∈Λ
M i

A(y)}

= min{
∧
i∈Λ

M i
A(x),

∧
i∈Λ

M i
A(y)},

∧
i∈Λ

B̃i
A(z) = rinf

i∈Λ
B̃i

A(z) � rinf
i∈Λ

(rmin{B̃i
A(x), B̃i

A(y)}) = rmin{rinf
i∈Λ

B̃i
A(x), rinf

i∈Λ
B̃i

A(y)}

= min{
∧
i∈Λ

B̃i
A(x),

∧
i∈Λ

B̃i
A(y)},

∧
i∈Λ

J i
A(z) = inf

i∈Λ
J i
A(z) ≤ inf

i∈Λ
(max{J i

A(x), J i
A(y)}) = max{inf

i∈Λ
J i
A(x), inf

i∈Λ
J i
A(y)}

= max{
∧
i∈Λ

J i
A(x),

∧
i∈Λ

J i
A(y)}.

Therefore, by Theorem 3.13, infinite intersection of Fi is an MBJ-neutrosophic filter of X.

Let X and Y be two equality algebras. f : X → Y is called an equality homomorphism if for
any x, y ∈ X, we have

f(x ∼ y) = f(x) ∼ f(y), and f(x ∧ y) = f(x) ∧ f(y).

It is clear that f(x→ y) = f(x)→ f(y) and if X and Y are bounded, then f(0) = 0.

Notation. Let X and Y be two equality algebras and f : X → Y be an equality homomor-
phism. For any MBJ-neutrosophic set A = (MA, B̃A, JA) in Y , we define a new MBJ-neutrosophic

set Af = (Mf
A, B̃

f
A, J

f
A) in X by Mf

A(x) = MA(f(x)), B̃f
A(x) = B̃A(f(x)) and Jf

A(x) = JA(f(x)),
for any x ∈ X.

Theorem 3.17. Let f : X → Y be an equality homomorphism.
(i) If A = (MA, B̃A, JA) is an MBJ-neutrosophic filter of Y , then Af = (Mf

A, B̃
f
A, J

f
A) is an

MBJ-neutrosophic filter of X.
(ii) If f is an equality epimorphism and Af = (Mf

A, B̃
f
A, J

f
A) is an MBJ-neutrosophic filter of X,

then A = (MA, B̃A, JA) is an MBJ-neutrosophic filter of Y .

Proof. (i) Let x, y ∈ X. Since f(x) ≤ 1 = f(1) and A = (MA, B̃A, JA) is an MBJ-neutrosophic
filter of Y , we have

Mf
A(x) = MA(f(x)) ≤MA(f(1)) = Mf

A(1),

B̃f
A(x) = B̃A(f(x)) � B̃A(f(1)) = B̃f

A(1),

Jf
A(x) = JA(f(x)) ≥ JA(f(1)) = Jf

A(1).
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Moreover, since f is an equality homomotphism, we get

min{Mf
A(x),Mf

A(x→ y)} = min{MA(f(x→ y)),MA(f(x))} = min{MA(f(x)→ f(y)),MA(f(x))}

≤MA(f(y)) = Mf
A(y),

min{B̃f
A(x), B̃f

A(x→ y)} = min{B̃A(f(x→ y)), B̃A(f(x))} = min{B̃A(f(x)→ f(y)), B̃A(f(x))}

� B̃A(f(y)) = B̃f
A(y),

max{Mf
A(x),Mf

A(x→ y)} = max{MA(f(x→ y)),MA(f(x))} = max{MA(f(x)→ f(y)),MA(f(x))}

≥MA(f(y)) = Mf
A(y),

Therefore Af = (Mf
A, B̃

f
A, J

f
A) is an MBJ-neutrosophic filter of X.

(ii) Let y ∈ Y . Since f is an equality epimorphism andAf = (Mf
A, B̃

f
A, J

f
A) is an MBJ-neutrosophic

filter of X, there exists x ∈ X such that f(x) = y and

MA(y) = MA(f(x)) = Mf
A(x) ≤Mf

A(1) = MA(f(1)) = MA(1),

B̃A(y) = B̃A(f(x)) = B̃f
A(x) � B̃f

A(1) = B̃A(f(1)) = B̃A(1),

JA(y) = JA(f(x)) = Jf
A(x) ≥ Jf

A(1) = JA(f(1)) = JA(1).

Now, suppose x, y ∈ Y . Then there exist a, b ∈ X such that f(a) = x and f(b) = y. Thus

MA(y) = MA(f(b)) = Mf
A(b) ≥ min{Mf

A(a),Mf
A(a→ b)} = min{MA(f(a→ b)),MA(f(a))}

= min{MA(f(a)→ f(b)),MA(f(a))} = min{MA(x→ y),MA(x)}.

B̃A(y) = B̃A(f(b)) = B̃f
A(b) � min{B̃f

A(a), B̃f
A(a→ b)} = min{B̃A(f(a→ b)), B̃A(f(a))}

= min{B̃A(f(a)→ f(b)), B̃A(f(a))} = min{B̃A(x→ y), B̃A(x)}.

JA(y) = JA(f(b)) = Jf
A(b) ≤ min{Jf

A(a), Jf
A(a→ b)} = min{JA(f(a→ b)), JA(f(a))}

= min{JA(f(a)→ f(b)), JA(f(a))} = min{JA(x→ y), JA(x)}.

Therefore, A = (MA, B̃A, JA) is an MBJ-neutrosophic filter of Y .

Define K(x, y) = {z ∈ X | x ≤ y → z} which is called an upper set of x and y. It is easy to
see that 1, x, y ∈ K(x, y), for any x, y ∈ X.

In the following example we can see that every K(x, y) is not a filter of X in general.

Example 3.18. Let X = {0, a, b, c, d, 1} be a set with the following Hasse diagram.

r
0
J
J





rb rZZ d

rJJ cr

a

r1

Then (X,∧, 1) is a meet semilattice with top element 1. Define an operation ∼ on X by Table
7.
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∼ 0 a b c d 1

0 1 d c b a 0
a d 1 a d c a
b c a 1 0 d b
c b d 0 1 a c
d a c d a 1 d
1 0 a b c d 1

Table 7: Cayley table for the binary operation “∼”

Thus E = (X,∧,∼, 1) is an equality algebra, and the implication “→” is given by Table 8.

→ 0 a b c d 1

0 1 1 1 1 1 1
a d 1 a c c 1
b c 1 1 c c 1
c b a b 1 a 1
d a 1 a 1 1 1
1 0 a b c d 1

Table 8: Cayley table for the implication “→”

Hence, K(c, a) = {a, c, d, 1} is not a filter of X, because d→ b = a ∈ K(c, a) and d ∈ K(c, a),
but b /∈ K(c, a).

Given an MBJ-neutrosophic set A = (MA, B̃A, JA) in X, we consider the following sets,

U(MA; t) := {x ∈ X|MA(x) ≥ t}, (3.9)

U(B̃A; [δ1, δ2]) := {x ∈ X|B̃A(x) � [δ1, δ2]}, (3.10)

L(JA; s) := {x ∈ X|JA(x) ≤ s}. (3.11)

Where t, s ∈ [0, 1] = I and [δ1, δ2] ∈ [I].

Example 3.19. Let A = (MA, B̃A, JA) be an MBJ-neutrosophic as Example 3.2. Suppose t = 0.5,
s = 0.4 and [δ1, δ2] = [0.4, 0.5]. Then it is clear that

U(MA; 0.5) := {x ∈ X|MA(x) ≥ 0.5} = {a, 1},
U(B̃A; [0.4, 0.5]) := {x ∈ X|B̃A(x) � [0.4, 0.5]} = {0, 1},
L(JA; 0.4) := {x ∈ X|JA(x) ≤ 0.4} = {1}.

Theorem 3.20. An MBJ-neutrosophic set A = (MA, B̃A, JA) in X is an MBJ-neutrosophic filter
of X if and only if for any t, s ∈ [0, 1] and [δ1, δ2] ∈ [I], the non-empty sets U(MA; t), U(B̃A; [δ1, δ2])
and L(JA; s) are filters of X.

Proof. Suppose A = (MA, B̃A, JA) is an MBJ-neutrosophic filter of X. Let t, s ∈ [0, 1] and
[δ1, δ2] ∈ [I] such that U(MA; t), U(B̃A; [δ1, δ2]) and L(JA; s) are non-empty sets. Obviously,
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1 ∈ U(MA; t), 1 ∈ U(B̃A; [δ1, δ2]) and 1 ∈ L(JA; s). For any x, y, a, b, u, v ∈ X, if x, x → y ∈
U(MA; t), a, a→ b ∈ U(B̃A; [δ1, δ2]) and u, u→ v ∈ L(JA; s), then

MA(y) ≥ min{MA(x),MA(x→ y)} ≥ min{t, t} = t,

B̃A(b) � rmin{B̃A(a), B̃A(a→ b)} � rmin{[δ1, δ2], [δ1, δ2]} = [δ1, δ2],

JA(v) ≤ max{JA(u), JA(u→ v)} ≤ max{s, s} = s,

and so y ∈ U(MA; t), b ∈ U(B̃A; [δ1, δ2]) and v ∈ L(JA; s). Therefore, U(MA; t), U(B̃A; [δ1, δ2]) and
L(JA; s) are filters of X.

Conversely, suppose that for any t, s ∈ [0, 1] and [δ1, δ2] ∈ [I], the non-empty sets U(MA; t),
L(JA; s) and U(B̃A; [δ1, δ2]) are filters of X. Let x ∈ U(MA; t) ∩ L(JA; s) ∩ U(B̃A; [δ1, δ2]), for
some x ∈ X. If MA(1) < MA(x), B̃A(1) ≺ B̃A(x) and JA(1) > JA(x), then 1 /∈ U(MA; t), 1 /∈
U(B̃A; [δ1, δ2]) and 1 /∈ L(JA; s), which is a contradiction. Hence MA(x) ≤ MA(1), B̃A(x) �
B̃A(1), JA(x) ≥ JA(1) for all x ∈ X. Suppose for some x0, y0 ∈ X, x0, x0 → y0 ∈ U(MA; t0)
but y0 /∈ U(MA; t0) for t0 := min{MA(x0),MA(x0 → y0)}. This is a contradiction and thus
MA(y) ≥ min{MA(x),MA(x → y)} for all x, y ∈ X. Similarly, we can show that for all x, y ∈ X,
JA(y) ≤ max{JA(x), JA(x→ y)}. Suppose for some x0, y0 ∈ X, B̃A(y0) ≺ rmin{B̃A(x0), B̃A(x0 →
y0)}. Let B̃A(x0 → y0) = [η1, η2], B̃A(x0) = [η3, η4] and B̃A(y0) = [δ1, δ2]. Then

[δ1, δ2] ≺ rmin{[η1, η2], [η3, η4]} = [min{η1, η3},min{η2, η4}],

and so δ1 < min{η1, η3} and δ2 < min{η2, η4}. Taking

[γ1, γ2] :=
1

2
(B̃A(y0) + rmin{B̃A(x0 → y0), B̃A(x0)}),

implies that

[γ1, γ2] =
1

2
([δ1, δ2] + rmin{[η1, η2], [η3, η4]}) =

1

2
([δ1, δ2] + [min{η1, η3},min{η2, η4}])

= [
1

2
(δ1 + min{η1, η3}),

1

2
(δ2 + min{η2, η4})].

It follows that

min{η1, η3} > γ1 =
1

2
(δ1 + min{η1, η3}) > δ1,

and

min{η2, η4} > γ2 =
1

2
(δ2 + min{η2, η4}) > δ2.

Hence
[min{η1, η3},min{η2, η4}] � [γ1, γ2] � [δ1, δ2] = B̃A(y0),

and so y0 /∈ U(B̃A; [γ1, γ2]). On the other hand,

B̃A(x0 → y0) = [η1, η2] � [min{η1, η3},min{η2, η4}] � [γ1, γ2],

and
B̃A(x0) = [η3, η4] � [min{η1, η3},min{η2, η4}] � [γ1, γ2],

so x0 → y0, x0 ∈ U(B̃A; [γ1, γ2]), which is a contradiction and so B̃A(y) � rmin{B̃A(x), B̃A(x→ y)}
for all x, y ∈ X. Therefore, A = (MA, B̃A, JA) is an MBJ-neutrosophic filter of X.
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Proposition 3.21. Let A = (MA, B̃A, JA) be an MBJ-neutrosophic filter of X such that x, y ∈ X,
t, s ∈ [0, 1] and [δ1, δ2] ∈ [I]. If x, y ∈ U(MA; t) ∩ U(B̃A; [δ1, δ2]) ∩ L(JA; s), then K(x, y) ⊆
U(MA; t) ∩ U(B̃A; [δ1, δ2]) ∩ L(JA; s).

Proof. Let x, y ∈ U(MA; t) ∩ U(B̃A; [δ1, δ2]) ∩ L(JA; s), t, s ∈ [0, 1], [δ1, δ2] ∈ [I] and z ∈ K(x, y).
Then x ≤ y → z. Since x, y ∈ U(MA; t)∩U(B̃A; [δ1, δ2])∩L(JA; s) and A is an MBJ-neutrosophic
filter of X, we have MA(x),MA(y) ≥ t. By Theorem 3.13, we get MA(z) ≥ min{MA(x),MA(y)} ≥
t, and so z ∈ U(MA; t) . By the similar way, we can see that z ∈ U(B̃A; [δ1, δ2]) ∩ L(JA; s). Hence
K(x, y) ⊆ U(MA; t) ∩ U(B̃A; [δ1, δ2]) ∩ L(JA; s).

Corollary 3.22. Let A = (MA, B̃A, JA) be an MBJ-neutrosophic filter of X such that t, s ∈ [0, 1]
and [δ1, δ2] ∈ [I]. If U(MA; t) ∩ U(B̃A; [δ1, δ2]) ∩ L(JA; s) 6= ∅, then

U(MA; t) =
⋃

x,y∈U(MA;t)

K(x, y), U(B̃A; [δ1, δ2]) =
⋃

x,y∈U(B̃A;t)

K(x, y), L(JA; s) =
⋃

x,y∈U(JA;t)

K(x, y).

Proof. The proof is straightforward.

Theorem 3.23. Given an filter F of X, let A = (MA, B̃A, JA) be an MBJ-neutrosophic set in
X that defined by

MA(x) =

{
t if x ∈ F,
0 otherwise,

B̃A(x) =

{
[δ1, δ2] if x ∈ F,
[0, 0] otherwise,

JA(x) =

{
s if x ∈ F,
1 otherwise,

(3.12)

Then A = (MA, B̃A, JA) is an MBJ-neutrosophic filter of X such that U(MA; t) = U(B̃A; [δ1, δ2]) =
L(JA; s) = F .

Proof. Let x, y ∈ X and x, x→ y ∈ F . Since F is a filter of X, we have y ∈ F and so

MA(y) = t = min{MA(x),MA(x→ y)},
B̃A(y) = [δ1, δ2] = rmin{B̃A(x), B̃A(x→ y)},
JA(y) = s = max{JA(x), JA(x→ y)}.

If x → y ∈ F and x /∈ F , then MA(x → y) = t, B̃A(x → y) = [δ1, δ2] and JA(x → y) = s. Also,
MA(x) = 0, B̃A(x) = [0, 0] and JA(x) = 1. Hence

MA(y) ≥ 0 = min{t, 0} = min{MA(x),MA(x→ y)},
B̃A(y) � [0, 0] = rmin{[δ1, δ2], [0, 0]} = rmin{B̃A(x), B̃A(x→ y)},
JA(y) ≤ 1 = max{s, 1} = max{JA(x), JA(x→ y)}.

If x → y, x /∈ F , then MA(x) = MA(x → y) = 0, B̃A(x) = B̃A(x → y) = [0, 0] and JA(x) =
JA(x→ y) = 1. Hence

MA(y) ≥ 0 = min{0, 0} = min{MA(x),MA(x→ y)},
B̃A(y) � [0, 0] = rmin{[0, 0], [0, 0]} = rmin{B̃A(x), B̃A(x→ y)},
JA(y) ≤ 1 = max{1, 1} = max{JA(x), JA(x→ y)}.

Since F is a filter ofX, we have 1 ∈ F and so it is clear that for all x ∈ X,MA(x) ≤MA(1), B̃A(x) �
B̃A(1), JA(x) ≥ JA(1). Therefore A = (MA, B̃A, JA) is an MBJ-neutrosophic filter of X and we
have U(MA; t) = U(B̃A; [δ1, δ2]) = L(JA; s) = F .
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Theorem 3.24. For any non-empty subset F of X, let A = (MA, B̃A, JA) be an MBJ-neutrosophic
set of X which is given in (3.12). If A = (MA, B̃A, JA) is an MBJ-neutrosophic filter of X, then
F is a filter of X.

Proof. Since for any x ∈ U(MA; t) ∩ L(JA; s) ∩ U(B̃A; [δ1, δ2]), MA(x) ≤ MA(1), B̃A(x) � B̃A(1),
JA(x) ≥ JA(1), it is clear that 1 ∈ F . Let x, y ∈ X such that x → y ∈ F and x ∈ F . Then
MA(x) = MA(x→ y) = t, B̃A(x) = B̃A(x→ y) = [δ1, δ2] and JA(x) = JA(x→ y) = s. Thus

MA(y) ≥ min{MA(x),MA(x→ y)} = t,

B̃A(y) � rmin{B̃A(x), B̃A(x→ y)} = [δ1, δ2],

JA(y) ≤ max{JA(x), JA(x→ y)} = s,

and so MA(y) = t, B̃A(y) = [δ1, δ2] and JA(y) = s. Hence, y ∈ F . Therefore, F is a filter of X.

Proposition 3.25. Let A = (MA, B̃A, JA) be an MBJ-neutrosophic filter of X. Then the sets
XMA

= {x ∈ X | MA(x) = MA(1)}, XB̃A
= {x ∈ X | B̃A(x) = B̃A(1)}, XJA = {x ∈ X | JA(x) =

JA(1)} are filters of X.

Proof. It is clear that 1 ∈ XMA
∩XB̃A

∩XJA . Let x, x→ y ∈ XMA
. Then MA(x→ y) = MA(x) =

MA(1). Since A is an MBJ-neutrosophic filter of X, we have

MA(1) ≥MA(y) ≥ min{MA(x→ y),MA(x)} = min{MA(1),MA(1)} = MA(1).

Hence MA(y) = MA(1) and so y ∈ XMA
. Therefore XMA

is a filter of X. The proofs of other cases
are similar.

Note. Since 1 ∈ XMA
∩XB̃A

∩XJA , we get XMA
∩XB̃A

∩XJA 6= ∅ and by Proposition 3.25,
the sets XMA

, XB̃A
and XJA are filters of X, by using an MBJ-neutrosophic filter of X, for any

x, y ∈ X, we can define a congruence relation on X as follows:

x ≡A y if and only if x→ y, y → x ∈ XMA
∩XB̃A

∩XJA .

Corollary 3.26. Let X
≡A

= { x
≡A
| x ∈ X}. Define the operations ' and u on X

≡A
as follows:

x

≡A
u y

≡A
=
x ∧ y
≡A

and
x

≡A
' y

≡A
=
x ∼ y
≡A

.

Hence
(

X
≡A
,u,', 1

≡A

)
is an equality algebra.

4 Conclusions

In this paper, the notion of MBJ-neutrosophic sub-algebra and MBJ-neutrosophic filter on equality
algebras are introduced and some equivalence definitions, properties and the relation between them
are investigated. Also, by using the notion of MBJ-neutrosophic filter, a congruence relation is
defined on equality algebra and we prove that the quotient structure that is made by this is an
equality algebra.

In future work, we can study MBJ-neutrosophic notion on different kinds of filters such as
(positive) implicative filters, fantastic filters, prime and maximal filters of equality algebras and
investigate the quotient that is made by them.
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