m-POLAR NEUTROSOPHIC GRAPHS

A. $\operatorname{HASSAN}^{1}$, M. A. MALIK ${ }^{2}$, §

Abstract

The concept of m-Polar antipodal single valued neutrosophic graph ($m-$ PASVNG), eccentric $m-$ PSVNG, self centered $m-$ PSVNG and self median $m-$ PSVNG of the given $m-$ PSVNG are introduced here. We also investigate different types of isomorphism properties of antipodal $m-$ PSVNG, eccentric $m-$ PSVNG and self centered $m-\mathrm{PSVNG}$.

Keywords: Radius, diameter in m-PSVNG, antipodal m-PSVNG, eccentric m-PSVNG, self centered m-PSVNG and self median m-PSVNG.

AMS Subject Classification: 99A00.

1. Introduction

Neutrosopic sets were introduced by Smarandache [10], which are the generalization of fuzzy sets and intuitionistic fuzzy sets. The Neutrosophic sets have many applications in medical, management sciences, life sciences, engineering, graph theory, robotics, automata theory and computer science. The single valued neutrosophic graphs and isolated SVNGs were introduced by Broumi, Talea, Bakali and Smarandache [1, 2]. Also recently in $[8$, $9,3]$ proposed some algorithms dealt with shortest path problem in a network (graph) where edge weights are characterized by a neutrosophic numbers including single valued neutrosophic numbers, bipolar neutrosophic numbers and interval valued neutrosophic numbers. Nasir in [7] also contributed on neutrosophic graphs.
Malik and Hassan in [4] defined the concept of classes of some single valued neutrosophic graphs and studied of their properties. Later on, the concept of single valued neutrosophic hyper-graphs has generalized by Hassan et Malik in [5, 6]. The SVNGs have also many applications in path problems, networks and computer science. The concept of antipodal fuzzy graphs introduced by Gani and Malarvizhi [11]. The self centered intuitionistic fuzzy graphs were introduced by Karunambigai [12], the complete intuitionistic fuzzy graph to be a self centered intuitionistic fuzzy graph and its properties discussed, also the necessary and sufficient condition to be a self centered intuitionistic fuzzy graph were discussed. In

[^0]this paper, we introduce new classes of SVNGs, antipodal SVNGs, eccentric SVNGs, self centered and self median SVNGs.

2. Preliminary

In this section we recall some basic concepts on SVNG and let G denotes SVNG and and $G^{*}=(V, E)$ denotes underlying crisp graph.

Definition 2.1. [10] Let X be a space of points (objects) with generic elements in X denoted by x; then the neutrosophic set $A(N S A)$ is an object having the form $A=$ $\left\{<x: T_{A}(x), I_{A}(x), F_{A}(x)>, x \in X\right\}$, where the functions $\left.T, I, F: X \rightarrow\right]^{-} 0,1^{+}[$define respectively the truth-membership function, an indeterminacy-membership function, and a falsity-membership function of the element $x \in X$ to the set A with the condition $-0 \leq$ $T_{A}(x)+I_{A}(x)+F_{A}(x) \leq 3^{+}$. The functions $T_{A}(x), I_{A}(x)$ and $F_{A}(x)$ are real standard or nonstandard subsets of $]^{-} 0,1^{+}[$.

Since it is difficult to apply NSs to practical problems, Wang et al. introduced the concept of a SVNS, which is an instance of a NS and can be used in real scientific and engineering applications.

Definition 2.2. [10] Let X be a space of points (objects) with generic elements in X denoted by x. A single valued neutrosophic set A (SVNS A) is characterized by truthmembership function T_{A}, an indeterminacy-membership function I_{A} and a falsity-membership function F_{A}. For each point $x \in X T_{A}(x), I_{A}(x), F_{A}(x) \in[0,1]$. A SVNS A can be written as $A=\left\{<x: T_{A}(x), I_{A}(x), F_{A}(x)>, x \in X\right\}$. And for every $x \in X ; 0 \leq$ $T_{A}(x)+I_{A}(x)+F_{A}(x) \leq 3$.

Definition 2.3. [1] The single valued neutrosophic graph (SVNG) is a pair $G=(C, D)$ of $G^{*}=(V, E)$, where C is SVNS on V and D is SVNS on E such that

$$
\begin{aligned}
T_{D}(\alpha, \beta) & \leq \min \left(T_{C}(\alpha), T_{C}(\beta)\right) \\
I_{D}(\alpha, \beta) & \geq \max \left(I_{C}(\alpha), I_{C}(\beta)\right) \\
F_{D}(\alpha, \beta) & \geq \max \left(F_{C}(\alpha), F_{C}(\beta)\right)
\end{aligned}
$$

whenever

$$
0 \leq T_{D}(\alpha, \beta)+I_{D}(\alpha, \beta)+F_{D}(\alpha, \beta) \leq 3
$$

$\forall \alpha, \beta \in V$. The $S V N G G=(C, D)$ is said to be complete (strong) $S V N G$, if

$$
\begin{aligned}
T_{D}(x, y) & =\min \left(T_{C}(x), T_{C}(y)\right) \\
I_{D}(x, y) & =\max \left(I_{C}(x), I_{C}(y)\right) \\
F_{D}(x, y) & =\max \left(F_{C}(x), F_{C}(y)\right)
\end{aligned}
$$

$\forall x, y \in V(\forall(x, y) \in E)$. The order of G, which is denoted by $O(G)$, is defined by

$$
O(G)=\left(O_{T}(G), O_{I}(G), O_{F}(G)\right)
$$

where

$$
O_{T}(G)=\sum_{\alpha \in V} T_{C}(\alpha), O_{I}(G)=\sum_{\alpha \in V} I_{C}(\alpha), O_{F}(G)=\sum_{\alpha \in V} F_{C}(\alpha)
$$

The size of G, which is denoted $S(G)$, is defined by

$$
S(G)=\left(S_{T}(G), S_{I}(G), S_{F}(G)\right)
$$

where

$$
S_{T}(G)=\sum_{\substack{(\alpha, \beta) \in E \\ \alpha \neq \beta}} T_{D}(\alpha, \beta), S_{I}(G)=\sum_{\substack{(\alpha, \beta) \in E \\ \alpha \neq \beta}} I_{D}(\alpha, \beta), S_{F}(G)=\sum_{\substack{(\alpha, \beta) \in E \\ \alpha \neq \beta}} F_{D}(\alpha, \beta)
$$

The degree of a vertex α in G, which is denoted by $d_{G}(\alpha)$, is defined by

$$
d_{G}(\alpha)=\left(d_{T}(\alpha), d_{I}(\alpha), d_{F}(\alpha)\right)
$$

where

$$
d_{T}(\alpha)=\sum_{\substack{(\alpha, \beta) \in E \\ \alpha \neq \beta}} T_{D}(\alpha, \beta), d_{I}(\alpha)=\sum_{\substack{(\alpha, \beta) \in E \\ \alpha \neq \beta}} I_{D}(\alpha, \beta), d_{F}(\alpha)=\sum_{\substack{(\alpha, \beta) \in E \\ \alpha \neq \beta}} F_{D}(\alpha, \beta)
$$

Definition 2.4. [1] The Partial single valued neutrosophic subgraph of $S V N G G=(C, D)$ on $G^{*}=(V, E)$ is a $S V N G H=\left(C^{\prime}, D^{\prime}\right)$, if
(1) $C^{\prime} \subseteq C$, that is $\forall x \in V$

$$
T_{C^{\prime}}(x) \leq T_{C}(x), I_{C^{\prime}}(x) \geq I_{C}(x), F_{C^{\prime}}(x) \geq F_{C}(x)
$$

(2) $D^{\prime} \subseteq D$, that is $\forall(\alpha, \beta) \in E$

$$
T_{D^{\prime}}(\alpha, \beta) \leq T_{D}(\alpha, \beta), I_{D^{\prime}}(\alpha, \beta) \geq I_{D}(\alpha, \beta), F_{D^{\prime}}(\alpha, \beta) \geq F_{D}(\alpha, \beta)
$$

The single valued neutrosophic subgraph of $S V N G G=(C, D)$ of $G^{*}=(V, E)$ is a $S V N G$ $H=\left(C^{\prime}, D^{\prime}\right)$ on a $H^{*}=\left(V^{\prime}, E^{\prime}\right)$, such that
(1) $C^{\prime}=C$, that is $\forall x \in V^{\prime} \subseteq V$, with

$$
T_{C^{\prime}}(x)=T_{C}(x), I_{C^{\prime}}(x)=I_{C}(x), F_{C^{\prime}}(x)=F_{C}(x)
$$

(2) $D^{\prime}=D$, that is $\forall(\alpha, \beta) \in E^{\prime} \subseteq E$, with

$$
T_{D^{\prime}}(\alpha, \beta)=T_{D}(\alpha, \beta), I_{D^{\prime}}(\alpha, \beta)=I_{D}(\alpha, \beta), F_{D^{\prime}}(\alpha, \beta)=F_{D}(\alpha, \beta)
$$

Definition 2.5. [1] A path P in a $S V N G G=(C, D)$ is $P: v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ such that $T_{D}\left(v_{i}, v_{i+1}\right)>0, I_{D}\left(v_{i}, v_{i+1}\right)>0, F_{D}\left(v_{i}, v_{i+1}\right)>0$ for $1 \leq i \leq n$. The $S V N G G$ is said to be a connected, if there is at least one path between every pair of vertices, else G is disconnected.

3. The classes of SVNGs or 1-PSVNGs

In this section we discuss the antipodal SVNGs, eccentric SVNGs, self centered SVNGs and self median SVNGs.

Definition 3.1. Let $G_{1}=\left(C_{1}, D_{1}\right)$ and $G_{2}=\left(C_{2}, D_{2}\right)$ be two SVNGs of $G_{1}^{*}=\left(V_{1}, E_{1}\right)$ and $G_{2}^{*}=\left(V_{2}, E_{2}\right)$, respectively. The homomorphism $\chi: V_{1} \rightarrow V_{2}$ is a mapping from V_{1} into V_{2} satisfying following conditions

$$
T_{C_{1}}(p) \leq T_{C_{2}}(\chi(p)), I_{C_{1}}(p) \geq I_{C_{2}}(\chi(p)), F_{C_{1}}(p) \geq F_{C_{2}}(\chi(p))
$$

$\forall p \in V_{1}$.

$$
T_{D_{1}}(p, q) \leq T_{D_{2}}(\chi(p), \chi(q)), I_{D_{1}}(p, q) \geq I_{D_{2}}(\chi(p), \chi(q)), F_{D_{1}}(p, q) \geq F_{D_{2}}(\chi(p), \chi(q))
$$

$\forall(p, q) \in E_{1}$. The weak isomorphism $v: V_{1} \rightarrow V_{2}$ is a bijective homomorphism from V_{1} into V_{2} satisfying following conditions

$$
T_{C_{1}}(p)=T_{C_{2}}(v(p)), I_{C_{1}}(p)=I_{C_{2}}(v(p)), F_{C_{1}}(p)=F_{C_{2}}(v(p))
$$

$\forall p \in V_{1}$. The co-weak isomorphism $\kappa: V_{1} \rightarrow V_{2}$ is a bijective homomorphism from V_{1} into V_{2} satisfying following conditions

$$
T_{D_{1}}(p, q)=T_{D_{2}}(\kappa(p), \kappa(q)), I_{D_{1}}(p, q)=I_{D_{2}}(\kappa(p), \kappa(q)), F_{D_{1}}(p, q)=F_{D_{2}}(\kappa(p), \kappa(q))
$$

$\forall(p, q) \in E_{1}$. An isomorphism $\psi: V_{1} \rightarrow V_{2}$ is a bijective homomorphism from V_{1} into V_{2} satisfying following conditions

$$
T_{C_{1}}(p)=T_{C_{2}}(\psi(p)), I_{C_{1}}(p)=I_{C_{2}}(v(p)), F_{C_{1}}(p)=F_{C_{2}}(\psi(p))
$$

$\forall p \in V_{1}$.

$$
\begin{aligned}
& \quad T_{D_{1}}(p, q)=T_{D_{2}}(\psi(p), \psi(q)), I_{D_{1}}(p, q)=I_{D_{2}}(\psi(p), \psi(q)), F_{D_{1}}(p, q)=F_{D_{2}}(\psi(p), \psi(q)) \\
& \forall(p, q) \in E_{1} .
\end{aligned}
$$

Remark 3.1. One can see the following.
(1) The weak isomorphism between two SVNGs preserves the orders.
(2) The weak isomorphism between SVNGs is a partial order relation.
(3) The co-weak isomorphism between two SVNGs preserves the sizes.
(4) The co-weak isomorphism between SVNGs is a partial order relation.
(5) The isomorphism between two SVNGs is an equivalence relation.
(6) The isomorphism between two SVNGs preserves the orders and sizes.
(7) The isomorphism between two SVNGs preserves the degrees of their vertices's.

Definition 3.2. Let $G=(C, D)$ be a $S V N G$ of G^{*}. The strength of connectedness between x and y in V, which is denoted by $S_{D}^{\infty}(x, y)$, is defined by

$$
S_{D}^{\infty}(x, y)=\left(T_{D}^{\infty}(x, y), I_{D}^{\infty}(x, y), F_{D}^{\infty}(x, y)\right)
$$

where

$$
\begin{gathered}
T_{D}^{\infty}(x, y)=\sup \left\{T_{D}^{k}(x, y): k=1,2, \ldots, n\right\} \\
T_{D}^{\infty}(x, y)=\sup \left\{T_{D}\left(x, v_{1}\right) \wedge \ldots \wedge T_{D}\left(v_{k-1}, y\right): x, v_{1}, v_{2}, \ldots, v_{k-1}, y \in V, k=1,2, \ldots, n\right\} \\
I_{D}^{\infty}(x, y)=\inf \left\{I_{D}^{k}(x, y): k=1,2, \ldots, n\right\} \\
I_{D}^{\infty}(x, y)=\inf \left\{I_{D}\left(x, v_{1}\right) \vee \ldots \vee I_{D}\left(v_{k-1}, y\right): x, v_{1}, v_{2}, \ldots, v_{k-1}, y \in V, k=1,2, \ldots, n\right\} \\
F_{D}^{\infty}(x, y)=\inf \left\{F_{D}^{k}(x, y): k=1,2, \ldots, n\right\} \\
F_{D}^{\infty}(x, y)=\inf \left\{F_{D}\left(x, v_{1}\right) \vee \ldots \vee F_{D}\left(v_{k-1}, y\right): x, v_{1}, v_{2}, \ldots, v_{k-1}, y \in V, k=1,2, \ldots, n\right\}
\end{gathered}
$$

Here $T_{D}^{\infty}(x, y), I_{D}^{\infty}(x, y)$ and $F_{D}^{\infty}(x, y)$ are called T-strength, I-strength and F-strength between vertices x and y in V, respectively. The length of path $P: v_{1}, v_{2}, \ldots, v_{n}$, which is denoted by $l(P)$, is defined by $l(P)=\left(l_{T}(P), l_{I}(P), l_{F}(P)\right)$, where

$$
l_{T}(P)=\sum_{i=1}^{n-1} \frac{1}{T_{D}\left(v_{i}, v_{i+1}\right)}, l_{I}(P)=\sum_{i=1}^{n-1} \frac{1}{I_{D}\left(v_{i}, v_{i+1}\right)}, l_{F}(P)=\sum_{i=1}^{n-1} \frac{1}{F_{D}\left(v_{i}, v_{i+1}\right)}
$$

where $l_{T}(P), l_{I}(P)$ and $l_{F}(P)$ are called the T-length, I-length and F-length of path P, respectively. The distance between two vertices α and β in V, which is denoted by $\delta(\alpha, \beta)$, is defined by

$$
\delta(\alpha, \beta)=\left(\delta_{T}(\alpha, \beta), \delta_{I}(\alpha, \beta), \delta_{F}(\alpha, \beta)\right)
$$

where

$$
\delta_{T}(\alpha, \beta)=\min \left(l_{T}(P)\right), \delta_{I}(\alpha, \beta)=\min \left(l_{I}(P)\right), \delta_{F}(\alpha, \beta)=\min \left(l_{F}(P)\right)
$$

Figure 1. SVNG
where $\delta_{T}(\alpha, \beta), \delta_{T}(\alpha, \beta)$ and $\delta_{T}(\alpha, \beta)$ are called the T-distance, I-distance and F-distance of any path $\alpha-\beta$, respectively. The eccentricity of $v_{i} \in V$, which is denoted by is e $\left(v_{i}\right)$, is defined by $e\left(v_{i}\right)=\left(e_{T}\left(v_{i}\right), e_{I}\left(v_{i}\right), e_{F}\left(v_{i}\right)\right)$, where

$$
\begin{aligned}
e_{T}\left(v_{i}\right) & =\max \left\{\delta_{T}\left(v_{i}, v_{j}\right): v_{j} \in V, v_{i} \neq v_{j}\right\} \\
e_{I}\left(v_{i}\right) & =\min \left\{\delta_{I}\left(v_{i}, v_{j}\right): v_{j} \in V, v_{i} \neq v_{j}\right\} \\
e_{F}\left(v_{i}\right) & =\min \left\{\delta_{F}\left(v_{i}, v_{j}\right): v_{j} \in V, v_{i} \neq v_{j}\right\}
\end{aligned}
$$

where $e_{T}\left(v_{i}\right), e_{I}\left(v_{i}\right)$ and $e_{F}\left(v_{i}\right)$ are called the T-eccentricity, I-eccentricity and F-eccentricity of vertex v_{i}, respectively. The radius of G, which is denoted by $r(G)$, is defined by $r(G)=\left(r_{T}(G), r_{I}(G), r_{F}(G)\right)$, where

$$
\begin{aligned}
r_{T}(G) & =\min \left\{e_{T}\left(v_{i}\right): v_{i} \in V\right\} \\
r_{I}(G) & =\min \left\{e_{I}\left(v_{i}\right): v_{i} \in V\right\} \\
r_{F}(G) & =\min \left\{e_{F}\left(v_{i}\right): v_{i} \in V\right\}
\end{aligned}
$$

where $r_{T}(G), r_{I}(G)$ and $r_{F}(G)$ are called the T-radius, I-radius and F-radius of graph G, respectively. The diameter of G, which is denoted by $d(G)$, is defined by $d(G)=$ $\left(d_{T}(G), d_{I}(G), d_{F}(G)\right)$, where

$$
\begin{aligned}
d_{T}(G) & =\max \left\{e_{T}\left(v_{i}\right): v_{i} \in V\right\} \\
d_{I}(G) & =\max \left\{e_{I}\left(v_{i}\right): v_{i} \in V\right\} \\
d_{F}(G) & =\max \left\{e_{F}\left(v_{i}\right): v_{i} \in V\right\}
\end{aligned}
$$

where $d_{T}(G), d_{I}(G)$ and $d_{F}(G)$ are called the T-diameter, I-diameter and F-diameter of graph G, respectively.

Definition 3.3. An antipodal single valued neutrosophic graph (ASVNG) $A(G)=(Q, R)$ of a $S V N G G=(A, B)$ is the $S V N G$, such that
(a) $Q=A$ on V. (b) If $\delta(p, q)=d(G)$, then
(i) If p and q are adjacent in G, then $R=B$ on E.
(ii) If p and q are not adjacent in G, then

$$
\begin{aligned}
T_{R}(p, q) & =\min \left(T_{A}(p), T_{A}(q)\right) \\
I_{R}(p, q) & =\max \left(I_{A}(p), I_{A}(q)\right) \\
F_{R}(p, q) & =\max \left(F_{A}(p), F_{A}(q)\right)
\end{aligned}
$$

Figure 2. Antipodal SVNG

Example 3.1. Consider the $S V N G G=(A, B)$ of $G^{*}=(V, E)$, which is shown in Figure 1. Then by routine calculations, $\delta(a, b)=(7,2,3), \delta(a, c)=(5,4,3), \delta(b, c)=(7,2,5)$, $e(a)=(7,2,3), e(b)=(7,2,3), e(c)=(7,2,3), d(G)=(7,2,3)=\delta(a, b)$. Hence an ASVNG $A(G)=(Q, R)$, which is shown in Figure 2.

Definition 3.4. An eccentric $\operatorname{SVNG} G_{e}=(P, Q)$ of a $\operatorname{SVNG} G=(A, B)$ is the $S V N G$, such that
(a) $P=A$ on V. (b) If

$$
\begin{aligned}
\delta_{T}(p, q) & =\min \left(e_{T}(p), e_{T}(q)\right) \\
\delta_{I}(p, q) & =\max \left(e_{I}(p), e_{I}(q)\right) \\
\delta_{F}(p, q) & =\max \left(e_{F}(p), e_{F}(q)\right)
\end{aligned}
$$

then
(i) If p and q are neighbors in G, then $Q=B$ on E.
(ii) If p and q are not neighbors in G, then

$$
\begin{aligned}
T_{Q}(p, q) & =\min \left(T_{A}(p), T_{A}(q)\right) \\
I_{Q}(p, q) & =\max \left(I_{A}(p), I_{A}(q)\right) \\
F_{Q}(p, q) & =\max \left(F_{A}(p), F_{A}(q)\right)
\end{aligned}
$$

(c) else $Q=O=(0,0,0)$.

Example 3.2. Consider the $\operatorname{SVNG} G=(A, B)$ of $G^{*}=(V, E)$, which is given in Example 3.1. Then by calculations, $\delta(a, b)=(7,2,3), \delta(a, c)=(5,4,3), \delta(b, c)=(7,2,5)$, $e(a)=(7,2,3), e(b)=(7,2,3), e(c)=(7,2,3), d(G)=(7,2,3)=\delta(a, b)$ here, $\delta_{T}(a, b)=$ $7=\min \left(e_{T}(a), e_{T}(b)\right), \delta_{I}(a, b)=2=\max \left(e_{I}(a), e_{I}(b)\right), \delta_{F}(a, b)=3=\max \left(e_{F}(a), e_{F}(b)\right)$, $\delta_{F}(a, c)=3=\max \left(e_{F}(a), e_{F}(c)\right), \delta_{T}(b, c)=7=\min \left(e_{T}(b), e_{T}(c)\right), \delta_{I}(b, c)=2=$ $\max \left(e_{I}(b), e_{I}(c)\right)$. The ESVNG is shown in Figure 3.

Proposition 3.1. The ASVNG of the SVNG is the generalization of antipodal fuzzy graph of fuzzy graph and antipodal intuitionistic fuzzy graph of intuitionistic fuzzy graph.

Proposition 3.2. The ESVNG of SVNG is the generalization of eccentric fuzzy graph of fuzzy graph and eccentric intuitionistic fuzzy graph of intuitionistic fuzzy graph.

Proposition 3.3. $A(G)$ is always a single valued neutrosophic subgraph of G_{e}. Further $A(G)$ and G_{e} are same, whenever $G=(A, B)$ be a complete $S V N G$.

Figure 3. Eccentric SVNG
Definition 3.5. The connected $S V N G G=(A, B)$ is distance regular $S V N G$, whenever

$$
\delta(x, y)=k=\left(k_{1}, k_{2}, k_{3}\right)
$$

$\forall x, y \in V$.
Proposition 3.4. If $G=(A, B)$, is distance regular $S V N G$, then G is single valued neutrosophic spanning subgraph of $A(G)$, such that $A(G)$ is same as G_{e}.

Theorem 3.1. If $G=(A, B)$ be a complete $S V N G$, then G and $A(G)$ are isomorphic.
Proof. Since A is constant function, that is $A(x)=c=\left(c_{1}, c_{2}, c_{3}\right)$ where c_{1}, c_{2} and c_{3} are constants, hence we get $\delta(p, q)=d=\left(d_{1}, d_{2}, d_{3}\right)$ for all $p, q \in V$, therefore eccentricity of $G e(p)=d=\left(d_{1}, d_{2}, d_{3}\right)$ for all $p \in V$. Hence $d(G)=d=\left(d_{1}, d_{2}, d_{3}\right)=\delta(p, q)$ for all $p \in V$. Thus adjacency between every two vertices in $A(G)$ such that (i) $Q=A$ on V. (ii) Since p and q are neighbors in G, hence $R=B$ on E. Therefore G is isomorphic to $A(G)$.
Theorem 3.2. Let $G=(A, B)$ be a connected SVNG, then ASVNG $A(G)$ is subgraph of G.
Proof. Since by the definition of ASVNG, $A(G)$ and G have same vertex set, such that (i) $Q=A$ on V. (ii) If $\delta(p, q)=d(G)$, then (a) If p and q are adjacent in G, then $R=B$ on E. (b) If p and q are not adjacent in G, then $T_{R}(p, q)=\min \left(T_{A}(p), T_{A}(q)\right), I_{R}(p, q)=$ $\max \left(I_{A}(p), I_{A}(q)\right)$ and $F_{R}(p, q)=\max \left(F_{A}(p), F_{A}(q)\right)$.
Theorem 3.3. If $G_{1}=\left(A_{1}, B_{1}\right)$ and $G_{2}=\left(A_{2}, B_{2}\right)$ are isomorphic, then so $A\left(G_{1}\right)$ and $A\left(G_{2}\right)$.

Proof. By hypothesis there is an isomorphism f between them, which preserves the weights of edges, so the length and distance will be preserved. Hence if vertex α has maximum T-eccentricity, minimum I-eccentricity and minimum F-eccentricity in G_{1}, then $f(\alpha)$ has maximum T-eccentricity, minimum I-eccentricity and minimum F-eccentricity in G_{2}, so G_{1} and G_{2} will have same diameter. If distance between α and β is $k=\left(k_{1}, k_{2}, k_{3}\right)$ in G_{1}, then $f(\alpha)$ and $f(\beta)$ will also have their distance as $k=\left(k_{1}, k_{2}, k_{3}\right)$ in G_{2}, f is a bijective function between $A\left(G_{1}\right)$ and $A\left(G_{2}\right)$ with $Q_{1}(\alpha)=A_{1}(\alpha)=A_{2}(\alpha)=Q_{2}(\alpha)$ for all $\alpha \in V_{1}$ and (i) If α and β are adjacent in E_{1}, then $R_{1}=B_{1}$. (ii) If α and β are not adjacent in E_{1}, then $T_{R_{1}}(\alpha, \beta)=\min \left(T_{A_{1}}(\alpha), T_{A_{1}}(\beta)\right), I_{R_{1}}(\alpha, \beta)=\max \left(I_{A_{1}}(\alpha), I_{A_{1}}(\beta)\right)$ and $F_{R_{1}}(\alpha, \beta)=$ $\max \left(F_{A_{1}}(\alpha), F_{A_{1}}(\beta)\right)$ as $f: G_{1} \rightarrow G_{2}$ is an isomorphism, then α and β are adjacent in E_{1}, then $R_{1}(\alpha, \beta)=B_{2}(f(\alpha), f(\beta))$, if α and β are not adjacent in E_{1}, then $T_{R_{1}}(\alpha, \beta)=$ $\min (f(\alpha), f(\beta)), I_{R_{1}}(\alpha, \beta)=\max (f(\alpha), f(\beta))$ and $F_{R_{1}}(\alpha, \beta)=\max (f(\alpha), f(\beta))$, thus we
conclude that $R_{1}(\alpha, \beta)=R_{2}(f(\alpha), f(\beta))$, so the same isomorphism f is an isomorphism between $A\left(G_{1}\right)$ and $A\left(G_{2}\right)$.
Theorem 3.4. If $G_{1}=\left(A_{1}, B_{1}\right)$ and $G_{2}=\left(A_{2}, B_{2}\right)$ be two connected SVNGs, If G_{1} and G_{2} are co-weak isomorphic, then $A\left(G_{1}\right)$ is homomorphic to $A\left(G_{2}\right)$.
Proof. Since G_{1} and G_{2} are co-weak isomorphic SVNGs, then there exists a bijection $f: G_{1} \rightarrow G_{2}$ satisfying the conditions $T_{A_{1}}(\alpha) \leq T_{A_{2}}(f(\alpha)), I_{A_{1}}(\alpha) \geq I_{A_{2}}(f(\alpha)), F_{A_{1}}(\alpha) \geq$ $F_{A_{2}}(f(\alpha))$ for all $\alpha \in V_{1}$ and $B_{1}(\alpha, \beta)=B_{2}(f(\alpha), f(\beta))$ for all $(\alpha, \beta) \in E_{1}$, so the distance and diameters will preserved. Let $d\left(G_{1}\right)=d\left(G_{2}\right)=k=\left(k_{1}, k_{2}, k_{3}\right)$ if $u, v \in V_{1}$ are at a distance k in G_{1}, then they are made as neighbors in $A\left(G_{1}\right)$, so $f(u), f(v) \in V_{2}$ are at a distance k in G_{2}, then they are made as neighbors in $A\left(G_{2}\right)$. If u and v are neighbors in G_{1}, then $R_{1}(u, v)=B_{1}(u, v)=B_{2}(f(u), f(v))=R_{2}(f(u), f(v))$. If u and v are not neighbors in G_{1}, then $T_{R_{1}}(u, v)=\min \left(T_{A_{1}}(u), T_{A_{1}}(v)\right) \leq \min \left(T_{A_{2}}(f(u)), T_{A_{2}}(f(v))\right)=T_{R_{2}}(f(u), f(v))$ similarly $I_{R_{1}}(u, v) \geq I_{R_{2}}(f(u), f(v))$ and $F_{R_{1}}(u, v) \geq F_{R_{2}}(f(u), f(v))$. Hence $A\left(G_{1}\right)$ is homomorphic to $A\left(G_{2}\right)$.

Theorem 3.5. If $G_{1}=\left(A_{1}, B_{1}\right)$ and $G_{2}=\left(A_{2}, B_{2}\right)$ be two complete $S V N G s$, then if G_{1} is co-weak isomorphic to G_{2}, then $A\left(G_{1}\right)$ is co-weak isomorphic to $A\left(G_{2}\right)$.
Proof. Straight forward as Theorem 3.4 is proved.
Definition 3.6. Let $G=(A, B)$ be a $S V N G$, a vertex $v_{i} \in V$ is said to be a central vertex if $r(G)=e\left(v_{i}\right)$. The set of all central vertices of G, is denoted by $C(G)$. The connected SVNG $G=(A, B)$ is said to be self centered single valued neutrosophic graph (SCSVNG), if $r(G)=e\left(v_{i}\right) \forall v_{i} \in V$.
Example 3.3. Consider the SVNG $G=(A, B)$ of $G^{*}=(V, E)$, which is given in example 3.1. Then by calculations, $\delta(a, b)=(7,2,3), \delta(a, c)=(5,4,3), \delta(b, c)=(7,2,5)$, $e(a)=(7,2,3), e(b)=(7,2,3), e(c)=(7,2,3), r(G)=(7,2,3)=e(a)=e(b)=e(c)$. Therefore G is a self centered SVNG.
Definition 3.7. A path cover of a $\operatorname{SVNG} G=(A, B)$ is the set Q of paths so that every vertex of G is incident to some path of Q.
Definition 3.8. An edge cover of a $\operatorname{SVNG} G=(A, B)$ is the set E of edges such that every vertex of G is incident to some edge of E.
Theorem 3.6. Every complete $S V N G G=(A, B)$ is a self centered $S V N G$ and

$$
r(G)=\left(\frac{1}{T_{A i}}, \frac{1}{\bar{I}_{A i}}, \frac{1}{F_{A i}}\right)
$$

where $T_{A i}$ is minimal, $I_{A i}$ and $F_{A i}$ are maximal.
Proof. Let $v_{i} \in V$ such that $T_{A i}$ is least truth membership of vertex value in G.
$\operatorname{Case}(\mathbf{i}) \forall v_{i}-v_{j}$ paths P of length n in G for all $v_{j} \in V$.
for $n=1$ trivially holds, if $n>1$, the T-strength of one edge $T_{A i}$ and therefore T length of a $v_{i}-v_{j}$ path will exceed $\frac{1}{T_{A i}}$, thus T-length of path $P=l_{T}(P)>\frac{1}{T_{A i}}$, hence $\delta_{T}\left(v_{i}, v_{j}\right)=\min \left(l_{T}(P)\right)=\frac{1}{T_{A i}}$ for all $v_{j} \in V$.
Case(ii) Let $v_{k} \neq v_{i} \in V$, consider all $v_{k}-v_{j}$ paths Q of length n in G for all $v_{j} \in V$.
Subcase(i) Whenever $n=1$, then $T_{B}\left(v_{k}, v_{j}\right)=\min \left(T_{A k}, T_{A j}\right) \geq T_{A i}$ since $T_{A i}$ is minimal, hence T-length of $Q=l_{T}(Q)=\frac{1}{T_{B}\left(v_{k}, v_{j}\right)} \leq \frac{1}{T_{A i}}$.
Subcase(ii) Whenever $n=2$, then $l_{T}(Q)=\frac{1}{T_{B}\left(v_{k}, v_{k+1}\right)}+\frac{1}{T_{B}\left(v_{k+1}, v_{j}\right)} \leq \frac{2}{T_{A i}}$ since $T_{A i}$ is minimal.

Figure 4. SVNG
Subcase(iii) Whenever $n>2$, then $l_{T}(Q) \leq \frac{n}{T_{A i}}$ since $T_{A i}$ is minimal, hence $\delta_{T}\left(v_{k}, v_{j}\right)=$ $\min \left(l_{T}(Q)\right) \leq \frac{1}{T_{A i}}$ for all $v_{k}, v_{j} \in V$. Thus we have $e_{T}\left(v_{i}\right)=\min \left(\delta_{T}\left(v_{i}, v_{j}\right)\right)=\frac{1}{T_{A i}}$ for all $v_{i} \in V$. Next $r_{T}(G)=\min \left(e_{T}\left(v_{i}\right)\right)=\frac{1}{T_{A i}}$, hence $r_{T}(G)=\frac{1}{T_{A i}}$ where $T_{A}\left(v_{i}\right)$ is minimal. Similarly others can be proved. Hence G is self centered SVNG.

Remark 3.2. In general converse part does not hold of Theorem 3.6.
Example 3.4. Consider a SVNG $G=(A, B)$ of $G^{*}=(V, E)$, which is shown in Figure 4. Then by calculations, $\delta(\alpha, \beta)=(6,3,2), \delta(\alpha, \delta)=(5,3,2), \delta(\beta, \gamma)=(5,3,2), \delta(\gamma, \delta)=$ $(6,3,2), \delta(\alpha, \gamma)=(11,6,4), \delta(\beta, \delta)=(11,6,4), e(\alpha)=(11,3,2), e(\beta)=(11,3,2), e(\gamma)=$ $(11,3,2), e(\delta)=(11,3,2)$. Here $r(G)=e(G)=(11,3,2)$. Thus G is self centered SVNG, but G is not complete SVNG.

Remark 3.3. A SVNG $G=(A, B)$ is self centered SVNG if and only if $d(G)=r(G)$.
Theorem 3.7. Let $G=(A, B)$ be a connected $S V N G$ with path covers P_{1}, P_{2} and P_{3} of G, respectively. Then G is self centered SVNG if and only if

$$
\begin{aligned}
\delta_{T}\left(v_{i}, v_{j}\right) & =d_{T}(G), \forall\left(v_{i}, v_{j}\right) \in P_{1} \\
\delta_{I}\left(v_{i}, v_{j}\right) & =d_{I}(G), \forall\left(v_{i}, v_{j}\right) \in P_{2} \\
\delta_{F}\left(v_{i}, v_{j}\right) & =d_{F}(G), \forall\left(v_{i}, v_{j}\right) \in P_{3}
\end{aligned}
$$

Proof. Assume that $G=(A, B)$ be self centered SVNG. Suppose that conditions are false, that is

$$
\begin{aligned}
\delta_{T}\left(v_{i}, v_{j}\right) & =d_{T}(G), \exists\left(v_{i}, v_{j}\right) \in P_{1} \\
\delta_{I}\left(v_{i}, v_{j}\right) & =d_{I}(G), \exists\left(v_{i}, v_{j}\right) \in P_{2} \\
\delta_{F}\left(v_{i}, v_{j}\right) & =d_{F}(G), \exists\left(v_{i}, v_{j}\right) \in P_{3}
\end{aligned}
$$

then by above remark, the above inequality becomes

$$
\begin{gathered}
\delta_{T}\left(v_{i}, v_{j}\right) \neq r_{T}(G), \exists\left(v_{i}, v_{j}\right) \in P_{1} \\
\delta_{I}\left(v_{i}, v_{j}\right) \neq r_{I}(G), \exists\left(v_{i}, v_{j}\right) \in P_{2} \\
\delta_{F}\left(v_{i}, v_{j}\right) \neq r_{F}(G), \exists\left(v_{i}, v_{j}\right) \in P_{3}
\end{gathered}
$$

Thus we conclude that, for some $v_{i} \in V$

$$
e_{T}\left(v_{i}\right) \neq r_{T}(G), e_{I}\left(v_{i}\right) \neq r_{I}(G), e_{F}\left(v_{i}\right) \neq r_{F}(G)
$$

which shows that G is not self centered SVNG, which contradict the assumption. Thus

$$
\begin{aligned}
\delta_{T}\left(v_{i}, v_{j}\right) & =d_{T}(G), \forall\left(v_{i}, v_{j}\right) \in P_{1} \\
\delta_{I}\left(v_{i}, v_{j}\right) & =d_{I}(G), \forall\left(v_{i}, v_{j}\right) \in P_{2} \\
\delta_{F}\left(v_{i}, v_{j}\right) & =d_{F}(G), \forall\left(v_{i}, v_{j}\right) \in P_{3}
\end{aligned}
$$

Next assume that

$$
\begin{aligned}
\delta_{T}\left(v_{i}, v_{j}\right) & =d_{T}(G), \forall\left(v_{i}, v_{j}\right) \in P_{1} \\
\delta_{I}\left(v_{i}, v_{j}\right) & =d_{I}(G), \forall\left(v_{i}, v_{j}\right) \in P_{2} \\
\delta_{F}\left(v_{i}, v_{j}\right) & =d_{F}(G), \forall\left(v_{i}, v_{j}\right) \in P_{3}
\end{aligned}
$$

then by our hypothesis, we have

$$
\begin{aligned}
\delta_{T}\left(v_{i}, v_{j}\right) & =e_{T}\left(v_{i}\right), \forall\left(v_{i}, v_{j}\right) \in P_{1} \\
\delta_{I}\left(v_{i}, v_{j}\right) & =e_{I}\left(v_{i}\right), \forall\left(v_{i}, v_{j}\right) \in P_{2} \\
\delta_{F}\left(v_{i}, v_{j}\right) & =e_{F}\left(v_{i}\right), \forall\left(v_{i}, v_{j}\right) \in P_{3}
\end{aligned}
$$

this implies that, $v_{i} \in V$

$$
e_{T}\left(v_{i}\right)=r_{T}(G), e_{I}\left(v_{i}\right)=r_{I}(G), e_{F}\left(v_{i}\right)=r_{F}(G)
$$

hence $e(G)=r(G)$, this shows that G is SCSVNG.
Theorem 3.8. If $G=(A, B)$ be a connected $S V N G$, with edge covers L_{1}, L_{2} and L_{3} of G, G is self centered SVNG if and only if

$$
\begin{aligned}
& \delta\left(v_{i}, v_{j}\right)=d_{T}(G) \text { for all }\left(v_{i}, v_{j}\right) \in L_{1}, \\
& \delta\left(v_{i}, v_{j}\right)=d_{I}(G) \text { for all }\left(v_{i}, v_{j}\right) \in L_{2}, \\
& \delta\left(v_{i}, v_{j}\right)=d_{F}(G) \text { for all }\left(v_{i}, v_{j}\right) \in L_{3} .
\end{aligned}
$$

Proof. Similarly as Theorem 3.7 proved.
Theorem 3.9. Let $H=\left(A^{\prime}, B^{\prime}\right)$ be connected self centered $S V N G$, then there exists a connected SVNG $G=(A, B)$ for which $\left\langle C(G)>\right.$ is isomorphic with H and $d_{T}(G)=$ $2 r_{T}(G), d_{I}(G)=2 r_{I}(G), d_{F}(G)=2 r_{F}(G)$.
Proof. Let $H=\left(A^{\prime}, B^{\prime}\right)$ be a connected self centered SVNG. Let $d_{T}(H)=l, d_{I}(H)=m$, and $d_{F}(H)=n$. For two vertices $v_{i}, v_{j} \in V$ with $T_{A}\left(v_{i}\right)=T_{A}\left(v_{j}\right)=\frac{1}{l}, I_{A}\left(v_{i}\right)=I_{A}\left(v_{j}\right)=$ $\frac{1}{2 m}, F_{A}\left(v_{i}\right)=F_{A}\left(v_{j}\right)=\frac{1}{2 n}$. Also all the vertices of H are neighbors to both v_{i} and v_{j} with $T_{B}\left(v_{i}, v_{k}\right)=T_{B}\left(v_{j}, v_{k}\right)=\frac{1}{l}, I_{B}\left(v_{i}, v_{k}\right)=I_{B}\left(v_{j}, v_{k}\right)=\frac{1}{2 m}, F_{B}\left(v_{i}, v_{k}\right)=F_{B}\left(v_{j}, v_{k}\right)=\frac{1}{2 n}$ for all $v_{k} \in V^{\prime}$. Next put $T_{A}=T_{A^{\prime}}, I_{A}=I_{A^{\prime}}$ and $F_{A}=F_{A^{\prime}}$ for all vertices in H and $T_{B}=T_{B^{\prime}}, I_{B}=I_{B^{\prime}}$ and $F_{B}=F_{B^{\prime}} \forall(\alpha, \beta) \in E$.
If possible $T_{A}\left(v_{i}\right)>T_{A}\left(v_{k}\right)$ for at least one vertex $v_{k} \in V^{\prime}$, then $\frac{1}{l}>T_{A}\left(v_{k}\right)$ that is $l<\frac{1}{T_{A}\left(v_{k}\right)} \leq \frac{1}{T_{B}\left(v_{k}, v_{l}\right)}$, this holds for all $v_{l} \in V^{\prime}$ because H is SVNG, thus $\frac{1}{T_{B}\left(v_{k}, v_{l}\right)}>l$ for all $v_{k} \in V^{\prime}$ which contradict to fact $d_{T}(H)=l$, therefore $T_{A}\left(v_{i}\right) \leq T_{A}\left(v_{k}\right)$ for all $v_{k} \in V^{\prime}$ and $T_{B}\left(v_{i}, v_{k}\right) \leq \min \left(T_{A i}, T_{A k}\right)=\frac{1}{l}$, similarly $T_{B}\left(v_{j}, v_{k}\right) \leq \min \left(T_{A j}, T_{A k}\right)=\frac{1}{l}$ for all $v_{k} \in V^{\prime}$ note that $I_{A}\left(v_{i}\right) \geq I_{A}\left(v_{k}\right)$ and $I_{A}\left(v_{j}\right) \geq I_{A}\left(v_{k}\right)$ for all $v_{k} \in V^{\prime}$ since $d_{I}(H)=m$, therefore $I_{B}\left(v_{i}, v_{k}\right) \geq \max \left(I_{A i}, I_{A k}\right)=\frac{1}{2 m}$, similarly $I_{B}\left(v_{j}, v_{k}\right) \geq \max \left(I_{A j}, I_{A k}\right)=\frac{1}{2 m}$ for all $v_{k} \in V^{\prime}$, similarly $F_{A}\left(v_{i}\right) \geq F_{A}\left(v_{k}\right)$ and $F_{A}\left(v_{j}\right) \geq F_{A}\left(v_{k}\right)$ for all $v_{k} \in V^{\prime}$, since $d_{F}(H)=$ n, therefore $F_{B}\left(v_{i}, v_{k}\right) \leq \max \left(F_{A i}, F_{A k}\right)=\frac{1}{2 n}$, similarly $F_{B}\left(v_{j}, v_{k}\right) \geq \max \left(F_{A j}, F_{A k}\right)=\frac{1}{2 n}$ for all $v_{k} \in V^{\prime}$ hence G is SVNG.
Next $e_{T}\left(v_{k}\right)=l$ for all $v_{k} \in V^{\prime}$ and $e_{T}\left(v_{i}\right)=e_{T}\left(v_{j}\right)=\frac{1}{T_{B}\left(v_{i}, v_{k}\right)}+\frac{1}{T_{B}\left(v_{i}, v_{k}\right)}=2 l, r_{T}(G)=l$, $d_{T}(G)=2 l$. Next $e_{I}\left(v_{k}\right)=m$ for all $v_{k} \in V^{\prime}$ and $e_{I}\left(v_{i}\right)=e_{I}\left(v_{j}\right)=\frac{1}{I_{B}\left(v_{l}, v_{k}\right)}=2 m, r_{I}(G)=$

Figure 5. SVNG
$m, d_{I}(G)=2 m$. Similarly $e_{F}\left(v_{k}\right)=n$ for all $v_{k} \in V^{\prime}$ and $e_{F}\left(v_{i}\right)=e_{F}\left(v_{j}\right)=\frac{1}{F_{B}\left(v_{l}, v_{k}\right)}=2 n$, $r_{F}(G)=n, d_{F}(G)=2 n$.

Definition 3.9. Let $G=(A, B)$ be a connected $S V N G$, the status of a vertex α, which is denoted by $S(\alpha)$, is defined by $S(\alpha)=\left(S_{T}(\alpha), S_{I}(\alpha), S_{F}(\alpha)\right)$, where

$$
S_{T}(\alpha)=\sum_{\beta \in V} \delta_{T}(\alpha, \beta), S_{I}(\alpha)=\sum_{\beta \in V} \delta_{I}(\alpha, \beta), S_{F}(\alpha)=\sum_{\beta \in V} \delta_{F}(\alpha, \beta)
$$

where $S_{T}(\alpha), S_{I}(\alpha)$ and $S_{F}(\alpha)$ are called T-status, I-status and F-status of the vertex α, respectively. The connected $S V N G G$ is called self-median if all vertices have same status.

Definition 3.10. minimum and maximum status of connected $S V N G$ the G is denoted and defined by respectively

$$
\begin{aligned}
m(S(G)) & =\left(\min \left(S_{T}(G)\right), \min \left(S_{I}(G)\right), \min \left(S_{F}(G)\right)\right) \\
M(S(G)) & =\left(\max \left(S_{T}(G)\right), \max \left(S_{I}(G)\right), \max \left(S_{F}(G)\right)\right)
\end{aligned}
$$

Definition 3.11. The total status of of connected $S V N G$ the G is given by

$$
t(S(G))=\left(t\left(S_{T}(G)\right), t\left(S_{I}(G)\right), t\left(S_{F}(G)\right)\right)
$$

where

$$
t\left(S_{T}(G)\right)=\sum_{\alpha \in V} S_{T}(\alpha), t\left(S_{I}(G)\right)=\sum_{\alpha \in V} S_{I}(\alpha), t\left(S_{F}(G)\right)=\sum_{\alpha \in V} S_{F}(\alpha)
$$

Example 3.5. Consider the $S V N G G=(A, B)$ of $G^{*}=(V, E)$, which is shown in Figure 5. Then by calculations, $S(\alpha)=(5,3,4), S(\beta)=(18,9,12), S(\gamma)=(13,6,8)$, $S(\delta)=(21,7,10)$. Thus G is not self median SVNG.

Remark 3.4. Let $G=(C, D)$ be a connected $S V N G$ of $G^{*}=(V, E)$, which is an even cycle, then G is self-median $S V N G$, if alternative edges have same truth, indeterminacy and falsity membership values.

Example 3.6. Consider the $S V N G G=(A, B)$ of $G^{*}=(V, E)$ which is given in Example 3.4. Then by routine calculations, we get $\delta(\alpha, \beta)=(6,3,2), \delta(\alpha, \delta)=(5,3,2)$, $\delta(\beta, \gamma)=(5,3,2), \delta(\gamma, \delta)=(6,3,2), \delta(\alpha, \gamma)=(11,6,4), \delta(\beta, \delta)=(11,6,4), S(\alpha)=$ $(22,12,8), S(\beta)=(22,12,8), S(\gamma)=(22,12,8), S(\delta)=(22,12,8), t(S(G))=S(\alpha)=$ $S(\beta)=S(\gamma)=S(\delta)$. Thus G is self median $S V N G$.

4. The Classes of m-PSVNGs

In this section, we discuss the m-PSVNGs and special classes of m-PSVNGs such as, antipodal, eccentric, self centered and self median m-PSVNGs. Let G denotes $m-$ PSVNG and $G^{*}=(V, E)$ denotes underlying crisp graph. In the whole article the results and definitions hold $\forall r=1,2,3, \cdots, m$.

Definition 4.1. Let X be a space of points (objects) with generic elements in X denoted by x. A m-Polar single valued neutrosophic set $A(m-P S V N S A)$ is characterized by m-Polar truth-membership function $T_{A}(x): X \longrightarrow[0,1]^{m} m$-Polar indeterminacymembership function $I_{A}(x): X \longrightarrow[0,1]^{m}$ and m-Polar falsity-membership function $F_{A}(x): X \longrightarrow[0,1]^{m}$. The $m-P S V N S$ is the generalization of $m-P o l a r$ fuzzy set and m-Polar intuitionistic fuzzy set. Note that $a[0,1]^{m}$-set is an L-set. An L-set on the set X is a synonym of a mapping $A: X \longrightarrow L$, where L is a lattice. So, $[0,1]^{m}$ is considered to be a partial order set with the point-wise order \leq, where m is an arbitrary ordinal number, \leq is defined by $x \leq y \Leftrightarrow p_{r}(x) \leq p_{r}(y)$ for each $r \in m$ and $p_{r}:[0,1]^{m} \longrightarrow[0,1]$ is the $r-$ th projection mapping $(r \in m)$, when $L=[0,1]$, an L-set on X will be called a fuzzy set on X.

Definition 4.2. An m-Polar single valued neutrosophic graph is a pair $G=(A, B)$, where $A: V \longrightarrow[0,1]^{m}$ is an m-Polar single valued neutrosophic set in V such that,

$$
0 \leq p_{r} \circ T_{A}(x)+p_{r} \circ I_{A}(x)+p_{r} \circ F_{A}(x) \leq 3
$$

$\forall x \in V, \forall r=1,2,3, \cdots, m$ and $B: V \times V \longrightarrow[0,1]^{m}$ is an m-Polar single valued neutrosophic relation on V, such that

$$
\begin{aligned}
p_{r} \circ T_{B}(x, y) & \leq \inf \left(p_{r} \circ T_{A}(x), p_{r} \circ T_{A}(y)\right) \\
p_{r} \circ I_{B}(x, y) & \geq \sup \left(p_{r} \circ I_{A}(x), p_{r} \circ I_{A}(y)\right), \\
p_{r} \circ F_{B}(x, y) & \geq \sup \left(p_{r} \circ F_{A}(x), p_{r} \circ F_{A}(y)\right),
\end{aligned}
$$

$\forall x, y \in V$, whenever

$$
0 \leq p_{r} \circ T_{B}(x, y)+p_{r} \circ I_{B}(x, y)+p_{r} \circ F_{B}(x, y) \leq 3
$$

$\forall(x, y) \in E \subseteq V \times V$ and $\forall r=1,2,3, \cdots, m$. Note that $p_{r} \circ B(x, y)=0, \forall(x, y) \in$ $V \times V-E, \forall r=1,2,3, \cdots, m$. Also A is called the $m-$ Polar $S V N$ vertex set of G and B is called the $m-$ Polar $S V N$ edge set of G, respectively. An $m-$ Polar $S V N$ relation B on V is called symmetric if $p_{r} \circ B(x, y)=p_{r} \circ B(y, x) \forall x, y \in V$.
 fuzzy graph. The graph G is said to be a complete (strong) m-Polar SVNG, if

$$
\begin{aligned}
p_{r} \circ T_{B}(x, y) & =\inf \left(p_{r} \circ T_{A}(x), p_{r} \circ T_{A}(y)\right) \\
p_{r} \circ I_{B}(x, y) & =\sup \left(p_{r} \circ I_{A}(x), p_{r} \circ I_{A}(y)\right) \\
p_{r} \circ F_{B}(x, y) & =\sup \left(p_{r} \circ F_{A}(x), p_{r} \circ F_{A}(y)\right)
\end{aligned}
$$

$\forall x, y \in V((x, y) \in E)$ and $\forall r=1,2,3, \cdots, m$. The order of G, which is denoted by $O(G)$, is defined by
$O(G)=\left(\left(p_{1} \circ O_{T}(G), p_{1} \circ O_{I}(G), p_{1} \circ O_{F}(G)\right), \cdots,\left(p_{m} \circ O_{T}(G), p_{m} \circ O_{I}(G), p_{m} \circ O_{F}(G)\right)\right)$ where
$p_{r} \circ O_{T}(G)=\sum_{x \in V} p_{r} \circ T_{A}(x), p_{r} \circ O_{I}(G)=\sum_{x \in V} p_{r} \circ I_{A}(x), p_{r} \circ O_{F}(G)=\sum_{x \in V} p_{r} \circ F_{A}(x)$
$\forall r=1,2,3, \cdots, m$. The size of G, which is denoted by $S(G)$, is defined by
$S(G)=\left(\left(p_{1} \circ S_{T}(G), p_{1} \circ S_{I}(G), p_{1} \circ S_{F}(G)\right), \cdots,\left(p_{m} \circ S_{T}(G), p_{m} \circ S_{I}(G), p_{m} \circ S_{F}(G)\right)\right)$
where

$$
\begin{aligned}
& p_{r} \circ S_{T}(G)=\sum_{\substack{(x, y) \in E \\
x \neq y}} p_{r} \circ T_{B}(x, y) \\
& p_{r} \circ S_{I}(G)=\sum_{\substack{(x, y) \in E \\
x \neq y}} p_{r} \circ I_{B}(x, y) \\
& p_{r} \circ S_{F}(G)=\sum_{\substack{(x, y) \in E \\
x \neq y}} p_{r} \circ F_{B}(x, y)
\end{aligned}
$$

$\forall r=1,2,3, \cdots, m$. The degree of vertex x, which is denoted by $d_{G}(x)$, is defined by

$$
d_{G}(x)=\left(\left(p_{1} \circ d_{T}(x), p_{1} \circ d_{I}(x), p_{1} \circ d_{F}(x)\right), \cdots,\left(p_{m} \circ d_{T}(x), p_{m} \circ d_{I}(x), p_{m} \circ d_{F}(x)\right)\right)
$$

where

$$
\begin{aligned}
& p_{r} \circ d_{T}(x)=\sum_{\substack{(x, y) \in E \\
x \neq y}} p_{r} \circ T_{B}(x, y), \\
& p_{r} \circ d_{I}(x)=\sum_{\substack{(x, y) \in E \\
x \neq y}} p_{r} \circ I_{B}(x, y) \\
& p_{r} \circ d_{F}(x)=\sum_{\substack{(x, y) \in E \\
x \neq y}} p_{r} \circ F_{B}(x, y)
\end{aligned}
$$

$\forall r=1,2,3, \cdots, m$.
The total degree of vertex x is denoted and defined by
$t d_{G}(x)=\left(\left(p_{1} \circ t d_{T}(x), p_{1} \circ t d_{I}(x), p_{1} \circ t d_{F}(x)\right), \cdots,\left(p_{m} \circ t d_{T}(x), p_{m} \circ t d_{I}(x), p_{m} \circ t d_{F}(x)\right)\right)$ where,

$$
\begin{aligned}
p_{i} \circ t d_{T}(x) & =\sum_{\substack{(x, y) \in E \\
x \neq y}} p_{i} \circ T_{B}(x, y)+p_{i} \circ T_{A}(x) \\
p_{i} \circ t d_{I}(x) & =\sum_{\substack{(x, y) \in E \\
x \neq y}} p_{i} \circ I_{B}(x, y)+p_{i} \circ I_{A}(x) \\
p_{i} \circ t d_{F}(x)= & \sum_{\substack{(x, y) \in E \\
x \neq y}} p_{i} \circ F_{B}(x, y)+p_{i} \circ F_{A}(x)
\end{aligned}
$$

$\forall i=1,2,3, \cdots, m$. The degree of edge $e=x y$ is denoted and defined by

$$
d_{G}(x, y)=\left(\cdots,\left(p_{i} \circ d_{T}(x, y), p_{i} \circ d_{I}(x, y), p_{i} \circ d_{F}(x, y)\right), \cdots\right)
$$

where

$$
\begin{aligned}
& p_{i} \circ d_{T}(x, y)=\sum_{\substack{(x, w) \in E \\
x \neq w}} p_{i} \circ T_{B}(x, w)+\sum_{\substack{(w, y) \in E \\
w \neq y}} p_{i} \circ T_{B}(w, y) \\
& p_{i} \circ d_{I}(x, y)=\sum_{\substack{(x, w) \in E \\
x \neq w}} p_{i} \circ I_{B}(x, w)+\sum_{\substack{(w, y) \in E \\
w \neq y}} p_{i} \circ I_{B}(w, y) \\
& p_{i} \circ d_{F}(x, y)=\sum_{\substack{(x, w) \in E \\
x \neq w}} p_{i} \circ F_{B}(x, w)+\sum_{\substack{(w, y) \in E \\
w \neq y}} p_{i} \circ F_{B}(w, y)
\end{aligned}
$$

$\forall i=1,2,3, \cdots, m$. The total degree of edge $e=x y$ is denoted and defined by

$$
t d_{G}(x, y)=\left(\cdots,\left(p_{i} \circ t d_{T}(x, y), p_{i} \circ t d_{I}(x, y), p_{i} \circ t d_{F}(x, y)\right), \cdots\right)
$$

where

$$
\begin{aligned}
& p_{i} \circ t d_{T}(x, y)=\sum_{\substack{(x, w) \in E \\
x \neq w}} p_{i} \circ T_{B}(x, w)+\sum_{\substack{(w, y) \in E \\
w \neq y}} p_{i} \circ T_{B}(w, y)+p_{i} \circ T_{B}(x, y) \\
& p_{i} \circ t d_{I}(x, y)=\sum_{\substack{(x, w) \in E \\
x \neq w}} p_{i} \circ I_{B}(x, w)+\sum_{\substack{(w, y) \in E \\
w \neq y}} p_{i} \circ I_{B}(w, y)+p_{i} \circ I_{B}(x, y) \\
& p_{i} \circ t d_{F}(x, y)=\sum_{\substack{(x, w) \in E \\
x \neq w}} p_{i} \circ F_{B}(x, w)+\sum_{\substack{(w, y) \in E \\
w \neq y}} p_{i} \circ F_{B}(w, y)+p_{i} \circ F_{B}(x, y)
\end{aligned}
$$

$\forall i=1,2,3, \cdots, m$.
Definition 4.3. A strong (complete) m-Polar single valued neutrosophic graph is a pair $G=(A, B)$, where $A: V \longrightarrow[0,1]^{m}$ is an $m-$ Polar single valued neutrosophic set in V and $B: V \times V \longrightarrow[0,1]^{m}$ is an m-Polar single valued neutrosophic relation on V, such that

$$
\begin{aligned}
p_{r} \circ T_{B}(x, y) & =\inf \left(p_{r} \circ T_{A}(x), p_{r} \circ T_{A}(y)\right) \\
p_{r} \circ I_{B}(x, y) & =\sup \left(p_{r} \circ I_{A}(x), p_{r} \circ I_{A}(y)\right) \\
p_{r} \circ F_{B}(x, y) & =\sup \left(p_{r} \circ F_{A}(x), p_{r} \circ F_{A}(y)\right)
\end{aligned}
$$

$\forall(x, y) \in V(\forall x, y \in V)$ and $\forall r=1,2,3, \cdots, m$.

Definition 4.4. The Partial $m-P S V N$-subgraph of $m-P S V N G G=(A, B)$ on a crisp graph $G^{*}=(V, E)$ is a $m-P S V N G H=\left(A^{\prime}, B^{\prime}\right)$, such that
(1) $A^{\prime} \subseteq A$, i.e $\forall r=1,2,3, \cdots, m$ and $\forall x \in V$

$$
p_{r} \circ T_{A^{\prime}}(x) \leq p_{r} \circ T_{A}(x), p_{r} \circ I_{A^{\prime}}(x) \geq p_{r} \circ I_{A}(x), p_{r} \circ F_{A^{\prime}}(x) \geq p_{r} \circ F_{A}(x)
$$

(2) $B^{\prime} \subseteq B$, i.e $\forall r=1,2,3, \cdots, m$ and $\forall x y \in E$
$p_{r} \circ T_{B^{\prime}}(x, y) \leq p_{r} \circ T_{B}(x, y), p_{r} \circ I_{B^{\prime}}(x, y) \geq p_{r} \circ I_{B}(x, y), p_{r} \circ F_{B^{\prime}}(x, y) \geq p_{r} \circ F_{B}(x, y)$
Definition 4.5. The m-Polar $S V N$-subgraph of $m-P S V N G G=(A, B)$, on a crisp graph $G^{*}=(V, E)$ is a $m-P S V N G H=\left(A^{\prime}, B^{\prime}\right)$, on a crisp graph $H^{*}=\left(V^{\prime}, E^{\prime}\right)$, such that
(1) $A^{\prime}=A$, i.e $\forall x \in V^{\prime} \subseteq V$, with

$$
p_{r} \circ T_{A^{\prime}}(x)=p_{r} \circ T_{A}(x), p_{r} \circ I_{A^{\prime}}(x)=p_{r} \circ I_{A}(x), p_{r} \circ F_{A^{\prime}}(x)=p_{r} \circ F_{A}(x)
$$

$\forall r=1,2,3, \cdots, m$.
(2) $B^{\prime}=B$, i.e $\forall x y \in E^{\prime} \subseteq E$, with
$p_{r} \circ T_{B^{\prime}}(x, y)=p_{r} \circ T_{B}(x, y), p_{r} \circ I_{B^{\prime}}(x, y)=p_{r} \circ I_{B}(x, y), p_{r} \circ F_{B^{\prime}}(x, y)=p_{r} \circ F_{B}(x, y)$ $\forall r=1,2,3, \cdots, m$.
Definition 4.6. A $m-P S V N$ path P in a $m-P S V N G G=(A, B)$, is a sequence of distinct vertices $v_{0}, v_{1}, \cdots, v_{n}$, such that

$$
p_{r} \circ T_{B}\left(v_{j-1}, v_{j}\right)>0, p_{r} \circ I_{B}\left(v_{j-1}, v_{j}\right)>0, p_{r} \circ F_{B}\left(v_{j-1}, v_{j}\right)>0
$$

for $0 \leq j \leq n$ and $\forall r=1,2,3, \cdots, m$. Here $n \geq 1$ is called length of path P. A single node or a vertex v may also be considered as a path. In this case path is of length
$((0,0,0), \cdots,(0,0,0))$. The consecutive pairs $\left(v_{j-1}, v_{j}\right)$ are called edges of path. We call P a cycle if $v_{0}=v_{n}$ and $n \geq 3$. An $m-P S V N G G=(A, B)$, is said to be connected if every pair of vertices has at least one $m-P S V N$ path between them, otherwise it is disconnected.

Definition 4.7. Let $G_{1}=\left(C_{1}, D_{1}\right)$ and $G_{2}=\left(C_{2}, D_{2}\right)$ be two $m-P S V N G s$ of $G_{1}^{*}=$ $\left(V_{1}, E_{1}\right)$ and $G_{2}^{*}=\left(V_{2}, E_{2}\right)$, respectively. The homomorphism $\chi: V_{1} \rightarrow V_{2}$ is a mapping from V_{1} into V_{2} satisfying following conditions:

$$
p_{r} \circ T_{C_{1}}(\xi) \leq p_{r} \circ T_{C_{2}}(\chi(\xi)), p_{r} \circ I_{C_{1}}(\xi) \geq p_{r} \circ I_{C_{2}}(\chi(\xi)), p_{r} \circ F_{C_{1}}(\xi) \geq p_{r} \circ F_{C_{2}}(\chi(\xi))
$$

$\forall \xi \in V_{1}$ and $\forall r=1,2,3, \cdots, m$.

$$
\begin{array}{r}
p_{r} \circ T_{D_{1}}(\xi, \eta) \leq p_{r} \circ T_{D_{2}}(\chi(\xi), \chi(\eta)) \\
p_{r} \circ I_{D_{1}}(\xi, \eta) \geq p_{r} \circ I_{D_{2}}(\chi(\xi), \chi(\eta)) \\
p_{r} \circ F_{D_{1}}(\xi, \eta) \geq p_{r} \circ F_{D_{2}}(\chi(\xi), \chi(\eta))
\end{array}
$$

$\forall(\xi, \eta) \in E_{1}$ and $\forall r=1,2,3, \cdots, m$. The weak isomorphism $v: V_{1} \rightarrow V_{2}$ is an bijective homomorphism from V_{1} into V_{2} satisfying following conditions:

$$
p_{r} \circ T_{C_{1}}(\xi)=p_{r} \circ T_{C_{2}}(v(\xi)), p_{r} \circ I_{C_{1}}(\xi)=p_{r} \circ I_{C_{2}}(v(\xi)), p_{r} \circ F_{C_{1}}(\xi)=p_{r} \circ F_{C_{2}}(v(\xi))
$$

$\forall \xi \in V_{1}$ and $\forall r=1,2,3, \cdots, m$. The co-weak isomorphism $\kappa: V_{1} \rightarrow V_{2}$ is an bijective homomorphism from V_{1} into V_{2} satisfying following conditions:

$$
\begin{array}{r}
p_{r} \circ T_{D_{1}}(\xi, \eta)=p_{r} \circ T_{D_{2}}(\chi(\xi), \chi(\eta)) \\
p_{r} \circ I_{D_{1}}(\xi, \eta)=p_{r} \circ I_{D_{2}}(\chi(\xi), \chi(\eta)) \\
p_{r} \circ F_{D_{1}}(\xi, \eta)=p_{r} \circ F_{D_{2}}(\chi(\xi), \chi(\eta))
\end{array}
$$

$\forall(\xi, \eta) \in E_{1}$ and $\forall r=1,2,3, \cdots, m$. An isomorphism $\psi: V_{1} \rightarrow V_{2}$ is a bijective homomorphism from V_{1} into V_{2} satisfying following conditions:

$$
p_{r} \circ T_{C_{1}}(\xi)=p_{r} \circ T_{C_{2}}(\psi(\xi)), p_{r} \circ I_{C_{1}}(\xi)=p_{r} \circ I_{C_{2}}(\psi(\xi)), p_{r} \circ F_{C_{1}}(\xi)=p_{r} \circ F_{C_{2}}(\psi(\xi))
$$

$\forall \xi \in V_{1}$ and $\forall r=1,2,3, \cdots, m$.

$$
\begin{array}{r}
p_{r} \circ T_{D_{1}}(\xi, \eta)=p_{r} \circ T_{D_{2}}(\chi(\xi), \chi(\eta)) \\
p_{r} \circ I_{D_{1}}(\xi, \eta)=p_{r} \circ I_{D_{2}}(\chi(\xi), \chi(\eta)) \\
p_{r} \circ F_{D_{1}}(\xi, \eta)=p_{r} \circ F_{D_{2}}(\chi(\xi), \chi(\eta))
\end{array}
$$

$\forall(\xi, \eta) \in E_{1}$ and $\forall r=1,2,3, \cdots, m$.
Remark 4.1. One can see the following.
(1) The weak isomorphism between two $m-P S V N G s$ preserves the orders.
(2) The weak isomorphism between $m-P S V N G s$ is a partial order relation.
(3) The co-weak isomorphism between two $m-P S V N G s$ preserves the sizes.
(4) The co-weak isomorphism between $m-P S V N G s$ is a partial order relation.
(5) The isomorphism between two $m-P S V N G s$ is an equivalence relation.
(6) The isomorphism between two $m-P S V N G s$ preserves the orders and sizes.
(7) The isomorphism between two $m-P S V N G s$ preserves the degrees of their vertices's.

Definition 4.8. Let G be a $m-P S V N G$ of G^{*}, the $m-P S V N-L e n g t h$ of path $Q: v_{1}, v_{2}, \ldots, v_{n}$, which is denoted by $l(Q)$, is defined by

$$
l(Q)=\left(p_{r} \circ l_{T}(Q), p_{r} \circ l_{I}(Q), p_{r} \circ l_{F}\right)
$$

where

$$
p_{r} \circ l_{T}(Q)=\sum_{i=1}^{n-1} \frac{1}{p_{r} \circ T_{B}\left(v_{i}, v_{i+1}\right)}
$$

$$
\begin{aligned}
& p_{r} \circ l_{I}(Q)=\sum_{i=1}^{n-1} \frac{1}{p_{r} \circ I_{B}\left(v_{i}, v_{i+1}\right)} \\
& p_{r} \circ l_{F}(Q)=\sum_{i=1}^{n-1} \frac{1}{p_{r} \circ F_{B}\left(v_{i}, v_{i+1}\right)}
\end{aligned}
$$

The $p_{r} \circ l_{T}(Q), p_{r} \circ l_{I}(Q)$ and $p_{r} \circ l_{F}(Q)$ are called the $m-P S V N-T$-Length, $m-P S V N-I-$ Length and $m-P S V N-F-L e n g t h ~ o f ~ p a t h ~ Q, ~ r e s p e c t i v e l y . ~ T h e ~ m-P S V N-D i s t a n c e ~ b e t w e e n ~$ two vertices α and β in V, which is denoted by $\delta(\alpha, \beta)$, is defined by

$$
\delta(\alpha, \beta)=\left(p_{r} \circ \delta_{T}(\alpha, \beta), p_{r} \circ \delta_{I}(\alpha, \beta), p_{r} \circ \delta_{F}(\alpha, \beta)\right)
$$

where

$$
p_{r} \circ \delta_{T}(\alpha, \beta)=\inf \left(l_{T}(Q)\right), p_{r} \circ \delta_{I}(\alpha, \beta)=\inf \left(l_{I}(Q)\right), p_{r} \circ \delta_{F}(\alpha, \beta)=\inf \left(l_{F}(Q)\right)
$$

where $p_{r} \circ \delta_{T}(\alpha, \beta), p_{r} \circ \delta_{I}(\alpha, \beta)$ and $p_{r} \circ \delta_{F}(\alpha, \beta)$ are called the $m-P S V N-T$-Distance, $m-P S V N-I-D i s t a n c e ~ a n d ~ m-P S V N-F-D i s t a n c e, ~ r e s p e c t i v e l y ~ o f ~ a n y ~ p a t h ~ \alpha-\beta . ~ T h e ~ m-P S V N-~$ Eccentricity of $v_{i} \in V$, which is denoted by $e\left(v_{i}\right)$, is defined by

$$
e\left(v_{i}\right)=\left(p_{r} \circ e_{T}\left(v_{i}\right), p_{r} \circ e_{I}\left(v_{i}\right), p_{r} \circ e_{F}\left(v_{i}\right)\right)
$$

where

$$
\begin{aligned}
p_{r} \circ e_{T}\left(v_{i}\right) & =\sup \left\{p_{r} \circ \delta_{T}\left(v_{i}, v_{j}\right): v_{j} \in V, v_{i} \neq v_{j}\right\} \\
p_{r} \circ e_{I}\left(v_{i}\right) & =\inf \left\{p_{r} \circ \delta_{T}\left(v_{i}, v_{j}\right): v_{j} \in V, v_{i} \neq v_{j}\right\} \\
p_{r} \circ e_{F}\left(v_{i}\right) & =\inf \left\{p_{r} \circ \delta_{T}\left(v_{i}, v_{j}\right): v_{j} \in V, v_{i} \neq v_{j}\right\}
\end{aligned}
$$

where $p_{r} \circ e_{T}\left(v_{i}\right), p_{r} \circ e_{I}\left(v_{i}\right)$ and $p_{r} \circ e_{F}\left(v_{i}\right)$ are called the $m-P S V N-T-E c c e n t r i c i t y, m-P S V N-$ I-Eccentricity and $m-P S V N-F-E c c e n t r i c i t y ~ o f ~ v e r t e x ~ v i, ~ r e s p e c t i v e l y . ~ T h e ~ m-P S V N-~$ Radius of G, which is denoted by $r(G)$, is defined by

$$
r(G)=\left(p_{r} \circ r_{T}(G), p_{r} \circ r_{I}(G), p_{r} \circ r_{F}(G)\right)
$$

where

$$
\begin{aligned}
p_{r} \circ r_{T}(G) & =\inf \left\{p_{r} \circ e_{T}\left(v_{i}\right): v_{i} \in V\right\} \\
p_{r} \circ r_{I}(G) & =\inf \left\{p_{r} \circ e_{I}\left(v_{i}\right): v_{i} \in V\right\} \\
p_{r} \circ r_{F}(G) & =\inf \left\{p_{r} \circ e_{F}\left(v_{i}\right): v_{i} \in V\right\}
\end{aligned}
$$

where $p_{r} \circ r_{T}(G), p_{r} \circ r_{I}(G)$ and $p_{r} \circ r_{F}(G)$ are called the $m-P S V N-T-$ Radius, $m-P S V N-$ I-Radius and $m-P S V N-F-R a d i u s$, respectively. The $m-P S V N-D i a m e t e r ~ o f ~ G, ~ w h i c h ~ i s ~$ denoted by $d(G)$, is defined by

$$
d(G)=\left(p_{r} \circ d_{T}(G), p_{r} \circ d_{I}(G), p_{r} \circ d_{F}(G)\right)
$$

where

$$
\begin{aligned}
p_{r} \circ d_{T}(G) & =\sup \left\{p_{r} \circ e_{T}\left(v_{i}\right): v_{i} \in V\right\} \\
p_{r} \circ d_{I}(G) & =\sup \left\{p_{r} \circ e_{I}\left(v_{i}\right): v_{i} \in V\right\} \\
p_{r} \circ d_{F}(G) & =\sup \left\{p_{r} \circ e_{F}\left(v_{i}\right): v_{i} \in V\right\}
\end{aligned}
$$

where $p_{r} \circ d_{T}(G), p_{r} \circ d_{I}(G)$ and $p_{r} \circ d_{F}(G)$ are called the $m-P S V N-T$-Diameter, $m-P S V N$ -I-Diameter and $m-P S V N-F-D i a m e t e r, ~ r e s p e c t i v e l y . ~$

Definition 4.9. An m-Polar antipodal single valued neutrosophic graph ($m P A S V N G$) $A(G)=(Q, R)$ of a $m-P S V N G G=(A, B)$ is the $m-P S V N G$ in which
(a) $Q=A$ on V. (b) If $p_{r} \circ \delta(p, q)=p_{r} \circ d(G)$, then
(i) If $(p, q) \in E$, then $R=B$ on E.
(ii) If $(p, q) \notin E$, then

$$
\begin{aligned}
p_{r} \circ T_{R}(p, q) & =\inf \left(p_{r} \circ T_{A}(p), p_{r} \circ T_{A}(q)\right) \\
p_{r} \circ I_{R}(p, q) & =\sup \left(p_{r} \circ I_{A}(p), p_{r} \circ I_{A}(q)\right) \\
p_{r} \circ F_{R}(p, q) & =\sup \left(p_{r} \circ F_{A}(p), p_{r} \circ F_{A}(q)\right)
\end{aligned}
$$

Example 4.1. Consider the crisp graph $G^{*}=(V, E)$ of 3-PSVNG $G=(A, B)$, the 3PSVNSs A and B of $V=\{\xi, \eta, \zeta\}$ and $E=\{(\xi, \eta),(\eta, \zeta)(\zeta, \xi)\}$ are defined in Table. 1 .

$p_{1} \circ A$	$p_{1} \circ T_{A}$	$p_{1} \circ I_{A}$	$p_{1} \circ F_{A}$	$p_{1} \circ B$	$p_{1} \circ T_{B}$	$p_{1} \circ I_{B}$	$p_{1} \circ F_{B}$
ξ	$1 / 5$	$1 / 4$	$1 / 3$	(ξ, η)	$1 / 7$	$1 / 2$	$1 / 3$
η	$1 / 7$	$1 / 2$	$1 / 5$	(η, ζ)	$1 / 7$	$1 / 2$	$1 / 5$
ζ	$1 / 4$	$1 / 6$	$1 / 8$	(ζ, ξ)	$1 / 5$	$1 / 4$	$1 / 3$
$p_{2} \circ A$	$p_{2} \circ T_{A}$	$p_{2} \circ I_{A}$	$p_{2} \circ F_{A}$	$p_{2} \circ B$	$p_{2} \circ T_{B}$	$p_{2} \circ I_{B}$	$p_{2} \circ F_{B}$
ξ	$1 / 4$	$1 / 6$	$1 / 2$	(ξ, η)	$1 / 4$	$1 / 5$	$1 / 2$
η	$1 / 3$	$1 / 5$	$1 / 3$	(η, ζ)	$1 / 3$	$1 / 5$	$1 / 3$
ζ	$1 / 2$	$1 / 8$	$1 / 7$	(ζ, ξ)	$1 / 4$	$1 / 6$	$1 / 2$
$p_{3} \circ A$	$p_{3} \circ T_{A}$	$p_{3} \circ I_{A}$	$p_{3} \circ F_{A}$	$p_{3} \circ B$	$p_{3} \circ T_{B}$	$p_{3} \circ I_{B}$	$p_{3} \circ F_{B}$
ξ	$1 / 3$	$1 / 2$	$1 / 6$	(ξ, η)	$1 / 8$	$1 / 2$	$1 / 6$
η	$1 / 8$	$1 / 3$	$1 / 7$	(η, ζ)	$1 / 8$	$1 / 3$	$1 / 3$
ζ	$1 / 6$	$1 / 5$	$1 / 3$	(ζ, ξ)	$1 / 6$	$1 / 2$	$1 / 3$

Table 1. 3-PSVNSs of 3-PSVNG
By calculations 3-PSVNSs of 3-PASVNG, which are defined in Table. 2.

$p_{1} \circ Q$	$p_{1} \circ T_{Q}$	$p_{1} \circ I_{A}$	$p_{1} \circ F_{Q}$	$p_{1} \circ R$	$p_{1} \circ T_{R}$	$p_{1} \circ I_{R}$	$p_{1} \circ F_{R}$
ξ	$1 / 5$	$1 / 4$	$1 / 3$	(ξ, η)	$1 / 7$	$1 / 2$	$1 / 3$
η	$1 / 7$	$1 / 2$	$1 / 5$	(η, ζ)	0	0	0
ζ	$1 / 4$	$1 / 6$	$1 / 8$	(ζ, ξ)	0	0	0
$p_{2} \circ Q$	$p_{2} \circ T_{Q}$	$p_{2} \circ I_{A}$	$p_{2} \circ F_{Q}$	$p_{2} \circ R$	$p_{2} \circ T_{R}$	$p_{2} \circ I_{R}$	$p_{2} \circ F_{R}$
ξ	$1 / 4$	$1 / 6$	$1 / 2$	(ξ, η)	$1 / 4$	$1 / 5$	$1 / 2$
η	$1 / 3$	$1 / 5$	$1 / 3$	(η, ζ)	0	0	0
ζ	$1 / 2$	$1 / 8$	$1 / 7$	(ζ, ξ)	0	0	0
$p_{3} \circ Q$	$p_{3} \circ T_{Q}$	$p_{3} \circ I_{A}$	$p_{3} \circ F_{Q}$	$p_{3} \circ R$	$p_{3} \circ T_{R}$	$p_{3} \circ I_{R}$	$p_{3} \circ F_{R}$
ξ	$1 / 3$	$1 / 2$	$1 / 6$	(ξ, η)	0	0	0
η	$1 / 8$	$1 / 3$	$1 / 7$	(η, ζ)	0	0	0
ζ	$1 / 6$	$1 / 5$	$1 / 3$	(ζ, ξ)	0	0	0

Table 2. 3-PSVNSs of 3-PASVNG
Definition 4.10. An eccentric $m-P S V N G G_{e}=(Q, R)$ of a $m-P S V N G G=(A, B)$, which is the $m-P S V N G$, is defined by
(a) $Q=A$ on V. (b) If

$$
\begin{aligned}
p_{r} \circ \delta_{T}(\alpha, \beta) & =\inf \left(p_{r} \circ e_{T}(\alpha), p_{r} \circ e_{T}(\beta)\right) \\
p_{r} \circ \delta_{I}(\alpha, \beta) & =\sup \left(p_{r} \circ e_{I}(\alpha), p_{r} \circ e_{I}(\beta)\right)
\end{aligned}
$$

$$
p_{r} \circ \delta_{F}(\alpha, \beta)=\sup \left(p_{r} \circ e_{F}(\alpha), p_{r} \circ e_{F}(\beta)\right)
$$

then
(i) If $(\alpha, \beta) \in E$, then $R=B$ on E.
(ii) If $(\alpha, \beta) \notin E$, then

$$
\begin{aligned}
p_{r} \circ T_{Q}(\alpha, \beta) & =\inf \left(p_{r} \circ T_{A}(\alpha), p_{r} \circ T_{A}(\beta)\right) \\
p_{r} \circ I_{Q}(\alpha, \beta) & =\sup \left(p_{r} \circ I_{A}(\alpha), p_{r} \circ I_{A}(\beta)\right) \\
p_{r} \circ F_{Q}(\alpha, \beta) & =\sup \left(p_{r} \circ F_{A}(\alpha), p_{r} \circ F_{A}(\beta)\right)
\end{aligned}
$$

(c) Otherwise $R=O=(0, \cdots, 0)$.

Example 4.2. Consider the 3-PSVNG $G=(A, B)$ of $G^{*}=(V, E)$, which is given in Example. 4.1. By calculations 3-PSVNSs of eccentrc 3-PSVNG are given in Table. 3.

$p_{1} \circ Q$	$p_{1} \circ T_{Q}$	$p_{1} \circ I_{A}$	$p_{1} \circ F_{Q}$	$p_{1} \circ R$	$p_{1} \circ T_{R}$	$p_{1} \circ I_{R}$	$p_{1} \circ F_{R}$
ξ	$1 / 5$	$1 / 4$	$1 / 3$	(ξ, η)	$1 / 7$	$1 / 2$	$1 / 3$
η	$1 / 7$	$1 / 2$	$1 / 5$	(η, ζ)	$1 / 7$	$1 / 2$	0
ζ	$1 / 4$	$1 / 6$	$1 / 8$	(ζ, ξ)	0	0	$1 / 3$
$p_{2} \circ Q$	$p_{2} \circ T_{Q}$	$p_{2} \circ I_{A}$	$p_{2} \circ F_{Q}$	$p_{2} \circ R$	$p_{2} \circ T_{R}$	$p_{2} \circ I_{R}$	$p_{2} \circ F_{R}$
ξ	$1 / 4$	$1 / 6$	$1 / 2$	(ξ, η)	0	0	0
η	$1 / 3$	$1 / 5$	$1 / 3$	(η, ζ)	0	0	$1 / 3$
ζ	$1 / 2$	$1 / 8$	$1 / 7$	(ζ, ξ)	0	0	0
$p_{3} \circ Q$	$p_{3} \circ T_{Q}$	$p_{3} \circ I_{A}$	$p_{3} \circ F_{Q}$	$p_{3} \circ R$	$p_{3} \circ T_{R}$	$p_{3} \circ I_{R}$	$p_{3} \circ F_{R}$
ξ	$1 / 3$	$1 / 2$	$1 / 6$	(ξ, η)	$1 / 8$	$1 / 2$	0
η	$1 / 8$	$1 / 3$	$1 / 7$	(η, ζ)	$1 / 8$	0	$1 / 3$
ζ	$1 / 6$	$1 / 5$	$1 / 3$	(ζ, ξ)	0	$1 / 2$	$1 / 3$

TABLE 3. 3-PSVNSs of eccentric 3-PSVNG
Proposition 4.1. The $m-P A S V N G$ of the $m-P S V N G$ is the generalization of m-Polar antipodal bipolar fuzzy graph and m-Polar antipodal intuitionistic bipolar fuzzy graph.

Proposition 4.2. The eccentric $m-P S V N G$ is the generalization of m-Polar eccentric bipolar fuzzy graph and eccentric m-Polar intuitionistic bipolar fuzzy graph.

Proposition 4.3. The $A(G)$ is always a m-PSVN subgraph of G_{e}. For a complete $m-P S V N G G=(C, D), A(G)$ is same as G_{e} and they are $m-P S V N$ subgraphs of G.

Definition 4.11. The connected $m-P S V N G G=(X, Y)$ is distance regular $m-P S V N G$, whenever

$$
p_{r} \circ \delta(x, y)=k_{r}=\left(k_{1 r}, k_{2 r}, k_{3 r}\right)
$$

$\forall x, y \in V$.
Theorem 4.1. For the complete $m-P S V N G G=(A, B)$ where A be constant $m-P S V N S$ then G and $A(G)$ are isomorphic.

Proof. Since A is constant function, that is $A(x)=c_{r}=\left(c_{1 r}, c_{2 r}, c_{3 r}\right)$ where $c_{1 r}, c_{2 r}$, and $c_{3 r}$ are constants, hence $p_{r} \circ \delta(p, q)=d_{r}=\left(d_{1 r}, d_{2 r}, d_{3 r}\right) \forall p, q \in V$, therefore eccentricity $p_{r} \circ e(\alpha)=d_{r}=\left(d_{1 r}, d_{2 r}, d_{3 r}\right) \forall \alpha \in V$. Hence $p_{r} \circ d(G)=d_{r}=\left(d_{1 r}, d_{2 r}, d_{3 r}\right)=\delta(\alpha, \beta)$ $\forall \alpha \in V$. Thus adjacency between every two vertices in $A(G)$ such that (i) $Q=A$ on V. (ii) Since α and β are neighbors in G, hence $R=B$ on E. Therefore G is isomorphic to $A(G)$.

Theorem 4.2. If $G_{1}=\left(A_{1}, B_{1}\right)$ and $G_{2}=\left(A_{2}, B_{2}\right)$ are isomorphic $m-P S V N G s$, then so $A\left(G_{1}\right)$ and $A\left(G_{2}\right)$.

Proof. By hypothesis there is an isomorphism τ between them preserves the weights of edges. Hence if vertex α has maximum T-eccentricity, minimum I-eccentricity, minimum F-eccentricity in G_{1}, then $\tau(\alpha)$ has maximum T-eccentricity, minimum I-eccentricity and minimum F-eccentricity in G_{2}, so G_{1} and G_{2} will have same diameter. If distance between α and β is $k_{r}=\left(k_{1 r}, k_{2 r}, k_{3 r}\right)$ in G_{1}, then $p_{r} \circ \tau(\alpha)$ and $p_{r} \circ \tau(\beta)$ will also have their distance as k_{r} in G_{2}, since τ is a bijective function between $A\left(G_{1}\right)$ and $A\left(G_{2}\right)$ with $p_{r} \circ Q_{1}(\alpha)=$ $p_{r} \circ A_{1}(\alpha)=p_{r} \circ A_{2}(\alpha)=p_{r} \circ Q_{2}(\alpha) \forall \alpha \in V_{1}$ and (i) If $(\alpha, \beta) \in E_{1}$, then $p_{r} \circ R_{1}=p_{r} \circ B_{1}$. (ii) If $(\alpha, \beta) \notin E_{1}$, then

$$
\begin{aligned}
& p_{r} \circ T_{R_{1}}(\alpha, \beta)=\inf \left(p_{r} \circ T_{A_{1}}(\alpha), p_{r} \circ T_{A_{1}}(\beta)\right) \\
& p_{r} \circ I_{R_{1}}(\alpha, \beta)=\sup \left(p_{r} \circ I_{A_{1}}(\alpha), p_{r} \circ I_{A_{1}}(\beta)\right) \\
& p_{r} \circ F_{R_{1}}(\alpha, \beta)=\sup \left(p_{r} \circ F_{A_{1}}(\alpha), p_{r} \circ F_{A_{1}}(\beta)\right)
\end{aligned}
$$

Since $\tau: G_{1} \rightarrow G_{2}$ is an isomorphism, so if $(\alpha, \beta) \in E_{1}$ this implies $p_{r} \circ R_{1}(\alpha, \beta)=$ $p_{r} \circ R_{2}(\tau(\alpha), \tau(\beta))$, if $(\alpha, \beta) \notin E_{1}$, then

$$
\begin{aligned}
& p_{r} \circ T_{R_{1}}(\alpha, \beta)=\inf \left(p_{r} \circ \tau(\alpha), p_{r} \circ \tau(\beta)\right) \\
& p_{r} \circ I_{R_{1}}(\alpha, \beta)=\sup \left(p_{r} \circ \tau(\alpha), p_{r} \circ \tau(\beta)\right) \\
& p_{r} \circ F_{R_{1}}(\alpha, \beta)=\sup \left(p_{r} \circ \tau(\alpha), p_{r} \circ \tau(\beta)\right)
\end{aligned}
$$

Therefore we conclude that $p_{r} \circ R_{1}(\alpha, \beta)=p_{r} \circ R_{2}(\tau(\alpha), \tau(\beta))$.
Theorem 4.3. Let $G_{1}=\left(A_{1}, B_{1}\right)$ and $G_{2}=\left(A_{2}, B_{2}\right)$ be two connected $m-P S V N G s$, If G_{1} and G_{2} are co-weak isomorphic, then $A\left(G_{1}\right)$ is homomorphic to $A\left(G_{2}\right)$.

Theorem 4.4. Let $G_{1}=\left(A_{1}, B_{1}\right)$ and $G_{2}=\left(A_{2}, B_{2}\right)$ be two complete m-PSVNGs, if G_{1} is co-weak isomorphic to G_{2}, then $A\left(G_{1}\right)$ is co-weak isomorphic to $A\left(G_{2}\right)$.

Definition 4.12. A vertex $v_{i} \in V$ is said to be a central vertex if $p_{r} \circ r(G)=p_{r} \circ e\left(v_{i}\right)$. The set of all central vertices of a m-PSVNG G is $C(G), G$ is said to be self centered $m-P S V N G$ whenever $p_{r} \circ r(G)=p_{r} \circ e\left(v_{i}\right) \forall v_{i} \in V$.

Example 4.3. The 3-PSVNG $G=(A, B)$ of G^{*}, which is given in Example 3.1 is a self centered 3-PSVNG.

Remark 4.2. Every complete $m-P S V N G G=(A, B)$ is a self centered $m-P S V N G$.
Remark 4.3. In general converse part does not hold of Remark 4.2.
Example 4.4. Consider a crisp graph $G^{*}=(V, E)$, of 3-PSVNG $G=(A, B)$, the 3PSVNSs A and B of V and E, which are defined in Table. 4. Here G is self centered 3-PSVNG, but G is not complete 3-PSVNG.

$p_{1} \circ A$	$p_{1} \circ T_{A}$	$p_{1} \circ I_{A}$	$p_{1} \circ F_{A}$	$p_{1} \circ B$	$p_{1} \circ T_{B}$	$p_{1} \circ I_{B}$	$p_{1} \circ F_{B}$
α	$1 / 5$	$1 / 3$	$1 / 3$	$(\alpha, \beta))$	$1 / 6$	$1 / 3$	$1 / 2$
β	$1 / 5$	$1 / 5$	$1 / 5$	(β, γ)	$1 / 5$	$1 / 3$	$1 / 2$
γ	$1 / 3$	$1 / 6$	$1 / 6$	(γ, ξ)	$1 / 6$	$1 / 3$	$1 / 2$
ξ	$1 / 4$	$1 / 4$	$1 / 4$	(ξ, α)	$1 / 5$	$1 / 3$	$1 / 2$
$p_{2} \circ A$	$p_{2} \circ T_{A}$	$p_{2} \circ I_{A}$	$p_{2} \circ F_{A}$	$p_{2} \circ B$	$p_{2} \circ T_{B}$	$p_{2} \circ I_{B}$	$p_{2} \circ F_{B}$
α	$1 / 4$	$1 / 5$	$1 / 6$	(α, β)	$1 / 4$	$1 / 4$	$1 / 6$
β	$1 / 3$	$1 / 4$	$1 / 7$	(β, γ)	$1 / 3$	$1 / 3$	$1 / 3$
γ	$1 / 2$	$1 / 3$	$1 / 3$	(γ, ξ)	$1 / 6$	$1 / 2$	$1 / 2$
ξ	$1 / 6$	$1 / 2$	$1 / 2$	(ξ, α)	$1 / 6$	$1 / 2$	$1 / 2$
$p_{3} \circ A$	$p_{3} \circ T_{A}$	$p_{3} \circ I_{A}$	$p_{3} \circ F_{A}$	$p_{3} \circ B$	$p_{3} \circ T_{B}$	$p_{3} \circ I_{B}$	$p_{3} \circ F_{B}$
α	$1 / 2$	$1 / 7$	$1 / 8$	(α, β)	$1 / 6$	$1 / 2$	$1 / 7$
β	$1 / 6$	$1 / 2$	$1 / 7$	(β, γ)	$1 / 6$	$1 / 2$	$1 / 4$
γ	$1 / 3$	$1 / 9$	$1 / 4$	(γ, ξ)	$1 / 5$	$1 / 7$	$1 / 3$
ξ	$1 / 5$	$1 / 7$	$1 / 3$	(ξ, α)	$1 / 5$	$1 / 7$	$1 / 3$

TABLE 4. 3-PSVNSs of self centered 3-PSVNG
Remark 4.4. The $m-P S V N G G=(A, B)$ is self centered $m-P S V N G$ if and only if $p_{r} \circ d(G)=p_{r} \circ r(G)$.

Theorem 4.5. Let $H=\left(A^{\prime}, B^{\prime}\right)$ be self centered $m-P S V N G$, then there exists a $m-P S V N G$ $G=(A, B)$ for which $<C(G)>$ and H are isomorphic. Further $2\left(p_{r} \circ r(G)\right)=p_{r} \circ d(G)$.

Proof. Let $p_{r} \circ d_{T}(H)=l_{r}, p_{r} \circ d_{I}(H)=m_{r}$, and $p_{r} \circ d_{F}(H)=n_{r}$ next take two vertices $v_{i}, v_{j} \in V$ with $p_{r} \circ T_{A}\left(v_{i}\right)=p_{r} \circ T_{A}\left(v_{j}\right)=\frac{1}{l_{r}}, p_{r} \circ I_{A}\left(v_{i}\right)=p_{r} \circ I_{A}\left(v_{j}\right)=\frac{1}{2 m_{r}}, p_{r} \circ$ $F_{A}\left(v_{i}\right)=p_{r} \circ F_{A}\left(v_{j}\right)=\frac{1}{2 n_{r}}$ and all the vertices of H are neighbors to both v_{i} and v_{j} with $p_{r} \circ T_{B}\left(v_{i}, v_{k}\right)=p_{r} \circ T_{B}\left(v_{j}, v_{k}\right)=\frac{1}{l_{r}}, p_{r} \circ I_{B}\left(v_{i}, v_{k}\right)=p_{r} \circ I_{B}\left(v_{j}, v_{k}\right)=\frac{1}{2 m_{r}}, p_{r} \circ F_{B}\left(v_{i}, v_{k}\right)=$ $p_{r} \circ F_{B}\left(v_{j}, v_{k}\right)=\frac{1}{2 n_{r}} \forall v_{k} \in V^{\prime}$. Next put $p_{r} \circ T_{A}=p_{r} \circ T_{A^{\prime}}, p_{r} \circ I_{A}=p_{r} \circ I_{A^{\prime}}$ and $p_{r} \circ F_{A}=$ $p_{r} \circ F_{A^{\prime}}$ for all vertices's in H and $p_{r} \circ T_{B}=p_{r} \circ T_{B^{\prime}}, p_{r} \circ I_{B}=p_{r} \circ I_{B^{\prime}}$ and $p_{r} \circ F_{B}=p_{r} \circ F_{B^{\prime}}$ $\forall \alpha \beta \in E(H)$. If possible $p_{r} \circ T_{A}\left(v_{i}\right)>p_{r} \circ T_{A}\left(v_{k}\right)$ for at least one vertex $v_{k} \in V^{\prime}$, then $\frac{1}{l_{r}}>p_{r} \circ T_{A}\left(v_{k}\right)$ that is $l_{r}<\frac{1}{p_{r} \circ T_{A}\left(v_{k}\right)} \leq \frac{1}{p_{r} O T_{B}\left(v_{k}, v_{l}\right)}$ this holds $\forall v_{l} \in V^{\prime}$ because H is m-PSVNG, thus $\frac{1}{p_{r} \circ T_{B}\left(v_{k}, v_{l}\right)}>l_{r} \forall v_{k} \in V^{\prime}$ which contradict to fact $p_{r} \circ d_{T}(H)=l_{r}$, therefore $p_{r} \circ T_{A}\left(v_{i}\right) \leq T_{A}\left(v_{k}\right) \forall v_{k} \in V^{\prime}$ and $p_{r} \circ T_{B}\left(v_{i}, v_{k}\right) \leq \inf \left(p_{r} \circ T_{A i}, p_{r} \circ T_{A k}\right)=\frac{1}{l_{r}}$, similarly $p_{r} \circ T_{B}\left(v_{j}, v_{k}\right) \leq \inf \left(p_{r} \circ T_{A j}, p_{r} \circ T_{A k}\right)=\frac{1}{l_{r}} \forall v_{k} \in V^{\prime}$, note that $p_{r} \circ I_{A}\left(v_{i}\right) \geq$ $p_{r} \circ I_{A}\left(v_{k}\right)$ and $p_{r} \circ I_{A}\left(v_{j}\right) \geq p_{r} \circ I_{A}\left(v_{k}\right) \forall v_{k} \in V^{\prime}$ since $p_{r} \circ d_{I}(H)=m_{r}$, therefore $p_{r} \circ I_{B}\left(v_{i}, v_{k}\right) \geq \sup \left(p_{r} \circ I_{A i}, p_{r} \circ I_{A k}\right)=\frac{1}{2 m_{r}}$, similarly $p_{r} \circ I_{B}\left(v_{j}, v_{k}\right) \geq \sup \left(p_{r} \circ I_{A j}, p_{r} \circ\right.$ $\left.I_{A k}\right)=\frac{1}{2 m_{r}} \forall v_{k} \in V^{\prime}$ similarly $p_{r} \circ F_{A}\left(v_{i}\right) \geq p_{r} \circ F_{A}\left(v_{k}\right)$ and $p_{r} \circ F_{A}\left(v_{j}\right) \geq p_{r} \circ F_{A}\left(v_{k}\right)$ $\forall v_{k} \in V^{\prime}$, since $p_{r} \circ d_{F}(H)=n_{r}$, therefore $p_{r} \circ F_{B}\left(v_{i}, v_{k}\right) \leq \sup \left(p_{r} \circ F_{A i}, p_{r} \circ F_{A k}\right)=\frac{1}{2 n_{r}}$, similarly $p_{r} \circ F_{B}\left(v_{j}, v_{k}\right) \geq \sup \left(p_{r} \circ F_{A j}, p_{r} \circ F_{A k}\right)=\frac{1}{2 n_{r}} \forall v_{k} \in V^{\prime}$. Hence G is m-PSVNG. Also $p_{r} \circ e_{T}\left(v_{k}\right)=l_{r} \forall v_{k} \in V^{\prime}$ and $p_{r} \circ e_{T}\left(v_{i}\right)=p_{r} \circ e_{T}\left(v_{j}\right)=\frac{1}{p_{r} \circ T_{B}\left(v_{i}, v_{k}\right)}+\frac{1}{p_{r} \circ T_{B}\left(v_{i}, v_{k}\right)}=2 l_{r}$, $p_{r} \circ r_{T}(G)=l_{r}, p_{r} \circ d_{T}(G)=2 l_{r}$. Next $p_{r} \circ e_{I}\left(v_{k}\right)=m_{r} \forall v_{k} \in V^{\prime}$ and $p_{r} \circ e_{I}\left(v_{i}\right)=$ $p_{r} \circ e_{I}\left(v_{j}\right)=\frac{1}{p_{r} \circ I_{B}\left(v_{l}, v_{k}\right)}=2 m_{r}, p_{r} \circ r_{I}(G)=m_{r}, p_{r} \circ d_{I}(G)=2 m_{r}$. Similarly $p_{r} \circ e_{F}\left(v_{k}\right)=n_{r}$ $\forall v_{k} \in V^{\prime}$ and $p_{r} \circ e_{F}\left(v_{i}\right)=p_{r} \circ e_{F}\left(v_{j}\right)=\frac{1}{p_{r} \circ F_{B}\left(v_{l}, v_{k}\right)}=2 n_{r}, p_{r} \circ r_{F}(G)=n_{r}, p_{r} \circ d_{F}(G)=$ $2 n_{r}$.

Definition 4.13. The status of vertex ξ, which is denoted by $S(\xi)$, is defined by

$$
S(\xi)=\left(p_{r} \circ S_{T}(\xi), p_{r} \circ S_{I}(\xi), p_{r} \circ S_{F}(\xi)\right)
$$

where
$p_{r} \circ S_{T}(\xi)=\sum_{\eta \in V} p_{r} \circ \delta_{T}(\xi, \eta), p_{r} \circ S_{I}(\xi)=\sum_{\eta \in V} p_{r} \circ \delta_{I}(\xi, \eta), p_{r} \circ S_{F}(\xi)=\sum_{\eta \in V} p_{r} \circ \delta_{F}(\xi, \eta)$ where $p_{r} \circ S_{T}(\xi), p_{r} \circ S_{I}(\xi)$ and $p_{r} \circ S_{F}(\xi)$ are called $m-P S V N-T$-status, $m-P S V N-I$-status and $m-P S V N-F$-status of the vertex ξ, respectively. The connected $m-P S V N G$ is called self median $m-P S V N G$, if every vertex has the same status.
Remark 4.5. Let $G=(C, D)$ be a connected $m-P S V N G$ of G^{*}, which is an even cycle, then G is self median $m-P S V N G$, if alternative edges have same truth, indeterminacy and falsity membership values.
Example 4.5. The 3-PSVNG which is given in Example 4.4 is also self median 3-PSVNG.

5. Conclusion

In this paper, we discussed the special classes of SVNGs, antipodal SVNGs, eccentric SVNGs, self centered SVNGs and self-median SVNGs of the given SVNGs. We also investigated isomorphism properties on antipodal SVNGs. Next, we generalize into the m-Polar single valued neutrosophic graph which is the generalization of m-Polar fuzzy, m-Polar intuitionistic fuzzy, m-Polar bipolar fuzzy, m-Polar bipolar intuitionistic fuzzy graphs. The m-PSVNGs gives more flexibility than BSVNGs. The m-PSVNGs have many applications in path problems, networks and computer science. The concept of m-Polar antipodal SVNG, eccentric $m-$ PSVNG, self centered m-PSVNG and self median $m-$ PSVNG of the given m-PSVNG introduced here. The weak isomorphism, co weak isomorphism and isomorphism properties of antipodal $m-$ PSVNG, eccentric $m-$ PSVNG and self centered $m-$ PSVNG discussed in this article.

References

[1] Broumi, S., Talea, M., Bakali, A., Smarandache, F., Vladareanu, L., (2016), Single valued neutrosophic graphs, Journal of New Theory, Article, pp. 86-101.
[2] Broumi, S., Talea, M., Bakali, A., Smarandache, F., (2016), Isolated Single Valued Neutrosophic Graphs, Neutrosophic Sets and Systems, 11(1), pp. 74-78.
[3] Broumi, S., Talea, M., Bakali, A., Smarandache, F., Vladareanu, L., (2016), Computation of shortest path problem in a network with SV-Trapezoidal neutrosophic numbers, proceedings of the 2016 International Conference on Advanced Mechatronic Systems, Melbourne, Australia, pp. 417-422.
[4] Hassan, A. and Malik, M. A., (2020), The classes of Bipolar single valued neutrosophic graphs, TWMS J. App. Eng. Math., 10 (3), pp. 547-567.
[5] Hassan, A. and Malik, M. A., (2018), Generalized neutrosophic hypergraphs, TWMS J. App. Eng. Math., 8 (2), pp. 341-352.
[6] Hassan. A. and Malik, M. A., (2020), Generalized bipolar neutrosophic hypergraphs, TWMS J. App. Eng. Math., 10 (4), pp. 827-845.
[7] S. Nasir, (2016), Some Studies in Neutrosophic Graphs, Neutrosophic Sets and Systems, 12 (1), pp. 54-64.
[8] Broumi, S., Talea, M., Bakali, A., Smarandache, F., (2016), Applying Dijkstra algorithm for solving neutrosophic shortest path problem, Proceedings of the 2016 International Conference on Advanced Mechatronic Systems, Melbourne, Australia, pp.412-416.
[9] Broumi, S., Talea, M., Bakali, A., Smarandache, F. and Ali, M., (2016), Shortest path problem under bipolar neutrosphic setting, Applied Mechanics and Materials, 859 (1), pp. 59-66.
[10] Wang, H., Smarandache, F., Zhang, Y. and Sunderraman, R., (2010), Single valued neutrosophic Sets, Multisspace and Multistructure, (4), pp. 410-413.
[11] Gani, A. N. and Malarvizhi, J., (2014), On antipodal fuzzy graph, Applied Mathematical Sciences, 4 (43), pp. 2145-2155.
[12] Karunambigai, M. G. and Kalaivani, O. K., (2011), Self centered intuitionistic fuzzy graphs, World Applied Science Journal, 14 (12), pp. 1928-1936, .

Ali Hassan for the photography and short autobiography, see TWMS J. App. and Eng. Math. V.8, N.1a, 2018.

Muhammad Aslam Malik for the photography and short autobiography, see TWMS J. App. and Eng. Math. V.8, N.1a, 2018.

[^0]: ${ }^{1}$ Department of Mathematics, University of Karachi, University road, Karachi, Pakistan. e-mail: alihassan.iiui.math@gmail.com; ORCID: https://orcid.org/0000-0003-1648-337X.
 ${ }^{2}$ Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Lahore, Pakistan.
 e-mail: malikpu@yahoo.com; ORCID: https://orcid.org/0000-0003-4434-7893.
 § Manuscript received: December 16, 2016; accepted: March 17,2017. TWMS Journal of Applied and Engineering Mathematics, Vol.11, No. 3 © Işık University, Department of Mathematics, 2021; all rights reserved.

