Open Mathematics

Research Article

Young Bae Jun and Eun Hwan Roh*

MBJ-neutrosophic ideals of *BCK/BCI-algebras*

https://doi.org/10.1515/math-2019-0106 Received September 6, 2018; accepted February 19, 2019

Abstract: The notion of MBJ-neutrosophic ideal is introduced, and its properties are investigated. Conditions for an MBJ-neutrosophic set to be an MBJ-neutrosophic ideal are provided. In a *BCK/BCI*-algebra, a condition for an MBJ-neutrosophic subalgebra to be an MBJ-neutrosophic ideal is given. In a *BCK*-algebra, conditions for an MBJ-neutrosophic ideal to be an MBJ-neutrosophic ideal is given. In a *BCI*-algebra, conditions for an MBJ-neutrosophic ideal to be an MBJ-neutrosophic subalgebra are considered. In an (*S*)-*BCK*-algebra, we show that every MBJ-neutrosophic ideal is an MBJ-neutrosophic \circ -subalgebra, and a characterization of an MBJ-neutrosophic ideal is established.

Keywords: MBJ-neutrosophic set, MBJ-neutrosophic subalgebra, MBJ-neutrosophic ideal, MBJ-neutro-sophic o-subalgebra

MSC: 06F35, 03G25, 03E72

1 Introduction

Different types of uncertainties are encountered in many complex systems and/or in many practical situations like behavioral, biologial and chemical etc. In order to handle uncertainties in many real applications, the fuzzy set was introduced by L.A. Zadeh [1] in 1965. The intuitionistic fuzzy set on a universe X was introduced by K. Atanassov in 1983 as a generalization of fuzzy set. As a more general platform that extends the notions of classic set, (intuitionistic) fuzzy set and interval valued (intuitionistic) fuzzy set, the notion of neutrosophic set is developed by Smarandache [2–4]. Neutrosophic algebraic structures in *BCK/BCI*-algebras are discussed in the papers [5–14] and [15]. In [16], the notion of MBJ-neutrosophic sets is introduced as another generalization of neutrosophic set, it is applied to *BCK/BCI*-algebras. Mohseni et al. [16] introduced the concept of MBJ-neutrosophic subalgebras in *BCK/BCI*-algebras, and investigated related properties. They gave a characterization of MBJ-neutrosophic subalgebra. They considered the homomorphic inverse image of MBJ-neutrosophic subalgebra, and discussed translation of MBJ-neutrosophic subalgebra.

In this paper, we apply the notion of MBJ-neutrosophic sets to ideals of *BCK/BI*-algebras. We introduce the concept of MBJ-neutrosophic ideals in *BCK/BCI*-algebras, and investigate several properties. We provide a condition for an MBJ-neutrosophic subalgebra to be an MBJ-neutrosophic ideal in a *BCK*-algebra. We provide conditions for an MBJ-neutrosophic set to be an MBJ-neutrosophic ideal in a *BCK/BCI*-algebra.

Young Bae Jun: Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea; E-mail: skywine@gmail.com

^{*}Corresponding Author: Eun Hwan Roh: Department of Mathematics Education, Chinju National University of Education, Jinju 52673, Korea; E-mail: ehroh9988@gmail.com

We discuss relations between MBJ-neutrosophic subalgebras, MBJ-neutrosophic \circ -subalgebras and MBJneutrosophic ideals. In a *BCI*-algebra, we provide conditions for an MBJ-neutrosophic ideal to be an MBJneutrosophic subalgebra. In an (*S*)-*BCK*-algebra, we consider a characterization of an MBJ-neutrosophic ideal.

2 Preliminaries

By a *BCI-algebra*, we mean a set *X* with a binary operation * and a special element 0 that satisfies the following conditions:

- (I) ((x * y) * (x * z)) * (z * y) = 0,
- (II) $(x \star (x \star y)) \star y = 0$,
- (III) $x \star x = 0$,
- (IV) $x \star y = 0$, $y \star x = 0 \Rightarrow x = y$

for all $x, y, z \in X$. If a *BCI*-algebra *X* satisfies the following identity:

(V)
$$(\forall x \in X) (0 \star x = 0),$$

then *X* is called a *BCK-algebra*.

By a *weakly BCK-algebra* (see [17]), we mean a *BCI*-algebra *X* satisfying $0 * x \le x$ for all $x \in X$. Every *BCK/BCI*-algebra *X* satisfies the following conditions:

 $(\forall x \in X) (x \star 0 = x), \qquad (2.1)$

$$(\forall x, y, z \in X) (x \le y \Rightarrow x * z \le y * z, z * y \le z * x),$$

$$(2.2)$$

$$(\forall x, y, z \in X) ((x \star y) \star z = (x \star z) \star y), \qquad (2.3)$$

$$(\forall x, y, z \in X) ((x \star z) \star (y \star z) \le x \star y), \qquad (2.4)$$

where $x \le y$ if and only if x * y = 0. Any *BCI*-algebra X satisfies the following conditions (see [17]):

$$(\forall x, y \in X)(x \star (x \star (x \star y)) = x \star y), \tag{2.5}$$

$$(\forall x, y \in X)(0 \star (x \star y) = (0 \star x) \star (0 \star y)).$$
 (2.6)

A BCI-algebra X is said to be *p*-semisimple (see [17]) if

$$(\forall x \in X)(0 \star (0 \star x) = x). \tag{2.7}$$

In a *p*-semisimple *BCI*-algebra *X*, the following holds:

$$(\forall x, y \in X)(0 * (x * y) = y * x, x * (x * y) = y).$$
 (2.8)

A BCI-algebra X is said to be associative (see [17]) if

$$(\forall x, y, z \in X)((x \star y) \star z = x \star (y \star z)).$$

$$(2.9)$$

By an (*S*)-*BCK*-algebra, we mean a *BCK*-algebra *X* such that, for any $x, y \in X$, the set

$$\{z \in X \mid z \star x \le y\}$$

has the greatest element, written by $x \circ y$ (see [18]).

A nonempty subset *S* of a *BCK/BCI*-algebra *X* is called a *subalgebra* of *X* if $x * y \in S$ for all $x, y \in S$. A subset *I* of a *BCK/BCI*-algebra *X* is called an *ideal* of *X* if it satisfies:

$$0 \in I, \tag{2.10}$$

$$(\forall x \in X) (\forall y \in I) (x \star y \in I \Rightarrow x \in I).$$
(2.11)

A subset *I* of a *BCI*-algebra *X* is called a *closed ideal* of *X* (see [17]) if it is an ideal of *X* which satisfies:

$$(\forall x \in X)(x \in I \Rightarrow 0 * x \in I).$$
(2.12)

By an *interval number* we mean a closed subinterval $\tilde{a} = [a^-, a^+]$ of I, where $0 \le a^- \le a^+ \le 1$. Denote by [I] the set of all interval numbers. Let us define what is known as *refined minimum* (briefly, rmin) and *refined maximum* (briefly, rmax) of two elements in [I]. We also define the symbols " \succeq ", " \preceq ", "=" in case of two elements in [I]. Consider two interval numbers $\tilde{a}_1 := [a_1^-, a_1^+]$ and $\tilde{a}_2 := [a_2^-, a_2^+]$. Then

$$\operatorname{rmin} \{\tilde{a}_{1}, \tilde{a}_{2}\} = [\operatorname{min} \{a_{1}^{-}, a_{2}^{-}\}, \operatorname{min} \{a_{1}^{+}, a_{2}^{+}\}],$$

$$\operatorname{rmax} \{\tilde{a}_{1}, \tilde{a}_{2}\} = [\operatorname{max} \{a_{1}^{-}, a_{2}^{-}\}, \operatorname{max} \{a_{1}^{+}, a_{2}^{+}\}],$$

$$\tilde{a}_{1} \succeq \tilde{a}_{2} \Leftrightarrow a_{1}^{-} \ge a_{2}^{-}, a_{1}^{+} \ge a_{2}^{+},$$

and similarly we may have $\tilde{a}_1 \leq \tilde{a}_2$ and $\tilde{a}_1 = \tilde{a}_2$. To say $\tilde{a}_1 \succ \tilde{a}_2$ (resp. $\tilde{a}_1 \prec \tilde{a}_2$) we mean $\tilde{a}_1 \succeq \tilde{a}_2$ and $\tilde{a}_1 \neq \tilde{a}_2$). Let $\tilde{a}_i \in [I]$ where $i \in \Lambda$. We define

$$\inf_{i \in \Lambda} \tilde{a}_i = \left[\inf_{i \in \Lambda} a_i^-, \inf_{i \in \Lambda} a_i^+ \right] \text{ and } \operatorname{rsup}_{i \in \Lambda} \tilde{a}_i = \left[\sup_{i \in \Lambda} a_i^-, \sup_{i \in \Lambda} a_i^+ \right].$$

Let *X* be a nonempty set. A function $A : X \to [I]$ is called an *interval-valued fuzzy set* (briefly, an *IVF set*) in *X*. Let $[I]^X$ stand for the set of all IVF sets in *X*. For every $A \in [I]^X$ and $x \in X$, $A(x) = [A^-(x), A^+(x)]$ is called the *degree* of membership of an element *x* to *A*, where $A^- : X \to I$ and $A^+ : X \to I$ are fuzzy sets in *X* which are called a *lower fuzzy set* and an *upper fuzzy set* in *X*, respectively. For simplicity, we denote $A = [A^-, A^+]$.

Let X be a non-empty set. A *neutrosophic set* (NS) in X (see [3]) is a structure of the form:

$$A := \{ \langle x; A_T(x), A_I(x), A_F(x) \rangle \mid x \in X \},\$$

where $A_T : X \to [0, 1]$ is a truth membership function, $A_I : X \to [0, 1]$ is an indeterminate membership function, and $A_F : X \to [0, 1]$ is a false membership function. For the sake of simplicity, we shall use the symbol $A = (A_T, A_I, A_F)$ for the neutrosophic set

$$A := \{ \langle x; A_T(x), A_I(x), A_F(x) \rangle \mid x \in X \}.$$

We refer the reader to the books [17, 18] for further information regarding *BCK/BCI*-algebras, and to the site "http://fs.gallup.unm.edu/neutrosophy.htm" for further information regarding neutrosophic set theory. Let *X* be a non-empty set. By an *MBJ-neutrosophic set* in *X* (see [16]), we mean a structure of the form:

$$\mathcal{A} := \{ \langle x; M_A(x), B_A(x), J_A(x) \rangle \mid x \in X \},\$$

where M_A and J_A are fuzzy sets in X, which are called a truth membership function and a false membership function, respectively, and \tilde{B}_A is an IVF set in X which is called an indeterminate interval-valued membership function.

For the sake of simplicity, we shall use the symbol $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ for the MBJ-neutrosophic set

$$\mathcal{A} := \{ \langle x; M_A(x), \tilde{B}_A(x), J_A(x) \rangle \mid x \in X \}.$$

Let X be a *BCK/BCI*-algebra. An MBJ-neutrosophic set $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ in X is called an *MBJ*neutrosophic subalgebra of X (see [16]) if it satisfies:

$$(\forall x, y \in X) \begin{pmatrix} M_A(x * y) \ge \min\{M_A(x), M_A(y)\},\\ \tilde{B}_A(x * y) \ge \min\{\tilde{B}_A(x), \tilde{B}_A(y)\},\\ J_A(x * y) \le \max\{J_A(x), J_A(y)\}. \end{pmatrix}$$
(2.13)

3 MBJ-neutrosophic ideals of BCK/BCI-algebras

Definition 3.1. Let *X* be a *BCK/BCI*-algebra. An MBJ-neutrosophic set $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ in *X* is called an *MBJ-neutrosophic ideal* of *X* if it satisfies:

$$(\forall x \in X) \begin{pmatrix} M_A(0) \ge M_A(x) \\ \tilde{B}_A(0) \succeq \tilde{B}_A(x) \\ J_A(0) \le J_A(x) \end{pmatrix}$$
(3.1)

and

$$(\forall x, y \in X) \begin{pmatrix} M_A(x) \ge \min\{M_A(x * y), M_A(y)\}\\ \tilde{B}_A(x) \ge \min\{\tilde{B}_A(x * y), \tilde{B}_A(y)\}\\ J_A(x) \le \max\{J_A(x * y), J_A(y)\} \end{pmatrix}.$$
(3.2)

An MBJ-neutrosophic ideal $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ of a *BCI*-algebra X is said to be *closed* if

$$(\forall x \in X) \begin{pmatrix} M_A(0 * x) \ge M_A(x) \\ \tilde{B}_A(0 * x) \succeq \tilde{B}_A(x) \\ J_A(0 * x) \le J_A(x) \end{pmatrix}.$$
(3.3)

Example 3.2. Consider a set $X = \{0, 1, 2, a\}$ with the binary operation * which is given in Table 1. Then (X; *, 0) is a *BCI*-algebra (see [17]). Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be an MBJ-neutrosophic set in X defined by Table 2.

Table 1: Cayley table for the binary operation "*".

*	0	1	2	а
0	0	0	0	а
1	1	0	0	а
2	2	2	0	а
а	а	а	а	0

Table 2: MBJ-neutrosophic set $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$.

X	$M_A(x)$	$\tilde{B}_A(x)$	$J_A(x)$
0	0.7	[1.0, 1.0]	0.2
1	0.5	[0.2, 0.6]	0.2
2	0.4	[0.2, 0.6]	0.7
а	0.3	[0.2, 0.6]	0.7

It is routine to verify that $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a closed MBJ-neutrosophic ideal of X.

Proposition 3.3. Let X be a BCK/BCI-algebra. Then every MBJ-neutrosophic ideal $A = (M_A, \tilde{B}_A, J_A)$ of X satisfies the following assertion.

$$x \star y \leq z \implies \begin{cases} M_A(x) \geq \min\{M_A(y), M_A(z)\}, \\ \tilde{B}_A(x) \succeq \min\{\tilde{B}_A(y), \tilde{B}_A(z)\}, \\ J_A(x) \leq \max\{J_A(y), J_A(z)\} \end{cases}$$
(3.4)

for all $x, y, z \in X$.

$$M_A(x * y) \ge \min\{M_A((x * y) * z), M_A(z)\} = \min\{M_A(0), M_A(z)\} = M_A(z),$$
$$\tilde{B}_A(x * y) \succeq \min\{\tilde{B}_A((x * y) * z), \tilde{B}_A(z)\} = \min\{\tilde{B}_A(0), \tilde{B}_A(z)\} = \tilde{B}_A(z),$$

and

$$J_A(x \star y) \le \max\{J_A((x \star y) \star z), J_A(z)\} = \max\{J_A(0), J_A(z)\} = J_A(z)$$

It follows that

$$M_A(x) \ge \min\{M_A(x \star y), M_A(y)\} = \min\{M_A(y), M_A(z)\},$$

$$\tilde{P}(x) > \min\{\tilde{P}(x \star y), \tilde{P}(y)\} = \min\{\tilde{P}(y), \tilde{P}(z)\}$$

$$B_A(x) \succeq \min\{B_A(x \star y), B_A(y)\} = \min\{B_A(y), B_A(z)\}$$

and

$$J_A(x) \le \max\{J_A(x \star y), J_A(y)\} = \max\{J_A(y), J_A(z)\}.$$

This completes the proof.

Theorem 3.4. Every MBJ-neutrosophic set in a BCK/BCI-algebra X satisfying (3.1) and (3.4) is an MBJneutrosophic ideal of X.

Proof. Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be an MBJ-neutrosophic set in X satisfying (3.1) and (3.4). Note that $x * (x * y) \le y$ for all $x, y \in X$. It follows from (3.4) that

$$M_A(x) \ge \min\{M_A(x \star y), M_A(y)\},\$$

$$\tilde{B}_A(x) \succeq \min\{\tilde{B}_A(x \star y), \tilde{B}_A(y)\},\$$

and

$$J_A(x) \le \max\{J_A(x \star y), J_A(y)\}.$$

Therefore $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic ideal of *X*.

Theorem 3.5. Given an MBJ-neutrosophic set $A = (M_A, \tilde{B}_A, J_A)$ in a BCK/BCI-algebra X, if (M_A, J_A) is an intuitionistic fuzzy ideal of X, and B_A^- and B_A^+ are fuzzy ideals of X, then $A = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic ideal of X.

Proof. It is sufficient to show that \tilde{B}_A satisfies the condition

$$(\forall x \in X)(\tilde{B}_A(0) \succeq \tilde{B}_A(x)) \tag{3.5}$$

and

$$(\forall x, y \in X)(\tilde{B}_A(x) \succeq \min\{\tilde{B}_A(x \star y), \tilde{B}_A(y)\}).$$
(3.6)

For any $x, y \in X$, we get

$$\tilde{B}_A(0) = [B_A^-(0), B_A^+(0)] \succeq [B_A^-(x), B_A^+(x)] = \tilde{B}_A(x)$$

and

$$B_{A}(x) = [B_{A}^{-}(x), B_{A}^{+}(x)]$$

$$\succeq [\min\{B_{A}^{-}(x * y), B_{A}^{-}(y)\}, \min\{B_{A}^{+}(x * y), B_{A}^{+}(y)\}]$$

$$= \min\{[B_{A}^{-}(x * y), B_{A}^{+}(x * y)], [B_{A}^{-}(y), B_{A}^{+}(y)]$$

$$= \min\{\tilde{B}_{A}(x * y), \tilde{B}_{A}(y)\}.$$

Therefore $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic ideal of *X*.

 \square

 \square

If $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic ideal of a *BCK/BCI*-algebra *X*, then

$$[B_{A}^{-}(x), B_{A}^{+}(x)] = \tilde{B}_{A}(x) \succeq \min\{\tilde{B}_{A}(x * y), \tilde{B}_{A}(y)\}$$

= $\min\{[B_{A}^{-}(x * y), B_{A}^{+}(x * y), [B_{A}^{-}(y), B_{A}^{+}(y)]\}$
= $[\min\{B_{A}^{-}(x * y), B_{A}^{-}(y)\}, \min\{B_{A}^{+}(x * y), B_{A}^{+}(y)\}]$

for all $x, y \in X$. It follows that $B_A^-(x) \ge \min\{B_A^-(x * y), B_A^-(y)\}$ and $B_A^+(x) \ge \min\{B_A^+(x * y), B_A^+(y)\}$. Thus B_A^- and B_A^+ are fuzzy ideals of X. But (M_A, J_A) is not an intuitionistic fuzzy ideal of X as seen in Example 3.2. This shows that the converse of Theorem 3.5 is not true.

Given an MBJ-neutrosophic set $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ in a *BCK/BCI*-algebra *X*, we consider the following sets.

$$U(M_A; t) := \{ x \in X \mid M_A(x) \ge t \},\$$
$$U(\tilde{B}_A; [\delta_1, \delta_2]) := \{ x \in X \mid \tilde{B}_A(x) \succeq [\delta_1, \delta_2] \},\$$
$$L(J_A; s) := \{ x \in X \mid J_A(x) \le s \},\$$

where *t*, *s* \in [0, 1] and [δ_1 , δ_2] \in [*I*].

Theorem 3.6. An MBJ-neutrosophic set $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ in a BCK/BCI-algebra X is an MBJ-neutrosophic ideal of X if and only if the non-empty sets $U(M_A; t), U(\tilde{B}_A; [\delta_1, \delta_2])$ and $L(J_A; s)$ are ideals of X for all $t, s \in [0, 1]$ and $[\delta_1, \delta_2] \in [I]$.

Proof. Suppose that $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic ideal of X. Let $t, s \in [0, 1]$ and $[\delta_1, \delta_2] \in [I]$ be such that $U(M_A; t), U(\tilde{B}_A; [\delta_1, \delta_2])$ and $L(J_A; s)$ are non-empty. Obviously, $0 \in U(M_A; t) \cap U(\tilde{B}_A; [\delta_1, \delta_2]) \cap L(J_A; s)$. For any $x, y, a, b, u, v \in X$, if $x * y \in U(M_A; t), y \in U(M_A; t), a * b \in U(\tilde{B}_A; [\delta_1, \delta_2]), b \in U(\tilde{B}_A; [\delta_1, \delta_2]), u * v \in L(J_A; s)$ and $v \in L(J_A; s)$, then

$$M_A(x) \ge \min\{M_A(x * y), M_A(y)\} \ge \min\{t, t\} = t,$$

$$\tilde{B}_A(a) \succeq \min\{\tilde{B}_A(a * b), \tilde{B}_A(b)\} \succeq \min\{[\delta_1, \delta_2], [\delta_1, \delta_2]\} = [\delta_1, \delta_2],$$

$$J_A(u) \le \max\{J_A(u * v), J_A(v)\} \le \min\{s, s\} = s,$$

and so $x \in U(M_A; t)$, $a \in U(\tilde{B}_A; [\delta_1, \delta_2])$ and $u \in L(J_A; s)$. Therefore $U(M_A; t)$, $U(\tilde{B}_A; [\delta_1, \delta_2])$ and $L(J_A; s)$ are ideals of X.

Conversely, assume that the non-empty sets $U(M_A; t)$, $U(\tilde{B}_A; [\delta_1, \delta_2])$ and $L(J_A; s)$ are ideals of X for all $t, s \in [0, 1]$ and $[\delta_1, \delta_2] \in [I]$. Assume that $M_A(0) < M_A(a)$, $\tilde{B}_A(0) \prec \tilde{B}_A(a)$ and $J_A(0) > J_A(a)$ for some $a \in X$. Then $0 \notin U(M_A; M_A(a)) \cap U(\tilde{B}_A; \tilde{B}_A(a)) \cap L(J_A; J_A(a))$, which is a contradiction. Hence $M_A(0) \ge M_A(x)$, $\tilde{B}_A(0) \succeq \tilde{B}_A(x)$ and $J_A(0) \le J_A(x)$ for all $x \in X$. If

$$M_A(a_0) < \min\{M_A(a_0 \star b_0), M_A(b_0)\}$$

for some $a_0, b_0 \in X$, then $a_0 * b_0 \in U(M_A; t_0)$ and $b_0 \in U(M_A; t_0)$ but $a_0 \notin U(M_A; t_0)$ for $t_0 := \min\{M_A(a_0 * b_0), M_A(b_0)\}$. This is a contradiction, and thus $M_A(a) \ge \min\{M_A(a * b), M_A(b)\}$ for all $a, b \in X$. Similarly, we can show that $J_A(a) \le \max\{J_A(a * b), J_A(b)\}$ for all $a, b \in X$. Suppose that $\tilde{B}_A(a_0) \prec \min\{\tilde{B}_A(a_0 * b_0), \tilde{B}_A(b_0)\}$ for some $a_0, b_0 \in X$. Let $\tilde{B}_A(a_0 * b_0) = [\lambda_1, \lambda_2], \tilde{B}_A(b_0) = [\lambda_3, \lambda_4]$ and $\tilde{B}_A(a_0) = [\delta_1, \delta_2]$. Then

 $[\delta_1, \delta_2] \prec \operatorname{rmin}\{[\lambda_1, \lambda_2], [\lambda_3, \lambda_4]\} = [\min\{\lambda_1, \lambda_3\}, \min\{\lambda_2, \lambda_4\}],$

and so $\delta_1 < \min\{\lambda_1, \lambda_3\}$ and $\delta_2 < \min\{\lambda_2, \lambda_4\}$. Taking

$$[\gamma_1, \gamma_2] := \frac{1}{2} \left(\tilde{B}_A(a_0) + \operatorname{rmin}\{ \tilde{B}_A(a_0 \star b_0), \tilde{B}_A(b_0) \} \right)$$

implies that

$$\begin{aligned} [\gamma_1, \gamma_2] &= \frac{1}{2} \left([\delta_1, \delta_2] + [\min\{\lambda_1, \lambda_3\}, \min\{\lambda_2, \lambda_4\}] \right) \\ &= \left[\frac{1}{2} (\delta_1 + \min\{\lambda_1, \lambda_3\}), \frac{1}{2} (\delta_2 + \min\{\lambda_2, \lambda_4\}) \right]. \end{aligned}$$

It follows that

$$\min\{\lambda_1,\lambda_3\} > \gamma_1 = \frac{1}{2}(\delta_1 + \min\{\lambda_1,\lambda_3\}) > \delta_1$$

and

$$\min\{\lambda_2, \lambda_4\} > \gamma_2 = \frac{1}{2}(\delta_2 + \min\{\lambda_2, \lambda_4\}) > \delta_2.$$

Hence $[\min\{\lambda_1, \lambda_3\}, \min\{\lambda_2, \lambda_4\}] \succ [\gamma_1, \gamma_2] \succ [\delta_1, \delta_2] = \tilde{B}_A(a_0)$, and therefore $a_0 \notin U(\tilde{B}_A; [\gamma_1, \gamma_2])$. On the other hand,

$$\ddot{B}_A(a_0 \star b_0) = [\lambda_1, \lambda_2] \succeq [\min\{\lambda_1, \lambda_3\}, \min\{\lambda_2, \lambda_4\}] \succ [\gamma_1, \gamma_2]$$

and

$$\tilde{B}_A(b_0) = [\lambda_3, \lambda_4] \succeq [\min\{\lambda_1, \lambda_3\}, \min\{\lambda_2, \lambda_4\}] \succ [\gamma_1, \gamma_2],$$

that is, $a_0 * b_0$, $b_0 \in U(\tilde{B}_A; [\gamma_1, \gamma_2])$. This is a contradiction, and therefore $\tilde{B}_A(x) \succeq \min\{\tilde{B}_A(x * y), \tilde{B}_A(y)\}$ for all $x, y \in X$. Consequently $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic ideal of X.

Theorem 3.7. Given an ideal I of a BCK/BCI-algebra X, let $A = (M_A, \tilde{B}_A, J_A)$ be an MBJ-neutrosophic set in X defined by

$$M_A(x) = \begin{cases} t & \text{if } x \in I, \\ 0 & \text{otherwise,} \end{cases} \quad \tilde{B}_A(x) = \begin{cases} [\gamma_1, \gamma_2] & \text{if } x \in I, \\ [0, 0] & \text{otherwise,} \end{cases} \quad J_A(x) = \begin{cases} s & \text{if } x \in I, \\ 1 & \text{otherwise,} \end{cases}$$
(3.7)

where $t \in (0, 1]$, $s \in [0, 1)$ and $\gamma_1, \gamma_2 \in (0, 1]$ with $\gamma_1 < \gamma_2$. Then $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic ideal of X such that $U(M_A; t) = U(\tilde{B}_A; [\gamma_1, \gamma_2]) = L(J_A; s) = I$.

Proof. Let $x, y \in X$. If $x \star y \in I$ and $y \in I$, then $x \in I$ and so

$$\begin{split} M_A(x) &= t = \min\{M_A(x \star y), M_A(y)\},\\ \tilde{B}_A(x) &= [\gamma_1, \gamma_2] = \min\{[\gamma_1, \gamma_2], [\gamma_1, \gamma_2]\} = \min\{\tilde{B}_A(x \star y), \tilde{B}_A(y)\},\\ J_A(x) &= s = \max\{J_A(x \star y), J_A(y)\}. \end{split}$$

If any one of x * y and y is contained in I, say $x * y \in K$, then $M_A(x * y) = t$, $\tilde{B}_A(x * y) = [\gamma_1, \gamma_2]$, $J_A(x * y) = s$, $M_A(y) = 0$, $\tilde{B}_A(y) = [0, 0]$ and $J_A(y) = 1$. Hence

$$M_A(x) \ge 0 = \min\{t, 0\} = \min\{M_A(x * y), M_A(y)\},$$

$$\tilde{B}_A(x) \succeq [0, 0] = \min\{[\gamma_1, \gamma_2], [0, 0]\} = \min\{\tilde{B}_A(x * y), \tilde{B}_A(y)\},$$

$$J_A(x) \le 1 = \max\{s, 1\} = \max\{J_A(x * y), J_A(y)\}.$$

If $x \star y$, $y \notin K$, then $M_A(x \star y) = 0 = M_A(y)$, $\tilde{B}_A(x \star y) = [0, 0] = \tilde{B}_A(y)$ and $J_A(x \star y) = 1 = J_A(y)$. It follows that

$$\begin{split} M_A(x) &\geq 0 = \min\{0, 0\} = \min\{M_A(x \star y), M_A(y)\}, \\ \tilde{B}_A(x) &\succeq [0, 0] = \min\{[0, 0], [0, 0]\} = \min\{\tilde{B}_A(x \star y), \tilde{B}_A(y)\}, \\ J_A(x) &\leq 1 = \max\{1, 1\} = \max\{J_A(x \star y), J_A(y)\}. \end{split}$$

It is obvious that $M_A(0) \ge M_A(x)$, $\tilde{B}_A(0) \succeq \tilde{B}_A(x)$ and $J_A(0) \le J_A(x)$ for all $x \in X$. Therefore $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic ideal of *X*. Obviously, we have $U(M_A; t) = U(\tilde{B}_A; [\gamma_1, \gamma_2]) = L(J_A; s) = I$.

Theorem 3.8. For any non-empty subset I of X, let $A = (M_A, \tilde{B}_A, J_A)$ be an MBJ-neutrosophic set in X which is given in (3.7). If $A = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic ideal of X, then I is an ideal of X.

Proof. Obviously, $0 \in I$. Let $x, y \in X$ be such that $x * y \in I$ and $y \in I$. Then $M_A(x * y) = t = M_A(y)$, $\tilde{B}_A(x * y) = [\gamma_1, \gamma_2] = \tilde{B}_A(y)$ and $J_A(x * y) = s = J_A(y)$. Thus

$$\begin{split} M_A(x) &\geq \min\{M_A(x \star y), M_A(y)\} = t, \\ \tilde{B}_A(x) &\succeq \min\{\tilde{B}_A(x \star y), \tilde{B}_A(y)\} = [\gamma_1, \gamma_2], \\ J_A(x) &\leq \max\{J_A(x \star y), J_A(y)\} = s, \end{split}$$

and hence $x \in I$. Therefore *I* is an ideal of *X*.

Theorem 3.9. In a BCK-algebra, every MBJ-neutrosophic ideal is an MBJ-neutrosophic subalgebra.

Proof. Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be an MBJ-neutrosophic ideal of a *BCK*-algebra *X*. Since $(x * y) * x \le y$ for all $x, y \in X$, it follows from Proposition 3.3 that

$$M_A(x \star y) \ge \min\{M_A(x), M_A(y)\},$$

$$\tilde{B}_A(x \star y) \succeq \min\{\tilde{B}_A(x), \tilde{B}_A(y)\},$$

$$J_A(x \star y) \le \max\{J_A(x), J_A(y)\}$$

for all $x, y \in X$. Hence $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic subalgebra of a *BCK*-algebra *X*.

The converse of Theorem 3.9 may not be true as seen in the following example.

Example 3.10. Consider a *BCK*-algebra $X = \{0, 1, 2, 3\}$ with the binary operation * which is given in Table 3. Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be an MBJ-neutrosophic set in *X* defined by Table 4. Then $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic subalgebra of *X*, but it is not an MBJ-neutrosophic ideal of *X* since

$$\tilde{B}_A(1) \not\succeq \min\{\tilde{B}_A(1 \star 2), \tilde{B}_A(2)\}$$

Table 3: Cayley table for the binary operation "*".

*	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	1	0	2
3	3	3	3	0

Table 4: MBJ-neutrosophic set $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$.

X	$M_A(x)$	$\tilde{B}_A(x)$	$J_A(x)$
0	0.7	[0.3, 0.8]	0.2
1	0.4	[0.2, 0.6]	0.3
2	0.4	[0.3, 0.8]	0.4
3	0.6	[0.2, 0.6]	0.5

We provide a condition for an MBJ-neutrosophic subalgebra to be an MBJ-neutrosophic ideal in a *BCK*-algebra.

Theorem 3.11. Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be an MBJ-neutrosophic subalgebra of a BCK-algebra X satisfying the condition (3.4). Then $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic ideal of X.

Proof. For any $x \in X$, we get

 $M_A(0) = M_A(x \star x) \ge \min\{M_A(x), M_A(x)\} = M_A(x),$

$$\begin{split} \tilde{B}_A(0) &= \tilde{B}_A(x \star x) \succeq \min\{\tilde{B}_A(x), \tilde{B}_A(x)\} \\ &= \min\{[B_A^-(x), B_A^+(x)], [B_A^-(x), B_A^+(x)]\} \\ &= [B_A^-(x), B_A^+(x)] = \tilde{B}_A(x), \end{split}$$

and

$$J_A(0) = J_A(x \star x) \le \max\{J_A(x), J_A(x)\} = J_A(x),$$

Since $x \star (x \star y) \leq y$ for all $x, y \in X$, it follows from (3.4) that

$$M_A(x) \ge \min\{M_A(x * y), M_A(y)\},\$$

$$\tilde{B}_A(x) \succeq \min\{\tilde{B}_A(x * y), \tilde{B}_A(y)\},\$$

$$J_A(x) \le \max\{J_A(x * y), J_A(y)\}$$

for all $x, y \in X$. Therefore $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic ideal of X.

Theorem 3.9 is not true in a *BCI*-algebra as seen in the following example.

Example 3.12. Let (Y, *, 0) be a *BCI*-algebra and let $(\mathbb{Z}, -, 0)$ be an adjoint *BCI*-algebra of the additive group $(\mathbb{Z}, +, 0)$ of integers. Then $X = Y \times \mathbb{Z}$ is a *BCI*-algebra and $I = Y \times \mathbb{N}$ is an ideal of X where \mathbb{N} is the set of all non-negative integers (see [17]). Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be an MBJ-neutrosophic set in X defined by

$$M_A(x) = \begin{cases} t & \text{if } x \in I, \\ 0 & \text{otherwise,} \end{cases} \quad \tilde{B}_A(x) = \begin{cases} [\gamma_1, \gamma_2] & \text{if } x \in I, \\ [0, 0] & \text{otherwise,} \end{cases} \quad J_A(x) = \begin{cases} s & \text{if } x \in I, \\ 1 & \text{otherwise,} \end{cases}$$
(3.8)

where $t \in (0, 1]$, $s \in [0, 1)$ and $\gamma_1, \gamma_2 \in (0, 1]$ with $\gamma_1 < \gamma_2$. Then $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic ideal of *X* by Theorem 3.7. But it is not an MBJ-neutrosophic subalgebra of *X* since

$$M_A((0, 0) \star (0, 1)) = M_A((0, -1)) = 0 < t = \min\{M_A((0, 0)), M_A(0, 1))\},\$$

$$\tilde{B}_A((0,0) \star (0,2)) = \tilde{B}_A((0,-2)) = [0,0] \prec [\gamma_1,\gamma_2] = \min\{\tilde{B}_A((0,0)), \tilde{B}_A(0,2))\},\$$

and/or

$$J_A((0, 0) \star (0, 3)) = J_A((0, -3)) = 1 > s = \max\{J_A((0, 0)), J_A(0, 3))\}$$

Definition 3.13. An MBJ-neutrosophic ideal $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ of a *BCI*-algebra X is said to be *closed* if

$$(\forall x \in X)(M_A(0 \star x) \ge M_A(x), \tilde{B}_A(0 \star x) \succeq \tilde{B}_A(x), J_A(0 \star x) \le J_A(x)).$$

$$(3.9)$$

Theorem 3.14. In a BCI-algebra, every closed MBJ-neutrosophic ideal is an MBJ-neutrosophic subalgebra.

Proof. Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be a closed MBJ-neutrosophic ideal of a *BCI*-algebra *X*. Using (3.2), (2.3), (III) and (3.3), we have

 $M_A(x \star y) \ge \min\{M_A((x \star y) \star x), M_A(x)\} = \min\{M_A(0 \star y), M_A(x)\} \ge \min\{M_A(y), M_A(x)\},$

.

$$\tilde{B}_A(x \star y) \succeq \min\{\tilde{B}_A((x \star y) \star x), \tilde{B}_A(x)\} = \min\{\tilde{B}_A(0 \star y), \tilde{B}_A(x)\} \succeq \min\{\tilde{B}_A(y), \tilde{B}_A(x)\},$$

and

$$J_A(x \star y) \le \max\{J_A((x \star y) \star x), J_A(x)\} = \max\{J_A(0 \star y), J_A(x)\} \le \max\{J_A(y), J_A(x)\}$$

for all $x, y \in X$. Hence $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic subalgebra of X.

Theorem 3.15. In a weakly BCK-algebra, every MBJ-neutrosophic ideal is closed.

Proof. Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be an MBJ-neutrosophic ideal of a weakly *BCK*-algebra X. For any $x \in X$, we obtain

$$M_A(0 \star x) \ge \min\{M_A((0 \star x) \star x), M_A(x)\} = \min\{M_A(0), M_A(x)\} = M_A(x),$$

$$\tilde{B}_A(0 \star x) \succeq \min\{\tilde{B}_A((0 \star x) \star x), \tilde{B}_A(x)\} = \min\{\tilde{B}_A(0), \tilde{B}_A(x)\} = \tilde{B}_A(x),$$

and

$$J_A(0 \star x) \le \max\{J_A((0 \star x) \star x), J_A(x)\} = \max\{J_A(0), J_A(x)\} = J_A(x).$$

Therefore $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a closed MBJ-neutrosophic ideal of *X*.

Corollary 3.16. In a weakly BCK-algebra, every MBJ-neutrosophic ideal is an MBJ-neutrosophic subalgebra.

The following example shows that any MBJ-neutrosophic subalgebra is not an MBJ-neutrosophic ideal in a BCI-algebra.

Example 3.17. Consider a *BCI*-algebra $X = \{0, a, b, c, d, e\}$ with the *-operation in Table 5. Let $\mathcal{A} = (M_A, d, e)$ \tilde{B}_A , J_A) be an MBJ-neutrosophic set in X defined by Table 6. It is routine to verify that $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic subalgebra of X. But it is not an MBJ-neutrosophic ideal of X since

$$M_A(d) < \min\{M_A(d \star c), M_A(c)\},\$$

$$\tilde{B}_A(d) \prec \operatorname{rmin}\{\tilde{B}_A(d \star c), \tilde{B}_A(c)\},\$$

and/or

$$J_A(d) > \max\{J_A(d \star c), J_A(c)\}.$$

Table 5: Cayley table for the binary operation "*".

*	0	а	b	С	d	е
0	0	0	С	b	С	С
а	а	0	С	b	С	С
b	b	b	0	С	0	0
С	С	С	b	0	b	b
d	d	b	а	С	0	а
е	е	b	а	С	а	0

598 — Young Bae Jun and Eun Hwan Roh

X	$M_A(x)$	$\tilde{B}_A(x)$	$J_A(x)$
0	0.7	[0.4, 0.9]	0.3
а	0.4	[0.04, 0.45]	0.6
b	0.7	[0.4, 0.9]	0.3
С	0.7	[0.4, 0.9]	0.3
d	0.4	[0.04, 0.45]	0.6
е	0.4	[0.04, 0.45]	0.6

Theorem 3.18. In a p-semisimple BCI-algebra X, the following are equivalent.

- (1) $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a closed MBJ-neutrosophic ideal of X.
- (2) $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic subalgebra of X.

Proof. (1) \Rightarrow (2). See Theorem 3.14.

(2) \Rightarrow (1). Suppose that $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic subalgebra of *X*. For any $x \in X$, we get

$$M_A(0) = M_A(x \star x) \geq \min\{M_A(x), M_A(x)\} = M_A(x),$$

 $\tilde{B}_A(0) = \tilde{B}_A(x \star x) \succeq \min\{\tilde{B}_A(x), \tilde{B}_A(x)\} = \tilde{B}_A(x),$

and

$$J_A(0) = J_A(x \star x) \le \max\{J_A(x), J_A(x)\} = J_A(x)$$

Hence $M_A(0 \star x) \ge \min\{M_A(0), M_A(x)\} = M_A(x), \tilde{B}_A(0 \star x) \succeq \min\{\tilde{B}_A(0), \tilde{B}_A(x)\} = \tilde{B}_A(x) \text{ and } J_A(0 \star x) \le \max\{J_A(0), J_A(x)\} = J_A(x) \text{ for all } x \in X. \text{ Let } x, y \in X. \text{ Then}$

$$\begin{split} M_A(x) &= M_A(y \star (y \star x)) \geq \min\{M_A(y), M_A(y \star x)\} \\ &= \min\{M_A(y), M_A(0 \star (x \star y))\} \\ &\geq \min\{M_A(x \star y), M_A(y)\}, \end{split}$$

$$\begin{split} \tilde{B}_A(x) &= \tilde{B}_A(y \star (y \star x)) \succeq \min\{\tilde{B}_A(y), \tilde{B}_A(y \star x)\} \\ &= \min\{\tilde{B}_A(y), \tilde{B}_A(0 \star (x \star y))\} \\ &\succeq \min\{\tilde{B}_A(x \star y), \tilde{B}_A(y)\} \end{split}$$

and

$$J_A(x) = J_A(y * (y * x)) \le \max\{J_A(y), J_A(y * x)\}$$

= max{ $J_A(y), J_A(0 * (x * y))$ }
 $\le \max\{J_A(x * y), J_A(y)\}.$

Therefore $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a closed MBJ-neutrosophic ideal of *X*. Since every associative *BCI*-algebra is *p*-semisimple, we have the following corollary.

Corollary 3.19. In an associative BCI-algebra X, the following are equivalent.

(1) $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a closed MBJ-neutrosophic ideal of X.

(2) $A = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic subalgebra of X.

Corollary 3.20. In a BCI-algebra X, consider the following conditions

- (1) every element x in X is minimal.
- (2) $X = \{0 \star x \mid x \in X\}.$
- (3) $(\forall x, y \in X) (x \star (0 \star y) = y \star (0 \star x)).$
- (4) $(\forall x \in X) (0 \star x = 0 \Rightarrow x = 0)$.
- (5) $(\forall a, x \in X) (a \star (a \star x) = x).$
- (6) $(\forall a \in X) X = \{a \star x \mid x \in X\}.$
- (7) $(\forall x, y, a, b \in X) ((x \star y) \star (a \star b) = (x \star a) \star (y \star b)).$
- (8) $(\forall x, y \in X) (0 \star (y \star x) = x \star y).$

If one of the conditions above is valid, then the following are equivalent.

- (1) $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is a closed MBJ-neutrosophic ideal of X.
- (2) $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic subalgebra of X.

Definition 3.21. Let *X* be an (*S*)-*BCK*-algebra. An MBJ-neutrosophic set $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ in *X* is called an *MBJ-neutrosophic* \circ -*subalgebra* of *X* if the following assertions are valid.

$$M_{A}(x \circ y) \geq \min\{M_{A}(x), M_{A}(y)\},\$$

$$\tilde{B}_{A}(x \circ y) \succeq \min\{\tilde{B}_{A}(x), \tilde{B}_{A}(y)\},\$$

$$J_{A}(x \circ y) \leq \max\{J_{A}(x), J_{A}(y)\}$$
(3.10)

for all $x, y \in X$.

Lemma 3.22. Every MBJ-neutrosophic ideal of a BCK/BCI-algebra X satisfies the following assertion.

$$(\forall x, y \in X) \left(x \le y \implies M_A(x) \ge M_A(y), \tilde{B}_A(x) \succeq \tilde{B}_A(y), J_A(x) \le J_A(y) \right).$$

$$(3.11)$$

Proof. Assume that $x \le y$ for all $x, y \in X$. Then x * y = 0, and so

$$M_A(x) \ge \min\{M_A(x \star y), M_A(y)\} = \min\{M_A(0), M_A(y)\} = M_A(y),$$

$$\tilde{B}_A(x) \succeq \min\{\tilde{B}_A(x \star y), \tilde{B}_A(y)\} = \min\{\tilde{B}_A(0), \tilde{B}_A(y)\} = \tilde{B}_A(y),$$

and

$$J_A(x) \le \max\{J_A(x \star y), J_A(y)\} = \max\{J_A(0), J_A(y)\} = J_A(y).$$

This completes the proof.

Theorem 3.23. In an (S)-BCK-algebra, every MBJ-neutrosophic ideal is an MBJ-neutrosophic \circ -subalgebra.

Proof. Let $A = (M_A, \tilde{B}_A, J_A)$ be an MBJ-neutrosophic ideal of an (*S*)-*BCK*-algebra *X*. Note that $(x \circ y) * x \le y$ for all $x, y \in X$. Using Lemma 3.22 and (3.2) implies that

$$M_A(x \circ y) \ge \min\{M_A((x \circ y) \star x), M_A(x)\} \ge \min\{M_A(y), M_A(x)\},$$

$$\tilde{B}_A(x \circ y) \succeq \operatorname{rmin}\{\tilde{B}_A((x \circ y) \star x), \tilde{B}_A(x)\} \succeq \operatorname{rmin}\{\tilde{B}_A(y), \tilde{B}_A(x)\},\$$

and

$$J_A(x \circ y) \leq \max\{J_A((x \circ y) \star x), J_A(x)\} \leq \max\{J_A(y), J_A(x)\}.$$

Therefore $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic \circ -subalgebra of *X*.

We provide a characterization of an MBJ-neutrosophic ideal in an (S)-BCK-algebra.

Theorem 3.24. Let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be an MBJ-neutrosophic set in an (S)-BCK-algebra X. Then $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic ideal of X if and only if the following assertions are valid.

$$M_A(x) \ge \min\{M_A(y), M_A(z)\}, \tilde{B}_A(x) \succeq \min\{\tilde{B}_A(y), \tilde{B}_A(z)\}, J_A(x) \le \max\{J_A(y), J_A(z)\}$$
(3.12)

for all $x, y, z \in X$ with $x \le y \circ z$.

Proof. Assume that $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic ideal of *X* and let $x, y, z \in X$ be such that $x \leq y \circ z$. Using (3.1), (3.2) and Theorem 3.23, we have

$$M_A(x) \ge \min\{M_A(x \star (y \circ z)), M_A(y \circ z)\}$$

= min{ $M_A(0), M_A(y \circ z)$ }
= $M_A(y \circ z) \ge \min\{M_A(y), M_A(z)\},$

$$\begin{split} \tilde{B}_A(x) \succeq \min\{\tilde{B}_A(x \ast (y \circ z)), \tilde{B}_A(y \circ z)\} \\ &= \min\{\tilde{B}_A(0), \tilde{B}_A(y \circ z)\} \\ &= \tilde{B}_A(y \circ z) \succeq \min\{\tilde{B}_A(y), \tilde{B}_A(z)\}, \end{split}$$

and

$$J_A(x) \le \max\{J_A(x \ast (y \circ z)), J_A(y \circ z)\}$$

= max{ $J_A(0), J_A(y \circ z)$ }
= $J_A(y \circ z) \le \max\{J_A(y), J_A(z)\}.$

Conversely, let $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ be an MBJ-neutrosophic set in an (*S*)-*BCK*-algebra *X* satisfying the condition (3.12) for all $x, y, z \in X$ with $x \le y \circ z$. Sine $0 \le x \circ x$ for all $x \in X$, it follows from (3.12) that

$$M_A(0) \ge \min\{M_A(x), M_A(x)\} = M_A(x)$$

$$\tilde{B}_A(0) \succeq \operatorname{rmin}\{\tilde{B}_A(x), \tilde{B}_A(x)\} = \tilde{B}_A(x),$$

and

$$J_A(0) \le \max\{J_A(x), J_A(x)\} = J_A(x).$$

Note that $x \le (x * y) \circ y$ for all $x, y \in X$. Hence we have

$$M_A(x) \ge \min\{M_A(x * y), M_A(y)\}, \tilde{B}_A(x) \succeq \min\{\tilde{B}_A(x * y), \tilde{B}_A(y)\} \text{ and } J_A(x) \le \max\{J_A(x * y), J_A(y)\}.$$

Therefore $\mathcal{A} = (M_A, \tilde{B}_A, J_A)$ is an MBJ-neutrosophic ideal of *X*.

References

- [1] Zadeh L.A., Fuzzy sets, Information and Control, 1965, 8(3), 338–353.
- [2] Smarandache F., Neutrosophy, Neutrosophic Probability, Set, and Logic, ProQuest Information & Learning, Ann Arbor, Michigan, USA, 1998.
- [3] Smarandache F., A unifying field in logics, Neutrosophy: Neutrosophic probability, set and logic, Rehoboth: American Research Press, 1999.
- [4] Smarandache F., Neutrosophic set, a generalization of intuitionistic fuzzy sets, International Journal of Pure and Applied Mathematics, 2005, 24(5), 287–297.
- [5] Borzooei R.A., Mohseni Takallo M., Smarandache F., Jun Y.B., Positive implicative neutrosophic ideals in *BCK*-algebras, Neutrosophic Sets and Systems, 2018, 23, 126–141.

- [6] Borzooei R.A., Zhan X.H., Smarandache F., Jun Y.B., Commutative generalized neutrosophic ideals in *BCK*-algebras, Symmetry, 2018, 10, 350, doi:10.3390/sym10080350.
- [7] Jun Y.B., Neutrosophic subalgebras of several types in BCK/BCI-algebras, Ann. Fuzzy Math. Inform., 2017, 14(1), 75–86.
- [8] Jun Y.B., Kim S.J., Smarandache F., Interval neutrosophic sets with applications in BCK/BCI-algebra, Axioms, 2018, 7, 23.
- [9] Jun Y.B., Smarandache F., Bordbar H., Neutrosophic N-structures applied to *BCK/BCI*-algebras, Information, 2017, 8, 128.
- [10] Jun Y.B., Smarandache F., Song S.Z., Khan M., Neutrosophic positive implicative N-ideals in BCK/BCI-algebras, Axioms, 2018, 7, 3.
- [11] Khan M., Anis S., Smarandache F., Jun Y.B., Neutrosophic N-structures and their applications in semigroups, Ann. Fuzzy Math. Inform., 2017, 14(6), 583–598.
- [12] Öztürk M.A., Jun Y.B., Neutrosophic ideals in *BCK/BCI*-algebras based on neutrosophic points, J. Inter. Math. Virtual Inst., 2018, 8, 1–17.
- [13] Saeid A.B., Jun Y.B., Neutrosophic subalgebras of *BCK/BCI*-algebras based on neutrosophic points, Ann. Fuzzy Math. Inform., 2017, 14(1), 87–97.
- [14] Song S.Z., Khan M., Smarandache F., Jun Y.B., A novel extension of neutrosophic sets and Fs application in *BCK/BI*-algebras, New Trends in Neutrosophic Theory and Applications (Volume II), Pons Editions, Brussels, Belium, EU 2018, 308–326.
- [15] Song S.Z., Smarandache F., Jun Y.B., Neutrosophic commutative N-ideals in *BCK*-algebras, Information, 2017, 8, 130.
- [16] Mohseni Takallo M., Borzooei R.A., Jun Y.B., MBJ-neutrosophic structures and its applications in *BCK/BCI*-algebras, Neutrosophic Sets and Systems, 2018, 23, 72–84.
- [17] Huang Y.S., BCI-algebra, Beijing: Science Press, 2006.
- [18] Meng J., Jun Y.B., *BCK*-algebras, Kyung Moon Sa Co., Seoul, 1994.