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Abstract: The application of autonomous robots in search and rescue missions represents a complex 
task which requires a robot to make robust decisions in unknown and dangerous environments. 
However, imprecise robot movements and small measurement errors obtained by robot sensors can 
have an impact on the autonomous environment exploration quality, and therefore, should be 
addressed while designing search and rescue (SAR) robots. In this paper, a novel frontier evaluation 
strategy is proposed, that address technical, economic, social, and environmental factors of the 
sustainable environment exploration process, and a new extension of the weighted aggregated sum 
product assessment (WASPAS) method, modelled under interval-valued neutrosophic sets (IVNS), 
is introduced for autonomous mobile robots. The general-purpose Pioneer 3-AT robot platform is 
applied in simulated search and rescue missions, and the conducted experimental assessment 
shows the proposed method efficiency in commercial and public-type building exploration. By 
addressing the estimated measurement errors in the initial data obtained by the robot sensors, the 
proposed decision-making framework provides additional reliability for comparing and ranking 
candidate frontiers. The interval-valued multi-criteria decision-making method combined with the 
proposed frontier evaluation strategy enables the robot to exhaustively explore and map smaller 
SAR mission environments as well as ensure robot safety and efficient energy consumption in 
relatively larger public-type building environments. 

Keywords: interval-valued neutrosophic sets; multi-criteria decision-making; WASPAS-IVNS; 
autonomous mobile robots; search and rescue 

 

1. Introduction 

Nowadays, autonomous robot systems, such as industrial robots [1], autonomous cars [2], social 
[3] and service robots [4], are increasingly applied to solve real-life problems, and therefore represent 
a constant object of discussion, not only from the technical, but also from social and ethical 
perspectives [5]. Progressively growing autonomous robots decision-making capabilities enable such 
systems to replace humans in labour-intense and dangerous tasks, such as infrastructure 
maintenance and inspection [6,7], or environment exploration and data gathering tasks, such as 
search and rescue missions [8,9]. 

In general, search and rescue missions are complex tasks in which autonomous robots must 
safely explore the disaster sites and provide rescue teams with important information, such as victim 
locations and status, environmental conditions, and the locations of dangerous objects [8,10,11]. 
While designing robots capable of addressing these tasks, several strategies can be taken into 
consideration. Robot physical structure can be modified to address specific navigation requirements 
(e.g., opening doors [12]), or robot software components can be improved, namely, the environment 
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perception module, the self-localisation module, the motion control module, and the decision-making 
module [13]. Generally, the same type of software components can be transferred and applied 
between different robots. Therefore, this research is aimed at improving the decision-making module, 
which is responsible for sensor-obtained data interpretation and conversion to expected environment 
exploration behaviour in search and rescue missions. 

Considering the lasting effects [14] that autonomous robots have when applied in search and 
rescue missions, the decision-making module is required to make efficient decisions by incorporating 
variating mission criteria into consideration. This problem is modelled by taking into account two 
different viewpoints: what criteria are applied for modelling effective autonomous environment 
exploration module, and what strategy is applied for the decision-making process. Hence, in this 
paper a novel frontier evaluation strategy is proposed, that addresses the technical, economic, social 
and environmental factors of autonomous search and rescue missions. Also, a new extension of the 
weighted aggregated sum product assessment (WASPAS) multi-criteria decision-making method 
modelled under the interval-valued neutrosophic sets (IVNS), namely WASPAS-IVNS, is proposed 
for candidate frontier evaluation and selection in autonomous search and rescue missions. 

This paper is structured in the following manner. The review of environment exploration 
methodology is presented in Section 2. Section 3 introduces a new WASPAS-IVNS framework which 
is the core part of robot decision-making module. Also, in this section, criteria selection and 
calculation process, robot architecture, and the proposed search and rescue strategy are explained in 
detail. The experimental evaluation methodology, results, and discussion are presented in Section 4. 
Conclusions and future work are presented in Section 5. 

2. Autonomous Environment Exploration in SAR Mission 

2.1. Environment Exploration Methodology 

Environmental exploration by autonomous mobile robots is a process through which an 
unknown environment is analysed and mapped by visiting all available areas. Many recent studies 
were aimed at improving this process [15,16], including research in extreme environments [11,17] 
and planetary exploration [18,19]. Although many different strategies have been introduced to 
address unknown environment exploration problems, a popular and easy-to-implement basis for 
autonomous mobile robot testing remains the frontier-based environment exploration method, 
originally proposed by Yamauchi [20]. This strategy describes frontiers as a boundary between the 
known and unknown portions of the environment. By continuously directing the robot to the 
previously unvisited frontiers, an exhaustive environment analysis can be achieved. Several papers 
address and implement this strategy. For example, exploration planning strategy for large-scale 
unknown environments was proposed in [21], and the frontier point selection strategy, based on the 
frontier point optimisation and multistep path planning was proposed in [22]. 

In autonomous SAR missions, robots are expected to make robust decisions by addressing a 
number of conflicting requirements set by the stakeholders. Hence, the original frontier-based 
environment exploration approach, which evaluates a single criterion (distance to the frontier), is not 
effective in this context. A more effective approach to this problem is to compose a set of criteria and 
evaluate each candidate frontier accordingly. Considering search and rescue missions, autonomous 
robots are deployed as data-collecting tools that provide information to the rescue teams [9]. In this 
situation firefighting teams, medic teams, robot providers, and victims can be considered as 
stakeholders with different preferences [14]. Naturally, victims hope to be saved, and medic teams 
prefer robots to detect, reach, and constantly monitor the state of injured or trapped victims. On the 
other hand, firefighting teams can prefer robots to scan the disaster site and provide data about the 
general environment layout and dangerous objects in the vicinity to ensure the safety of rescue 
personnel. Finally, robot providers would prefer to keep their property economically viable and safe 
(e.g., to optimise energy usage and avoid direct environmental damage to the robot to reduce its 
maintenance costs). All these preferences can be denoted as environmental, technical, social, and 
economic factors that robots’ decision-making module must address during the environment 
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exploration process. By analysing and balancing contradicting stakeholder preferences, a set of 
criteria can be composed and applied to evaluate candidate frontiers [23]. 

2.2. Candidate Frontier Evaluation Methodology 

Considering the iterative frontier-based environment exploration approach, and a heavily 
criteria-based nature of the problem, we argue that multi-criteria decision-making (MCDM) 
frameworks can be applied to improve robots decision-making module. 

MCDM frameworks are robust tools that can be applied to model and solve real-world problems, 
such as various selection problems, performance evaluations, and safety assessments [24]. For 
example, MCDM methods for lead-zinc flotation circuit selection problem, and location selection 
problem for waste incineration plants were proposed in [25,26]. MCDM frameworks were also 
successfully applied to the house shape evaluation problem by Juodagalviene et al. [27]. Stojić et al. 
[28] proposed a methodology for supplier selection for manufacturing chains, and more recently an 
MCDM-based safety evaluation methodology for urban parks was introduced in [29]. Several survey 
papers also address MCDM framework applications in sustainable development [30,31]. 

Considering the research field of robotics and autonomous robots, MCDM frameworks have 
also been the focus of some decision-making related studies, for example, selection method of 
automatically guided vehicles for warehouse automation was proposed in [32]. Ghorabaee [33] 
proposed a method for industrial robot selection. A similar industrial robot selection problem has 
also been addressed in [34]. However, these papers focus on the robot selection problem and not the 
actual environment exploration by autonomous mobile robots. Autonomous search and rescue 
missions by MCDM-driven decision-making module has first been introduced by Amigoni and 
Basilico [35]. Following this research, a PROMETHEE II method was proposed in [36] to improve the 
robot decision-making ability, and a recent study by Bausys et al. [23] introduced WASPAS extension 
by single-valued neutrosophic sets, directed to incorporate sustainability principles in autonomous 
environment exploration by mobile robots. 

Although these strategies show efficiency in the iterative decision-making process, the MCDM 
application capabilities in autonomous search and rescue missions are yet to be exhaustively studied. 
Considering the discussed MCDM approaches, the decision-making module evaluates criteria based 
on the raw data obtained by the robot sensors, without the evaluation of measurement errors. 
However, in real-world scenarios, every sensor can produce small measurement errors which can be 
addressed by the autonomous mobile robots decision-making module to improve the exploration 
process. This is the most powerful motivation to extend the MCDM frameworks and introduce a new 
decision-making strategy that takes advantage of interval-valued neutrosophic sets and reduces the 
impact of measurement errors in autonomous search and rescue missions. 

3. Methods 

3.1. Autonomous Mobile Robot Architecture 

The proposed MCDM approach is applied to extend the decision-making module of the general-
purpose four-wheel mobile ground robot Pioneer 3-AT [37]. This platform is chosen due to its 
applicability in search and rescue missions [35,38]. The robot movement and environment perception 
functions, namely the control of robot movement and rotation velocity, odometry information 
publishing, interpretation of sensor data, construction of two-dimensional environment map, and 
path planning, are managed by the robot operating system (ROS) [39]. However, the robot decision-
making module is controlled explicitly by applying the proposed MCDM framework. 

In this research, an autonomous search and rescue mission is modelled and simulated in Gazebo 
software [40]. Hence, the software-provided pre-made Pioneer 3-AT robot is imported into the 
simulation and equipped with a virtual Hokuyo laser range scanner sensor. This sensor has a 260° 
line of sight and is the main perception device used by the robot to detect physical structures and 
obstacles in an exploration environment. Considering that victim and dangerous object recognition 
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poses a set of problems that are out of the scope of this research, it is assumed that robot has sensing 
capabilities to identify these problem-related objects of interest (OOIs) with perfect accuracy. 

To track its current position in space, and the position of detected OOIs, the autonomous robot 
builds a two-dimensional, 0.1 m cell-resolution grid map [41], based on the data obtained by the laser 
range scanner sensor. In this environment representation model, the exploration area is divided into 
square cells, where each cell corresponds to the real-world geometrical space and contains the value 
of cells’ occupancy probability. These probability values are in the range of [0,100], where 0 is 
considered as a free cell and contains no visible obstacles, and the value of 100 indicates that 
corresponding area is occupied. In this model, the probability value of −1 indicates, that the 
corresponding area has not been perceived, and the cell value is unknown. 

In the modelled search and rescue mission, the Pioneer 3-AT robot applies the iterative frontier 
selection strategy, which is presented in Figure 1. At the start of the first iteration, no initial 
information about the environment and the locations of task-related OOIs are available to the robot. 
Therefore, for its’ first move, the robot is programmed to turn around by 360° and scan the 
surrounding area. Then, environmental data obtained by the laser range scanner sensor are mapped 
on a two-dimensional grid by applying the previously described grid map building methodology. 
When the map is updated, robot estimates its position on the constructed grid by applying ROS-
provided self-localisation algorithm [41] and detects all groups of free cells that are bordering the 
unknown grid map cells. For each of these cell groups (frontiers), the centre point coordinate is 
calculated and added to the list of available candidate frontiers. Then, the robot activates the decision-
making module and each candidate frontier is evaluated by applying the criteria set, presented in 
Table 1, and the proposed interval-valued neutrosophic MCDM framework. The highest-ranked 
candidate frontier is then selected by the decision-making module. Finally, the robot moves to the 
selected frontier and updates the partial grid map information with newly obtained data. This data 
acquisition, evaluation, and frontier selection process is repeated by the decision-making module 
until one of two conditions are met: the given time limit has passed or there are no candidate frontiers 
left. 

 
Figure 1. Iterative environment exploration strategy applied by the autonomous robot. 
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Table 1. The proposed criteria set for search and rescue mission. 

Type Denotation Name Min/Max 
Measurement 

Units 

Estimated 
Measurement 

Error 

Technical 𝐶  Distance to the 
control station 

Min m ±1 m 

Technical 𝐶  
The estimated 
amount of new 

information 
Max m ±0.1 m 

Social 𝐶  Estimated victim 
danger 

Max 
Danger points 

(dp) 
±0.2 p 

Economic 𝐶  Estimated damage 
to the robot 

Min 
Penalty points 

(pp) 
±0.2 p 

Environmental 𝐶  Estimated energy 
consumption  

Min s ±10 s 

Technical 𝐶  
Distance from the 

robot to the 
candidate frontier 

Min m ±1 m 

Since frontier selection strategy is extended by applying MCDM methodology, next subchapters 
are dedicated to introducing this MCDM problem formulation, criteria evaluation, and weight 
selection methodology, as well as a detailed presentation of the proposed interval-valued 
neutrosophic WASPAS framework. 

3.2. Problem Formulation 

In general, each individual candidate frontier, with a centre point 𝑎 (𝑥,𝑦) in an iteratively-
obtained set of 𝑚  candidate frontiers 𝐴 =  (𝑎 , … , 𝑎 ) can be evaluated by applying a set of 𝑛 
criteria, denoted by 𝐶 =  (𝑐 , … , 𝑐 ). Each criterion in 𝐶, has an assigned weight value 𝑤 , indicating 
its relative importance to other criteria. By assigning 𝑎 (𝑥,𝑦) a vector of weighted criteria 𝐶(𝑎 ) =( 𝑐 (𝑎 ), 𝑐 (𝑎 ), … , 𝑐 (𝑎 ) ), and applying MCDM framework, global utility value 𝑄(𝑎 ) of a candidate 
frontier can be measured and compared to other candidate values. Considering the proposed 
environment exploration strategy, the robot is directed to the candidate frontier with the highest 𝑄(𝑎 ). 

3.3. Criteria for Frontier Evaluation in Autonomous Search and Rescue Mission 

Criteria selection for autonomous search and rescue mission is essential to design a balanced 
strategy that addresses different requirements, set by the stakeholders. Considering the analysis of 
autonomous environment exploration strategies, robot decision-making modules are commonly 
driven by spatial-information-based criteria [36], such as distances between the robot and other 
objects. However, some search and rescue mission requirements, namely economic and social criteria, 
currently have lack evidence of an established and published globally-recognised evaluation 
methodology, suitable for frontier selection in search and rescue missions. Therefore, in the context 
of this research, we propose to estimate such criteria values by analysing the spatial information. 

A total of six criteria are proposed to design an effective decision-making strategy and to address 
technical, social, environmental, and economic requirements of autonomous search and rescue 
missions. The subset of criteria, namely 𝑐 , the distance to the control station, 𝑐 , the estimated 
amount of new information that would be gained after reaching the candidate location, 𝑐 , the 
estimated energy needed to reach the candidate location, and 𝑐 , the distance from the robot to 
candidate frontier location, are traditionally applied in modelling SAR missions [23,35,36]. In the 
context of this research, we also introduce two criteria, denoted as 𝑐 , the estimated danger to victims, 
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and 𝑐 , the estimated danger to the robot, to address social and economic aspects of search and rescue 
missions. The complete criteria set is presented in Table 1. 

Distance to the control station is a technical criterion that essentially defines if a robot can 
transmit the obtained information after reaching the candidate frontier [35,36]. If the control station 
has a constant position 𝑝  (𝑥,𝑦), the distance to the candidate frontier denoted as 𝑎 (𝑥,𝑦) in 𝐴 can 
be measured as a Euclidean distance. By minimising this criterion, the robot can be directed to the 
nearest candidate frontiers to conduct an exhaustive exploration of the nearby vicinity. On the 
contrary, maximising this criterion adjusts the robot behaviour to prioritise further located frontiers 
to conduct fast-paced environment coverage. Considering the operational parameters set to the robot 
path planning algorithm, the estimated measurement error for this criterion is set to ±1 m. 

Similarly, the Euclidean distance from the current robot position 𝑝 (𝑥,𝑦) to the candidate 
frontier 𝑎 (𝑥,𝑦) can be measured and minimised to avoid backtracking behaviour. This technical 
criterion should ensure that most of the frontiers around the robot would be visited before returning 
to the frontiers that are closer to the control station. 

The last technical criterion in the proposed criteria set, namely, the estimated amount of new 
information that is expected to be gained by visiting the candidate frontier 𝑎 (𝑥, 𝑦) is considered to 
be equal to the length of the frontier. In the context of this research, the autonomous robot applies an 
ROS-provided Gmapping module [41] to map the unknown environment. In this case, a grid 
representation is applied, where each cell contains occupancy information. By detecting free cell 
chains that are neighbouring unknown cells, robot decision-making module can measure candidate 
frontier length and direct the robot to frontiers that are estimated to provide more information. 
Considering the resolution of the reconstructed grid map, the estimated measurement error for this 
criterion is set to ±0.1 m. 

Estimated energy that would be consumed by reaching the candidate frontier represents the 
movement cost and address the environmental factor of search and rescue mission. The decision-
making module estimates the criterion value by measuring the time 𝑡  needed to reach the 
candidate frontier 𝑎 (𝑥, 𝑦). To estimate this criterion value, an autonomous robot computes a set of 
paths 𝑅 = (𝑟 , 𝑟 , … , 𝑟 )  for each candidate frontier 𝑎 (𝑥,𝑦)  in set 𝐴 , and each path 𝑟 =(𝑤𝑝 ,𝑤𝑝 , … ,𝑤𝑝 ) is constructed from a set of 𝑚 waypoints 𝑤𝑝. In 𝑟, starting from the current 
robot position 𝑝 =  𝑤𝑝  to the candidate frontier 𝑎 (𝑥,𝑦) =  𝑤𝑝 , two connecting waypoints 𝑤𝑝  
and 𝑤𝑝  create a path segment. Therefore, the distance between two waypoints can be denoted as 𝑑(𝑤𝑝 ,𝑤𝑝 )  and the corner between two lines can be expressed as 𝛼(𝑤𝑝 ,𝑤𝑝 ,𝑤𝑝 ) . The 
criterion value can be measured by: 𝑡 = ∑ 𝑑(𝑤𝑝 ,𝑤𝑝 )𝑣 + ∑ 𝛼(𝑤𝑝 ,𝑤𝑝 ,𝑤𝑝 )𝑣  (1) 

where 𝑣 = 0.1 m/s  is the minimum robot movement velocity, and 𝑣 = 0.1 ° s⁄   is the minimum 
robot rotation velocity. Naturally, the decision-making module should minimise the criterion to 
prolong the robot operation time. Considering the operational parameters set to the robot path 
planning algorithm, the estimated measurement error for this criterion is set to ±10 s. 

The estimated damage for following the planned path is an important economic criterion which 
addresses the robot safety in search and rescue missions. During these missions, several events may 
occur that can directly affect the autonomous environment exploration process (e.g., some parts of 
the building can collapse, blocking the previously traversable path or damaging the robot). High 
radiation, open fire sources, and other dangerous obstacles can also affect the robot, making it unable 
to continue the mission [9]. In the context of this research, such objects are treated as dangerous 
objects of interest (OOIs) that are randomly distributed through the search and rescue environment. 
The estimated danger to the robot is calculated by introducing a penalty point system. The decision-
making module calculates Euclidean distances 𝑑  from each waypoint 𝑤𝑝 in a path 𝑟 to all known 
dangerous OOIs in 𝑂  =  (𝑂𝑂𝐼 ,𝑂𝑂𝐼 , … ,𝑂𝑂𝐼 ). The penalty points 𝑝𝑝 are calculated by linearly 
increasing their value from 0 to 3, depending on the distance between the 𝑂𝑂𝐼  and each 𝑤𝑝 in 𝑟. 
For example, if the distance between 𝑤𝑝  and 𝑂𝑂𝐼  is greater than 3 m, the robot is safe and receives 



Symmetry 2020, 12, 162 7 of 21 

 

no penalty points. However, if the distance between 𝑤𝑝  and 𝑂𝑂𝐼  is 2 m, the robot receives one 
penalty point. Subsequently, if the distance is 0.5 m, robot receives 2.5 penalty points. Considering 
the resolution of the reconstructed grid map, the estimated measurement errors for point-based 
criteria are set to ±0.2 p, and the criterion value 𝑝𝑝  is estimated by the sum of all penalty points for 
each path by the following equation: 

𝑝𝑝 =   𝑑 𝑤𝑝 ,𝑂𝑂𝐼  

𝑑 𝑤𝑝 ,𝑂𝑂𝐼  = 3 − 𝑑 𝑤𝑝 ,𝑂 ;     if  𝑑 𝑤𝑝 ,𝑂𝑂𝐼 < 3                  0 otherwise
 

(2) 

Finally, the estimated danger to the victim is a social criterion, designed to direct the robot closer 
to an injured person and collect more data about them and their environment. First, the decision-
making module evaluates the Euclidean distance 𝑑  from each 𝑤𝑝 in the planned path 𝑟 to all 
visible victims 𝑂 = (𝑂𝑂𝐼 ,𝑂𝑂𝐼 , … ,𝑂𝑂𝐼 ). If 𝑑 <  6 m, the danger posed to the victim by nearby 
dangerous OOIs in 𝑂  =  (𝑂𝑂𝐼 ,𝑂𝑂𝐼 , … ,𝑂𝑂𝐼 )  can be estimated by applying the previously 
described linear point-based methodology. However, in this case, the area-of-effect zones for 
dangerous OOIs are increased to 6 m and the sum of danger points, denoted by 𝑑𝑝 , can be estimated 
by the following equation: 

𝑑𝑝 =   𝑑 𝑂𝑂𝐼 ,𝑂𝑂𝐼   

𝑑 𝑂𝑂𝐼 ,𝑂𝑂𝐼  = 6 − 𝑑 𝑂𝑂𝐼 ,𝑂𝑂𝐼 ;     if  𝑑 𝑂𝑂𝐼 ,𝑂𝑂𝐼 < 6                                             and 𝑑 𝑤𝑝 ,𝑂𝑂𝐼 < 6                      0 otherwise

 
(3) 

By utilising technical, environmental, economic, and social criteria, the robot decision-making 
module can make more precise decisions in search and rescue missions. However, criteria weights 
need to be adjusted to ensure the balanced and efficient environment exploration process. 

3.4. Weight Selection 

To ensure the efficiency of the proposed decision-making strategy, an expert group was formed 
to evaluate the applicability of the proposed criteria set, and to determine weights for each criterion. 
A total of seven experts working in the field of autonomous robots and decision-making systems 
participated in criteria ranking and weighting process. To convert variating expert opinions into a 
well-formed weight set, a stepwise weight assessment ratio analysis (SWARA) [42] is applied. The 
general weight calculation process by SWARA method can be described as follows: 

1. The criteria set directed to addressing common task requirements are composed and evaluated 
by the experts. 

2. Next, experts sort the criteria by their importance in descending order. 
3. Then, pairwise comparison is conducted to estimate criteria relative importance 𝑠 ↔ , and an 

average criteria importance values 𝑠  are calculated for each criterion. 
4. The coefficients of the comparative importance indicators are assessed by 𝑘 = 𝑠 + 1. 
5. The intermediate weights are calculated for each criterion by 𝑞 =  

. 

6. Finally, normalised criteria weight values are calculated by 𝑤 = ∑ . 

By analysing the autonomous unknown environment exploration problem, the experts have 
agreed on the criteria importance order, presented in Table 1. The criteria weight calculation process 
and results obtained by the SWARA method are provided in Tables 2 and 3. 
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Table 2. Pairwise comparison of criteria relative importance. 

Expert Pairwise Comparison of Criteria Relative Importance 𝒄𝟏↔𝟐 𝒄𝟐↔𝟑 𝒄𝟑↔𝟒 𝒄𝟒↔𝟓 𝒄𝟓↔𝟔 
1 0.25 0.20 0.40 0.30 0.05 
2 0.20 0.10 0.50 0.50 0.20 
3 0.30 0.30 0.20 0.80 0.25 
4 0.25 0.20 0.20 0.70 0.20 
5 0.40 0.25 0.35 0.40 0.10 
6 0.10 0.15 0.10 0.10 0.10 
7 0.20 0.00 0.30 0.40 0.20 

Table 3. Criteria weight determination for autonomous search and rescue mission. 

Criterion 

Average Value of 
Comparative 

Importance Indicators, 𝒔𝒋↔𝒋 𝟏 

Coefficients of 
Comparative Importance 

Indicators, 𝒌𝒋 
Recalculated 

Indicator 
Weights, 𝒒𝒋 

Final 
Weigh

ts, 𝒘𝒋 𝑐  - 1.000 1.000 0.270 𝑐  0.243 1.243 0.805 0.217 𝑐  0.171 1.171 0.687 0.186 𝑐  0.293 1.293 0.531 0.143 𝑐  0.457 1.457 0.365 0.099 𝑐  0.157 1.157 0.315 0.085 
- 3.703 - 

3.5. WASPAS-IVNS Framework 

The original weighted aggregated sum product assessment method was first introduced in [43]. 
Since then, the framework has been extended several times [44] to better address uncertainties in 
initial data. As a product of such development, a recent WASPAS extension by single-valued 
neutrosophic sets [45], namely WASPAS-SVNS, was introduced in [25]. This method essentially 
enables the robot designer to model decision-related information by truth, falsity, and indeterminacy 
functions and has already been applied in an autonomous environment exploration task [23]. The 
WASPAS framework is constructed from two objectives which provide additional reliability in the 
decision-making process. Also, the WASPAS method requires very few computational resources, 
which is especially relevant for real-time applications. However, to address the problem of the small 
errors produced by imprecise robot movements and imperfect sensor readings, we propose a new 
formulation of WASPAS method, modelled under interval-valued neutrosophic set environment, 
namely WASPAS-IVNS. The general properties of the interval-valued neutrosophic set (IVNS) [46], 
and the proposed WASPAS-IVNS framework are presented as follows. 

If a set of criteria modelled under the interval-valued neutrosophic environment is considered 
as a domain of problem-related objects 𝑋, and 𝑥 ∈ 𝑋 is a value of the single criterion, an interval-
valued neutrosophic set 𝑁 ⊂  𝑋 can be denoted by a general form of: 𝑁 = {⟨𝑥,𝑇 (𝑥), 𝐼 (𝑥),𝐹 (𝑥)⟩: 𝑥 ∈ 𝑋} (4) 

where 𝑇 (𝑥):𝑋 → [0, 1], 𝐼 (𝑥):𝑋 → [0, 1], 𝐹 (𝑥):𝑋 → [0, 1], and 0 ≤ 𝑇 (𝑥) + 𝐼 (𝑥) + 𝐹 (𝑥) ≤ 3 for 
all 𝑥 ∈ 𝑋. The three membership degree functions define 𝑁: the truth-membership degree function 𝑇 (𝑥), the indeterminacy-membership degree function 𝐼 (𝑥), and the falsity-membership degree 
function 𝐹 (𝑥). These functions are described by subsets of 𝑇 (𝑥) = [𝑖𝑛𝑓 𝑇 (𝑥), 𝑠𝑢𝑝 𝑇 (𝑥)] ⊆ [0, 1], 𝐼 (𝑥) = [𝑖𝑛𝑓 𝐼 (𝑥), 𝑠𝑢𝑝 𝐼 (𝑥)] ⊆ [0, 1] , 𝐹 (𝑥) = [𝑖𝑛𝑓 𝐹 (𝑥), 𝑠𝑢𝑝 𝐹 (𝑥)] ⊆ [0, 1]  with the sum 
condition of 0 ≤ 𝑠𝑢𝑝 𝑇 (𝑥) + 𝑠𝑢𝑝 𝐼 (𝑥) + 𝑠𝑢𝑝 𝐹 (𝑥) ≤  3. 

Like all multi-criteria decision-making methods, the WASPAS-IVNS approach begins with a 
construction of the decision matrix 𝑌. The single matrix object 𝑦 ∈ 𝑌, 𝑖 = 1, … ,𝑛 and 𝑗 = 1, … ,𝑚 is 
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modelled under the interval-valued neutrosophic environment and corresponds to the 𝑖  criteria of 𝑗  alternative (in this research, a candidate frontier). This decision matrix can be expressed as: 

𝑌 = 𝑦 ⋯ 𝑦⋮ ⋱ ⋮𝑦 ⋯ 𝑦  (5) 

Next, decision matrix elements are normalised by applying the following normalisation function: 𝑖𝑛𝑓 𝑦∗ = 𝑖𝑛𝑓 𝑦𝑚𝑎𝑥𝑦√𝑚 ,    𝑠𝑢𝑝 𝑦∗ = 𝑠𝑢𝑝 𝑦𝑚𝑎𝑥𝑦 √𝑚 (6) 

After element normalisation, the neutrosophication step is performed, and the initially crisp 
values of the decision matrix are transformed into interval-valued neutrosophic numbers. For this 
conversion, modification rates presented in [25] are applied.  

After this step, the first objective of WASPAS-IVNS framework, which is based on the sum of 
the total relative importance of the alternative 𝑗, is calculated by the following equation: 

𝑄( ) = (𝑦∗) ⋅ 𝑤max + ( (𝑦∗) ∙ 𝑤min )  (7) 

where 𝑗 is the alternative, and (𝑦∗)  are interval-valued neutrosophic members with 𝑤  weight. 𝐿  corresponds to criteria set members that are maximised, and 𝐿  corresponds to criteria set 
members that are minimised. 

The second objective of WASPAS-IVNS framework, which is based on the product total relative 
importance of alternative 𝑗, can be calculated by the following equation: 

𝑄( ) = (𝑦∗)max ∙ ( (𝑦∗)min )  (8) 

Members of this function share their definitions with those provided for Equation (7). Finally, 
the value of the joint generalised criteria is determined by: 𝑄 = 0.5𝑄 ( ) + 0.5𝑄 ( ) (9) 

To complete the WASPAS-IVNS objectives, the following interval neutrosophic algebra 
operations should be applied. The multiplication of interval-valued neutrosophic number (𝑦∗) =⟨[𝑖𝑛𝑓 𝑡 , 𝑠𝑢𝑝 𝑡 ], [𝑖𝑛𝑓 𝑖 , 𝑠𝑢𝑝 𝑖 ], [𝑖𝑛𝑓 𝑓 , 𝑠𝑢𝑝 𝑓 ]⟩  and a positive real number 𝜆  can be defined by 
Equation (10), and the complementary neutrosophic number component can be defined by Equation 
(11). The summation of two IVNNs (𝑦∗ ) = ⟨[𝑖𝑛𝑓 𝑡 , 𝑠𝑢𝑝 𝑡 ], [𝑖𝑛𝑓 𝑖 , 𝑠𝑢𝑝 𝑖 ], [𝑖𝑛𝑓 𝑓 , 𝑠𝑢𝑝 𝑓 ]⟩ 
and (𝑦∗ ) = ⟨[𝑖𝑛𝑓 𝑡 , 𝑠𝑢𝑝 𝑡 ], [𝑖𝑛𝑓 𝑖 , 𝑠𝑢𝑝 𝑖 ], [𝑖𝑛𝑓 𝑓 , 𝑠𝑢𝑝 𝑓 ]⟩  can be calculated by applying 
Equation (12). The power function of an interval-valued neutrosophic number and a positive real 
number 𝜆, required by the second WASPAS-IVNS objective, is defined by Equation (13). Finally, the 
multiplication result of two IVNNs (𝑦∗ ) = ⟨[𝑖𝑛𝑓 𝑡 , 𝑠𝑢𝑝 𝑡 ], [𝑖𝑛𝑓 𝑖 , 𝑠𝑢𝑝 𝑖 ], [𝑖𝑛𝑓 𝑓 , 𝑠𝑢𝑝 𝑓 ]⟩ 
and (𝑦∗ ) = ⟨[𝑖𝑛𝑓 𝑡 , 𝑠𝑢𝑝 𝑡 ], [𝑖𝑛𝑓 𝑖 , 𝑠𝑢𝑝 𝑖 ], [𝑖𝑛𝑓 𝑓 , 𝑠𝑢𝑝 𝑓 ]⟩  can be calculated by applying the 
Equation (14): 𝜆(𝑦∗) = 1 − (1 − 𝑖𝑛𝑓 𝑡 ) , 1− (1 − 𝑠𝑢𝑝 𝑡 ) , (𝑖𝑛𝑓 𝑖 ) , (𝑠𝑢𝑝 𝑖 ) , (𝑖𝑛𝑓 𝑓 ) , (𝑖𝑛𝑓 𝑓 )  (10) 

(𝑦∗) = ⟨[𝑖𝑛𝑓 𝑓 , 𝑠𝑢𝑝 𝑓 ], [1 − 𝑠𝑢𝑝 𝑖 , 1 − 𝑖𝑛𝑓 𝑖 ], [𝑖𝑛𝑓 𝑡 , 𝑠𝑢𝑝 𝑡 ]⟩ (11) 

(𝑦∗ ) + (𝑦∗ ) =    (𝑖𝑛𝑓 𝑡 + 𝑖𝑛𝑓 𝑡 − 𝑖𝑛𝑓 𝑡 ⋅ 𝑖𝑛𝑓 𝑡 ), (𝑠𝑢𝑝 𝑡 + 𝑠𝑢𝑝 𝑡 − 𝑠𝑢𝑝 𝑡 ⋅ 𝑠𝑢𝑝 𝑡 ) , [(𝑖𝑛𝑓 𝑖 ⋅ 𝑖𝑛𝑓 𝑖 ), (𝑠𝑢𝑝 𝑖 ⋅ 𝑠𝑢𝑝 𝑖 )],[(𝑖𝑛𝑓 𝑓 ⋅ 𝑖𝑛𝑓 𝑓 ), (𝑠𝑢𝑝 𝑓 ⋅ 𝑠𝑢𝑝 𝑓 )]     (12) 
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(𝑦∗) = (𝑖𝑛𝑓 𝑡 ) , (𝑠𝑢𝑝 𝑡 ) ,1 − (1 − 𝑠𝑢𝑝 𝑖 ) , 1 − (1 − 𝑖𝑛𝑓 𝑖 ) ,1− (1 − 𝑖𝑛𝑓 𝑓 ) , 1 − (1 − 𝑠𝑢𝑝 𝑓 )  (13) 

(𝑦∗ ) ⋅ (𝑦∗ ) = [(𝑖𝑛𝑓 𝑡 ⋅ 𝑖𝑛𝑓 𝑡 ), (𝑠𝑢𝑝 𝑡 ⋅ 𝑠𝑢𝑝 𝑡 )],(𝑖𝑛𝑓 𝑖 + 𝑖𝑛𝑓 𝑖 − 𝑖𝑛𝑓 𝑖 ⋅ 𝑖𝑛𝑓 𝑖 ),(𝑠𝑢𝑝 𝑖 + 𝑠𝑢𝑝 𝑖 − 𝑠𝑢𝑝 𝑖 ⋅ 𝑠𝑢𝑝 𝑖 ) ,(𝑖𝑛𝑓 𝑓 + 𝑖𝑛𝑓 𝑓 − 𝑖𝑛𝑓 𝑓 ⋅ 𝑖𝑛𝑓 𝑓 ), (𝑠𝑢𝑝 𝑓 + 𝑠𝑢𝑝 𝑓 − 𝑠𝑢𝑝 𝑓 ⋅ 𝑠𝑢𝑝 𝑓 )  (14) 

To determine and select the highest-ranked candidate frontier, the obtained values can be 
compared by applying the interval-valued neutrosophic number comparison functions, namely, 
score function, denoted by 𝑠(𝑄 ) , accuracy function, denoted by 𝑎(𝑄 ) , and certainty function, 
denoted by 𝑐(𝑄 ). These functions can be expressed by the following equations: 𝑠(𝑄 ) = 𝑖𝑛𝑓 𝑡 + 1 − 𝑠𝑢𝑝 𝑖 + 1 − 𝑠𝑢𝑝 𝑓 ,𝑠𝑢𝑝 𝑡 + 1 − 𝑖𝑛𝑓 𝑖 + 1 − 𝑖𝑛𝑓 𝑓  (15) 

𝑎(𝑄 ) = 𝑚𝑖𝑛{ 𝑖𝑛𝑓 𝑡 − 𝑖𝑛𝑓 𝑓 , 𝑠𝑢𝑝 𝑡 − 𝑠𝑢𝑝 𝑓 },𝑚𝑎𝑥{ 𝑖𝑛𝑓 𝑡 − 𝑖𝑛𝑓 𝑓 , 𝑠𝑢𝑝 𝑡 − 𝑠𝑢𝑝 𝑓 }  (16) 

𝑐(𝑄 ) = [𝑖𝑛𝑓 𝑡 , 𝑠𝑢𝑝 𝑡 ] (17) 

The comparison of two SVNNs by score, accuracy and certainty functions can be completed in 
the following: 

1. If 𝑝(𝑠(𝑄 ) ≥ 𝑠(𝑄 )) > 0.5, then 𝑄 ≻ 𝑄 , or 𝑄  is superior to 𝑄 . 
2. If 𝑝(𝑠(𝑄 ) ≥ 𝑠(𝑄 )) = 0.5 and 𝑝 𝑎(𝑄 ) ≥ 𝑎(𝑄 ) > 0.5, then 𝑄 ≻ 𝑄 , or 𝑄  is superior to 𝑄 . 
3. If 𝑝(𝑠(𝑄 ) ≥ 𝑠(𝑄 )) = 0.5, 𝑝(𝑎(𝑄 ) ≥ 𝑎(𝑄 )) = 0.5 and 𝑝 𝑐(𝑄 ) ≥ 𝑐(𝑄 ) > 0.5, then 𝑄 ≻ 𝑄 , 

or 𝑄  is superior to 𝑄 . 
4. If 𝑝(𝑠(𝑄 ) ≥ 𝑠(𝑄 )) = 0.5 , 𝑝(𝑎(𝑄 ) ≥ 𝑎(𝑄 )) = 0.5  and 𝑝(𝑐(𝑄 ) ≥ 𝑐(𝑄 )) = 0.5 , then 𝑄  is 

equal to 𝑄 , or 𝑄  ⁓ 𝑄 . 

The degree of the possibility of the score function is determined by the following equation: 𝑝(𝑠(𝑄 ) ≥ 𝑠(𝑄 ))= 𝑚𝑎𝑥 1 −𝑚𝑎𝑥 𝑠𝑢𝑝( 𝑠(𝑄 )) − 𝑖𝑛𝑓( 𝑠(𝑄 ))(𝑠𝑢𝑝( 𝑠(𝑄 )) − 𝑖𝑛𝑓( 𝑠(𝑄 ))) + (𝑠𝑢𝑝( 𝑠(𝑄 )) − 𝑖𝑛𝑓( 𝑠(𝑄 ))) , 0 , 0  (18) 

The degrees of the possibility for the accuracy and certainty functions are calculated in the 
respective approach. Next, we provide the practical application example of the proposed WASPAS-
IVNS framework in search and rescue missions. 

4. Experimental Evaluation of WASPAS-IVNS Framework 

In this research, search and rescue missions with time restrictions are considered. Robot 
operation time is bounded by a 20-min time interval, through which the autonomous robot must map 
the exploration environment and mark the detected OOI’s on it. In this experiment, the OOIs are 
limited to human victims and dangerous objects. 
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4.1. Search and Rescue Environment 

To assess the proposed WASPAS-IVNS framework in search and rescue missions, two indoor 
environments representing commercial-type and public-type buildings were considered. In the 
commercial-type building environments (e.g., retail shops), rooms and staff-only areas are relatively 
small and are commonly connected to each other by the central hall. This type of structure requires 
the robot to constantly backtrack to previous locations in order to visit new ones. Differently, public-
type buildings, such as hospitals, are distinguished by wide open spaces and looping corridors, 
enabling the robot to observe more environment and detect dangerous OOIs in advance. Both of these 
environments are presented in Figure 2. 

  
(a) (b) 

Figure 2. (a) The test environment representing commercial-type buildings; (b) The test environment 
representing public-type buildings. 

Dangerous objects and victims are placed at random locations in both environments as 
presented in Figure 2. In this research, the red dots represent dangerous OOIs and yellow dots 
represent victims. The public-type building contains five victims and five dangerous objects that the 
robot should detect within the set time interval, and the commercial-type environment contains three 
victims, and two dangerous objects. Next, the example of candidate frontier evaluation by the 
proposed WASPAS-IVNS framework is presented. 

4.2. Frontier Evaluation by WASPS-IVNS Framework 

To highlight the practical application of the proposed WASPAS-IVNS framework, an example 
solution to one of the autonomous robot decision-making iterations is provided. The public-type 
building environment information, as mapped by the robot at the considered candidate frontier 
selection iteration, is provided in Figure 3. One victim and one dangerous object have already been 
found by the robot and marked by yellow and red dots, respectively. The robot is located at the 
position marked by a black dot, and the black line represents its previous movement trajectory. The 
available frontier regions are coloured in blue, and the green dots represent candidate frontier centre 
points 𝑎 (𝑥, 𝑦) that robot decision-making module must evaluate. At this iteration, the robot has a 
total of seven candidate frontiers to choose from. 
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Figure 3. The public-type building environment mapped by the robot at the considered candidate 
frontier selection iteration. 

First, criteria values are estimated for each candidate frontier location by applying the proposed 
methodology. In this iteration, no new OOIs were detected around candidate frontiers, hence 𝑐  and 𝑐  criteria values are null. Although these criteria do not influence the decision-making process in 
the considered iteration, it is highly recommended to change null values obtained in such situations 
to small positive number to stabilise the numerical computational procedure. The constructed 
decision matrix for the sample iteration is presented in Table 4. 

Table 4. The initial decision matrix. 

 
𝒄𝟏 

Min 
𝒄𝟐 

Max 
𝒄𝟑 

Max 
𝒄𝟒 

Min 
𝒄𝟓 

Min 
𝒄𝟔 

Min 𝑤 0.270 0.217 0.186 0.143 0.099 0.085 𝑎  18.89 12.7 0.10 0.10 25.2777 12.94 𝑎  11.84 9.1 0.10 0.10 37.5878 7.13 𝑎  16.54 4.0 0.10 0.10 39.0923 10.28 𝑎  12.15 10.3 0.10 0.10 33.0351 14.27 𝑎  18.54 16.4 0.10 0.10 60.8959 21.80 𝑎  29.33 15.5 0.10 0.10 31.5886 23.57 𝑎  16.47 4.0 0.10 0.10 63.4936 20.61 

Next, the neutrosophication step is performed. Results obtained by decision matrix element 
conversion to interval-valued neutrosophic numbers by WASPAS-IVNS are presented in Table 5. 
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Table 5. The decision matrix after the neutrosophication step by WASPAS-IVNS framework. 

 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔 𝑎  
[(0.223, 0.802, 
0.752), (0.248, 
0.827, 0.777)] 

[(0.289, 0.757, 
0.707), (0.293, 
0.761, 0.711)] 

[(0.139, 0.672, 
0.622), (0.378, 
0.881, 0.861)] 

[(0.139, 0.672, 
0.622), (0.378, 
0.881, 0.861)] 

[(0.079, 0.859, 
0.819), (0.181, 
0.921, 0.921)] 

[(0.184, 0.836, 
0.786), (0.214, 
0.858, 0.816)] 𝑎  

[(0.135, 0.870, 
0.840), (0.160, 
0.882, 0.865)] 

[(0.206, 0.839, 
0.789), (0.211, 
0.844, 0.794)] 

[(0.139, 0.672, 
0.622), (0.378, 
0.881, 0.861)] 

[(0.139, 0.672, 
0.622), (0.378, 
0.881, 0.861)] 

[(0.142, 0.805, 
0.755), (0.245, 
0.879, 0.858)] 

[(0.094, 0.887, 
0.875), (0.125, 
0.906, 0.906)] 𝑎  

[(0.194, 0.831, 
0.781), (0.219, 
0.853, 0.806)] 

[(0.089, 0.906, 
0.906), (0.094, 
0.911, 0.911)] 

[(0.139, 0.672, 
0.622), (0.378, 
0.881, 0.861)] 

[(0.139, 0.672, 
0.622), (0.378, 
0.881, 0.861)] 

[(0.150, 0.798, 
0.748), (0.252, 
0.875, 0.850)] 

[(0.143, 0.863, 
0.826), (0.174, 
0.879, 0.857)] 𝑎  

[(0.139, 0.868, 
0.836), (0.164, 
0.881, 0.861)] 

[(0.234, 0.812, 
0.762), (0.238, 
0.816, 0.766)] 

[(0.139, 0.672, 
0.622), (0.378, 
0.881, 0.861)] 

[(0.139, 0.672, 
0.622), (0.378, 
0.881, 0.861)] 

[(0.118, 0.829, 
0.779), (0.221, 
0.892, 0.882)] 

[(0.204, 0.815, 
0.765), (0.235, 
0.846, 0.796)] 𝑎  

[(0.219, 0.806, 
0.756), (0.244, 
0.831, 0.781)] 

[(0.373, 0.672, 
0.622), (0.378, 
0.677, 0.627)] 

[(0.139, 0.672, 
0.622), (0.378, 
0.881, 0.861)] 

[(0.139, 0.672, 
0.622), (0.378, 
0.881, 0.861)] 

[(0.262, 0.685, 
0.635), (0.365, 
0.788, 0.738)] 

[(0.320, 0.699, 
0.649), (0.351, 
0.730, 0.680)] 𝑎  

[(0.353, 0.672, 
0.622), (0.378, 
0.697, 0.647)] 

[(0.353, 0.693, 
0.643), (0.357, 
0.697, 0.647)] 

[(0.139, 0.672, 
0.622), (0.378, 
0.881, 0.861)] 

[(0.139, 0.672, 
0.622), (0.378, 
0.881, 0.861)] 

[(0.111, 0.836, 
0.786), (0.214, 
0.894, 0.889)] 

[(0.347, 0.672, 
0.622), (0.378, 
0.703, 0.653)] 𝑎  

[(0.193, 0.832, 
0.782), (0.218, 
0.854, 0.807)] 

[(0.089, 0.906, 
0.906), (0.094, 
0.911, 0.911)] 

[(0.139, 0.672, 
0.622), (0.378, 
0.881, 0.861)] 

[(0.139, 0.672, 
0.622), (0.378, 
0.881, 0.861)] 

[(0.275, 0.672, 
0.622), (0.378, 
0.775, 0.725)] 

[(0.302, 0.718, 
0.668), (0.332, 
0.748, 0.698)] 

The numerical results obtained by the first and second objectives of WASPAS-IVNS framework 
and the joint generalised criteria values are provided in Table 6. The candidate frontier ranks are 
obtained by applying the score function and are provided in Table 7. Considering the proposed 
environment exploration strategy, in this example iteration, frontier denoted by 𝑎  has the highest 
rank amongst candidate frontiers, and therefore is chosen as a next robot destination. Candidate 
frontier 𝑎  has similar initial criteria values and is ranked second. The main factor determining the 
next robot move, in this case, is 𝑐  criterion, which forces the robot decision-making module to 
prioritise the closer location. 

Table 6. Numerical results obtained by WASPAS-IVNS framework. 

 𝟎.𝟓𝑸(𝟏) 𝟎.𝟓𝑸(𝟐) 𝑸 𝑎  [(0.604, 0.28, 0.304), 
(0.696, 0.362, 0.396)] 

[(0.137, 0.814, 0.798), 
(0.202, 0.868, 0.863)] 

[(0.658, 0.228, 0.243), 
(0.757, 0.314, 0.342)] 𝑎  [(0.616, 0.268, 0.281), 

(0.719, 0.354, 0.384)] 
[(0.124, 0.844, 0.823), 
(0.177, 0.887, 0.876)] 

[(0.664, 0.226, 0.231), 
(0.769, 0.314, 0.336)] 𝑎  [(0.579, 0.291, 0.323), 

(0.677, 0.378, 0.421)] 
[(0.079, 0.882, 0.886), 
(0.115, 0.916, 0.921)] 

[(0.612, 0.256, 0.286), 
(0.714, 0.347, 0.388)] 𝑎  [(0.613, 0.271, 0.288), 

(0.712, 0.354, 0.387)] 
[(0.129, 0.834, 0.815), 
(0.185, 0.879, 0.871)] 

[(0.663, 0.226, 0.234), 
(0.766, 0.311, 0.337)] 𝑎  [(0.565, 0.323, 0.353), 

(0.647, 0.405, 0.435)] 
[(0.136, 0.805, 0.801), 
(0.199, 0.865, 0.864)] 

[(0.624, 0.260, 0.283), 
(0.717, 0.350, 0.376)] 𝑎  [(0.551, 0.352, 0.372), 

(0.628, 0.419, 0.449)] 
[(0.129, 0.814, 0.803), 
(0.197, 0.871, 0.871)] 

[(0.609, 0.287, 0.298), 
(0.702, 0.365, 0.391)] 𝑎  [(0.534, 0.338, 0.375), 

(0.625, 0.426, 0.466)] 
[(0.072, 0.890, 0.895), 
(0.105, 0.923, 0.928)] 

[(0.568, 0.301, 0.336), 
(0.664, 0.393, 0.432)] 
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Table 7. Numerical results and candidate frontier rank obtained by applying score function. 

 𝒔(𝑸) Rank 𝑎  [2.002, 2.286] 3 𝑎  [2.014, 2.312] 1 𝑎  [1.877, 2.172] 5 𝑎  [2.015, 2.306] 2 𝑎  [1.898, 2.174] 4 𝑎  [1.853, 2.117] 6 𝑎  [1.743, 2.027] 7 

Compared to the WASPAS-SVNS method, the modelling of candidate frontier evaluation 
problem under interval-valued neutrosophic numbers enables the robot decision-making module to 
add into consideration the inaccuracies obtained by robot sensors and software component 
estimations. Unlike the WASPAS-SVNS method, the proposed WASPAS-IVNS framework provides 
additional tools for evaluating similar criteria values, and therefore enables the robot decision-
making module to better estimate the final score values of the candidate frontiers. This framework 
difference is illustrated in Table 8, which presents candidate frontier score and rank results of the 
initial decision matrix (Table 4), obtained by applying the WASPAS-SVNS methodology described in 
[23]. In this example 𝑎  and 𝑎  frontier scores remain similar. However, due to a less effective 
approach, the robot is directed to 𝑎  frontier direction. 

Table 8. The candidate frontier score results and rank obtained by applying WASPAS-SVNS 
methodology, presented in [23]. 

 𝒔(𝑸)  Rank 𝑎  0.6655 3 𝑎  0.6708 2 𝑎  0.5982 5 𝑎  0.6719 1 𝑎  0.6171 4 𝑎  0.5812 6 𝑎  0.5193 7 

4.3. Search and Rescue Mission Simulation Results 

Next, we discuss the autonomous search and rescue mission results, obtained by the ten test 
runs in commercial-type and public-type building environments. The same set of already introduced 
rules were applied in each test. The obtained environment information in square meters, received 
penalty points, and a number of detected dangerous objects and victims are presented in Table 9. 
 



Symmetry 2020, 12, 162 15 of 21 

 

Table 9. Assessment results obtained by the WASPAS-IVNS framework in commercial and public-type buildings. 

  Test Run  
  1 2 3 4 5 6 7 8 9 10 Average Value 

Public building environment 

Environment information 811.2 861.7 796.4 895.9 706.2 783.0 877.0 752.4 771.5 873.4 812.9 
Received penalty points 2.36 0.86 0.00 4.13 0.00 0.79 1.39 0.90 0.00 0.00 1.04 

Detected dangerous objects 2 3 2 3 2 2 3 2 2 2 2.3 
Detected victims 2 1 2 2 2 3 2 2 3 3 2.2 

Commercial building environment 

Environment information 494.7 495.0 494.9 494.5 494.0 495.5 460.8 494.6 494.2 494.7 491.3 
Received penalty points 4.27 1.79 5.12 7.79 1.87 4.32 10.45 11.22 4.50 2.94 5.43 

Detected dangerous objects 2 2 2 2 2 2 2 2 2 2 2 
Detected victims 3 3 3 3 3 3 3 3 3 3 3 
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By comparing robot behaviour and the results obtained between the commercial-type and 
public-type building environments, several observations can be made. The results of the autonomous 
robot exploration obtained in the small commercial-type building environments are presented in 
Figure 4. 

  
(a) (b) 

Figure 4. (a) The average of environment information obtained during ten 20-min-long autonomous 
search and rescue missions in commercial-type building environment; (b) The average penalty points 
obtained by the robot during the same test runs. 

In this environment, the autonomous robot was able to map the whole exploration space, 
totalling at an average of 491.3 square meters, and detect all OOIs before the given time limit. 
However, the robot also received heavy penalties, averaging at 5.43 penalty points. This can be 
explained by addressing the proposed environment exploration strategy, namely the distribution of 
criteria weights. The proposed strategy prioritises exploration before robot safety, and therefore, 
ensures that nearby locations would be visited first. As can be seen in Figure 4 and from the robot 
movement trajectory in one of the test runs, presented in Figure 5, robot decision-making module 
first directs the robot to visit the room on the left. However, the dangerous obstacle is not seen from 
the robot starting location, and this criterion does not participate in the decision-making process. 
Therefore, the robot drives into a room and receives a penalty at early exploration stages. 

However, a different behaviour can be observed near the end of the search and rescue mission. 
When the robot decision-making module has to choose between the room at the top-right and the 
room at the bottom-left corner of the map, the robot is first directed to visit the room at the top. In 
this situation, the robot can see the victim in a nearby room, and a dangerous object, located at the 
bottom of the map. The proposed decision-making strategy prioritises the minimisation of the 
expected damage to the robot and to make contact with the victim. Hence, the last room is visited 
only when there are no more options left. Here, by evading the dangerous OOI blocking its way, the 
robot detects the hidden victim. 
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Figure 5. Autonomous robot movement trajectory in commercial building environment. 

The results of autonomous robot exploration in a public-type building environment are 
presented in Figure 6.  

  
(a) (b) 

Figure 6. (a) The average of environment information obtained during ten 20-min-long autonomous 
search and rescue missions in public-type building environment; (b) The average penalty points 
obtained by the robot during the same test runs. 

Differently from the commercial-type building environments, in a public-type building 
environment, the robot was not able to complete an exhaustive environment exploration, due to the 
set time restrictions. These results are to be expected when applying the proposed environment 
exploration strategy, especially when considering the 𝑐  criterion, denoting the distance from the 
candidate frontier location to the robot control centre. The criterion is minimised, to ensure that the 
robot will be able to transfer the obtained information after reaching the candidate frontier. Therefore, 
at the start of the search and rescue mission, the robot spends a lot of time analysing nearby locations, 
as presented by the robot movement trajectory in one of the test runs, depicted in Figure 7. 
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Figure 7. Autonomous robot movement trajectory in public building environment. 

On average, the robot managed to map 812.9 square meters of environmental information and 
detect 2.3 dangerous objects and 2.2 victims. However, the robot also received fewer penalty points, 
averaging at 1.04. The small number of received penalty points can also be explained not only by the 
integration of the proposed criteria, but also by analysing the physical structure of the test 
environment. In this case, wide-open spaces enable the robot to detect dangerous objects in advance 
and to make the decisions accordingly. 

5. Conclusions 

Autonomous robot applications in search and rescue missions requires the robot decision-
making module to be capable of making effective decisions in unknown environments by taking into 
consideration a set of mission-related criteria. However, the quality of robot-made decisions can be 
affected by the small errors in the initial data (e.g., imprecise environment map representation or 
sensor readings). Hence, in this research, a new frontier evaluation strategy is proposed for modelling 
search and rescue missions by introducing a new set of criteria that addresses technical, 
environmental, social, and economic factors of SAR missions. The robot-applied candidate frontier 
evaluation process is explicitly controlled by the proposed interval-valued neutrosophic WASPAS 
framework, namely, WASPAS-IVNS. This method is introduced to improve the decision-making 
process by addressing small measurement errors, obtained due to imperfect sensor readings and 
imprecise robot movements.  

The experimental evaluation results show that our proposed method is effective in search and 
rescue scenarios and can be applied to solve complex real-time tasks. By addressing the estimated 
measurement errors, the proposed decision-making framework provides additional reliability when 
comparing candidate frontiers with similar initial criteria values, as presented in Section 4.2. In 
relatively small commercial-type buildings, the robot can conduct an exhaustive search and create a 
complete map of the environment before reaching the given time limit of 20 min. However, bigger, 
public-type building environments are more problematic in a sense that robot has to cover more area 
with same time restrictions. Therefore, the proposed criteria list should be adjusted accordingly. For 
example, the 𝑐  criterion should be maximised to direct the robot to further located frontiers. 

The conducted experiments also show that the biggest threats to the robot in such environments 
are unknown damage sources. The proposed criteria set is only effective when the robot can detect 
and evaluate all task-related information. If the robot has no information about the objects located 
around the corners, the decision-making module has no method to estimate the possible danger or 
benefit of finding a victim and makes the decision, based only on 𝑐 , 𝑐 , 𝑐 , 𝑐  criteria. 

For possible future work, the authors will consider addressing this problem by introducing 
additional robot movement rules that would stop the robot and force it to re-evaluate the decision as 
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soon as it drives through the doors or obtains new environment information. The authors also 
consider expanding the proposed criteria list by conducting a more in-depth interview of 
stakeholders to identify and address other common search and rescue requirements. 
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