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Abstract: The interval neutrosophic set (INS) can make it easier to articulate incomplete,
indeterminate, and inconsistent information, and the Schweizer-Sklar (Sh-Sk) t-norm (tm) and t-
conorm (tcm) can make the information aggregation process more flexible due to a variable
parameter. To take full advantage of INS and Sh-Sk operations, in this article, we expanded the Sh-
Sk and to IN numbers (INNs) in which the variable parameter takes values from [«-,0), develop

the Sh-Sk operational laws for INNs and discussed its desirable properties. After that, based on
these newly developed operational laws, two types of generalized prioritized aggregation operators
are established, the generalized IN Sh-Sk prioritized weighted averaging (INSh-SkPWA) operator
and the generalized IN Sh-Sk prioritized weighted geometric (INSh-SKPWG) operator.
Additionally, we swot a number of valuable characteristics of these intended aggregation operators
(AGOs) and created two novel decision-making models to match with multiple-attribute decision-
making (MADM) problems under IN information established on INSh-SkPWA and INSh-SkKPRWG
operators. Finally, an expressive example regarding evaluating the technological innovation
capability for the high-tech enterprises is specified to confirm the efficacy of the intended models.

Keywords: interval neutrosophic sets; Schweizer-Sklar operations; prioritized aggregation
operator; decision making

1. Introduction

The most important utility of multiple-attribute decision-making (MADM) problems is to go for
the preeminent alternative from the set of finite alternatives as stated to the partiality values specified
by decision makers (DMs) with admiration to the attributes. However, despite the complication of
the decision situation, it is hard for DMs to convey the partiality values by a particular real number
in realistic problems. To agree with such circumstances, an intuitionistic fuzzy set (IFS) initiated by
Atanassov [1] is one of the most promising simplifications of the fuzzy set (FS) initiated by Zadeh [2]
to articulate unsure and inaccurate information perfectly [3-5]. Yet, in several circumstances, only a
positive-membership degree (TMD) and negative-membership degree (FMD) cannot depict the
incompatible information precisely. To agree with the corresponding circumstances, Smarandache
[6] created a neutrosophic set (NS) which depicts the vague, inaccurate, and incompatible
information by TMD, neutral-membership degree (IMD), and FMD. The values of the said functions

are taken independently and are standard or nonstandard subsets of :|0’ ,l{ . As the NS consists of

the IMD, it can explain the vague information much better than FS and IFS, and in addition, it is more
reliable when it comes to individual expected opinions and perceptions. However, NS is difficult to

Symmetry 2019, 11, 1187; d0i:10.3390/sym11101187 www.mdpi.com/journal/symmetry


mailto:lazim_m@umt.edu.my

Symmetry 2019, 11, 1187 2 0f 32

exploit in factual problems due to the included nonstandard subsets of }0’,1*[. As a result, to

employ NS effortlessly in factual problems, Wang et al. [7,8] initiated the conceptions of single-valued
NS and interval neutrosophic set (INS), which are subclasses of NS.

In factual decision making, we require aggregation operators (AGOs) to incorporate the
specified information. In a neutrosophic environment, a lot of researchers have anticipated a number
of AGOs. For example, the operational laws of single-valued neutrosophic numbers (SVNNs) was
initially anticipated by Ye [9] and established the SVN weighted averaging (SVNWA) operator and
SVN weighted geometric (SVNWG) operator. Afterwards, Peng et al. [10] located various drawbacks
in the operational laws presented by Ye [9] and established enhanced operational rules for SVNNs
and anticipated various SVN ordered weighted averages and SVN ordered weighted geometric
operators. Ye [11] further presented a number of SVN hybrid averaging (SVNHA) and SVN hybrid
geometric (ACNHG) operators and used these AGOs to solve MADM problems. Zhang et al. [12]
initiated operational laws for IN numbers and established some IN weighted averaging and IN
weighted geometric AGOs and applied these AGOs to solve MADM problems. Ye [13] initiated some
IN ordered weighted averaging operators and a possibility ranking method and initiated an
approach established based on these AGOs and a possibility ranking method to solve a MADM
problem under an IN environment. Sun et al. [14] studied some Choquet integral AGOs for INNs.
Garg and Nancy [15] initiated a nonlinear programming model established on TOPSIS to solve MAM
problems. Wei et al. [16] initiated several generalized IN Bonferroni mean operators and applied
them in the evaluation of high-tech technology enterprises. Tan et al. [17] established various
exponential AGOs and specified their application in typhoon disaster evaluation. Wang et al. [18]
established a MADM method with IN probability established based on regret theory. Khan et al. [19]
initiated the concept of IN power Bonferroni mean operators and applied these to solve MADM
problems under IN information. Zhou et al. [20] established several Frank IN weighted and geometric
averaging operators. Rani and Garg [21] discovered various drawbacks in division and subtraction
operations of INS and established modified division and subtraction operations for INS. Liu et al.
[22] presented a MAGDM established on IN power Hamy mean operators. Yang et al. [23] initiated
various new similarities and entropies for INS. Meng et al. [24] presented the concept of IN preference
and its application in the selection of virtual enterprise partners. Kakati et al. [25] presented various
IN hesitant Choquet integral AGOs established on Einstein operational laws and applied them to
MADM. Liu et al. [26] presented a number of generalized Hamacher AGOs for NS and applied them
to MAGDM. Liu et al. [27] introduced the generalized IN power averaging (GINPA) operator by
combining power AGOs with INS to gain the full advantage of power AGOs under an IN
environment. Yang et al. [28] established various IN linguistic power AGOs based on Einstein’s
operational laws.

All the above-presented AGOs are recognized on the anticipation that the input arguments to
be aggregated are independent. These managing AGOs have not measured the condition where the
attributes have a priority relationship between them. To resolve this difficulty, Yager [29] initiated
the concept of PA operator. Wei et al. [30] presented the concept of generalized PA operators. These
AGOs were further enlarged by several researchers, such as Wu et al. [31], who enlarged PA
operators to the SVN environment by anticipating the notions of SVN prioritized WA (SVNPWA)
and SVN prioritized WG (SVNPWG) operators and used them on MADM problems with SVN
information. Additionally, Liu et al. [32] anticipated a number of prioritized ordered WA/geometric
operators to agree with IN information. Ji et al. [33] fused PA operators with BM operators and
presented a number of SVN Frank prioritized BM AGOs by exploiting Frank operations. Recently,
Wei et al. [34] put forward a number of PA operators established on Dombi TN and TCN and used
them on MADM problems with SVN information. Sahin [35] anticipated some generalized PA
operators for normal NS and applied these aggregation operators to MADM. Liu and You [36]
studied some IN Muirhead mean operators and applied them to solve MADM problems with IN
information. Sarkar et al. [37] developed an optimization technique for a national income
determination model with stability analysis of differential equations in discrete and continuous
processes under uncertain environment.
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From the mentioned AGOs, the majority of these AGOs for NS or INS are established on
algebraic, Hamacher, Frank, and Dombi operational rules, which are particular cases of Archimedean
tn (Atn) and tcn (Atcn). Atn and Aten are definitely the expansions of numerous TNs and TCNs,
which have a number of particular cases which are preferrable for articulating the union and
intersection of SVNS [38]. Sh-Sk operations [39] are the particular cases from Atn and Atcn, and they
are with a changeable parameter, so they are additionally supple and better than the former
operations. Still, the majority of research concerning Sh—-Sk mostly determined the elementary theory
and types of Sh-Sk TN (Sh-Sktn) and TCN (Sh-Sktcn) [40, 41]. Recently, Liu et al. [42] and Zhang [43]
merged Sh-Sk operations with interval-valued IFS (IVIFS) and IFS and anticipated power
WA/geometric AGOs and weighted power WA/geometric AGOs for IVIFSs and IFSs, respectively.
Wang and Liu [44] anticipated a Maclaurin symmetric mean operator for IFS established on Sh-Sk
operational laws. Liu et al. [45] further presented Sh-Sk operational laws for SVNS and presented
some Sh-Sk prioritized AGOs and applied these AGOs to solve MADM problems. Later on, Zhang
et al. [46] anticipated some Muirhead mean operators for SVNS established on Sh-Sk operational laws
and applied them to MADM problems. Nagarajan et al. [47] presented some Sh-Sk operational laws
for INNs by taking the values of the variable parameter from (0,+]. They also anticipated some

weighted averaging and geometric AOs based on these Sh-Sk operational laws for INNs. In recent
years, INSs have gained much attention from the researchers and a great number of achievement
have been made, such as VIKOR [48-50], cross entropy [51], MABAC, EDAS [52], out ranking
approach [53], distance and similarity measures [54], TOPSIS [55].

2. Literature Review

In this section, the literature discussing IN MADM aggregation operators is reviewed. It has
been noticed that research of IN MADM aggregation operators has been rapidly published since 2013.
Table 1 provides the recent literature of IN MADM based on different types of aggregation operators.

Table 1. Multiple-attribute decision-making (MADM) methods based on different aggregation

operators.
Author Interval Neutrosophic MADM Methods Based on Different
Aggregation Operators
Zhang et al. [12] (2014) IN weighted averaging and geometric operators
Wei et al [16] (2019) Generalized Bonferroni mean Operators
Khan et al. [19] (2018) Dombi Power Bonferroni Mean operators
Liu et al. [22] Power Hamy mean operator
Liuand Tang [27] Power generalized aggregation operators
Liu and Wang [32] Prioritized OWA aggregation operators
Liu and You [36] Muirhead mean operator
Huang et al. [49] and Hu et al.
(50] (2g01 7) VIKOR methods
Tain et al. [51] (2016) Cross entropy
Peng and Dia [52] (2017) MABAC and EDAS methods
Zhang et al. [53] (2016) An outranking approach
Ye and Du [54] (2019) Similarity Measures

It can be seen that no research attempted to merge Sh-Sk operational laws and generalized
prioritized aggregation operators to deal with IN information. Therefore, we suggest that:

(1) INNSs are superior in depicting tentative information by identifying the interval TMD, interval
IMD, and interval FMD than FSs and IFSs in dealing with MADM problems.

(2) The Sh-Sk operations are too flexible and better than the former operations by a variable
parameter;
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(38) Conveniently, several MADM problems exist in which the attributes have a priority relationship,
and a number of existing AGOs can moderate these circumstances only when the attributes take
the form of real numbers. So far, there are no such AGOs to handle MADM problems under IN
information established on Sh-Sktn and Sh-Sktcn. In response to this limitation, we merged the
ordinary generalized PA operator with Sh-Sk operations to handle MADM problems with the
IN information.

Therefore, from the above research inspirations, the objectives and offerings of this article are
revealed as follows.

(1) Anticipating a generalized IN Sh-Sk prioritized weighted averaging (GIN Sh-Sk PWA) operator
and generalized IN Sh-Sk prioritized weighted geometric (GIN Sh-Sk PWG) operator.
Examining properties and precise cases of these anticipated AGOs.

Put forward two novel MADM approaches based on the anticipated AGOs.

Confirming the efficacy and realism of the anticipated approaches.

—_~ e~~~
= W N
= —

To achieve these objectives, this article is structured as follows. In Section 3, we initiate some
basic ideas of INSs and score and accuracy functions of PA operators. In Section 4, we examine a
number of Schweizer-Sklar operational laws for INNs where the variable parameter takes values
from [-,0). In Section 5, we propose INSSPWA and INSSPWG operators and examine a number of

properties and particular cases of the anticipated AGOs. In Section 6, we present two MADM
approaches established on these AGOs. In Section 7, we resolve a numerical example to confirm the
soundness and compensations of the anticipated approaches by contrasting with other existing
approaches. Finally, a short conclusion is made in Section 8.

3. Preliminaries

In this part, some basic definitions about INSs, INN, the PA operator, Schweizer-Sklar TN and
TCN, and their associated properties are argued. These definitions are given in Appendix A and B.

4. Sh-Sk Operations for INNs

The Sh-Sk (SS) operations contain Sh-Sk product and Sh-Sk sum, which are particular cases of
Att.

Definition 1 [12]. Assume that VN =(T5,,18,FS:) and VN =(TS:,18:,FS:) are any two arbitrary INSs, then
the generalized union and intersection are identified as follows:

VZMUWV:NZ={<@,{@*[T:s:"(@ﬁ;"@),@-[T:sf"(@,T:si”(@me(ﬁf‘(@,Ez"(p)j,@(E?(@,Eﬁ“(@ﬂ,{@(E;"(@ﬁ?(@j,@(ﬁf"(gg)ﬁsp(@mmu} M)
Wlﬂw_e‘\ﬁz:{<§7,[®(T:SILO(g;),T:S;O(m)j,@[T:SfP(p),T:SgF(p)ﬂ,[@’(Efo(p),ﬁzo(p)j,®”(Elup(p),ﬁﬁp(ga)ﬂ,[®’(Elw(gn),F:S;O(p)j,G*[F:Sfp(p),ﬁf(p)m,gneu} @

where © and ©" respectively represent TN and TCN.
The Sh-Sktn and TCN are explained as follows:

O aon (@ ) = (a4 5 ~1)f ©)

-

O gx (@ ) =1-((1-a)" +(1-B)" -1)* )

where A<0,a,8¢[0,1].
Moreover, when ¢ =0, Sh-Sktn and Sh-Sktcn degenerate into algebraic TN and TCN.

Based on the tn and tcn of Sh-Sk operations, we can provide the following definition for Sh-Sk
operations for INNs.
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Definition 2 [12]. Let :<[??}[::Hf:f:]> and n, :<[E;°E‘;j,[E;‘),Eﬂ,[i;",Ejpp be any

two arbitrary INNs, then the following generalized union and generalized intersection of INN are established

on the basis of Sh-Sk operations:
= E [ =L0 =LO UP =UP =LO0 =LO0 =UP =UP =LO0 =LO =UP =UP
@ o vnz:<[® [t51 ,ts2 ),@ (ts ,ts2 ﬂ,[@)(isl ,iS2 j,@(i31 ,iS2 ﬂ,[@[fsl , fs, j,@)(fs1 , fs, )D (5)
= = =L0 =LO =UP =UP . =L0 =LO . =UP =UP . =L0 =LO . =UP =—=UP
vy ®(_)~’® VN2 —<|:®[t31 s j,@(t& sz j]{@ (iS1 ,is2 ],@ (iSI Jis2 J:|,{® [fSl ,]CS2 j,@ [fS1 ,sz ]:|> (6)

On the basis of Definitions 1 and 2, we can develop the SS operational laws of INNs shown as
follows (A<0):

@ avn=<{1—[a(1—tsm)m —(6—1))mw
) : . 9)
[a(is“)""_(a_l)j“],{(a(fsm)”—(a—l)]m,[a(fs“’f—<a—1)]“]>,a>o;

(10)

= =L0 =Up =10 =UP =L0 =P = =L0 =Up =10 =UP =10 =UP = =LO0 =UP =L0 =UP =L0 =UP
Theorem 1. Let vn=<{ts s His Jis Hfs fs }>,vm:<{tsl st :H:iSl st Hfs1 85, }> and vnz=<[t52 152 },[iSZ ,iS2 },[fsz , s, }>

be any three INNs. Then:

VN Dy VN2 = VN; Bg Vg (11)

VI ®, VN =V, ® vy (12)

(v=l @ vnz) ovm @, ovn,, &> 0 (13)
VN @y, o 0,y =(2, +0,)V,3,,0, >0 (14)
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0 =0, =\0,+0,

vn ®g g VN = (vn) ,0,,0, 20 (15)
=0 =0 = = \0
v g, g VN2 = (vnl (- vnz) ,0>0. (16)

5. Some Generalized Prioritized Aggregation Operators for INNs

In this part, we develop some generalized prioritized aggregation operators based on the
developed operational laws for INNs.

5.1. Generalized Interval Neutrosophic Schweizer-Sklar Prioritized Aggregation (GINSh-SkPA) Operator

In this subpart, we develop a generalized interval neutrosophic Schweizer-Sklar prioritized
weighted averaging (GINSh-SkPWA) operator and discuss its enviable properties and some
particular cases.

Definition 3. For a group of INNs vng (9=12,...,8), the GINSh-SkPWA operator is a function I =3,

s

GlNSh—SkPWAr(ﬁl,ﬁz,...,R): Dy g | || 17)
g=1 @Tg
g=1
gl = S —
where Y €(0,+x), T, :@SE(vnh),(g =2,..,8),T, =1, and SE(vnh) is the score of INN vny .
h=1

Theorem 2. Let \?g (9=12,...,5) be a set of INNs, then the aggregated value employing Definition (3) is

still INN, and we have:

GINSh - SKPWA, (v ..., | =

1\ u 132 3
1\ * 1\ *
s T, =0 \? o s T —up\d
U@ 1{\([15?] 7(1{71)] YL 7(171j 1 g 1{Y(1sf) 7(r71)] —@—t1 {L)
e e, S e e, ’
0=l g=1 g=1 g=1
1 17
1)° ¥ 1)° ¥
1y o] 1y o (18)
s T =10\? oA s T s T 2 x s T
1- %17 o 1—[r[1—is; ) 7(r71)] @ 7[%71] 1- %17 i 1—(Y[1—E;w) 7(r71)] @t 7[%71]
o~ @, = 18 = T, - T,
g1 g1 01 g1
1 17
1\ A 1\ 2
1\2 B 1\ )
T U X s T T P\ x T
1- % 1-| @ 1-[1((1- fs, ) -(r-1)] —@ 1 -[1-) - %1— ] 1-(r(1- s, j -(r-1)] @1 -[1-]
o~ Tg = @TQ - TQ o TQ
91 g1 g=1 9=l

Proof. In the following, we first prove:
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T =r T, =r T =r
v +—2—vn2 +..+——Vns
& O I
g=1 g=1 g=1

2]
2]

9 TQ Tg K TQ
g=1 g=1 g=1 g=1
1 1
1 A 3 1 A
s T =0\ 2 s T s T =up\¥ a s T (19)
@ 1- Y(l—lsg ) ~(r-1)| | @1 P 1- Y(l—lsg ) —(r-1)| | @1
9=l (T 9=l (T 9=l (T 9=l (T
9 9 9 9
g=1 g=1 g=1 g=1
1 1
1\ * 1\ 2
s T, =10\ % s T s T —up\2 2 s T
| 1- Y(l— fs, ) ~(r-1)| | ~@s+1 |1 Y(l— fsg] ~(r-1)| | ~-@+1
9=1 ('DTQ 9=1 Tg g=1 Tg g=1 Tg
g=1 g=1 g=1 g=1

by utilizing mathematical inductionon s.
For $=2.
From the operational rules defined for INNs in Definition (2), we have:

s —<HY(&L° )w —(Y—l)}; ,{Y(E?P)m —(Y—l)}ﬂ,{l—{Y(l—ist T —(Y—l)}; ,1—{)((1—@”’)“ —(Y—l)}ﬂ,

{1_{{1_fs;of_(y_l)}al_{ql_fs;Py‘_(Y_l)}mD,

and:
1 i
1\ 2 1\ 2
_ o\ q e\ 1
L I . {1[r(tsf°) 7(r71)] } S LU G . [1(Y(tsfp] 7(r71)] 1 B L
e, an, e, e, an,
g=1 g=1 g=1 g=1 9=l
1 1
1\ ¥ 1\ A
—loy? a 2 &
le [1[Y(1islw) —(Y—l)] ] - le —1b Jl[l[Y(lEij 7(r71)] } _ 271 -1
@, @, @, @,
g1 g-1 g-1 g1
1 1
1\ A 1\ *
—io\® T —up\? T
}[1-[1([145;0) —(Y—l)] } U }[1—[1((1—@1%) —(Y—l)] } B U
@, @, @, @,
g1 g1 g1 g1

Similarly:
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2T2an< 1- }[1-(1([520)“—(1(—1)]”} Al an 2?[1-[1((&?)“—(1(-1)]1 L
@, @, @, @ @,
LA [Y(l—igoj%—(Y—l)J ] i L T(l[Y(lislzJP) 7(Y—1)) ] B l :
@ @, ar. ar,
L [Y(l—f:szmjm—(Y—l)] ] B L} T{l[Y(lfs:P) (Yl)]} - :21] D
ar, ar, . a,
Then:
T, = T, =r
Sy +—-2—vn,
@, DT,
= J1-41-]1- T{l—[Y(ts;OJ%—(Y—l)Jm] B L ﬂ T O [1—(\((@0)%—(1(—1)]%} B L P
ar @, @ @

1{ N G;T [1[Y(E?P)“(Y1)];T @; 9 ﬂ+ . é;[l(y(tsgp)m(yl)]m} ) G;T,l
gbesro][g | {gheesren g4
gé;g[1_[Y(1_fsloja_(Y_l)]i]“_[é;_ H | [1_(r(1_f;) r-p) J ] G;l 1H;

[ttt Aot
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L o e o
=( [1- le[l—[Y(tslem—(Y—l)]mJ ! | = [1—[1((‘5;0)%—(][—1)]1 N -1
@, @, @, @,
g=1 g=1 g=1 g=1
1\2 % 1)\2 %
_up\2 o —up A
1- le[l—ﬂY(tSf) —(Y—l)] } B L + }{1—(1((&?) —(Y—l)] ] B L -1
@, @, @, @,
g=1 g=1 g=1 g=1
{}[1(r(1isfo)m(r1)y] B U [1[r(1is;°]‘“(r1)j“] B PR }1’ ,

DT, D, DT, D,

T 1—[Y(1—E )%_(Y_l))a - zi—l + S 1—[1((1—@“ )m—(Y—l)J - ;—2—1 -1t |,

@, @, DT, @,
}[1[Y(1fsf°)m(y1)JmJ B LY | ) [1[1((1 fs ) 7(Y71)J ] B PR} 1’ ,
@D, @D, DT, @D,

}[1[1([1&?;‘)%(1{1)}%} S LS ) {1[1{(1& j 7(r71)] ] B PR 1] }>

D, @, (SSF D,

L ﬁf+ 2 ﬁ;

@, @,
g=1 g=1
1) s 1\? s
PN 1—(1{(@;0) —(1r—1)]Yl LI SN PN 1-{1((&?) —(1r—1)j91 NI
9=t Tg 9L Tg 9=t Tg 9=t Tg
g=1 g=1 g=1 g=1
1\ % N %

2 Tg =10\ A 2 '|'g 2 Tg =up\% A 2 '|'g

@ |1- Y(l—lsg ) S R e L R S s W Y(l—lsg ) —(m-1)| | @1

o T, “ Ty o T, o Ty

g=1 9=1 g=1 9=1
1 ig

If Equation (23) holds for s=m:
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- E
Is
Tmmm.vw
=
K
= o
Is

o
szm_WHr
+
- o
Is
Tlmmlvﬁ

Then, when s=m+1, by the operational rules given in Definition (5), we have:

v
VNmi1

Tm +1
m

Y
VNm +

Tm

Y
VN2 +...+

T,

.
v +

T m

v
VNmsa

Tm +1
m

T,

Y
VN2 +...+

T,

m+1

.
vni +

1

T
m+1

T,

1

g

g1

T,

g1

1

g
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m+1. Thus, Equation (19), is true for all g. Then:

That is, Equation (19) is true for g
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Theorem 4. Boundedness: Let yn, :<FS;O,tzsjp][E;OEZP],[igolijpb(g —1,2...,s) be a group of INNs,

gl=—

where Tg:®S_E(\Eh),(g:2,...,s),T1:1 and E(\?h) is the score of INN ﬁh . Moreover, let

h=1

=EEEIEIEET) - )

=L0\" —=L0 /=UP\~ =UP /=L0\" =L0 [/=upP\" =UP =L0\~ =L0
where (ts )zmints ,(ts jzmints ,[ts jzmaxts ,(ts j = maxts ,(is )zminis ,

1<gss 1<g<s 1<g<s 1<g<s 1<gs<s

=UuP\~ . o=up =L0 * =LO [=UuP * =up =10\~ . =L0 (=UP\~ . o=uwp
is =minis ,|is =maxis ,|is =maxis , and fs =minfs ,| fs =minfs ,

1<gs<s 1<g<s 1<g<s 1<g<s 1<gs<s

=L0\" —=L0 [=uP\* =uP
(fs J =max fs ,[fs j =max fs , then:

1<g<s 1<g<s

J— —

wn sGlNSh—SkPWAr(E,v:nz,...,ﬁs)5vn . @1)

. =0\~ =0 (=10\" /=P = /=p\' /=10 =l0 (=10\" /=p\" =up (=UP\' (=10 =l0 (=l0\" (=WP\" =Up (=UP\"
Proof. Smce, [ts J <tsq S[ts j ,(ts ) <tsq S(ts ),(IS ) <isq S[IS j ,(IS ) <isq S(IS j ,(fs j <fs, s(fs ) ,(fs ) <fs, s[fs j

First, when <e(0,0), then:

= 1 A
2 2 2 1
=L T =L0 A T
sTl 1[Y[(ts J] (Yl)] SLE | [ sTl [1()((69) —(Yfl)] ] R
@, @, @, @,
g=1 g=1 g=1 g=1
1 1
1\ 2
A A —
T —io 3 T
-] 1-[1([(5 Jj -(r-1)} N U] | T{ —[Y(ts:j —(Y—l)] J |
@, @, @, @,
g=1 g=1 g=1 g1
1 L
1\ a 1\ A
o thl N 1\ 2
s T —Lo\~ 2 s T s T =10\ % s T
Uil @—1- Y[[tsw)] (-] | @1 7(171] 1| @ 1—[Y[tS: ) —(Y—l)J —@+1 —[l—lj
s " T T e o QT T
9 g 9 9
g=1 g=1 g1 g=1
Similarly, we have:
1 1
1\? A 1\ 2
1\ 1 1\ R
T —up\2 o T T —y ) g s T
%1— o 1—[Y(ts§p) —(Y—l)] @1 —G—] < %1— o 1—[Y[(tsup]] —(Y—l)J @1 —[%—j
o T, o T, o T, o @,
91 g=1 g=1 9=l

=10\~ =l0 [=L0\" /=UP\" =uP (=UP\"
and as (ls j <is, g(ls j ,(ls j <is, g(ls ) , we have:



Symmetry 2019, 11, 1187

14 of 32
1
1 . 1\2 &3 2 o
2 2 a A\ 2 a 1
=10 =Lo A s T =10 s T s T =Lo A s T
[Y[l—(is j] —(Y—l)] s[r(l-isgj —(Y—l)] ~1-| 1-[1([1-(3 j) —(Y—l)] S| 21| G 1-[Y(1-isgj (r- )J NI
“ @, o, ", =,
g1 g1 g1 g=1
1
1\ 2 2
1\% oA
A\ a
s1- 1 @i Y[l—(ELO]] ~(r-1) !
e
g

and:
1\ 1\ %
1 2 1\? Bl
1 s T =10\ E s T 1 1 s T —1oy ) N s T 1
S @1 Y(l—isg ) -(r- )] ~@ -[7-1j <1131 @21 Y 1—[is ) -1 | -~ -[7-1]
r o Tq i Tg T T i Tg o Tg T
g=1 91 g1 g-1
Similarly, the same process is for the falsity-membership function, that is
L L
1 A %A 1 A A
2 o 2
1 s T —wo\ ) % s T 1 1 s T =10\ 2 s T 1
1121 @2 1| 1—(fs ) (Y| | —@t -(7-j <1031 @1 Y[l— fs, ) (-y| | ~@+1 -(7-1] :
T gy = Y gy oy Y
9 9 9 9
9=l g=1 g=1 0=1
1 1
1\ B 1\ o
1\ 2 1\ 2
1 T —w0\* 2 T 1 1 s T —o ) i T 1
-2 1-| =1 [Y(l—fsg ) —(Y—l)] —@—+1 7(77J <1-{3)1-| @ 1- Y[l—[fs j] ~(r-1) 41 7(77] .
! o T, o T, v ! o T, o Ty !
g1 g1 g=1 g=1

Thus, on the other hand, we have

vn <GINSh— SkPWA,(v= Ve, .. \75)3\7.

=(ts,is, fs

GINSh—SKPWA, (v=nl,\72,...,v=ns)== <_ is _>
Let , then:

=0 =Up =L0 =UP =Llo0 =Up (E;o )_ + (E;JP J_ (E;o )+ + (E?P j
E(ﬁ):tsg gy 0y Hisy fs, +fs, . e
2 2 2 2

+1-
2
and:

=10\" [/=up\*
(fsg ) +(fsg ) .
:SE(vn J
2

=l0 =UP

o R (W) FE) (R
— = ISy +is fs, +fs v ’ ’ ! ’ ’
S,E(vrl)=th G L LY L L +1- +1-

2 2 2 2 2

1) )
 E )

wn
m

v=n_<GINSh—SkPWAr(\71,\?z,.. \?s) vn

<vn .
E (vn) E [Vﬂ )
If , that is:
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=L0 =Up =l0 =Up BT (t:Lo)i t:UP ) s ) <m0 f:LO ) f:UP )
=0 = =0 = 50T Sg | +| tsg isg | +|isg ) S | +| T8,
t +tsg 4 0Sg +isy , TS 9 _ 41— +1-

2 2 2 2 2 2 ’
then:
GlNSh—SkPWAr(\E,\R,...,\Es):\E .
_= = =l =+
SE(vn):SE(vn J
If , that is:
=0 =up =L0 =Up —l0 =UP (ELOJ++(EUP)+ (ELO)_+(EUPJ_ (ﬁLoj_+(§UPj_
tsg +1Sg +1_isg +iSq 1 fs, +fs, _ 9 9 e 9 9 PP 9 ,
2 2 2 2 2 2

then:

J— —

GINSh — SKPWA, (\?1,\72,...,%5) —wn .

From the above established analysis, we have:

J— p—

vn <GINSh—SkPWA,, (R,Tm,...,ﬁs ) <vn , Me(0,).
Theorem 5.  Monotonicity:  Let  yp, = <[§;O§ZP}[EZOEZP}[i;oizpb(g =1,2...,9) and

=* =LO* =UP* =LO* =UP* =LO0* =—=UP*
vng=<[tsg s }[isg ,iSg }[fsg fs, }>(g=1,2...,s) be two groups of INNs, where

—

9-l—o /= 0-l—x/=* _— =
T, :@SE(Vnh),T*g :?@SE(Vn h),(g =2,..,8),T,=T, =1 and SE(vnh) and (vn h) are the scores of
=1 =1

p—

INNs v=nh and VN w. Then:

GINSh— SKPWA, (\71,\72,...,v=n5)SGINSh—SkPWAr (v=nl Nz . ng j 22)

Proof. The proof of Theorem (5) directly follows from Theorem (4).
Further, we shall discuss a few cases of the developed AGO with respect to parameter R, which
are listed below:

(1) If Y=1, then the GINSh-SkPWA operator reduces into an INSS prioritized weighted average
(PWA) operator:

- — s T =
G|N5h—SkPWA(vnl,vnz,...,vns):@ Vg
= @T

) 9

s s
g=1 g=1 g=1 g=1 g=1 g=1
gleg gleg gDleg gleg g@ng ng 23)

1 1 1
2@ 2@ &

s T /=we\* s T s T (=w\* s T s T /=w\* s T

(8 | o o (E ] a1 @ (E ) o

LT, =BT =BT =BT =BT =BT
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(2) If Y=1 and 2A=0, then the GINSh-SkKPWA operator reduces to an IN prioritized weighted
average operator based on algebraic operation. That is:

= = = s T =
GINSh—SkPWAX:O(vm,vnz ..... vm):@ 0,
=T
g1 ¢
o Ty Ty Ty Ty Ty
i i (24)
s =L0 s =UP S (=Lo S [=up S (=L0 S (=UP
= 1—@)(143g ) 1—@(145g ) @(lsg ) ,®(lsg j ®[fsg j ®(fsg )
g=1 g=1 g=1 g=1 g=1 g=1

5.2. Some Generalized Interval Neutrosophic Schweizer-Sklar Power Geometric Aggregation Operators

In this subsection, we develop a generalized interval neutrosophic Schweizer-Sklar prioritized
weighted geometric (GINSh-SkPWG) operator and discuss its desirable properties and some
particular cases.

Definition 4. For a group of INNs \79 (g =12,..., S), the GIFSh—SkPWG operator is a mapping =

TQ
GINSh — SKPWGA, (ﬁl,v_nz,...,v?s)% @(Yv_ng)@g , 25)
P h=1
9-l—es /= = /= =
where Ye(0,+oo), T, =®SE(Vnh),(g =2,..,9),T, =1, and SE(vnh) is the score of INN vny .
h=1

Theorem 6. Let ﬁg (9=12,..,5) bea group of INNs, then the value aggregated employing Definition (4) is

still INN, and we have:

GINSh—SKPWGA, (R,R,.,.,R):

1\ 2 1\* 2
1\ a « 2
T =10¢ ry s T T =P\ ry s T
1- % 1- 8 l*[Y(l*tsg j {Y*l)] -@+1 7[%7].] 1- % -1 @ 17[Y(14$g ] %Y*l)] -+ 7(%7@
@, @, @, @,
ot 9= o1 =t

élsTﬂ [1[Y(iszpjm(1r1)];}( 7@ Ly, ,[1,1] , (26)

Proof. In the following, we first prove:



Symmetry 2019, 11, 1187

T T T
s s s
=@ =@ —@T

Yvngt xYvngt x..x Yvn¢t

by utilizing a mathematical inductionon s.
For =2,

From the operational rules defined for INNs in Definition (5), we have:

Yun, = <{1—{Y[1—tslm T[ -(r —1)}; 1- {Y(i—@fp ]ﬂ -(r —1)};l
“Y(fslm T -(r —1)}; ,{Y(EUP T -(r —1)ﬂ>,

e

:

and:

2l
|

Similarly:

17 of 32
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Yvn§< é;[l—(r(l-tsf);-(r—l)” G;T 1 éT:_g[l—[Y[l—tsgp)m—(Y—l)j} @TIT 1 1
1- é;[l—(nr(isio)m—(wr—l)]m @TT 1)l - @TT 1—(Y(Eﬁpjﬁ—(ﬁ1)] @TT 1]
1- @TT{l—{r(fsff-(Y-l)]m @TT 1l 1- El;l—(l”(fsjp)m—(l”—l)]z @TT 1} >
Then:
Yﬁ;wﬁg@;
- e;:r[l—[Y(l—tleoj —(Y—l)] ] - éTTg_ ¥ (42; [1—[Y(1—ts§°) —(Y—l)} ] - é;g—l 11 ,
T[l—[Y(l—tsfP)m—(Y—l)] ] LT | T{l—[Y(l—ts jm—(Y—l)];] B L 1} :
1-]1-|1- }{1—[1{(&0)%—(1{—1))“} B L J +1-|1- }[1—[Y(is§°)m—(r—1)]gJ B L } 1} :
@, @, @ @,
1-41-]1- }[1—[Y(isfp)m—(wr—1)]m] - ZT—Z—l +1-]1- }[1—[Y(E§P)Ql—(wr—1)]m} - ZT—Z—l 1] ,
@, @, @ @,
1-4|1-]1- é;[l[r(fsf) (rl)j”*] B éT;gl J +1-]1- é;;[l[y(fsj’) (rl)]”J _ @TT J 1} ,
1-41-|1- }[1[r(fsfp)m(r1)]mJ B L } H1-|1- }[1[1{(&?)%[(1(1)}”] B L J 11 ,
a, &, @ @,
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A A
2 T 2 o 2 T 2 T A 5 2 T
= @ Zg 1_[Y(l_th j —(Y—l) —@ zg +1; @ Zg 1- Y(l_th ) —(Y—l) —@ Zg +1
91 (NT 91 YT 91 (T 91 (T
et g et g g g Nt ]
L E
1\ A N2 A
2 T =w0\* A 2 T 2 T _up\2 o 2 T
1- (—D 5 ¢ 11— Y(Isg j 7(Y71) 7@ 5 o N 6—) zg 1- Y(ng ) 7(Y71) 7(-9 5 1
g-1 Tg g=1 Tg g-1 @Tg g-1 @Tg
g=1 g=1 g=1 g=1
S
1\ A 1\
2 T, =10\ 2 2 T > T —up 2 % 2 T
1- (—B > 9 17{Y( fs ) 7(Y71)J 7(-9 5 S +1p ,1- (—D 5 g 17(Y( fs ) 7(Y71)J 7(-9 5 S +1
9=l T 1 T 9l (T 91 (NT
9 9 9 9
g=1 g=1 g=1 g=1

If Equation (30) holds for s=m:

T T Tn

=@ =@ =@
Yvngt xYvng?t x..x Yvng?

i Ty i @Tq o T, ]
g=1 g=1 g=1 g=1
1 1
1\ A 2 P
noT =10\* 2 m T m T —up\2 o no T
1@ 1- Y(lsg ) ~(r-y| | — @141 i@ |1- Y(Isg ) -(r-1)| | —@+1
g1 '|'g g1 Tg g1 Tg g=1 Tg
g=1 g=1 g=1 g=1
1
1\* % 1\
m T o2 o n T m T —up\* % no T
-1 @2 1—[Y(st ) —(Y—l)} T N e 1—[Y[fsg ) 7(%1)] @+l
i T, o Ty o @, o T,
g=1 g=1 g=1 g=1

Then, when s=m+1, by the operational rules given in Definition (5), we have:

2=

2|
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Tt
@
g1
m+1

+ Yvng,

Tn

éTQ

.x Yvngt
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éT‘?

x Yvns™*

T

T

:@T‘]
Yvni™

T
o1 _
mi =

x Yvng,

Tt

X..

T2
@TQ
x Yvn§™
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éTQ
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@
g1
m+1

+...+ Yvng,

T
@
x Yvng*t

T

@
Yvns*

m+1. Thus, Equation (30), is true for all g. Then:

That is, Equation (30) is true for g
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1\ o 1\ o
ot 2 1\ 2
s T —0\ x s T s T —up\Y 2 s T
P L 1—(Y(l—is;0) —(T—l)]m —@—+1 -(1-11 11t g 1-[Y(1-isf) —(Y—l)]w —@+1 —[%—1)
r o Ty o Ty T T o Ty o @,
o-1 o-1 91 9-1
1 17
1\ A 1\ 2
1 A E 1 A a
T, N T T, ST —up ) T
g 1-(r(is;°) -()r-l)]Zl @ +1 -(1-] A g 1—[T(iszp) -(1(-1)]Zl @ +1 -(1-1]
g, = @, r | g, T r
9=1 9=1 9=1 9=1
. N
1\ B A E3
x 2 1\ 2
T, —toy? ST T —up @ a
IR S O O A LR S8 ey S S (R
T o Ty g:1®Tg r T o T QT T
9=1 9=1 9=1 g=1
Therefore:
GINSh - SKPWGA, Vi, ..., | =
2 x 1\ B
" B L 0
! =0\ o s T s T, =u £l s T
AP PN 17[r(17.sg ) —(Y—l)j @ —[l—lj L P PN y[r(usg] —(Y—l)] N {L)
! o~ T, o T, ! ! o Ty o Ty !
g=1 g=1 9=l 9=l

which completes the proof of Theorem 2.

Similar to the GINSh-SkPWA operator, the GINSh-SkPWGA operators have the properties of
idempotency, boundedness, and monotonicity.

Further, we shall discuss a few cases of the developed aggregation operator with respect to
parameter v, which are listed below:

(1) If Y=1, then the GINSh-SkPWGA operator reduces to an INSS prioritized weighted geometric
average (INPWGA) operator:
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s s
g=1 @Tg g=1 Tg g=1 @Tg 9=l (_DTQ 9=l Tg =1 Tg
g=1 g=1 g=1 g=1 9<1 g<1 (28)

2) If Y=1 and 2 =0, then the GINSSPWGA operator reduces to an IN prioritized weighted
p p g
geometric average operator based on algebraic operation. That is:

: : : B :
- = X X g=1

6. Models for Multiple-Attribute Decision Making Established on Proposed Aggregation
Operators

In this section, we develop MADM methods based on GINSh-SkPWA and GINSh-SkPWGA
operators to deal with interval neutrosophic information. The following assumptions or notions are

employed to state the MADM problems. Let AE ={El,ﬁz,...,ﬁs} be the set of alternatives, and
CA= {aﬁzﬁt} be the set of attributes with a prioritization along with the attributes signified by

the linear-ordering CA >CA; >...>CAu>CA., then the specific attribute CA, has a superior priority

than CA. if q<r. Assume that WN =(Eh) =([t:s;n,t:s;},F;EH,F;,E;D is the INN decision matrix,

sxt

where [E;,EH,F;EZ@ and [f:s;,f:sﬂ state the interval neutrosophic TM function, interval

neutrosophic IM function, and interval neutrosophic FM function, respectively, such that
[E;Eﬁh},[E;Eﬁh},[f:s;,f:sjh}g[o,l],ogt:sjh+§§h+f:s:hg3,(g =12,.,sh=12..t) . The aim of this problem is to rank the

alternatives.

6.1. The Model Established on GINSh-SkPWA Operator

Subsequently, a procedure for positioning and picking of the mainly superior alternative(s) is
offered as follows.
Step 1. Equalize the decision matrix.

First, the decision-making information vng in matrix VN :(ﬁgh) must be equalized.

Accordingly, the criteria can be categorized into the benefit and cost types. For the criterion of benefit
type, the evaluation information does not need to be distorted, but for the criterion of cost type, it
should be customized with the complement set.

Thus, the decision matrix can be equalized by exploiting the formula:
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=L =U =L =U =L =U _
<|:thh ,{Sgn } , |:ngh ,iSgn } { fSgns fSgn D for benefit type attribute CAg
o= =L =U =U =L =L =U ol (30)
<{ fS s fsgh},[1—isgh,l—isgh][tsgh,tsghb for cost type attribute CAgn
Step 2. Find out the values of Ty, (9=12,..,5;h=12,..,t) by exploiting the following formula:
t-1 — /—
T, =I5 (vngh)(g ~12,.,5h=2,3,..,1) 31)
h=1
Ty =1lforg=12,..s.

where
Step 3. Exploit the decision information from decision matrix VN :(Eh) and the INSh-SkKPWA

sxt

operator specified in Equation (18):

= =L =U =L =U =L =U = = =
vng = <[tsg tsg },[isg ,iSg }[ fs,. fs, }> =GINSh —SkPWA(Vngl,Vngz, .--,Vngt) (32)

to acquire the overall INN \Eg (0=12,..,9).

Step 4. Discover the score values E(\Eg )(g =12,...,5) of the overall INNs %g (9=12,...,,9)

by utilizing Definition A2 given in Appendix A to rank all the alternatives Eg (9=12,..,5).

Step 5. Rank all the alternatives Eg(g =12,..,5) and pick the preeminent one exploiting

Definition A3 given in Appendix A.
Step 6. End.

6.2. The Model Established on GINSh—-SkPWGA Operator

Steps 1 and 2 are same as those given for the GINSh-SkPWA operator.
Step 3. Exploit the decision information from decision matrix W:(Rh) and the INSh-SkPWG

sxt

operator specified in Equation (26):

= =L =U =L =U =L =—U _— = =
N, :<[tsg,tsg },[isg,isg Mfsg, fs, D=G|N5h—SkPWGA(vngl,vngz,...,vng[) (33)

to acquire the overall INN \Eg (9=12,..,9).

Step 4. Discover the score values E(\Eg )(g =12,...,5) of the overall INNs \Eg (9=12,...,,9)

using Definition A2 given in Appendix A to order all the alternatives AEq (9=12,..,5).

Step 5. Rank all the alternatives Eg(g =12,..,5) and pick the preeminent one exploiting

Definition A3 given in Appendix A.
Step 6. End.

7. Numerical Example

In this part, a numerical example is modified from [16] about assessing technological innovation
competency for high-tech enterprises with INNs.

Assume that Eg (9=1...,5) signifies the promising five high-tech enterprises (alternatives),
which are to be evaluated. The experts exploit the following four attributes to evaluate the promising
five high-tech enterprises: (1) the innovative culture signified by C=Al; (2) the infrastructure and

funding for the enlargement of industry signified by CA:; (3) the organizational learning and
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knowledge management signified by CAs; and 4) support. for technologlcal innovation signified by
CAs. The following priority relationship CA1 >CA; >CAs >CAs between the four attributes is
considered. The experts evaluated the promising five high-tech enterprises AE (g=1...5 with

respect to the above four attributes and provide the evaluation information in the form of INNs listed
in Table 2.

Table 2. Interval neutrosophic number (INN) decision matrix VN = (\Egh ) .
5x4

CA CA. CAs CA:
El ([06,08],[07,08][0.304])  ([0.7,0.8],[04,05][02,03])  ([04,05][07,08][0304])  ([0.6,0.7],[05,08],[0305])
AE, ([0809][os07][0103)  ([o7.08)[0406][0203])  ([07.08][0L02][0607]) (0608 [0405 1.[0.3,05])
AE. ([0607][0507][0304))  ([0506][0809][0406])  ([0405][0607].[0304]  ([07.08][0405][0305])
E4 ([06,08],[03,04],[05,06])  ([0507],[04,05],[0506])  ([04,06],[0507],[03,05]) <[0607][0507]0203]>
ES ([0.7,08],[05,06] [0.405])  ([0.304][0.7,08][0304])  ([07,08],[0506][0102])  ([0.304][0.7,08],[02,03])

Now, we exploit the developed approach to solve the MADM problem.
Step 1. Since all the attributes are of same type, there is no need to equalize decision matrix
RENS

Step 2. Discover the values of Tgh(g =12,..,5h=2,..,4) by exploiting Formula (34), and we

have:

1 16 328 7.085]
1 205 41 16.390
T,=[1 17 204 5029

1 18 28 7776
1 175 2.188 7.848]

Step 3. Exploit the decision information from decision matrix VN = (\Egh) and the INSSPWA
5x4

operator specified in Formula (35):

vn = ([0.5871,0.7085],[0.5294,0.7404],[0.2803,0.4250]);
vn, = ([0.6506,0.8109],[0.2223,0.2871],[0.2687,0.4741]);
vn; = ([0.6332,0.7453],[0.4790,0.5939],[0.3208,0.4742] ;
vn, = ([0.5594,0.6983],[0.4580,0.6254],[0.2409, 0.3618]);
vns = ([0.4981,0.6349],[0.6332,0.7364],[0.1731,0.2882]);

Step 4. Discover the score values SE (vng )(g =12,...,5) of the overall INNs \Eg (9=L12,..,5)

by Definition 2 to rank all the alternatives Eg (9=12,...,5 . We have:
E(Tnl) :1.6603,§(v=nz) :2.1046,§(\?3) :1.7553,§(v=n4) :1.7858,§(v=ns) 16511,

Step 5. Accordmg to the score values, the ranking order of the alternatives is

AEz > AE4 > AEs > AE: > AEs. Hence, the best high-tech enterprise is AEz while the worst one is

AEs .
Now, we exploit the method established on the GINSh-SkPWGA operator.
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Steps 1 and 2 are the same.
Step 3. Exploit the decision information from decision matrix W:(\ﬁgn )54 and the INSSPWA

operator specified in Formula (36), and we have:

vn, = ([0.5354,0.6462],[0.5922,0.7876],[0.2893,0.4521]);

vn, = ([0.6294,0.8040],[0.3712,0.4986],[0.3792,0.5453]);

vn; = ([0.5555,0.6626],[0.6195,0.7797],[0.3202,0.4983]);

vn. = ([0.5251,0.6812],[0.4783,0.6741],[0.3131,0.4441]);

vns = ([0.3412,0.4498],[0.6706,0.7765],[0.2222,0.3244]);
[

Step 4. Discover the score values S SE VNg )(g 1,2,...,5) of the overall INNs ﬁg (9=12,...,5)

by Definition 2 to order all the alternatives AEg (9=12,...,5) . We have:
E(Tnl) —1.5303, E(Tnz) :1.8194,§(\?3) 15002, E(R) —1.6484, E(\?s) —1.3986.

Step 5. Accordmg to the score values, the ranking order of the alternatives is
AEz > AE4 > AE: > AEs > AEs. Hence, the best high-tech enterprise is AE: , while the worst one is
AEs .

7.1. Effect of the Parameters Y and U on Decision Result

Firstly, we fix the value of the parameter 2 and give different values to parameter Y. The
effect of parameter Y on the decision results exploiting the GINSh-SkPWA operator and GINSh-
SkPWG operator is revealed in Figures 1 and 2, respectively. Secondly, we fix the value of parameter
Y and give different values to parameter 2. The effect of parameter Y on the decision results
exploiting the GINSh-SkPWA operator and GINSh-SkPWG operator is revealed in Figures 3 and 4,
correspondingly.

From Figures 1 and 2, one can perceive that although the ranking order for dissimilar values of
parameter Y may be diverse, the best and worst alternatives stay the same. From Figures 1 and 2,
we can also perceive that, when the values of parameter Y go up, exploiting the INSh-SkPWA
operator, the score values of the alternatives are reduced, while when exploiting the INSh-SkPWG
operator, the score values of the alternatives raises.

Similarly, from Figures 3 and 4, one can perceive that the ranking order for dissimilar values of
the parameter 2 may be different, but the best and worst alternatives remain the same. From
Figures 3 and 4, we can also perceive that, when the values of parameter 2 reduce, exploiting the
INSh-SkPWA operator, the score values of the alternatives go up, while when exploiting the INSh-
SkPWG operator, the score values of the alternatives are reduced.

mAE1
mAE2
mAE3

AE4
m AE5

25 50 g9
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Figure 1. Score values of the alternatives for different values of parameter v
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Figure 2. Score values of the alternatives for different values of parameter ¥
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Figure 3. Score values of the alternatives for different values of parameter 2 .

m AE1

m AE2

 AE3

T T SN S S S AEd
9900 ' S O m AE5

Figure 4. Score values of the alternatives for different values of parameter 2 .

7.2. Comparison with Existing Approaches

In the following, we compare our developed approach established on these innovative
developed AGOs with some existing approaches, such as the approaches developed by Zhang et al.
[12], Nagarajan et al. [47], TOPSIS [55], and MABAC [52]. The score values and ranking orders are
specified in Table 3.

Table 3. Comparison with different approaches.

Approach Score Values Ranking Order

SE (vn: ) =1.2804, SE (wn: ) ~1.3556, SE (vns | =1.3071, -

INWA operator [12] — — AE2 > AE3 > AE1 > AE4 > AEs.
E (vn: ) =1.25390,5E (wns ) - 1.2143

INSSWA operator SE (vn:) =1.5665, SE (vn: ) ~1.8497, E (vns ) ~1.6198, -
47 — — AE: > AE: > AEs > AE; > AEs.
[ J SE (vns ) =1.6762, SE (vns ) =1.4436. PR e PR AR
(c=2).
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RCC (ﬁl) -0.3768,RCC (ﬁz) -0.3840, RCC (ﬁa) -0.3735,

TOPSIS [55] Ez > EA >E1 > Ea > Es.

RCC (R) -0.3746,RCC (ﬁs) = 0.3535.

Q (ﬁl) -1.3821,Q (ﬁz) ~15677, Q(ﬁa) -1.3011,

MABAC [52] — — Ez >E4 >E5 >E3 >E1.
Q(vm) =1.4992,Q(vn5) =1.4695.
INSSWG operator f ( jl) ~1.6195, SE (viz) -1.9158,SE (Vna) ~1.7046, e o
[47] (s=2). ?(74) -1.7330 ?(75) ~1.5364 '
Proposed INSSPWA i(jl):l 6603 SE(E):2.1046,SE(W\3):1.7553 o
operator SE (vn. ) = 1.7858, SE (vns | =1.6511. '
Proposed INSSPWG i(j) ~1.53083, si(viz) -1.8194,SE (Vna) ~1.5002, N
operator ?(74) =1.6484, S?(ﬁs) =1.3986. '

From Table 3, we can perceive that the ordering acquired from the INWA [16], INSh-SkWA, and
INSh-SKkWG operators [47] and TOPSIS is the same. While solving the same problem utilizing the
MABAC method [51], the ranking order is different. The best alternative remains the same, and only
the worst alternative is changed. In the above methods, the weight vector of the criteria is calculated
using PA operators. However, the existing AGOs do not judge the priority relationship among
attributes. Thus, the proposed aggregation operators have some advantages over these aggregation
operators. Firstly, they developed Sh-Sk operational rules that consist of variable parameters, which
makes the decision process suppler. Secondly, the anticipated AGOs can judge the priority
relationship along with attributes. Therefore, the enlarged AGOs in this article are more realistic and
supple to be employed in the decision-making procedure.

8. Conclusions

In practical decision making, accessible information is frequently imperfect and incompatible,
and the INS is a superior tool to signify such types of information. In this article, initially, a number
of Schweizer-Sklar operational rules for INNs were developed. Secondly, we created two new AGOs,
an INSh-SKPWA operator and an INSh-SkPWG operator, and discussed their desirable properties.
The leading qualities of these enlarged Schweizer-Sklar AGOs are that they can consider the priority
relationship among attributes and are more flexible due to variable parameters. Moreover, based on
these Schweizer-Sklar prioritized aggregation operators, two novel MADM approaches we are
instituted. The novelty of the proposed method is compared to other methods. It is shown in Table
Al of Appendix C. The proposed method is illustrated by a numerical example. This example is
specified to confirm the realism and efficacy of the proposed approach, and a comparison with the
presented approaches is also given. In future research, we will apply the proposed approach to some
new applications, such as evaluation of traffic control management [46], tourism recourses [47],
enterprise green technology innovation behavior [48], mobile robot navigation [56,57], and so on, or
extend the proposed method to some more extended form of INSs.
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In this subsection, the definition of INS adapted from [8], score and accuracy functions, and
comparison rules [36] are given.

Definition A1 [8]. Let E be the universe of a discourse set, with a common element articulated by y . An

INS VN in E is mathematically symbolized as:
VN = {<K’, |:T:S\%) (K'),T:S\% (K'):| , ‘:E\% (x), E\% (K'):| , [E\% (x), E\% (K'):|>| Ke E}; (Al)

==L0 ==UP =L0 =UP ==L0 ==UP . .
where [TSW(K),TSW(K)},['SW(K), |S\W(K‘):| and [FSTN(K), FSTN(K)} , respectively, represent an interval truth-

membership (ITM) function, interval indeterminacy-membership (IIM) function, and interval falsity-
membership (IEM) function, and these three mappings are subsets of [0,1]. The sum of the upper bound of

=UP

=UP =—UP
these three functions should assure the condition 0<TSW (x)+ ISW (x)+FSW(x)<3. The triplet

<[t:s$:§’ (K),E\%(K)jH:E\% (K)E%(K)},[E% (rc),ﬁ%(zc)b is called an IN number (INN. To be easily understood, we shall

symbolize INN by \ﬁ=<[t:sL0,t:sup},FLO,EUP}[iLO,f:sUPD , and the set of all INNs is designated by 3.

Definition A2 [36]. Let \ﬁ=<[ELO.t:sUP},FLO,EUP}[iLO,f:sUPD be an INN. Subsequently, the score function

SE (v_n) and accuracy function H(\E) can be classified as follows:

=LO =UP .=LO .=UP =L0 =UP
(1)%(%):& +1s LS Fs fs +fs ; (A2)
2 2 2
_ =L0 =UP =L0 =UP
(Z)H(V_n) _ s ;—ts " fS ;' fS . (A3)

To compare any two INNs, Liu et al. [36] described the following comparison terms, which can
be stated as follows.

=UP =10 =UP =L0 =—UP =L0 =UP =LO =UP =L0 ==UP

Definition A3 [36]. Let ﬁ1:<[t:slw,tsl },[isl ist }[fsl s, }> and ﬁz:<[t52 ts2 },[iSZ ,is2 },[fs2 , fs, D be

any two INNs. Then, we have:

1) If E(ﬁ1)>s (\72), then wn, is better than vn, and denoted by v >vny;

2) If E(ﬁl):SE(%z), and ﬁ(ﬁ1)>AY(\?z), then vn. is better than wn. and denoted by vny >vny;

3) If SE(vm)-

w

(ﬁz), and ﬁ(\ﬁ):ﬁ(\?z), then wn, is equal to vn, and denoted by v =vn..

Appendix B

Prioritized Average (PA) Operator

The PA operator was initially developed by Yager [29] for a crisp number. The main advantage
of the PA operator is its capacity of considering a prioritization relationship among attributes.

Definition A4 [29]. Let [ =(D 1,0 2,...,D|) be the collection of criteria and pledge that there is a

prioritization between the criterion articulated by a linear ordering U1 >02 >...>0 1.1 >0, which signifies
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that the attribute |« has a superior priority than Uyv, if a<b. Ua(e) is an assessment value articulating

the act of the choice e under the criteria L a and assures d € [0,1]. If

PA(71(e).04(€) s (e)):é:glwdu (@)

(A4)

The PA operators have successfully handled the situation where the values of criterion are real

numbers.

Appendix C

Table Al. Comparison between the contributions of different authors to interval neutrosophic

MADM methods.
Interval Neutrosophic Schweizer- Consider Priority
MADM Methods Generalized Sklar Relationship
Author Years . .
Based on Different Parameter Operational among the
Aggregation operators Laws Attributes
I igh i
T et N
[12] (2014) 5
operators
Ye and D
[ 51??2 01 91)1 Similarity Measures No No No
Zhang et al. An outranking
N N N
53] (2016) approach © © ©
Tain et al.
[521111( ; Ola 6) Cross entropy No No No
Liu and
Prioritized OWA
Wang [32] r1o(1)r1 (lezritors No No Yes
(2016) P
Li .
iu and Tang Power generahzed Yos No No
[27] (2016) aggregation operators
Peng and Dia MABAC and EDAS
N N N
[52] (2017) methods © © ©
Huang et al.
4 dH
[49] and Hu VIKOR methods No No No
et al. [50]
(2017)
Li .
iu and You Muirhead Mean No No No
[36] (2017) Operators
Dombi Power
Khan et al.
[1 9?(1280 12) Bonferroni Mean Yes No No
operators
. Power Hamy mean
Liu et al. [22] Yes No No
operators
Wei et al. [16] Generalized Bonferroni No No No
(2019) mean Operators
Proposed Generalized
Method Schweitzer-Sklar Yes Yes Yes

prioritized Operators
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