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ABSTRACT

We present an expected value based method for multiple attribute group decision making (MAGDM),

where the preference values of alternatives and the importance of attributes are expressed in terms

of neutrosophic trapezoidal numbers (NTrNs). First, we introduce an expected value formula for

NTrNs to be used in MAGDM. Second, we determine the expected values of aggregated rating

values and expected weight values of attributes, which are given by the decision makers. Third,

we determine the weighted expected value of each alternative to rank the given alternatives and

chose the desired alternative. Finally, we provide a numerical example to illustrate the validity and

effectiveness of the proposed approach.

KEYWORDS: Trapezoidal fuzzy number, Neutrosophic trapezoidal number, Expected value of

neutrosophic trapezoidal number, Multi-attribute group decision making

1 INTRODUCTION

Multi-attribute decision making (MADM) is an important part in the theory of decision

making problems. In this method, we determine the best one from the set of possible alter-

natives after considering qualitative or quantitative assessment of finite conflicting attributes.

Several methods for solving MADM such as TOPSIS (Hwang & Yoon, 2012), GRA (Deng,

1989; Li, Yamaguchi, & Nagai, 2007; Olson & Wu, 2006), AHP (Boucher & MacStravic,

1991; Saaty, 1980, 1994), VIKOR (Opricovic, 1998), ELECTREE (Roy, 1991) have been
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developed in crisp environment. However, decision makers cannot always evaluate the per-

formance of alternatives with crisp numbers due to insufficient knowledge of the problem,

or inability to explain directly the performance of one alternative over the others. This

issue has motivated us to extend the MADM problems with imprecise environment. Fuzzy

sets (Zadeh, 1965), intuitionistic fuzzy sets (Atanassov, 1986), interval valued fuzzy sets

(Turksen, 1986), hesitant fuzzy sets (Torra, 2010) have been proved as the effective tools to

model MADM in imprecise or vague environment although these sets cannot represent in-

complete, inconsistent and indeterminate information that we often face in decision making

problems. Neutrosophic set (Smarandache, 1998) captures all these types of information.

This set represents each element of universe with three independent membership functions:

truth membership function, indeterminacy membership function, and falsity membership

function. Single valued neutrosophic set (SVNS) (Wang, Smarandache, Zhang, & Sunder-

raman, 2010), an instance of neutrosophic set, can effectively handle uncertain information

existing in the real world problems.

Recently, researchers have found the potentiality of SVNS and shown an increased in-

terest about MADM problem under neutrosophic environment. Peng, Wang, Zhang, and

Chen (2014) proposed outranking method for solving multi-criteria decision making prob-

lems (MCDM) under simplified neutrosophic environment. Ye (2014b) introduced some vec-

tor similarity measures of simplified neutrosophic sets. Pramanik, Biswas, and Giri (2017)

extended vector similarity measure to hybrid vector similarity measure of single valued and

interval neutrosophic sets to study MADM problem. Mondal and Pramanik (2015) proposed

tangent similarity measure for SVNSs and applied it to MADM. Biswas, Pramanik, and Giri

(2014a) proposed entropy based grey relational analysis method for MADM with SVNSs.

Biswas, Pramanik, and Giri (2014b) further studied grey relational analysis for neutrosophic

MADM problems in which the weight of attribute is partially known or completely unknown.

Biswas, Pramanik, and Giri (2016a) developed a TOPSIS method for neutrosophic MAGDM

problem, where decision maker’s weight, attribute’s weight and rating values of alternatives

are represented in terms of SVNSs. Biswas, Pramanik, and Giri (2017) further developed a

non-linear programming based TOPSIS method for MAGDM problem under SVNS environ-

ment. Şahin and Liu (2015) put forward maximum deviation method to determine weight of

attributes and then solve neutrosophic MADM. In addition, different aggregation operators

of neutrosophic sets (Liu, Chu, Li, & Chen, 2014; Liu & Wang, 2014; Peng, Wang, Wang,

Zhang, & Chen, 2016; Ye, 2014a) have also been developed to solve MADM.

However in MADM, the domain of single-valued neutrosophic set is discrete set. A fuzzy

number (Dubois & Prade, 1987) is expressed with imprecise value rather than exact nu-

merical values. Fuzzy numbers are considered as a connected set of possible values, where

each value is characterized by membership degree, which lies between zero and one. The

main advantage of fuzzy number is that it depicts the physical world more realistically than
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crisp numbers. Therefore to represent the physical universe with a degree of inherent uncer-

tainty, we consider truth, indeterminacy and falsity membership functions of SVNSs with

a triad of connected set of possible values rather than triad of crisp numbers. Recently

neutrosophic numbers has received little attention to the researchers, and several definitions

of single-valued neutrosophic numbers have been proposed. Ye (2015) proposed trapezoidal

neutrosophic sets, and defined score function, accuracy functions, and two aggregation op-

erators for trapezoidal neutrosophic sets. Biswas, Pramanik, and Giri (2015) defined cosine

similarity measure and relative expected value of trapezoidal neutrosophic sets for MADM

problem. Biswas, Pramanik, and Giri (2016b) introduced single-valued neutrosophic trape-

zoidal numbers, where each of truth, indeterminacy and falsity membership functions has

been considered with trapezoidal fuzzy numbers. They (Biswas et al., 2016b) developed a

value and ambiguity index based ranking method to compare neutrosophic trapezoidal num-

bers used in MADM problems. Deli and Şubaş (2017) introduced neutrosophic trapezoidal

number (NTrNs) by assigning a set of four consecutive elements characterized by truth, in-

determinacy and falsity membership degrees. and proposed a value and ambiguity index

based ranking method to compare single-valued neutrosophic trapezoidal numbers.

Furthermore, the method of expected value is also used to rank fuzzy numbers and intu-

itionistic fuzzy numbers. Heilpern (1992) proposed the expected value for fuzzy number, and

thereafter He and Wang (2009) extended expected value method to MADM with fuzzy data.

Grzegrorzewski (2003) put forward the expected value and ordering method for intuitionistic

fuzzy numbers. Ye (2011) extended the method of expected value for intuitionistic trape-

zoidal fuzzy MCDM problems. The intuitionistic trapezoidal fuzzy number (Nehi, 2010) has

two parts: membership function and non-membership functions expressed by trapezoidal

fuzzy numbers. Because indeterminacy is a common issue in decision making problems, ex-

tension of the Ye’s method (Ye, 2011) is required to deal the issue in multi-attribute decision

making problems. There is a little research about neutrosophic trapezoidal number and thus

more research is needed for MADM under NTrNs.

Literature review reflects that no research has been carried out on expected value method

for MADM underNTrNs. To bridge the gap, we first propose expected value of neutrosophic

trapezoidal numbers to order NTrNs. Then we develop an expected value based novel method

for neutrosophic trapezoidal MAGDM. We define formulas to determine the expected weight

values of the attribute and weighted expected value for an alternative to determine the best

alternative.

The remainder of the paper has been organized as follows. In Section 2, we review some

basic notions of fuzzy set, trapezoidal fuzzy numbers, single-valued neutrosophic set, NTrN,

and its some arithmetical operations. In Section 3, we introduce an expected value of NTrN

and a ranking method among NTrNs. In section 4, we put forward expected value method

to derive attribute weights and develop an approach to MAGDM with NTrN information.
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Section 5 provides a numerical example to illustrate the developed approach, and finally, in

Section 6, we conclude the paper with future direction of research.

2 PRELIMINARIES

In this section, we recall some basic notions of fuzzy sets, trapezoidal fuzzy numbers, single-

valued neutrosophic sets, and single-valued neutrosophic trapezoidal numbers.

Definition 1. (Zadeh, 1965) A fuzzy set A in a universe of discourse X is defined by A =

{〈x, µA(x)〉 |x ∈ X}, where, µA(x): X → [0, 1] is called the membership function of A and

the value of µA(x) is called the degree of membership for x ∈ X.

Definition 2. (Dubois & Prade, 1987; Kauffman & Gupta, 1991) A fuzzy number A is

called a trapezoidal fuzzy number(TrFN) if its membership function is defined by

µA(x) =



µLA(x) =
x− a1
a2 − a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3

µUA(x) =
a4 − x
a4 − a3

, a3 ≤ x ≤ a4

0, otherwise.

The TrFN A is denoted by the quadruplet A=(a1, a2, a3, a4), where a1, a2, a3, a4 are the

real numbers and a1 ≤ a2 ≤ a3 ≤ a4.

Definition 3. (Heilpern, 1992) Let A = (a1, a2, a3, a4) be a trapezoidal fuzzy number in the

set of real number R. Then the expected interval and expected value of Ã are respectively

EI(A) = [E(AL), E(AU)] and EI(A) = (E(AL) + E(AU))/2 (1)

where, E(AL) = a2 −
∫ a2
a1
µL
Ã

(x) dx and E(AU) = a4 +
∫ a4
a3
µU
Ã

(x) dx

Definition 4. (Wang et al., 2010) A single valued neutrosophic set Ã in a universe of

discourse X is given by

Ã =
{〈
x, TÃ(x), IÃ(x), FÃ(x)

〉
|x ∈ X

}
,

where, TÃ : X → [0, 1], IÃ : X → [0, 1] and FÃ : X → [0, 1], with the condition

0 ≤ TÃ(x) + IÃ(x) + FÃ(x) ≤ 3, for all x ∈ X.

The numbers TÃ(x), IÃ(x) and FÃ(x) respectively represent the truth membership, inde-

terminacy membership and falsity membership degree of the element x to the set Ã. For

convenience, we take the single valued neutrosophic set A =
〈
TA(x), IA(x), FA(x)

〉
.
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Definition 5. (Biswas et al., 2016b) Let Ã be a neutrosophic trapezoidal number in the set

of real numbers R, then its truth membership function, indeterminacy membership function

and falsity membership function are defined as

TÃ(x) =


TL
Ã

(x), a11 ≤ x ≤ a21,

1, a21 ≤ x ≤ a31,

TU
Ã

(x), a31 ≤ x ≤ a41,

0, otherwise.

IÃ(x) =


IL
Ã

(x), b11 ≤ x ≤ b21,

0, b21 ≤ x ≤ b31,

IU
Ã

(x), b31 ≤ x ≤ b41,

1, otherwise,

FÃ(x) =


FL
Ã

(x), c11 ≤ x ≤ c21,

0, c21 ≤ x ≤ c31,

FU
Ã

(x), c31 ≤ x ≤ c41,

1, otherwise.

The sum of three independent membership degrees of a single-valued neutrosophic set Ã lie

between the interval [0, 3] and a11, a21, a31, a41, b11, b21, b31, b41, c11, c21, c31, and c41 belong

to R such that a11 ≤ a21 ≤ a31 ≤ a41, b11 ≤ b21 ≤ b31 ≤ b41, and c11 ≤ c21 ≤ c31 ≤ c41. The

functions TL
Ã

, IL
Ã

, and FL
Ã

are non-decreasing continuous functions and TU
Ã

, IU
Ã

, and FU
Ã

are

non-increasing continuous functions.

Figure 1: Neutrosophic number

Definition 6. (Biswas et al., 2016b) A neutrosophic trapezoidal number (NTrN) Ã is a set

of twelve parameters satisfying the inequality c11 ≤ b11 ≤ a11 ≤ c21 ≤ b21 ≤ a21 ≤ a31 ≤
b31 ≤ c31 ≤ a41 ≤ b41 ≤ c41 and is denoted by Ã=

〈
(a11, a21, a31, a41), (b11, b21, b31, b41),

(c11, c21, c31, c41)
〉

in the set of real numbers R. Then the truth membership , the indetermi-
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nacy membership and the falsity membership degree of Ã are defined as

TÃ(x) =



x− a11
a21 − a11

, a11 ≤ x ≤ a21,

1, a21 ≤ x ≤ a31,
a41 − x
a41 − a31

, a31 ≤ x ≤ a41,

0, otherwise.

IÃ(x) =



x− b21
b21 − b11

, b11 ≤ x ≤ b21,

0, b21 ≤ x ≤ b31,
x− b31
b41 − b31

, b31 ≤ x ≤ b41,

1, otherwise.

FÃ(x) =



x− c21
c21 − c11

, c11 ≤ x ≤ c21,

0, c21 ≤ x ≤ c31,
x− c31
c41 − c31

, c31 ≤ x ≤ c41,

1, otherwise.

For a21=a31, b21=b31 , and c21=c31 in a NTrN Ã, we get a new type of neutrosophic

number and call it neutrosophic triangular number.

Figure 2: Neutrosophic trapezoidal number

Definition 7. (Biswas et al., 2016b) Let Ã =
〈
(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)

〉
and B̃ =

〈
(a12, a22, a32, a42), (b12, b22, b32, b42), (c12, c22, c32, c42)

〉
be two NTrNs in the set of

real numbers R, then the following operations are valid:

1. Ã⊕ B̃ =

〈 (a11 + a12, a21 + a22, a31 + a32, a41 + a42),

(b11 + b12, b21 + b22, b31 + b32, b41 + b42),

(c11 + c12, c21 + c22, c31 + c32, c41 + c42)

〉
,

2. Ã⊗ B̃ =

〈 (a11a12, a21a22, a31a32, a41a42),

(b11b12, b21b22, b31b32, b41b42),

(c11c12, c21c22, c31c32, c41c42)

〉
,
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3. λÃ =

〈
(λa11, λa21, λa31, λa41), (λb11, λb21, λb31, λb41),

(λc11, λc21, λc31, λc41)

〉
forλ > 0,

4. Ãλ =

〈
(aλ11, a

λ
21, a

λ
31, a

λ
41), (b

λ
11, b

λ
21, b

λ
31, b

λ
41),

(cλ11, c
λ
21, c

λ
31, c

λ
41)

〉
forλ > 0.

3 EXPECTED VALUE OF NEUTROSOPHIC TRAPEZOIDAL NUMBER

For a NTrN Ã = 〈(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)〉, we assume that TL
Ã

(x)

=
x− a11
a21 − a11

and TU
Ã

(x) =
x− a41
a31 − a41

are the two sides of trapezoidal fuzzy number TÃ(x) =

(a11, a21, a31, a41) in Ã. Similarly, IL
Ã

(x) =
x− b21
b11 − b21

and IU
Ã

(x) =
x− a31
a41 − a31

are the two sides

of trapezoidal fuzzy number IÃ(x) = (b11, b21, b31, b41) and FL
Ã

(x) =
x− c21
c11 − c21

and FU
Ã

(x) =

x− c31
c41 − c31

are the two sides of trapezoidal fuzzy number FÃ(x) = (c11, c21, c31, c41).

Definition 8. (Expected interval of a neutrosophic number)

The expected interval of a NTrN Ã=
〈
(a11, a21, a31, a41), (b11, b21, b31, b41),

(c11, c21, c31, c41)
〉

is defined by

EI(Ã) = [E(ÃL), E(ÃU)]. (2)

Here, the lower limit of expected interval for the functions FL
Ã

(x), IL
Ã

(x) and TL
Ã

(x) is

E(ÃL) =
1

3

(c11 − c11∫
c21

FL
Ã

(x) dx
)

+
(
b11 −

b11∫
b21

IL
Ã

(x) dx
)

+
(
a21 −

a21∫
a11

TL
Ã

(x) dx
)

=
c11 + b11 + a21

3
+

1

3

c21∫
c11

FL
Ã

(x) dx+
1

3

b21∫
b11

IL
Ã

(x) dx− 1

3

a21∫
a11

TL
Ã

(x) dx; (3)

and the upper limit of expected interval for the functions FU
Ã

(x), IU
Ã

(x) and TU
Ã

(x) is

E(ÃU) =
1

3

(c41 +

c31∫
c41

FL
Ã

(x) dx
)

+
(
b41 +

b31∫
b41

IL
Ã

(x) dx
)

+
(
a31 −

a21∫
a11

TL
Ã

(x) dx
)

=
a31 + b41 + c41

3
+

1

3

a41∫
a31

TU
Ã

(x) dx− 1

3

b41∫
b31

IU
Ã

(x) dx− 1

3

c41∫
c31

FU
Ã

(x) dx (4)

Definition 9. Let Ã=〈(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)〉
be a neutrosophic number in the set of real numbers R. Then the expected value of Ã is
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determined by taking the mid values of expected interval of Ã and is defined by

EV (Ã) =
E(ÃL) + E(ÃU)

2
(5)

Therefore the expected value of a neutrosophic trapezoidal number can be determined

by the expected interval of neutrosophic numbers with the following theorem.

Theorem 3.1. Let Ã=〈(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)〉
be a NTrN in the set of real numbers R satisfying the relation c11 ≤ b11 ≤ a11 ≤ c21 ≤ b21 ≤
a21 ≤ a31 ≤ b31 ≤ c31 ≤ a41 ≤ b41 ≤ c41. Then for TL

Ã
(x)=

x− a11
a21 − a11

, TU
Ã

(x)=
x− a41
a31 − a41

;

IL
Ã

(x)=
x− b21
b11 − b21

, IU
Ã

(x)=
x− a31
a41 − a31

, FL
Ã

(x)=
x− c21
c11 − c21

and FU
Ã

(x)=
x− c31
c41 − c31

, the expected

value of Ã is obtained by

EV (Ã) =

4∑
i=1

ai1 +
4∑
i=1

bi1 +
4∑
i=1

ci1

12
. (6)

Proof. Putting the values of TL
Ã

(x), IL
Ã

(x), and FL
Ã

(x) in Eq.(3), we get

E(ÃL) =
c11 + b11 + a21

3
+

1

3

c21∫
c11

x− c21
c11 − c21

dx+
1

3

b21∫
b11

x− b21
b11 − c21

dx

− 1

3

a21∫
a11

x− a11
a21 − a11

dx

=
c11 + b11 + a21

3
+
c21 − c11

6
+
b21 − b11

6
+
a11 − a21

6

=
c11 + b11 + a21 + c21 + b21 + a11

6
. (7)

Similarly, putting the values of TU
Ã

(x), IU
Ã

(x), and FU
Ã

(x) in Eq.(4), we obtain

E(ÃU) =
a31 + b41 + c41

3
+

1

3

∫ a41

a31

x− a41
a31 − a41

dx− 1

3

∫ b41

b31

x− b31
b41 − b31

dx

− 1

3

∫ c41

c31

x− c31
a41 − a31

dx

=
a31 + b41 + c41

3
+
a41 − a31

6
+
b31 − b41

6
+
c31 − c41

6

=
c11 + b11 + a21 + c21 + b21 + a11

6
. (8)
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Following Eq.(5), we obtain the required expected value of Ã

EV (Ã) =

4∑
i=1

ai1 +
4∑
i=1

bi1 +
4∑
i=1

ci1

12
.

This completes the proof.

Proposition 3.2. Let Ã1=
〈
(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)

〉
and

Ã2=
〈
(a12, a22, a32, a42), (b12, b22, b32, b42), (c12, c22, c32, c42)

〉
be two NTrNs in the set of real

numbers R. Then the following relations are satisfied:

1. EV (Ã1 + Ã2) = EV (Ã1) + EV (Ã2);

2. EV (λÃ1) = λEV (Ã1).

Proof. Following the Eq.(6) about expected value and addition of NTrNs, we have

EV (Ã1 + Ã2) =

4∑
i=1

(ai1 + ai2) +
4∑
i=1

(bi1 + bi2) +
4∑
i=1

(ci1 + ci2)

12

=

( 4∑
i=1

ai1 +
4∑
i=1

bi1 +
4∑
i=1

ci1

)
+
( 4∑
i=1

ai2 +
4∑
i=1

bi2 +
4∑
i=1

ci2

)
12

= EV (Ã1) + EV (Ã2)

Similarly,

EV (λÃ1) =

4∑
i=1

(λai1) +
4∑
i=1

(λbi1) +
4∑
i=1

(λci1)

12

= λ
[ 4∑
i=1

ai1 +
4∑
i=1

bi1 +
4∑
i=1

ci1

12

]
= λEV (Ã1).

This completes the proof.

Definition 10. Let Ã1=
〈
(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)

〉
and

Ã2=
〈
(a12, a22, a32, a42), (b12, b22, b32, b42), (c12, c22, c32, c42)

〉
be two NTrNs. Then the following

relations are satisfied:

1. Ã1 ≺EV Ã2 ⇔ EV (Ã1) < EV (Ã2);

2. Ã1 �EV Ã2 ⇔ EV (Ã1) > EV (Ã2);
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3. Ã1 ∼EV Ã2 ⇔ EV (Ã1) = EV (Ã2).

Example 11. Let Ã1=〈(0.5, 0.6, 0.7, 0.8), (0.4, 0.6, 0.7, 0.9), (0.4, 0.5, 0.8, 0.9)〉
and Ã2 =〈(0.7, 0.8, 0.9, 1.0), (0.7, 0.8, 0.9, 1.0), (0.7, 0.8, 0.9, 0.1)〉 be two NTrNs, then by

Definition 3.2 we can calculate

Ã1 + Ã2 = 〈(1.2, 1.4, 1.6, 1.8), (1.1, 1.4, 1.6, 1.9), (1.1, 1.3, 1.7, 1.9)〉;

5Ã1 = 〈(2.5, 3.0, 3.5, 4.0), (2.0, 2.4, 3.5, 4.5), (2.0, 2.5, 4.0, 4.5)〉.

Following Eq. (6), we obtain the results: EV (Ã1) = 0.65, EV (Ã2) = 0.85, EV (Ã1 + Ã2),

and EV ( ˜5A1) = 3.25. It follows that EV (Ã1 + Ã2) = EV (Ã1) + EV (Ã2) = 1.5 and

EV ( ˜5A1) = 5EV (Ã1) = 3.25.

Because EV (Ã2) > EV (Ã1), we can consider that Ã2 �EV Ã1 i.e. Ã2 is greater than Ã1.

4 MADM USING EXPECTED VALUE OF NEUTROSOPHIC TRAPEZOIDAL FUZZY

NUMBER

In this section we develop multi-attribute group decision making with neutrosophic trape-

zoidal number.

Assume that A= {A1, A2, . . . , Am} be the set of m alternatives, C= {C1, C2, . . . , Cn} be

the set of n attributes, D= {D1, D2, . . . , DK} be the set of k decision makers (experts).

We also consider that λk = {λ̃1j , λ̃2j , . . . , λ̃kj} be the k-th decision maker’s weight vector of

jth attribute for j = 1, 2, . . . n, where λ̃2j takes the form on NTrN λ̃kj = 〈(ukj1, ukj2, ukj3, ukj4),
(vkj1, v

k
j2, v

k
j3, v

k
j4), (wkj1, w

k
j2, w

k
j3, w

k
j4)〉. The rating values of kth decision maker of the al-

ternatives Ai for i=1, 2, . . .m with respect to attributes Cj for j=1, 2, . . . n can be concisely

expressed in matrix format. Then we obtain the decision matrix (dkij)m×n for the kth decision

maker as

(dkij)m×n =

C1 C2 · · · Cn

A1 dk11 dk12 · · · dk13

A2 dk21 dk22 · · · dk2n
...

...
...

...
...

Am dkm1 dkm2 · · · dkmn

(9)

where, d̃kij=
〈
T kij, I

k
ij, F

k
ij

〉
is the neutrosophic rating of alternative Ai with respect to at-

tribute Cj. In the rating d̃kij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, the component

T kij=(akij1, a
k
ij2, a

k
ij3, a

k
ij4) represents the truth membership function , Ikij=(bkij1, b

k
ij2, b

k
ij3, b

k
ij4)

represents the indeterminacy membership function, and F k
ij=(ckij1, c

k
ij2, c

k
ij3, c

k
ij4) represents

the falsity membership function. Hence we can consider the NTrN d̃kij = 〈(akij1, akij2, akij3, akij4),
(bkij1, b

k
ij2, b

k
ij3, b

k
ij4),

(ckij1, c
k
ij2, c

k
ij3, c

k
ij4)〉 as the neutrosophic rating of the decision matrix.
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Step 1. Aggregate the rating values of alternatives

In the decision making process, experts provide their different ratings for each alternative.

Therefore, the method of average value can be used to aggregate the neutrosophic ratings〈
T kij, I

k
ij, F

k
ij

〉
of K decision makers.

Thus the aggregated neutrosophic rating d̃ij (i = 1, 2, . . . ,m; j = 1, 2, . . . , n) of the

alternatives are calculated as d̃ij=〈Tij, Iij, Fij〉 where,

Tij =
(∑K

k=1 a
k
ij1

K
,

∑K
k=1 a

k
ij2

K
,

∑K
k=1 a

k
ij3

K
,

∑K
k=1 a

k
ij4

K

)
=(aij1, aij2, aij3, aij4) (10)

Iij =
(∑K

k=1 b
k
ij1

K
,

∑K
k=1 b

k
ij2

K
,

∑K
k=1 b

k
ij3

K
,

∑K
k=1 b

k
ij4

K

)
=(bij1, bij2, bij3, bij4) (11)

Fij =
(∑K

k=1 c
k
ij1

K
,

∑K
k=1 c

k
ij2

K
,

∑K
k=1 c

k
ij3

K
,

∑K
k=1 c

k
ij4

K

)
=(cij1, cij2, cij3, cij4) (12)

Then the aggregated group decision matrix D̃ can be obtained as

(d̃ij)m×n =

C1 C2 · · · Cn

A1 d̃11 d̃12 · · · d̃13

A2 d̃21 d̃22 · · · d̃2n
...

...
...

...
...

Am d̃m1 d̃m2 · · · d̃mn

(13)

and the corresponding expected value based decision matrix of D̃ can be obtained by Eq.(6)

as

(E(d̃ij))m×n =

C1 C2 · · · Cn

A1 EV (d̃11) EV (d̃12) · · · EV (d̃1n)

A2 EV (d̃21) EV (d̃22) · · · EV (d̃2n)
...

...
...

...
...

Am EV (d̃m1) EV (d̃m2) · · · EV (d̃mn)

(14)

Step 2. Aggregate of the weight of attributes

Similarly, using the method of average value, the aggregated neutrosophic weight λ̃j =
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〈uj, vj, wj〉 of Cj(j = 1, 2, . . . , n) can be calculated as follows:

uj =
(∑K

k=1 u
k
j1

K
,

∑K
k=1 u

k
j2

K
,

∑K
k=1 u

k
j3

K
,

∑K
k=1 u

k
j4

K

)
=(uj1, uj2, uj3, uj4) (15)

vj =
(∑K

k=1 v
k
j1

K
,

∑K
k=1 v

k
j2

K
,

∑K
k=1 v

k
j3

K
,

∑K
k=1 v

k
j4

K

)
=(vj1, vj2, vj3, vj4) (16)

wj =
(∑K

k=1w
k
j1

K
,

∑K
k=1w

k
j2

K
,

∑K
k=1w

k
j3

K
,

∑K
k=1w

k
j4

K

)
=(wj1, wj2, wj3, wj4). (17)

Then, the aggregated attribute weight W̃ can be taken as

W = [λ̃1, λ̃2, . . . , λ̃n]. (18)

where, λ̃j =
〈
uj, vj, wj

〉
for j = 1, 2, . . . , n. Now by Eq.(6), we determine the expected value

of weight λ̃j (j = 1, 2, . . . , n) for an attribute Cj and obtain the normalized expected weight

vector

WN = [λN1 , λ
N
2 , . . . , λ

N
n ] (19)

where,

λNj =
EV

(
λ̃j

)
n∑
j=1

EV
(
λ̃j

) j = 1, 2, . . . , n. (20)

Step 3. Determine the weighted expected value of alternative

We now determine the weighted expected value of the alternative Ai for i = 1, 2, . . . ,m by

summing up the multiplicative values of normalized expected weight and expected value of

aggregated rating value for an attribute Cj(j = 1, 2, . . . , n) in the decision matrix (E(d̃ij))m×n

shown in Eq.(14). Therefore, the weighted expected value of alternative Ai(i = 1, 2, . . . ,m)

is

EVw (Ai) =
n∑
j=1

λNj EV (d̃ij). (21)

Step 4. Rank the alternatives

Largest value of the weighted expected value EVw (Ai) of an alternative Ai(i = 1, 2, . . . ,m)

determines the best alternative.
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5 ILLUSTRATIVE EXAMPLE

To illustrate the proposed approach, we provide an illustrative example. Assume that an

organization desires to purchase some cars. After initial choice, four models (i.e. alternatives)

A1, A2, A3 and A4 are considered for further evaluation. A committee of four experts D1,

D2, D3 and D4 is set up to select the most appropriate alternative car. Six attributes are

considered which include:

1. Performance (C1),

2. Style (C2),

3. Comfort (C3),

4. Safety (C4),

5. Specifications (C5),

6. Customer service (C6).

Linguistic variables are generally presented with linguistic terms Zadeh (1975). These terms

play an important role to present uncertain information that are either too complex or too

ill-defined to be described properly with conventional quantitative expressions. For example,

the ratings of alternatives over the qualitative attributes could be expressed with linguistic

variables such as very poor, poor, medium poor, fair, medium good, good, very good, etc.

These linguistic terms can also be represented by NTrNs such as the term “fair” can be

considered with
〈
(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7), (0.2, 0.3, 0.6, 0.7)

〉
. We now define the

following linguistic scales characterizing NTrNs.

Table 1: Linguistic variables for the importance of attributes

Linguistic variables Corresponding NTrNs

Very low(VL) 〈(0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0)〉
Low(L) 〈(0.0, 0.1, 0.2, 0.3), (0.0, 0.1, 0.2, 0.3), (0.0, 0.1, 0.2, 0.3)〉
Medium(M) 〈(0.1, 0.2, 0.3, 0.4), (0.0, 0.2, 0.3, 0.5), (0.0, 0.1, 0.4, 0.5)〉
High(H) 〈(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7), (0.2, 0.3, 0.6, 0.7)〉
Very High(VH) 〈(0.5, 0.6, 0.7, 0.8), (0.4, 0.6, 0.7, 0.9), (0.4, 0.5, 0.8, 0.9)〉

We consider that the four experts describe the importance of the attribute and the rating

of alternatives by linguistic variables such as very good, good, fair, poor, very poor, etc. The

linguistic ratings of four alternatives under the pre-assigned attributes and the weights of the

attributes for k(k = 1, 2, . . . , K) are shown in Table 1. We first convert the assessed rating

values of alternative and weights of each attribute with the help of pre-defined linguistic

variables in the form of NTrNs defined in Table 2. The proposed method is applied to solve

the problem and its computational procedure is summarized as follows:
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Table 2: Linguistic variables for the ratings of alternatives

Linguistic variables Corresponding NTrNs

Very Poor(VP) 〈(0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0), (0.0, 0.0, 0.0, 0.0)〉
Poor(P) 〈(0.0, 0.1, 0.2, 0.3), (0.0, 0.1, 0.2, 0.3), (0.0, 0.1, 0.2, 0.3)〉
Medium Poor(MP) 〈(0.1, 0.2, 0.3, 0.4), (0.0, 0.2, 0.3, 0.5), (0.0, 0.1, 0.4, 0.5)〉
Fair(F) 〈(0.3, 0.4, 0.5, 0.6), (0.2, 0.4, 0.5, 0.7), (0.2, 0.3, 0.6, 0.7)〉
Good(G) 〈(0.5, 0.6, 0.7, 0.8), (0.4, 0.6, 0.7, 0.9), (0.4, 0.5, 0.8, 0.9)〉
Medium Good(MG) 〈(0.7, 0.8, 0.9, 1.0), (0.7, 0.8, 0.9, 1.0), (0.7, 0.8, 0.9, 1.0)〉
Very Good(VG) 〈(1.0, 1.0, 1.0, 1.0), (1.0, 1.0, 1.0, 1.0), (1.0, 1.0, 1.0, 1.0)〉

Table 3: Rating of alternatives and weight of attributes

Alternatives (Ai) Decision Makers C1 C2 C3 C4 C5 C6

A1 DM-1 VG G G G G VG
DM-2 VG VG G G G VG
DM-3 G VG G G VG G
DM-4 G G G G G G

A2 DM-1 F G F G G F
DM-2 G MG G MG G G
DM-3 G F G F VG F
DM-4 F G F F G F

A3 DM-1 VG VG G G VG VG
DM-2 G VG VG G G VG
DM-3 VG G G MG G MG
DM-4 G G G MG G G

A4 DM-1 F VG G G VG F
DM-2 F F G G F G
DM-3 G MG G MG MG G
DM-4 G G F G G G

Weights DM-1 VH VH H M H H
DM-2 H VH H H M M
DM-3 M H M M H M
DM-4 M H M H VH H
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Step 1. Determine the aggregated rating values of alternatives

Using Eqs.(10),(11), and (12), we aggregate each of four decision makers’ opinion into a

group opinion ( see Table 4). Then employing expected value of neutrosophic trapezoidal

number defined in Eq.(6), we construct the following expected value matrix:

(d̃ij)m×n =

C1 C2 C3 C4 C5 C6

A1 0.9250 0.9250 0.8500 0.8500 0.8875 0.9250

A2 0.6500 0.7000 0.6500 0.6000 0.8875 0.5500

A3 0.9250 0.9250 0.8875 0.7500 0.8875 0.8750

A4 0.6500 0.7375 0.7500 0.8000 0.7375 0.7500

(22)

Step 2. Aggregate of the weight of attributes

Similarly, we aggregate the weights of attributes by Eqs.(15), (16), and (17). Then the

aggregated weight vector W is

W =


〈
(0.60, 0.70, 0.80, 0.90),

(0.58, 0.70, 0.80, 0.92),

(0.58, 0.67, 0.82, 0.92)
〉
,

〈
(0.60, 0.70, 0.80, 0.90),

(0.58, 0.70, 0.80, 0.92),

(0.58, 0.67, 0.82, 0.92)
〉
,〈

(0.60, 0.70, 0.80, 0.90),

(0.58, 0.70, 0.80, 0.92),

(0.58, 0.67, 0.82, 0.92)
〉
,

〈
(0.60, 0.70, 0.80, 0.90),

(0.58, 0.70, 0.80, 0.92),

(0.58, 0.67, 0.82, 0.92)
〉
,〈

(0.60, 0.70, 0.80, 0.90),

(0.58, 0.70, 0.80, 0.92),

(0.58, 0.67, 0.82, 0.92)
〉
,

〈
(0.60, 0.70, 0.80, 0.90),

(0.58, 0.70, 0.80, 0.92),

(0.58, 0.67, 0.82, 0.92)
〉
 . (23)

Using Eq.(6), we calculate the expected value of each element of the weight vector W :

EV (W ) = (0.40, 0.55, 0.35, 0.35, 0.45, 0.35)T . (24)

Following Eq.(20), we determine the normalized weight vector

WN = (0.1633, 0.2246, 0.1428, 0.1428, 0.1428, 0.1837)T . (25)

Step 3. Determine the weighted expected value of alternative

By Eq.(21), we determine the following weighted expected value of alternativeAi for (i = 1, 2, 3, 4):

EV (A1) = 0.8967, EV (A2) = 0.6834, EV (A1) = 0.8806, EV (A1) = 0.7357.
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Table 4: Aggregated rating values of alternatives with NTrNs

(Ai) C1 C2 C3

A1

〈
(0.85, 0.90, 0.95, 1.00),

(0.85, 0.90, 0.95, 1.00),

(0.85, 0.90, 0.95, 1.00),
〉
〈
(0.85, 0.90, 0.95, 1.00),

(0.85, 0.90, 0.95, 1.00),

(0.85, 0.90, 0.95, 1.00),
〉
〈
(0.70, 0.80, 0.90, 1.00),

(0.70, 0.80, 0.90, 1.00),

(0.70, 0.80, 0.90, 1.00),
〉

A2

〈
(0.50, 0.60, 0.70, 0.80),

(0.45, 0.60, 0.70, 0.85),

(0.45, 0.55, 0.75, 0.85),
〉
〈
(0.55, 0.65, 0.75, 0.85),

(0.50, 0.65, 0.75, 0.90),

(0.55, 0.60, 0.80, 0.90),
〉
〈
(0.50, 0.60, 0.70, 0.80),

(0.45, 0.60, 0.70, 0.85),

(0.45, 0.55, 0.75, 0.85),
〉

A3

〈
(0.85, 0.90, 0.95, 1.00),

(0.85, 0.90, 0.95, 1.00),

(0.85, 0.90, 0.95, 1.00),
〉
〈
(0.85, 0.90, 0.95, 1.00),

(0.85, 0.90, 0.95, 1.00),

(0.85, 0.90, 0.95, 1.00),
〉
〈
(0.78, 0.85, 0.92, 1.00),

(0.78, 0.85, 0.92, 1.00),

(0.78, 0.85, 0.92, 1.00),
〉

A4

〈
(0.50, 0.60, 0.70, 0.80),

(0.45, 0.60, 0.70, 0.85),

(0.45, 0.55, 0.75, 0.85),
〉
〈
(0.63, 0.70, 0.77, 0.85),

(0.58, 0.70, 0.77, 0.90),

(0.58, 0.65, 0.82, 0.90),
〉
〈
(0.60, 0.70, 0.80, 0.90),

(0.58, 0.70, 0.80, 0.92),

(0.58, 0.68, 0.82, 0.92),
〉

(Ai) C4 C5 C6

A1

〈
(0.70, 0.80, 0.90, 1.00),

(0.70, 0.80, 0.90, 1.00),

(0.70, 0.80, 0.90, 1.00),
〉
〈
(0.78, 0.85, 0.92, 1.00),

(0.78, 0.85, 0.92, 1.00),

(0.78, 0.85, 0.92, 1.00),
〉
〈
(0.85, 0.90, 0.95, 1.00),

(0.85, 0.90, 0.95, 1.00),

(0.85, 0.90, 0.95, 1.00),
〉

A2

〈
(0.45, 0.55, 0.65, 0.75),

(0.38, 0.55, 0.65, 0.82),

(0.38, 0.48, 0.72, 0.82),
〉
〈
(0.78, 0.85, 0.92, 1.00),

(0.78, 0.85, 0.92, 1.00),

(0.78, 0.85, 0.92, 1.00),
〉
〈
(0.40, 0.50, 0.60, 0.70),

(0.33, 0.50, 0.60, 0.77),

(0.33, 0.43, 0.67, 0.77),
〉

A3

〈
(0.60, 0.70, 0.80, 0.90),

(0.55, 0.70, 0.80, 0.95),

(0.55, 0.65, 0.85, 0.95),
〉
〈
(0.78, 0.85, 0.92, 1.00),

(0.78, 0.85, 0.92, 1.00),

(0.78, 0.85, 0.92, 1.00),
〉
〈
(0.80, 0.85, 0.90, 0.95),

(0.78, 0.85, 0.90, 0.97),

(0.78, 0.83, 0.92, 0.97),
〉

A4

〈
(0.65, 0.75, 0.85, 0.95),

(0.63, 0.75, 0.85, 0.97),

(0.63, 0.73, 0.87, 0.97),
〉
〈
(0.63, 0.70, 0.77, 0.85),

(0.58, 0.70, 0.77, 0.90),

(0.58, 0.65, 0.82, 0.90),
〉
〈
(0.60, 0.70, 0.80, 0.90),

(0.58, 0.70, 0.80, 0.92),

(0.58, 0.67, 0.82, 0.92),
〉
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Step 4. Rank the alternatives

We set the following ranking order according to the weighted expected value of alternative

Ai(i = 1, 2, . . . ,m) as

EV (A1) > EV (A3) > EV (A4) > EV (A4).

Thus the ranking order A1 � A3 � A4 � A2 of alternatives reflects that A1 is the best car

for purchasing.

6 CONCLUSIONS

In MAGDM problems, the rating values provided by decision makers are often evaluated

qualitatively and quantitatively due to uncertainty of real world problems. Neutrosophic

trapezoidal number (NTrN) is an alternative tool that can represent incomplete and in-

consistent information. In this paper, we have taken decision maker’s qualitative opinion

in-terms of linguistic variables represented by predefined NTrNs. We have developed an

exact formula of expected value for NTrN. Then we have determined the expected values

of aggregated rating values and expected weight values of attributes. Furthermore, we have

calculated the weighted expected values of alternatives to get the ranking order of alter-

natives. Finally, we have provided a numerical example about MAGDM with NTrNs to

illustrate the proposed method. The developed method is straightforward and effective. We

hope that the proposed method has a great chance of success for dealing with uncertainty

in MAGDM problems such as personal selection, supplier selection, project evaluation, and

manufacturing systems. This method can be extended to MAGDM problems under interval

neutrosophic trapezoidal number information.
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