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Abstract: This paper proposes neutrosophic vague N-soft sets which is composed of neutrosophic vague
sets and N-soft sets for the first time. The new hybrid model includes a pair of asymmetric functions:
truth-membership and false-membership, and an indeterminacy-membership function. Some useful
operations and propositions are given and illustrated by examples. Moreover, a method of priority
relation ranking based on neutrosophic vague N-soft sets is presented. The validity of the method is
verified by comparison. It is more flexible and reasonable to use this method in our daily life. Finally,
a potential application of multi-attribute decision making is presented.

Keywords: neutrosophic vague sets; N-soft sets; priority relation ranking method; multi-attribute
decision making

1. Introduction

Life is full of uncertainty, and people’s cognition begins with uncertainty. By dealing with
uncertain information, we can obtain more objective judgment. A lot of scholars in related fields
have put forward some theories to solve these problems involving vagueness or subjectivity, such as
fuzzy sets [1], rough sets [2], intuitionistic fuzzy sets [3], vague sets [4] and so on. But these theories
still have many shortcomings in some problems, Molodtsov [5] thought that one reason for these
shortcomings may be the lack of the parametrization tool of the theory. Subsequently the soft set theory
overcame these shortcomings, which was introduced by Molodtsov [5] in 1999. Then, there are many
mixed models of the soft sets. Maji proposed the fuzzy soft sets [6] and the intuitionistic fuzzy soft
sets [7]. Yang [8] proposed the interval fuzzy soft sets. Xu [9] proposed vague soft sets. The concept of
possibility fuzzy soft sets as extensions of soft set was proposed by Alkhazaleh et al. [10]. Feng et al. [11]
proposed the basic concepts of rough fuzzy sets, rough soft sets, soft rough sets and soft rough fuzzy
sets through fusion fuzzy sets, and gave corresponding basic properties. Peng [12] proposed interval
valued intuitionistic hesitant fuzzy soft sets.

In terms of uncertainty, the fuzzy sets and the intuitionistic fuzzy sets are not as good as the
neutrosophic sets. As an extension of the intuitionistic fuzzy sets, neutrosophic set [13] was introduced
by Smarandache. Then Maji [14] introduced neutrosophic soft sets in 2013. The theory of neutrosophic
vague set was proposed by Alkhazaleh [15] in 2015. Moreover, there are many hybrid models of
neutrosophic sets, such as intuitionistic neutrosophic soft sets [16], interval-valued neutrosophic soft
sets [17], neutrosophic vague soft sets [18] and so on. Of course, there are many methods to be applied
in neutrosophic sets and its hybrid models, such as similarity measures between interval neutrosophic
sets [19], similarity and entropy of neutrosophic soft sets [20], improved correlation coefficients of
neutrosophic sets [21] and so on.

From the hybrid models of soft sets, most researchers use binary evaluation as usual. However,
in our daily life, we often find non-binary data. An extended model of soft sets called N-soft sets was

Symmetry 2020, 12, 853; doi:10.3390/sym12050853 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/12/5/853?type=check_update&version=1
http://dx.doi.org/10.3390/sym12050853
http://www.mdpi.com/journal/symmetry


Symmetry 2020, 12, 853 2 of 20

designed by Fatimah et al. [22]. It describes the importance of order grades in practical problems,
breaks away from binary constraints and opens up our thoughts. However, N-soft set is not enough to
express content about rating or grades occurrence, nor can it specifically describe the occurrence of
vagueness. For this purpose, as generalized models of N-soft sets, fuzzy N-soft sets, hesitant N-soft
sets, hesitant fuzzy N-soft sets, interval valued hesitant fuzzy N-soft sets and intuitionistic fuzzy N-soft
rough sets were introduced by Akram et al. [23–27].

Multi-attribute decision making refers to the process of finding the optimal solution by
comprehensively evaluating multiple standard values of all solutions in a complex scenario.
Fatimah et al. [22] use N-sets choice values and T- choice values to rank the alternatives in U.
The decision process is an extension of the decision process of the soft set without reduction of
the parameters. Akram et al. [23] used score function method and comparison table method to
solve practical problems about (F, N)-soft sets. And Akram et al. also extended the Technique for
Order Preference by Similarity to an Ideal Solution (TOPSIS) method to deal with complex and
interval-valued hesitant fuzzy N-soft sets information. Harish Garg et al. [28] proposed a multi-criteria
decision method about single-valued neutrosophic sets based on frank choquet heronian mean operator.
Peide Liu et al. [29] proposed a new three-way decision model with intuitionistic fuzzy numbers to
solve multiple attribute decision making problems. Ordinal Priority Approach (OPA) in multiple
attribute decision making [30] is designed to solve all types of multi-attribute decision making problems
including group decision making and obtaining weights of experts. Ordered weighted averaging
distance measure based on the single-valued neutrosophic linguistic was further presented in [31].
At present, more and more researchers are working on a better multi-attribute decision making method.

In the paper, we introduce a new concept called neutrosophic vague N-soft sets based on both
neutrosophic vague soft sets and N-soft sets. The new hybrid model includes a pair of asymmetric
functions: truth-membership and false-membership, and an indeterminacy-membership function.
We use δkp(x) to define the grade of object xi under attribute ej, where k-degree risk value represents the
risk preference of the decision maker and k may be a number between 0 and 1 or a closed sub-interval
of [0, 1]. In the definition of grade, δkp(x) containing the idea of probability should be a variable based
on the ratio of truth membership T̂NV(x) and false membership F̂NV(x). Therefore, this model can
make a very flexible decision based on the opinions of decision maker and experts. What’s more,
priority relation ranking method based on neutrosophic vague N-soft sets is proposed for the first
time. It can not only ensure that the research object can meet the decision maker’s requirements under
each attribute, but also effectively avoid that the value of the good and bad attributes to be canceled
out each other. By comparing the ranking results of the existing methods and our proposed method,
we observe that their result is the same, which means that there is a consistency among our proposed
decision making method and the existing methods. But the method we proposed is more reasonable
because the idea of probability is implied in the grade. So the method is more reasonable and effective
when considering the overall situation. The comparison of the proposed concept with some other
concepts is denoted by Table 1.

Table 1. Comparison of the proposed concept with some other concepts.

The References Parametrization N-Binary Contains Information about More Reasonable
of Theories Tool the Occurrence of Grades Grade Definition

[1–4] etc. inadequacy - - -
[5–12,16–18] etc. adequacy binary - -

[22] adequacy N-binary No No
[23–27] etc. adequacy N-binary Yes No

The proposed theory adequacy N-binary Yes Yes

The organization of this paper is as follows. Some new definitions related to newly proposed
model were provided in Section 2. In Section 3, definitions, basic operations and propositions about
neutrosophic vague N-soft sets are introduced. In Section 4, the priority relation ranking method
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based on neutrosophic vague N-soft sets is proposed and it is applied to practical problems. Finally,
conclusion is presented in Section 5.

2. Preliminaries

In this section, in order to complete the presentation and facilitate future discussion, we will
review several definitions that are useful for our paper.

Definition 1. [4] Let U = {x1, x2, · · · , xn}. A vague set A = {xi, [tA(xi), 1− fA(xi)] | xi ∈ U}, i.e.,
A(xi) = [tA(xi), 1 − fA(xi)] and the condition 0 ≤ tA(xi) ≤ 1 − fA(xi) should hold for any xi ∈ U,
where tA(xi) is called the true membership degree of element xi to the vague set A, while fA(xi) is the degree of
false membership of the element xi to the vague set A.

Definition 2. [4] Let U = {x1, x2, · · · , xn}, A, B be two vague sets, then their union, intersection, and the
complement of vague sets A are defined as follows:

A ∪ B = {(xi, [max(tA(xi), tB(xi)), max(1− fA(xi), 1− fB(xi))] | xi ∈ U)},
A ∩ B = {(xi, [min(tA(xi), tB(xi)), min(1− fA(xi), 1− fB(xi))] | xi ∈ U)},

Ac = {(xi, [ fA(xi), 1− tA(xi)] | xi ∈ U)}.

Definition 3. [4] Let U = {x1, x2, · · · , xn}, A, B be two vague sets. If ∀ xi ∈ U, tA(xi) ≤ tB(xi), 1−
fA(xi) ≤ 1− fB(xi), then A is called a vague subset of B, denoted by A ⊆ B, where 1 ≤ i ≤ n.

Definition 4. [13] Let U be a universe of objects. A neutrosophic set AN in U is characterized by a
truth-membership function TAN , a indeterminacy-membership function IAN and a falsity-membership function
FAN . TAN (x), IAN (x) and FAN (x) are real standard or nonstandard subsets of ]−0, 1+[. It can be written as
AN = {< x, (TAN (x), IAN (x), FAN (x)) >: x ∈ U}. There is no restriction on the sum of TAN (x), IAN (x)
and FAN (x), so−0 ≤ supTAN (x) + supIAN (x) +supFAN (x) ≤ 3+.

Here, 1+ = 1 + ε, where 1 is its standard part and ε its non-standard part. Similarly, −0 = 0− ε,
where 0 is its standard part and ε its non-standard part. However, ]−0, 1+[ will be difficult to be applied
in the real applications, so we need to replace ]−0, 1+[ with the interval [0, 1] in practical applications.
We can see single valued neutrosphic sets in [32].

Definition 5. [15] Let ANV is a neutrosophic vague set on the universe of U and ANV = {< x; T̂ANV (x);
ÎANV (x); F̂ANV (x); x ∈ U >} whose truth-membership, indeterminacy-membership, and falsity-membership
functions are defined as follows:

T̂ANV (x) = [T−ANV
, T+

ANV
] = [T−ANV

, 1− F−ANV
], ÎANV (x) = [I−ANV

, I+ANV
],

F̂ANV (x) = [F−ANV
, F+

ANV
] = [F−ANV

, 1− T−ANV
], where−0 ≤ T−ANV

+ I−ANV
+ F−ANV

≤ 2+.

Definition 6. [15] Let ANV and BNV be two neutrosophic vague sets in the universe U, then the intersection
HNV = ANV ∩ BNV , union CNV = ANV ∪ BNV and the complement of vague sets Ac

NV are defined as follows:

HNV={< x; T̂HNV (x); ÎHNV (x); F̂HNV (x); x ∈U >},

where T̂HNV (x)=[min(T−ANV
, T−BNV

), min(T+
ANV

, T+
BNV

)], ÎHNV (x)=[max(I−ANV
, I−BNV

), max(I+ANV
, I+BNV

)],
F̂HNV (x)=[max(F−ANV

, F−BNV
), max(F+

ANV
, F+

BNV
)];

CNV={< x; T̂CNV (x); ÎCNV (x); F̂CNV (x); x ∈U >},

where T̂CNV (x)=[max(T−ANV
, T−BNV

), max(T+
ANV

, T+
BNV

)], ÎCNV (x)=[min(I−ANV
, I−BNV

), min(I+ANV
, I+BNV

)],
F̂CNV (x)=[min(F−ANV

, F−BNV
), min(F+

ANV
, F+

BNV
)];

Ac
NV={<x;T̂c

ANVx
(x); Îc

ANVx
(x);F̂c

ANVx
(x);x∈U>},
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where T̂c
ANVx

(x)=[1− T+
ANV

, 1− T−ANV
], Îc

ANVx
(x)=[1− I+ANV

, 1− I−ANV
], F̂c

ANVx
(x)=[1− F+

ANV
, 1− F−ANV

].

Definition 7. [18] Let U be a universe, E a set of parameters and T ⊆ E. (F̂, T) is called a neutrosophic vague
soft set (NVSS) over U where F̂ is a mapping given by F̂ : T → NV(U), and NV(U) denotes the set of all
neutrosophic vague subsets of U.

Definition 8. [22] Let U be a universe under consideration and E be a set of attributes, T ⊆ E. Let G =

{0, 1, 2, · · · , N − 1} be a set of ordered grades, where N ∈ {2, 3, · · · }. A triple (F, T, N) is called an N-soft set
on U if F is a mapping from T to 2U×G, for each t ∈ T and x ∈ U, there is a unique (x, gt) ∈ U × G such that
(x, gt) ∈ F(t), gt ∈ G.

3. Neutrosophic Vague N-Soft Sets

3.1. The Concept of Neutrosophic Vague N-Soft Sets

If U = {x1, x2, · · · , xn} and E = {e1, e2, · · · , em}. We denote by NV(E) the set of all neutrosophic
vague soft sets on U, then we describe the mapping NV as :

NV(ej) = {< x1, T̂NV(x1), ÎNV(x1), F̂NV(x1) >, · · · ,< xn, T̂NV(xn), ÎNV(xn), F̂NV(xn) >}
= {< x1, [T−NV(x1), T+

NV(x1)], [I−NV(x1), I+NV(x1)], [F−NV(x1), F+
NV(x1)] >, · · · ,

< xn, [T−NV(xn), T+
NV(xn)], [I−NV(xn), I+NV(xn)], [F−NV(xn), F+

NV(xn)] >},

where ej ∈ E, xi ∈ U, T+
NV(xi) = 1− F−NV(xi), F+

NV(xi) = 1− T−NV(xi), −0 ≤ T−NV(xi) + I−NV(xi) +

F−NV(xi) ≤ 2+. T̂NV(xi), ÎNV(xi), F̂NV(xi) ⊆ [0, 1], i = 1, 2, · · · , n; j = 1, 2, · · · , m.

Definition 9. Let U = {x1, · · · , xi, · · · , xn} be a universe of objects under consideration and E =

{e1, · · · , ej, · · · , em} be the universal set of parameters, T ⊆ E. A pair (NV, K) is called a neutrosophic vague
N-soft set (NVNSS), when K = (F, T, N) is an N-soft set on U with N ∈ {2, 3, · · · } and a set of ordered
grades G = {0, 1, · · · , N − 1}. NV is a mapping NV: T → ⋃

ej∈T NV(NV(ej)), ej ∈ T, i = 1, 2, · · · , n;
j = 1, 2, · · · , m.

For each ej ∈ T and , xi ∈ U, there exists a unique (xi, gij) ∈ U × G such that gij ∈ G. That is
to say :

NV(NV(ej)) = {< (x1, g1j), T̂NV(x1), ÎNV(x1), F̂NV(x1) >,
· · · ,< (xn, gnj), T̂NV(xn), ÎNV(xn), F̂NV(xn) >}.

Neutrosophic vague N-soft sets, combining the advantages of neutrosophic vague soft sets and
N-soft sets, are more accurate in dealing with vague and uncertain problems. If we only use the T̂NV(x)
to evaluated the research objects, we will ignore the effect of ÎNV(x) and F̂NV(x) in decision making
problems. Hence the grading criteria followed by the membership T̂NV(x), ÎNV(x) and F̂NV(x) of
research objects according to parameters.

Feng’s expectation score function [33] is δ(A) = tA− fA+1
2 = tA+tA+hA

2 = tA + hA
2 , so it aims to

distribute the degree of hesitation equally to truth membership and false membership respectively.
However, hesitation is not the same degree of support and opposition actually. In our daily life, we
will encounter a lot of uncertain things. How to use these hesitant information efficiently to solve the
problems is the key.

If we make decisions based on the opinions of everyone, we need to predict the hesitant parts, for
which δkp(x) plays an important role. δkp(x) containing the idea of probability should be a variable
based on the ratio of truth membership T̂NV(x) and false membership F̂NV(x). The following concept
provides an updated version of Feng’s expectation score function.

Definition 10. The expectation score function of neutrosophic vague soft sets based on probability δkp is a
mapping. δkp : U → [0, 1]. Here for each parameter e, we can get the grade by δkp(x) on the universe U.
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δkp(x) = ᾱ +
ᾱ

ᾱ + γ̄
· β̄, (1)

where α = T−NV(x) + k̂(T+
NV(x) − T−NV(x)), β = I−NV(x) + k̂(I+NV(x) − I−NV(x)), γ = F+

NV(x) −
k̂(F+

NV(x)− F−NV(x)), ᾱ = α
α+β+γ , β̄ = β

α+β+γ , γ̄ = γ
α+β+γ , and satisfies k̂ ∈ [0, 1].

Remark 1. Here are a few explanations as follows:

1. δkp(x) contains the idea of probability, and forecasts the degree of support according to the ratio of support
and opposition.

2. If the decision maker’s risk attitude is not clear, then k-degree risk value is a interval value [k−, k+].
In general, k-degree risk value can be divided into the following two cases.

(1) If k− = k+, we think k̂ = k− = k+;

(2) If k− 6= k+, we think k̂ =
√

k− · k+ or k̂ = k−+k+
2 .

3. In the definition of δkp(x), α, β, γ represent k-degree risk value of the three interval values denoted by
T̂NV(x), ÎNV(x) and F̂NV(x). Decision maker can choose the appropriate k-degree risk value according to
actual situations, so it is more flexible and convenient to solve uncertain problems.

4. ᾱ, β̄, γ̄ are the standardized value of α, β, γ respectively. Hence δkp(x) ∈ [0, 1].

Proposition 1. From the Definition 10, we can get the equation δkp(x) = α.

Proof. Since

δkp(x) =ᾱ +
ᾱ

ᾱ + γ̄
· β̄

=
α

α + β + γ
+

α
α+β+γ

α
α+β+γ + γ

α+β+γ

· β

α + β + γ

=
α

α + β + γ
+

α

α + γ
· β

α + β + γ

=
1

α + β + γ
· (α +

αβ

α + γ
)

=
α

α + γ
;

And then

α + γ =T−NV(x) + k̂(T+
NV(x)− T−NV(x)) + F+

NV(x)− k̂(F+
NV(xij)− F−NV(x))

=T−NV(x) + k̂(1− F−NV(x)− T−NV(x)) + 1− T−NV(x)− k̂(1− T−NV(x)− F−NV(x))

=1;

So δkp(x) = α, where T+
NV(x) = 1− F−NV(x), F+

NV(x) = 1− T−NV(x).

Of course, the decision maker can follow this criteria on the basis of different objects under
different attributes to give the grades:

0.0 ≤ δkp(x) < 0.1, when g = 0;
0.1 ≤ δkp(x) < 0.3, when g = 1;
0.3 ≤ δkp(x) < 0.5, when g = 2;
0.5 ≤ δkp(x) < 0.8, when g = 3;
0.8 ≤ δkp(x) ≤ 1.0, when g = 4.



Symmetry 2020, 12, 853 6 of 20

Remark 2. Here are a few instructions as follows:

1. Any NV2SS can be naturally associated with a neutrosophic vague soft set. We define a NV2SS, f : E→
NV(U×(0,1)) with a NV(σ, E), so for every ej ∈ E, we can get

σ(ej) = {(x, T̂NV(x), ÎNV(x), F̂NV(x)) |< (x, 1), T̂NV(x), ÎNV(x), F̂NV(x) >∈ f (ej)}.

2. Any NV2SS on a universe U can be taken as an NVN∗SS with N∗ > N arbitrary. That is to say that
the grade N∗ exists, but it’s never be used.

3. Grade 0 ∈ G represents the lowest grade. It doesn’t mean that there is incomplete information.

Example 1. Let U = {x1, x2, x3} represents different films and T = {e1, e2} = {actor, type} be the set of
parameters. If we use a 0.5-degree risk value (k̂ = 0.5), a neutrosophic vague 4-soft set (NV1, K1) can be obtained
from Table 2 easily.

Table 2. The (NV1, K1) in Example 1.

(NV1, K1) e1 e2

x1 <3, [0.20, 0.80], [0.10, 0.90], [0.20, 0.80]> <1, [0.10, 0.30], [0.50, 0.70], [0.70, 0.90]>
x2 <3, [0.30, 0.90], [0.30, 0.50], [0.10, 0.70]> <3, [0.40, 0.80], [0.30, 0.60], [0.20, 0.60]>
x3 <2, [0.40, 0.50], [0.30, 0.50], [0.50, 0.60]> <2, [0.20, 0.70], [0.20, 0.50], [0.30, 0.80]>

3.2. The Operations and Propositions of NVNSSs

Definition 11. Let (NV1, K1) and (NV2, K2) be two NVNSSs on a universe U, where K1 = (NV1, T, N1)

and K2 = (NV2, S, N2) are N-soft sets at the same k-degree risk value. T ⊆ E, S ⊆ E. If ∀ x ∈ U,

(1) T ⊆ S;
(2) g1 ≤ g2;
(3) NV1 is also a neutrosophic vague soft subset of NV2.

That is to say

T̂NV1(x) ≤ T̂NV2(x), ÎNV1(x) ≥ ÎNV2(x), F̂NV1(x) ≥ F̂NV2(x)⇔ T−NV1
(x) ≤ T−NV2

(x), T+
NV1

(x) ≤ T+
NV2

(x);
I−NV1

(x) ≥ I+NV2
(x), I+NV1

(x) ≥ I−NV2
(x); F−NV1

(x) ≥ F−NV2
(x), F+

NV1
(x) ≥ F+

NV2
(x).

Then (NV1, K1) is said to be a neutrosophic vague N-soft subset of (NV2, K2), denoted by (NV1, K1) ⊆̃
(NV2, K2).

Example 2. Let (NV2, K2) be a neutrosophic vague 5-soft set in Table 3. S ⊆ E and S = {e1, e2, e3, e4} =
{actor, type, advertisement, social meaning}. If we use a 0.5-degree risk value (k̂ = 0.5), then we can find (NV1,
K1) ⊆̃(NV2, K2)

Definition 12. Let (NV1, K1) and (NV2, K2) be two NVNSSs on a universe U, where K1 = (NV1, T, N1)

and K2 = (NV2, S, N2) are N-soft sets at the same k-degree risk value. Then (NV1, K1) and (NV2, K2) are said
to be equal if and only if (NV1, K1) ⊆̃ (NV2, K2) and (NV2, K2) ⊆̃ (NV1, K1).
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Table 3. The (NV2, K2) in Example 2.

(NV2, K2) e1 e2

x1 <3, [0.30, 0.90], [0.10, 0.70], [0.10, 0.70]> <2, [0.20, 0.40], [0.50, 0.60], [0.60, 0.80]>
x2 <3, [0.40, 0.80], [0.20, 0.40], [0.10, 0.60]> <3, [0.50, 0.90], [0.30, 0.50], [0.10, 0.50]>
x3 <3, [0.50, 0.80], [0.20, 0.30], [0.20, 0.50]> <3, [0.40, 0.70], [0.20, 0.30], [0.30, 0.60]>

(NV2, K2) e3 e4

x1 <3, [0.50, 0.80], [0.10, 0.90], [0.20, 0.50]> <4, [0.80, 0.90], [0.50, 0.70], [0.10, 0.20]>
x2 <4, [0.70, 0.90], [0.30, 0.50], [0.10, 0.30]> <4, [0.70, 0.90], [0.30, 0.60], [0.10, 0.30]>
x3 <4, [0.80, 0.90], [0.30, 0.50], [0.10, 0.20]> <3, [0.60, 0.80], [0.20, 0.50], [0.20, 0.40]>

Definition 13. A (NV, K)-soft set is a neutrosophic null vague N-soft set denoted by ∅NV . And ∅NV(ej) =

{< (x1, 0), [0, 0], [1, 1], [1, 1] >, · · · , < (xn, 0), [0, 0], [1, 1], [1, 1] >}, where ∀ej ∈ T ⊆ E.

Definition 14. A (NV, K)-soft set is a neutrosophic absolute vague N-soft set denoted by ANV . ANV(ej) =

{< (o1, N − 1), [1, 1], [0, 0], [0, 0] >, · · · , < (on, N − 1), [1, 1], [0, 0], [0, 0] >}, where ∀ej ∈ T ⊆ E.

Definition 15. Let (NV1, K1) be a NVNSS. The complement of (NV1, K1) is denoted by (NV1, K1)
c, if ∀

ej ∈ T and xi ∈ U, N1∩̃Nc
1 = φ, NVc

1 is a neutrosophic vague N-soft complement of NV1. NVc
1 is defined by

T̂c
NV1

(xi) = [1− T+
NV1

(xi), 1− T−NV1
(xi)] = [F−NV1

(xi), F+
NV1

(xi)],
Îc
NV1

(xi) = [1− I+NV1
(xi), 1− I−NV1

(xi)],
F̂c

NV1
(xi) = [1− F+

NV1
(xi), 1− F−NV1

(xi)] = [T−NV1
(xi), T+

NV1
(xi)].

Obviously, ((NV1, K1)
c)c 6= (NV1, K1) as the complements of N-soft set (Kc

1) are not the only one,
so we can get many complements of (NV1, K1).

Example 3. (NV1, K1)
c is one of the complements of (NV1, K1), and it can be obtained in Table 4.

Table 4. One of the complements of (NV1, K1) in Example 3.

(NV1, K1)
c e1 e2

x1 <2, [0.20, 0.80], [0.10, 0.90], [0.20, 0.80]> <3, [0.70, 0.90], [0.30, 0.50], [0.10, 0.30]>
x2 <2, [0.10, 0.70], [0.50, 0.70], [0.30, 0.90]> <2, [0.20, 0.60], [0.40, 0.70], [0.40, 0.80]>
x3 <3, [0.50, 0.60], [0.50, 0.70], [0.40, 0.50]> <3, [0.30, 0.80], [0.50, 0.80], [0.20, 0.70]>

Definition 16. Let U be a universe, and let (NV1, K1) and (NV2, K2) be two NVNSSs, K1 = (NV1, T, N1)

and K2 = (NV2, S, N2) are N-soft sets on U at the same k-degree risk value. So their restricted intersection
is denoted by (NV1, K1) ∩̃R (NV2, K2) and it is defined as (ηNV , K1 ∩RK2), where K1 ∩R K2 = (E, T ∩
S, min(N1, N2)),∀ ej ∈ T ∩ S and xi ∈ U, < (xi, gij), T̂NV(xi), ÎNV(xi), F̂NV(xi) >∈ ηNV(ej)⇔

gij = min(g1
ij, g2

ij),
T̂NV(xi) = [min(T−NV1

(xi), T−NV2
(xi)), min(T+

NV1
(xi), T+

NV2
(xi))],

ÎNV(xi) = [max(I−NV1
(xi), I−NV2

(xi)), max(I+NV1
(xi), I+NV2

(xi))], and
F̂NV(xi) = [max(F−NV1

(xi), F−NV2
(xi)), max(F+

NV1
(xi), F+

NV2
(xi))].

Example 4. Let U = {x1, x2, x3} represents different films and T = {e1, e2} = {actor, type} be the set of
parameters. If we use a 0.5-degree risk value (k̂ = 0.5), a neutrosophic vague 4-soft set (NV3, K3) can be obtained
from Table 5 easily. So (NV2, K2) ∩̃R (NV3, K3) can be obtained from Table 6.
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Table 5. The (NV3, K3) in Example 4.

(NV3, K3) e1 e2

x1 <3, [0.60, 0.90], [0.10, 0.40], [0.10, 0.40]> <3, [0.40, 0.70], [0.20, 0.80], [0.30, 0.60]>
x2 <3, [0.70, 0.80], [0.20, 0.50], [0.20, 0.30]> <4, [0.70, 0.90], [0.20, 0.30], [0.10, 0.30]>
x3 <2, [0.30, 0.40], [0.10, 0.40], [0.60, 0.70]> <3, [0.60, 0.70], [0.20, 0.40], [0.30, 0.40]>

Table 6. The (NV2, K2) ∩̃R (NV3, K3) in Example 4.

(NV2, K2) ∩̃R (NV3, K3) e1 e2

x1 <3, [0.30, 0.90], [0.10, 0.70], [0.10, 0.70]> <2, [0.20, 0.40], [0.50, 0.80], [0.60, 0.80]>
x2 <3, [0.40, 0.80], [0.20, 0.50], [0.20, 0.60]> <3, [0.50, 0.90], [0.30, 0.50], [0.10, 0.50]>
x3 <2, [0.30, 0.40], [0.20, 0.40], [0.60, 0.70]> <3, [0.40, 0.70], [0.20, 0.40], [0.30, 0.60]>

Definition 17. Let U be universe of objects, and let (NV1, K1) and (NV2, K2) be two NVNSSs,
K1 = (NV1, T, N1) and K2 = (NV2, S, N2) are N-soft sets on U at the same k-degree risk value. Then their
restricted union is denoted by (NV1, K1) ∪̃R (NV2, K2) and it is defined as (ζNV , K1 ∪R K2), where K1∪RK2 =

(E, T ∩ S, max(N1, N2)),∀ ej ∈ T ∩ S and xi ∈ U, < (xi, gij), T̂NV(xi), ÎNV(xi), F̂NV(xi) > ∈ ζNV(ej)⇔

gij = max(g1
ij, g2

ij),
T̂NV(xi) = [max(T−NV1

(xi), T−NV2
(xi)), max(T+

NV1
(xi), T+

NV2
(xi))],

ÎNV(xi) = [min(I−NV1
(xi), I−NV2

(xi)), min(I+NV1
(xi), I+NV2

(xi))], and
F̂NV(xi) = [min(F−NV1

(xi), F−NV2
(xi)), min(F+

NV1
(xi), F+

NV2
(xi))].

Example 5. We consider the two neutrosophic vague 5-soft sets (NV2, K2) and (NV3, K3) defined in Example
2 and 4 respectively. We know (NV2, K2) ∪̃R (NV3, K3) can be obtained from Table 7 easily.

Table 7. The (NV2, K2) ∪̃R (NV3, K3) in Example 5.

(NV2, K2) e1 e2

x1 <3, [0.60, 0.90], [0.10, 0.40], [0.10, 0.40]> <3, [0.40, 0.70], [0.20, 0.60], [0.30, 0.60]>
x2 <3, [0.70, 0.80], [0.20, 0.40], [0.10, 0.30]> <4, [0.70, 0.90], [0.20, 0.30], [0.10, 0.30]>
x3 <3, [0.50, 0.80], [0.10, 0.30], [0.20, 0.50]> <3, [0.60, 0.70], [0.20, 0.30], [0.30, 0.40]>

Definition 18. Let U be universe of objects, and let (NV1, K1) and (NV2, K2) be two NVNSSs,
K1 = (NV1, T, N1) and K2 = (NV2, S, N2) are N-soft sets on U at the same k-degree risk value. Then their
extended intersection is denoted by (NV1, K1) ∩̃E (NV2, K2) and it is defined as (ξNV , K1 ∩E K2), where K1

∩E K2 = (B, T ∪ S, max(N1, N2)),∀ ej ∈ T ∪ S and xi ∈ U, < (xi, gij), T̂NV(xi), ÎNV(xi), F̂NV(xi) > ∈
ξNV(ej)⇔
(1) ej ∈ T − S :

gij = g1
ij, T̂NV(xi) = [T−NV1

(xi), T+
NV1

(xi)],
ÎNV(xi) = [I−NV1

(xi), I+NV1
(xi)], andF̂NV(xi) = [F−NV1

(xi), F+
NV1

(xi)];

(2) ej ∈ S− T :

gij = g2
ij, T̂NV(xi) = [T−NV2

(xi), T+
NV2

(xi)],
ÎNV(xi) = [I−NV2

(xi), I+NV2
(xi)], andF̂NV(xi) = [F−NV2

(xi), F+
NV2

(xi)];
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(3) ej ∈ T ∩ S :

gij = min(g1
ij, g2

ij),
T̂NV(xi) = [min(T−NV1

(xi), T−NV2
(xi)), min(T+

NV1
(xi), T+

NV2
(xi))],

ÎNV(xi) = [max(I−NV1
(xi), I−NV2

(xi)), max(I+NV1
(xi), I+NV2

(xi))],
and F̂NV(xi) = [max(F−NV1

(xi), F−NV2
(xi)), max(F+

NV1
(xi), F+

NV2
(xi))].

Example 6. We consider the two neutrosophic vague 5-soft sets (NV2, K2) and (NV3, K3) defined in Example
2 and 4 respectively. (NV2, K2) ∩̃E (NV3, K3) can be obtained from Table 8.

Table 8. The (NV2, K2) ∩̃E (NV3, K3) in Example 6.

(NV2, K2) ∩̃E (NV3, K3) e1 e2

x1 <3, [0.30, 0.90], [0.10, 0.70], [0.10, 0.70]> <2, [0.20, 0.40], [0.50, 0.80], [0.60, 0.80]>
x2 <3, [0.40, 0.80], [0.20, 0.50], [0.20, 0.60]> <3, [0.50, 0.90], [0.30, 0.50], [0.10, 0.50]>
x3 <2, [0.30, 0.40], [0.20, 0.40], [0.60, 0.70]> <3, [0.40, 0.70], [0.20, 0.40], [0.30, 0.60]>

(NV2, K2) ∩̃E (NV3, K3) e3 e4

x1 <3, [0.50, 0.80], [0.10, 0.90], [0.20, 0.50]> <4, [0.80, 0.90], [0.50, 0.70], [0.10, 0.20]>
x2 <4, [0.70, 0.90], [0.30, 0.50], [0.10, 0.30]> <4, [0.70, 0.90], [0.30, 0.60], [0.10, 0.30]>
x3 <4, [0.80, 0.90], [0.30, 0.50], [0.10, 0.20]> <3, [0.60, 0.80], [0.20, 0.50], [0.20, 0.40]>

Definition 19. Let U be universe of objects, and let (NV1, K1) and (NV2, K2) be NVNSSs, K1 = (NV1, T, N1)

and K2 = (NV2, S, N2) are N-soft sets on U at the same k-degree risk value. Then their extended union is denoted
by (NV1, K1) ∪̃E (NV2, K2) and it is defined as (ρNV , K1 ∪E K2), where K1 ∪E K2 = (B, T ∪ S, max(N1, N2)),
∀ ej ∈ T ∪ S and xi ∈ U, < (xi, gij), T̂NV(xi), ÎNV(xi), F̂NV(xi) > ∈ ρNV(ej)⇔
(1) ej ∈ T − S :

gij = g1
ij, T̂NV(xi) = [T−NV1

(xi), T+
NV1

(xi)],
ÎNV(xi) = [I−NV1

(xi), I+NV1
(xi)], andF̂NV(xi) = [F−NV1

(xi), F+
NV1

(xi)];

(2) ej ∈ S− T :

gij = g2
ij, T̂NV(xi) = [T−NV2

(xi), T+
NV2

(xi)],
ÎNV(xi) = [I−NV2

(xi), I+NV2
(xi)], andF̂NV(xi) = [F−NV2

(xi), F+
NV2

(xi)];

(3) ej ∈ T ∩ S :

gij = max(g1
ij, g2

ij),
T̂NV(xi) = [max(T−NV1

(xi), T−NV2
(xi)), max(T+

NV1
(xi), T+

NV2
(xi))],

ÎNV(xi) = [min(I−NV1
(xi), I−NV2

(xi)), min(I+NV1
(xi), I+NV2

(xi))],
and F̂NV(xi) = [min(F−NV1

(xi), F−NV2
(xi)), min(F+

NV1
(xi), F+

NV2
(xi))].

Example 7. We consider the two neutrosophic vague 5-soft sets (NV2, K2) and (NV3, K3) defined in Example
2 and 4 respectively. (NV2, K2) ∪̃E (NV3, K3) can be obtained from Table 9.
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Table 9. The (NV2, K2) ∪̃E (NV3, K3) in Example 7.

(NV2, K2) ∪̃E (NV3, K3) e1 e2

x1 <3, [0.60, 0.90], [0.10, 0.40], [0.10, 0.40]> <3, [0.40, 0.70], [0.20, 0.60], [0.30, 0.60]>
x2 <3, [0.70, 0.80], [0.20, 0.40], [0.10, 0.30]> <4, [0.70, 0.90], [0.20, 0.30], [0.10, 0.30]>
x3 <3, [0.50, 0.80], [0.10, 0.30], [0.20, 0.50]> <3, [0.60, 0.70], [0.20, 0.30], [0.30, 0.40]>

(NV2, K2) ∪̃E (NV3, K3) e3 e4

x1 <3, [0.50, 0.80], [0.10, 0.90], [0.20, 0.50]> <4, [0.80, 0.90], [0.50, 0.70], [0.10, 0.20]>
x2 <4, [0.70, 0.90], [0.30, 0.50], [0.10, 0.30]> <4, [0.70, 0.90], [0.30, 0.60], [0.10, 0.30]>
x3 <4, [0.80, 0.90], [0.30, 0.50], [0.10, 0.20]> <3, [0.60, 0.80], [0.20, 0.50], [0.20, 0.40]>

Proposition 2. Let (NV1, K1) be a NVNSS, ANV be a neutrosophic absolute vague N-soft set, ∅NV be a
neutrosophic null vague N-soft set. Suppose S is the parameter set of (NV1, K1), T is the parameter set of ANV
and ∅NV parameter set, then:

(1) (NV1, K1) ∪̃R ∅NV = (NV1, K1)⇔ S ⊆ T;
(2) (NV1, K1) ∩̃R ∅NV = ∅NV ⇔ T ⊆ S;
(3) (NV1, K1) ∪̃R ANV = ANV ⇔ T ⊆ S;
(4) (NV1, K1) ∩̃R ANV = (NV1, K1)⇔ S ⊆ T.

Proof. (1) Let U be a universe, and (NV1, K1) be a NVNSS, and ∅NV (denoted by (NV2, K2)) be a
neutrosophic null vague N-soft set, K1 = (NV1, S, N1) and K2 = (NV2, T, N2) are N-soft sets on U at
the same k-degree risk value. From Definition 13, we know that ∅NV(ej) = {< (x1, 0), [0, 0], [1, 1],
[1, 1] >, · · · , < (xn, 0), [0, 0], [1, 1], [1, 1] >}, where ∀ej ∈ T.

From Definition 17, (NV1, K1) ∪̃R ∅NV can be defined as (ζNV , K1 ∪R K2), where K1∪RK2 =

(E, S ∩ T, max(N1, N2) = max(N1, 0) = N1, ∀ ej ∈ S ∩ T and xi ∈ U, < (xi, gij), T̂NV(xi), ÎNV(xi),
F̂NV(xi) > ∈ ζNV(ej)⇔

gij = max(g1
ij, g2

ij) = max(g1
ij, 0) = g1

ij,
T̂NV(xi) = [max(T−NV1

(xi), T−NV2
(xi)), max(T+

NV1
(xi), T+

NV2
(xi))] = [T−NV1

(xi), T+
NV1

(xi)],
ÎNV(xi) = [min(I−NV1

(xi), min(I−NV2
(xi)), min(I+NV1

(xi), I+NV2
(xi))] = [I−NV1

(xi), I+NV1
(xi)],

and F̂NV(xi) = [min(F−NV1
(xi), F−NV2

(xi)), min(F+
NV1

(xi), F+
NV2

(xi))] = [F−NV1
(xi), F+

NV1
(xi)].

So (NV1, K1) ∪̃R ∅NV = (NV1, K1)⇔ S ∩ T = S⇔ S ⊆ T.

The proof of other propositions is similar by the Definitions 16 and 17.

Proposition 3. Let (NV1, K1) be a NVNSS, ANV be a neutrosophic absolute vague N-soft set, ∅NV be a
neutrosophic null vague N-soft set. Suppose S is the parameter set of (NV1, K1), T is the parameter set of ANV
and ∅NV parameter set, then:

(1) (NV1, K1) ∪̃E ∅NV = (NV1, K1)⇔ T ⊆ S;
(2) (NV1, K1) ∩̃E ∅NV = ∅NV ⇔ S ⊆ T;
(3) (NV1, K1) ∪̃E ANV = ANV ⇔ S ⊆ T;
(4) (NV1, K1) ∩̃E ANV = (NV1, K1)⇔ T ⊆ S.

Proof. (1) Let U be a universe, and (NV1, K1) be a NVNSS, and ∅NV (denoted by (NV2, K2)) be a
neutrosophic null vague N-soft set, K1 = (NV1, S, N1) and K2 = (NV2, T, N2) are N-soft sets on U at
the same k-degree risk value. From Definition 13, we know that ∅NV(ej) = {< (x1, 0), [0, 0], [1, 1],
[1, 1] >, · · · , < (xn, 0), [0, 0], [1, 1], [1, 1] >}, where ∀ej ∈ T.

From Definition 19, (NV1, K1) ∪̃E ∅NV can be defined as (ρNV , K1 ∪E K2), where K1 ∪E K2 =

(B, S ∪ T, max(N1, N2)),∀ ej ∈ S ∪ T and xi ∈ U, < (xi, gij), T̂NV(xi), ÎNV(xi), F̂NV(xi) > ∈ ρNV(ej)⇔



Symmetry 2020, 12, 853 11 of 20

(i) ej ∈ S− T :

gij = g1
ij, T̂NV(xi) = [T−NV1

(xi), T+
NV1

(xi)],
ÎNV(xi) = [I−NV1

(xi), I+NV1
(xi)], andF̂NV(xi) = [F−NV1

(xi), F+
NV1

(xi)];

(ii) ej ∈ T − S :

gij = g2
ij = 0, T̂NV(xi) = [T−NV2

(xi), T+
NV2

(xi)] = [0, 0],
ÎNV(xi) = [I−NV2

(xi), I+NV2
(xi)] = [1, 1], andF̂NV(xi) = [F−NV2

(xi), F+
NV2

(xi)] = [1, 1];

(iii) ej ∈ T ∩ S :

gij = max(g1
ij, g2

ij) = g1
ij,

T̂NV(xi) = [max(T−NV1
(xi), T−NV2

(xi)), max(T+
NV1

(xi), T+
NV2

(xi))] = [T−NV1
(xi), T+

NV1
(xi)],

ÎNV(xi) = [min(I−NV1
(xi), I−NV2

(xi)), min(I+NV1
(xi), I+NV2

(xi))] = [I−NV1
(xi), I+NV1

(xi)],
and F̂NV(xi) = [min(F−NV1

(xi), F−NV2
(xi)), min(F+

NV1
(xi), F+

NV2
(xi))] = [F−NV1

(xi), F+
NV1

(xi)].

So (NV1, K1) ∪̃E ∅NV = (NV1, K1)⇔ T ∩ S = T⇔ T ⊆ S.
The proof of other propositions is similar by the Definitions 18 and 19.

Proposition 4. Let (NV1, K1), (NV2, K2) and (NV3, K3) be three NVNSSs, then:

(1) (NV1, K1)∪̃E(NV2, K2)=(NV2, K2)∪̃E(NV1, K1);
(2) (NV1, K1)∩̃E(NV2, K2)=(NV2, K2)∩̃E(NV1, K1);
(3) (NV1, K1)∪̃R(NV2, K2)=(NV2, K2)∪̃R(NV1, K1);
(4) (NV1, K1)∩̃R(NV2, K2)=(NV2, K2)∩̃R(NV1, K1);
(5) (NV1, K1)∪̃R((NV2, K2)∪̃R(NV3, K3)) = ((NV1, K1)∪̃R(NV2, K2))∪̃R(NV3, K3);
(6) (NV1, K1)∩̃R((NV2, K2)∩̃R(NV3, K3)) = ((NV1, K1)∩̃R(NV2, K2))∩̃R(NV3, K3);
(7) (NV1, K1)∪̃R((NV2, K2)∩̃R(NV3, K3)) = ((NV1, K1)∪̃R(NV2, K2))∩̃R((NV1, K1)∪̃R(NV3, K3));
(8) (NV1, K1) ∩̃R((NV2, K2)∪̃R(NV3, K3)) = ((NV1, K1)∩̃R(NV2, K2))∪̃R((NV1, K1)∩̃R(NV3, K3)).

Proof. (5) Let U be a universe, and (NVl , Kl) are NVNSSs, l = 1, 2, · · · , 7. Supposed that
(NV2, K2)∪̃R(NV3, K3) = (NV4, K4), K2 = (NV2, S2, N2), K3 = (NV3, S3, N3) are N-soft sets on U
at the same k-degree risk value.

From Definition 17, (NV4, K4) can be defined as (ζNV23 , K2 ∪R K3), where K4 = (E, S2 ∩
S3, max(N2, N3)), ∀ ej ∈ S2 ∩ S3 and xi ∈ U, < (xi, gij), T̂NV(xi), ÎNV(xi), F̂NV(xi) > ∈ ζNV23(ej)

⇔
gij = max(g2

ij, g3
ij),

T̂NV(xi) = [max(T−NV2
(xi), T−NV3

(xi)), max(T+
NV2

(xi), T+
NV3

(xi))],
ÎNV(xi) = [min(I−NV2

(xi), min(I−NV3
(xi)), min(I+NV2

(xi), I+NV3
(xi))],

and F̂NV(xi) = [min(F−NV2
(xi), F−NV3

(xi)), min(F+
NV2

(xi), F+
NV3

(xi))].

Supposed that (NV1, K1)∪̃R(NV2, K2) = (NV5, K5), K1 = (NV1, S1, N1), K2 = (NV2, S2, N2) are
N-soft sets on U at the same k-degree risk value. And by the same way, we can get (NV5, K5) can
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be defined as (ζNV12 , K1 ∪R K2), where K5 = (E, S1 ∩ S2, max(N1, N2)), ∀ ej ∈ S1 ∩ S2 and xi ∈ U,
< (xi, gij), T̂NV(xi), ÎNV(xi), F̂NV(xi) > ∈ ζNV12(ej)⇔

gij = max(g1
ij, g2

ij),
T̂NV(xi) = [max(T−NV1

(xi), T−NV2
(xi)), max(T+

NV1
(xi), T+

NV2
(xi))],

ÎNV(xi) = [min(I−NV1
(xi), min(I−NV2

(xi)), min(I+NV1
(xi), I+NV2

(xi))],
and F̂NV(xi) = [min(F−NV1

(xi), F−NV2
(xi)), min(F+

NV1
(xi), F+

NV2
(xi))].

Supposed that (NV1, K1)∪̃R(NV4, K4) = (NV6, K6), K1 = (NV1, S1, N1), K4 = (NV4, S4, N4) are
N-soft sets on U at the same k-degree risk value. And by the same way, we can get (NV6, K6) can be
defined as (ζNV14 , K1 ∪R K4), where K1∪RK4 = (E, S1 ∩ S4 = S1 ∩ (S2 ∩ S3), max(N1, max(N2, N3)).
So K6 = (E, S1 ∩ S2 ∩ S3, max(N1, N2, N3), ∀ ej ∈ S1 ∩ S2 ∩ S3 and xi ∈ U, < (xi, gij), T̂NV(xi), ÎNV(xi),
F̂NV(xi) > ∈ ζNV14(ej)⇔

gij = max(g1
ij, max(g2

ij, g3
ij)) = max(g1

ij, g2
ij, g3

ij),
T̂NV(xi) = [max(T−NV1

(xi), max(T−NV2
(xi), T−NV3

(xi))), max(T+
NV1

(xi), max(T+
NV2

(xi), T+
NV3

(xi)))]

= [max(T−NV1
(xi), T−NV2

(xi), T−NV3
(xi)), max(T+

NV1
(xi), T+

NV2
(xi), T+

NV3
(xi))],

ÎNV(xi) = [min(I−NV1
(xi), min(I−NV2

(xi), I−NV3
(xi))), min(I+NV1

(xi), min(I+NV2
(xi), I+NV3

(xi)))]

= [min(I−NV1
(xi), I−NV2

(xi), I−NV3
(xi)), min(I+NV1

(xi), I+NV2
(xi), I+NV3

(xi))],
and F̂NV(xi) = [min(F−NV1

(xi), min(F−NV2
(xi), F−NV3

(xi))), min(F+
NV1

(xi), min(F+
NV2

(xi), F+
NV3

(xi)))]

= [min(F−NV1
(xi), F−NV2

(xi), F−NV3
(xi)), min(F+

NV1
(xi), F+

NV2
(xi), F+

NV3
(xi))].

Supposed that (NV5, K5)∪̃R(NV3, K3) = (NV7, K7), K5 = (NV5, S5, N5), K3 = (NV3, S3, N3) are
N-soft sets on U at the same k-degree risk value. And by the same way, we can get (NV7, K7) can be
defined as (ζNV53 , K5 ∪R K3), where K5∪RK3 = (E, S5 ∩ S3 = (S1 ∩ S2) ∩ S3, max(max(N1, N2), N3).
So K7 = (E, S1 ∩ S2 ∩ S3, max(N1, N2, N3), ∀ ej ∈ S1 ∩ S2 ∩ S3 and xi ∈ U, < (xi, gij), T̂NV(xi), ÎNV(xi),
F̂NV(xi) > ∈ ζNV53(ej)⇔

gij = max(max(g1
ij, g2

ij), g3
ij) = max(g1

ij, g2
ij, g3

ij),
T̂NV(xi) = [max(max(T−NV1

(xi), T−NV2
(xi)), T−NV3

(xi)), max(max(T+
NV1

(xi), T+
NV2

(xi)), T+
NV3

(xi))]

= [max(T−NV1
(xi), T−NV2

(xi), T−NV3
(xi)), max(T+

NV1
(xi), T+

NV2
(xi), T+

NV3
(xi))],

ÎNV(xi) = [min(min(I−NV1
(xi), I−NV2

(xi)), I−NV3
(xi)), min(min(I+NV1

(xi), I+NV2
(xi)), I+NV3

(xi))]

= [min(I−NV1
(xi), I−NV2

(xi), I−NV3
(xi)), min(I+NV1

(xi), I+NV2
(xi), I+NV3

(xi))],
and F̂NV(xi) = [min(min(F−NV1

(xi), F−NV2
(xi)), F−NV3

(xi)), min(min(F+
NV1

(xi), F+
NV2

(xi)), F+
NV3

(xi))]

= [min(F−NV1
(xi), F−NV2

(xi), F−NV3
(xi)), min(F+

NV1
(xi), F+

NV2
(xi), F+

NV3
(xi))].

So (NV6, K6)=(NV7, K7)⇔ (NV1, K1) ∪̃R ((NV2, K2) ∪̃R (NV3, K3)) = ((NV1, K1) ∪̃R (NV2, K2))

∪̃R (NV3, K3).
The proof of other propositions is similar by the Definitions 16–19.

4. Multi-Attribute Decision Making Method Based on NVNSSs

4.1. Priority Relation Ranking Method Based on NVNSSs

Practice has proved that people’s understanding of things often comes from the comparison of
things. And each comparison can get a vague understanding. The fuzzy cognition is quantified and a
fuzzy priority relation is established. Then research objects are sorted out in an order of advantages
and disadvantages. This is the fuzzy priority relationship ranking decision method. Based on it,
priority relation ranking method based on NVNSSs is proposed for the first time.

Let E = {e1, · · · , ej, · · · , em} is a set of parameters considered on U = {x1, · · · , xi, · · · , xn}.
The decision maker has the power to assign weights to each parameter and suppose that the weights
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satisfy the condition: ∑m
j=1 ωj = 1, ωj ∈ [0, 1]. For the convenience of writing, T−NV(x) is abbreviated as

T−, and others are similar. The following are specific decision steps:
Step 1. Through the actual data in a problem, we can get a NVNSS denoted by (NV, K) in Table

10. At this moment, the k-degree risk value is 0.

Table 10. The neutrosophic vague N-soft sets (NV, K).

(NV , K) e1 · · · em

x1 <g11, [T−, T+], [I−, I+], [F−, F+]> · · · <g1m, [T−, T+], [I−, I+], [F−, F+]>
x2 <g21, [T−, T+], [I−, I+], [F−, F+]> · · · <g2m, [T−, T+], [I−, I+], [F−, F+]>
...

...
...

...
xn <gn1, [T−, T+], [I−, I+], [F−, F+]> · · · <gnm, [T−, T+], [I−, I+], [F−, F+]>

Step 2. The first screening was carried out with the grade of 0-degree risk value. Grades representation
of the (NV, K) denoted by Table 11.

Table 11. Grades of the (NV, K).

(NV , K) e1 · · · em gimin

x1 g11 · · · g1m g1min
x2 g21 · · · g2m g2min
...

...
...

...
...

xn gn1 · · · gnm gnmin

First, we find the minimum grade gimin of the object xi under different attributes. And Gimin =

{g1min, · · · , gimin, · · · , gnmin} can be obtained. Then, according to the actual situations and needs,
one of the grades in Gimin denoted by gimin is selected as the grade threshold for the first screening.
Finally, if one of its grades based on different attributes lower than the grade threshold, the research
object will be eliminated. Suppose x1, x2, x3 can pass the first screening, Table 12 can be obtained easily.

Table 12. The research objects after passing the first screening.

(NV , K) e1 · · · em

x1 <g11, [T−, T+], [I−, I+], [F−, F+]> · · · <g1m, [T−, T+], [I−, I+], [F−, F+]>
x2 <g21, [T−, T+], [I−, I+], [F−, F+]> · · · <g2m, [T−, T+], [I−, I+], [F−, F+]>
x3 <g31, [T−, T+], [I−, I+], [F−, F+]> · · · <g3m, [T−, T+], [I−, I+], [F−, F+]>

Step 3. The decision maker determine the k-degree risk value based on the question type and his
own risk preference. Supposed k = 0.5, so a new neutrosophic vague N-soft set (NV, K)

′
based on

0.5-degree risk value and (NV, K). Table 13 represents (NV, K)
′
.

Table 13. The new neutrosophic vague N-soft sets (NV, K)
′
.

(NV , K)
′

e1 · · · em

x1 <g
′
11, [T−, T+], [I−, I+], [F−, F+]> · · · <g

′
1m, [T−, T+], [I−, I+], [F−, F+]>

x2 <g
′
21, [T−, T+], [I−, I+], [F−, F+]> · · · <g

′
2m, [T−, T+], [I−, I+], [F−, F+]>

x3 <g
′
31, [T−, T+], [I−, I+], [F−, F+]> · · · <g

′
3m, [T−, T+], [I−, I+], [F−, F+]>

Step 4. Compute the score function S
′
ij based on (NV, K)

′
denoted by Table 14.

S
′
ij = T

′
ij − I

′
ij − F

′
ij, (2)
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where T
′
ij = T−ij + k̂(T+

ij − T−ij ), I
′
ij = I−ij + k̂(I+ij − I−ij ), F

′
ij = F+

ij − k̂(F+
ij − F−ij ), i = 1, 2, · · · , n; j =

1, 2, · · · , m.

Table 14. The score function S
′

ij based on (NV, K)
′
.

(NV , K)
′

e1 · · · em

x1 <g
′
11, T

′
11, I

′
11, F

′
11, S

′
11> · · · <g

′
1m, T

′
1m, I

′
1m, F

′
1m, S

′
1m>

x2 <g
′
21, T

′
21, I

′
21, F

′
21, S

′
21> · · · <g

′
2m, T

′
2m, I

′
2m, F

′
2m, S

′
2m>

x3 <g
′
31, T

′
31, I

′
31, F

′
31, S

′
31> · · · <g

′
3m, T

′
3m, I

′
3m, F

′
3m, S

′
3m>

Step 5. Compute the comparison table for ∆g
′
ii∗ and ∆S

′
ii∗ based on (NV, K)

′
under all the

attributes E, where
∆g
′
ii∗ = g

′
ij − g

′
i∗ j, (3)

∆S
′
ii∗ = S

′
ij − S

′
i∗ j. (4)

For example, ∆g
′
21 = g

′
2j − g

′
1j, ∆S

′
21 = S

′
2j − S

′
1j, ∆g

′
ii = 0, ∆S

′
ii = 0 under the same attribute ej,

and the others are similar. So Table 15 can be given. ∆imin = < ∆g
′
i , ∆S

′
i >, i∗, i = 1, 2, 3.

Table 15. Comparison table for g
′

ii∗ and S
′

ii∗ based on (NV, K)
′
.

For ej x1 x2 x3 ∆imin

x1 <∆g
′
11, ∆S

′
11> <∆g

′
12, ∆S

′
12> <∆g

′
13, ∆S

′
13> <∆g

′
1, ∆S

′
1>

x2 <∆g
′
21, ∆S

′
21> <∆g

′
22, ∆S

′
22> <∆g

′
23, ∆S

′
23> <∆g

′
2, ∆S

′
2>

x3 <∆g
′
31, ∆S

′
31> <∆g

′
32, ∆S

′
32> <∆g

′
33, ∆S

′
33> <∆g

′
3, ∆S

′
3>

Step 6. Use priority relation method to complete the ranking of the research objects.
If ∆3 = max{∆imin}, i = 1, 2, 3. We will remove x3 and consider x3 is the first superior object
under the same attribute ej.

At this point, we should delete the row and column of x3 in Table 15 and seek the second priority
object. If this is not done, the attribute value of the first priority object x3 will have an impact on the
subsequent rankings so that we can’t produce the correct rankings.

If we go on in turn, we can get the orders of all the research objects under the same attribute ej.
Step 7. Compute the rankings of the research objects under all attributes. Suppose E = {e1, e2, e3},

we can get Table 16. The decision maker assigns weights to each attribute and ∑m
j=1 ωj = 1, ωj ∈ [0, 1].

Ai = ai1 ·ω1 + ai2 ·ω2 + ai3 ·ω3, (5)

where ai1 represents the ranking of the research object xi under the attribute e1, and others are
similar. If Ai = min{A1, A2, A3}, i = 1, 2, 3, then xi is the first superior object under the E. And if
A1 > A2 > A3, we consider that x3 is the first superior object, x2 is the second superior object and x1

is the third superior object under the E.

Table 16. The ranking of the objects under all attributes.

e1· ω1 e2 ·ω2 e3· ω3 Ai

x1 a11 a12 a13 A1
x2 a21 a22 a23 A2
x3 a31 a32 a33 A3

There are some advantages to use priority relation ranking method to complete the ranking of
the research objects in multi-attribute decision problems. First of all, we can use Step 2 for the first



Symmetry 2020, 12, 853 15 of 20

screening when there are many research objects, so that the ideal objects can be quickly selected.
Second, the first screening is carried out on the basis of 0-degree risk value, so that the grades of the
research objects that are left will no less than the grade threshold under each attribute. What’s more,
this method takes into account the overall situation. That is to say we take the lowest grade of the same
research object under different attributes as the grade of the research object to participate in the first
screening. It can not only ensure that the research object can meet the decision maker’s requirements
under each attribute, but also effectively avoid that the value of the good and bad attributes to be
canceled out each other.

Example 8. It is assumed that a city’s evaluation agency will conduct an overall assessment of 10 universities
in the city. Top three universities will be selected as model universities, and the grades of the top three universities
can’t less than 2 of each attribute. The evaluation agency will give a comprehensive ranking of the three
universities. The 10 universities in the city denoted by U = {x1, x2, · · · , x10}. E = {e1, e2, e3, e4}, and the
parameters stand for “talents cultivation", “teaching staff", “scientific research level" and “school influence".
The experts evaluate the 10 universities in the city and give their opinions denoted by (NV, K) and we can see it
in Table 17.

First of all, according to the Table 17 ( the k-degree risk value is 0 ), we can get the grades based on (NV, K)
denoted by Table 18. If gimin < 2, we will delete xi, i = 1, 2, · · · , 10. The decision maker determines the
0.5-degree risk value based on the question type and his own risk preference. So a new neutrosophic vague N-soft
set (NV, K)

′
is represented by Table 19.

Next, compute score function S
′
ij denoted by Table 20 and compute the comparison table for g

′
ii∗ and S

′
ii∗

based on (NV, K)
′
, as shown in Table 21.

What’s more, we use priority relation ranking method to complete the ranking of the universities. In Table
21, we find ∆2 = max{∆imin} =< 1; 0.05 >, we will remove x2 and consider x2 is the first superior object
under attribute e1. If we go on in turn, we can get the orders of all the research objects under the same attribute
e1 as displayed in Tables 22–24. Hence, we known x2 � x1 � x3 � x9 � x7 under the same attribute e1.

Table 17. Tabular representation of the (NV, K) in Example 8.

(NV , K) e1 e2

x1 <3, [0.60, 0.90], [0.10, 0.40], [0.10, 0.40]> <2, [0.40, 0.70], [0.20, 0.80], [0.30, 0.60]>
x2 <3, [0.70, 0.90], [0.20, 0.40], [0.10, 0.30]> <3, [0.70, 0.90], [0.20, 0.30], [0.10, 0.30]>
x3 <3, [0.50, 0.80], [0.10, 0.30], [0.20, 0.50]> <3, [0.60, 0.70], [0.20, 0.40], [0.30, 0.40]>
x4 <2, [0.30, 0.80], [0.70, 0.90], [0.20, 0.70]> <3, [0.50, 0.70], [0.20, 0.80], [0.30, 0.50]>
x5 <1, [0.20, 0.30], [0.60, 0.70], [0.70, 0.80]> <3, [0.70, 0.80], [0.60, 0.80], [0.20, 0.30]>
x6 <1, [0.20, 0.40], [0.60, 0.80], [0.60, 0.80]> <2, [0.30, 0.40], [0.50, 0.70], [0.60, 0.70]>
x7 <2, [0.30, 0.40], [0.50, 0.60], [0.60, 0.70]> <2, [0.40, 0.50], [0.70, 0.90], [0.50, 0.60]>
x8 <1, [0.20, 0.30], [0.50, 0.90], [0.70, 0.80]> <4, [0.80, 0.90], [0.20, 0.30], [0.10, 0.20]>
x9 <3, [0.70, 0.80], [0.30, 0.70], [0.20, 0.30]> <3, [0.50, 0.70], [0.30, 0.80], [0.30, 0.50]>
x10 <2, [0.30, 0.50], [0.30, 0.60], [0.50, 0.70]> <3, [0.60, 0.80], [0.50, 0.80], [0.20, 0.40]>

(NV , K) e3 e4

x1 <3, [0.50, 0.80], [0.10, 0.90], [0.20, 0.50]> <4, [0.80, 0.90], [0.50, 0.70], [0.10, 0.20]>
x2 <3, [0.70, 0.90], [0.30, 0.50], [0.10, 0.30]> <3, [0.70, 0.90], [0.10, 0.20], [0.10, 0.30]>
x3 <4, [0.80, 0.90], [0.30, 0.50], [0.10, 0.20]> <3, [0.60, 0.80], [0.20, 0.50], [0.20, 0.40]>
x4 <3, [0.50, 0.60], [0.30, 0.70], [0.40, 0.50]> <1, [0.10, 0.20], [0.80, 0.90], [0.80, 0.90]>
x5 <3, [0.60, 1.00], [0.30, 0.50], [0.00, 0.40]> <2, [0.40, 0.60], [0.60, 0.80], [0.40, 0.60]>
x6 <2, [0.30, 0.40], [0.60, 0.90], [0.60, 0.70]> <3, [0.70, 0.80], [0.40, 0.50], [0.20, 0.30]>
x7 <4, [0.90, 1.00], [0.10, 0.20], [0.00, 0.10]> <3, [0.70, 0.90], [0.20, 0.40], [0.10, 0.30]>
x8 <3, [0.60, 0.70], [0.30, 0.70], [0.30, 0.40]> <1, [0.20, 0.50], [0.50, 0.70], [0.50, 0.80]>
x9 <2, [0.30, 0.70], [0.20, 0.50], [0.30, 0.70]> <2, [0.30, 0.40], [0.20, 0.40], [0.60, 0.70]>
x10 <1, [0.20, 0.80], [0.10, 0.30], [0.20, 0.80]> <4, [0.90, 1.00], [0.30, 0.40], [0.00, 0.10]>
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Table 18. The grades based on (NV, K) in Example 8.

(NV , K) e1 e2 e3 e4 gimin

x1 3 2 3 4 2
x2 3 3 3 3 3
x3 3 3 4 3 3
x4 2 3 3 1 1
x5 1 3 3 2 1
x6 1 2 2 3 1
x7 2 2 4 3 2
x8 1 4 3 1 1
x9 3 3 2 2 2
x10 2 3 1 4 1

Table 19. The new neutrosophic vague N-soft sets (NV, K)
′

in Example 8.

(NV , K)
′

e1 e2

x1 <3, [0.60, 0.90], [0.10, 0.40], [0.10, 0.40]> <3, [0.40, 0.70], [0.20, 0.80], [0.30, 0.60]>
x2 <4, [0.70, 0.90], [0.20, 0.40], [0.10, 0.30]> <4, [0.70, 0.90], [0.20, 0.30], [0.10, 0.30]>
x3 <3, [0.50, 0.80], [0.10, 0.30], [0.20, 0.50]> <3, [0.60, 0.70], [0.20, 0.40], [0.30, 0.40]>
x7 <2, [0.30, 0.40], [0.50, 0.60], [0.60, 0.70]> <2, [0.40, 0.50], [0.70, 0.90], [0.50, 0.60]>
x9 <3, [0.70, 0.80], [0.30, 0.70], [0.20, 0.30]> <3, [0.50, 0.70], [0.30, 0.80], [0.30, 0.50]>

(NV , K)
′

e3 e4

x1 <3, [0.50, 0.80], [0.10, 0.90], [0.20, 0.50]> <4, [0.80, 0.90], [0.50, 0.70], [0.10, 0.20]>
x2 <4, [0.70, 0.90], [0.30, 0.50], [0.10, 0.30]> <4, [0.70, 0.90], [0.10, 0.20], [0.10, 0.30]>
x3 <4, [0.80, 0.90], [0.30, 0.50], [0.10, 0.20]> <3, [0.60, 0.80], [0.20, 0.50], [0.20, 0.40]>
x7 <4, [0.90, 1.00], [0.10, 0.20], [0.00, 0.10]> <4, [0.70, 0.90], [0.20, 0.40], [0.10, 0.30]>
x9 <3, [0.30, 0.70], [0.20, 0.50], [0.30, 0.70]> <2, [0.30, 0.40], [0.20, 0.40], [0.60, 0.70]>

Table 20. The score function S
′

ij based on (NV, K)
′

in Example 8.

(NV , K)
′

e1 e2

x1 <3, 0.75, 0.25, 0.25; 0.25> <3, 0.55, 0.50, 0.45;−0.40>
x2 <4, 0.80, 0.30, 0.20; 0.30> <4, 0.80, 0.25, 0.20; 0.35>
x3 <3, 0.65, 0.20, 0.35; 0.10> <3, 0.65, 0.30, 0.35; 0.00>
x7 <2, 0.35, 0.55, 0.65;−0.85> <2, 0.45, 0.80, 0.55;−0.90>
x9 <3, 0.75, 0.50, 0.25; 0.00> <3, 0.60, 0.55, 0.40;−0.35>

(NV , K)
′

e3 e4

x1 <3, 0.65, 0.50, 0.35;−0.20> <4, 0.85, 0.60, 0.15; 0.10>
x2 <4, 0.80, 0.40, 0.20; 0.20> <4, 0.80, 0.15, 0.20; 0.45>
x3 <4, 0.85, 0.40, 0.15; 0.30> <3, 0.70, 0.35, 0.30; 0.05>
x7 <4, 0.95, 0.15, 0.05; 0.75> <4, 0.80, 0.30, 0.20; 0.30>
x9 <3, 0.50, 0.35, 0.50;−0.35> <2, 0.35, 0.30, 0.65;−0.60>

Table 21. Comparison table for ∆g
′

ii∗ and ∆S
′

ii∗ based on e1.

x1 x2 x3 x7 x9 ∆imin

x1 <0; 0> <−1;−0.05> <0; 0.15> <1; 1.10> <0; 0.25> <−1;−0.05>
x2 <1; 0.05> <0; 0> <1; 0.20> <2; 1.15> <1; 0.30> <1; 0.05>
x3 <0;−0.15> <−1;−0.20> <0; 0> <1; 0.95> <0; 0.10> <−1;−0.20>
x7 <−1;−1.10> <−2;−1.15> <−1;−0.95> <0; 0> <−1;−0.85> <−2;−1.15>
x9 <0;−0.25> <−1;−0.30> <0;−0.10> <1; 0.85> <0; 0> <−1;−0.30>
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Table 22. Comparison table for ∆g
′

ii∗ and ∆S
′

ii∗ based on e1 without x2.

x1 x3 x7 x9 ∆imin

x1 <0; 0> <0; 0.15> <1; 1.10> <0; 0.25> <0; 0.15>
x3 <0;−0.15> <0; 0> <1; 0.95> <0; 0.10> <0;−0.15>
x7 <−1;−1.10> <−1;−0.95> <0; 0> <−1;−0.85> <−1;−1.10>
x9 <0;−0.25> <0;−0.10> <1; 0.85> <0; 0> <0;−0.25>

Table 23. Comparison table for ∆g
′

ii∗ and ∆S
′

ii∗ based on e1 without x2 and x1.

.

x3 x7 x9 ∆imin

x3 <0; 0> <1; 0.95> <0; 0.10> <0; 0.10>
x7 <−1;−0.95> <0; 0> <−1;−0.85> <−1;−0.95>
x9 <0;−0.10> <1; 0.85> <0; 0> <0;−0.10>

Table 24. Comparison table for ∆g
′

ii∗ and ∆S
′

ii∗ based on e1 without x2, x1 and x3.

x7 x9 ∆imin

x7 <0; 0> <−1;−0.85> <−1;−0.85>
x9 <1; 0.85> <0; 0> <1; 0.85>

Similarly, we can get x2 � x3 � x9 � x1 � x7 under the same attribute e2; x7 � x3 � x2 � x1 � x9

under the same attribute e3; x2 � x7 � x1 � x3 � x9 under the same attribute e4.
Finally, compute the rankings of the research objects under all attributes. Suppose the decision

maker assigns weights to each attribute, ω1 = 0.2, ω2 = 0.3, ω3 = 0.1, ω4 = 0.4. And we can get
A9 > A7 > A1 > A3 > A2 from Table 25, we consider that x2 is the first superior object, x3 is the
second superior object and x1 is the third superior object under the E. Therefore, they will be selected
as model universities.

Table 25. The ranking of the objects under all attributes.

e1 · 0.2 e2 · 0.3 e3 · 0.1 e4 · 0.4 Ai

x1 2 4 4 3 A1 = 3.2
x2 1 1 3 1 A2 = 1.2
x3 3 2 2 4 A3 = 3.0
x7 5 5 1 2 A7 = 3.4
x9 4 3 5 5 A9 = 4.2

4.2. Comparison Analysis

In this paper, we presented neutrosophic vague N-soft sets based on both neutrosophic vague soft
sets and N-soft sets. Many experts give different decision making methods, such as Akram et al. [23]
used score function method and comparison table method to solve practical problems about (F, N)-soft
sets.

Next, we applied score function method and comparison table method to Example 8. From Table 17,
we can use the score function S

′
ij = T−ij − I−ij − F−ij to get score in Table 26. So we can get x2 � x3 � x1 �

x7 � x9 from Table 27. The result of comparison table method is listed in Tables 28 and 29, so that we
consider that x2 is the first superior object, x3 is the second superior object and x1 is the third superior
object under the E.
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Table 26. The score function S
′

ij based on (NV, K) in Example 8.

(NV , K) e1 e2

x1 <3, 0.60, 0.10, 0.10; 0.40> <2, 0.40, 0.20, 0.30;−0.10>
x2 <3, 0.70, 0.20, 0.10; 0.40> <3, 0.70, 0.20, 0.10; 0.40>
x3 <3, 0.50, 0.10, 0.20; 0.20> <3, 0.60, 0.20, 0.30; 0.10>
x7 <2, 0.30, 0.50, 0.60;−0.80> <2, 0.40, 0.70, 0.50;−0.80>
x9 <3, 0.70, 0.30, 0.20; 0.20> <3, 0.50, 0.30, 0.30;−0.10>

(NV , K) e3 e4

x1 <3, 0.50, 0.10, 0.20; 0.20> <4, 0.80, 0.50, 0.10; 0.20>
x2 <3, 0.70, 0.30, 0.10; 0.30> <3, 0.70, 0.10, 0.10; 0.50>
x3 <4, 0.80, 0.30, 0.10; 0.40> <3, 0.60, 0.20, 0.20; 0.20>
x7 <4, 0.90, 0.10, 0.00; 0.80> <3, 0.70, 0.20, 0.10; 0.40>
x9 <2, 0.30, 0.20, 0.30;−0.20> <2, 0.30, 0.20, 0.60;−0.50>

Table 27. The total score based on (NV, K) in Example 8.

(NV , K) e1 e2 e3 e4 The Total Score

x1 <3, 0.40> <2,−0.10> <3, 0.20> <4, 0.20> <12, 0.70>
x2 <3, 0.40> <3, 0.40> <3, 0.30> <3, 0.50> <12, 1.60>
x3 <3, 0.20> <3, 0.10> <4, 0.40> <3, 0.20> <13, 0.90>
x7 <2,−0.80> <2,−0.80> <4, 0.80> <3, 0.40> <11,−0.40>
x9 <3, 0.20> <3,−0.10> <2,−0.20> <2,−0.50> <10,−0.60>

By comparing the ranking results of the existing methods and our proposed method, we observe
that their result is the same, which means that there is a consistency among our proposed decision
making method and the existing methods. But the method we proposed is more reasonable because
the idea of probability is implied in the grade. Therefore, the presented method is more reasonable for
solving practical decision application problems. In our daily life, the decision maker can use different
methods according to their preferences.

Table 28. Comparison table for S
′

ij.

x1 x2 x3 x7 x9

x1 4 1 2 2 4
x2 1 4 3 3 4
x3 3 2 4 2 4
x7 2 1 2 4 2
x9 1 0 1 2 4

Table 29. The result of comparison score table.

Grade Sum (g) Row Sum (r) Column Sum (c) Final Sum (r-c)

x1 12 13 11 2
x2 12 15 8 7
x3 13 15 12 3
x7 11 11 13 −2
x9 10 8 18 −10

5. Conclusions

In this paper, neutrosophic vague N-soft sets by a suitable combination of neutrosophic vague
sets with N-soft sets is proposed for the first time. The novel hybrid model combines the advantages
of existing models. We use δkp(x) containing the idea of probability to define the grade of object firstly.
It will not ignore the effect of hesitant parts and false membership in dealing with vague and uncertain
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problems. Some useful operations and propositions are given. Moreover, the priority relation ranking
method based on neutrosophic vague N-soft sets is introduced for the first time. By comparing the
ranking results of the existing methods and our proposed method, we observe that their result is the
same, which means that there is a consistency among our proposed decision making method and the
existing methods. But the method we proposed is more reasonable because the idea of probability is
implied in the grade. Finally, the method is used in practical multi-attribute decision making problems.

The method mentioned in this article can not only select the best research object, but also sort the
research objects. If there are many research objects, when sorting the research objects, although the
results are more reliable, the calculation is relatively complicated. Of course, if it can be translated into
a computer language, it will save a lot of time. In the era of big data, there will be more and more cases
to prove the effectiveness and flexibility of this method. The different hybrid models provide more
accurate and better choices. In the future, we can try to build richer connections between the between
N-soft sets and other soft computing models.
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