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Abstract: The framework of the T-spherical fuzzy set is a recent development in fuzzy set theory 
that can describe imprecise events using four types of membership grades with no restrictions. The 
purpose of this manuscript is to point out the limitations of the existing intuitionistic fuzzy Einstein 
averaging and geometric operators and to develop some improved Einstein aggregation operators. 
To do so, first some new operational laws were developed for T-spherical fuzzy sets and their 
properties were investigated. Based on these new operations, two types of Einstein aggregation 
operators are proposed namely the Einstein interactive averaging aggregation operators and the 
Einstein interactive geometric aggregation operators. The properties of the newly developed 
aggregation operators were then investigated and verified. The T-spherical fuzzy aggregation 
operators were then applied to a multi-attribute decision making (MADM) problem related to the 
degree of pollution of five major cities in China. Actual datasets sourced from the UCI Machine 
Learning Repository were used for this purpose. A detailed study was done to determine the most 
and least polluted city for different perceptions for different situations. Several compliance tests 
were then outlined to test and verify the accuracy of the results obtained via our proposed decision-
making algorithm. It was proved that the results obtained via our proposed decision-making 
algorithm was fully compliant with all the tests that were outlined, thereby confirming the accuracy 
of the results obtained via our proposed method. 

Keywords: T-spherical fuzzy sets; single-valued neutrosophic sets; multi-attribute decision making; 
aggregation operator 

 

  



Mathematics 2019, 7, 780 2 of 32 

 

1. Introduction 

Zadeh [1] first introduced a formal tool to deal with the uncertainties and imprecision that occurs 
in real-life situations and called this as a fuzzy set (FS). A FS assigns a value in the interval of [0, 1] 
called a membership grade to every object whereby this membership grade indicates the degree of 
belongingness of the object to the fuzzy set that is being studied. Since its inception, fuzzy set theory 
has proven to be highly useful in many areas such as decision making, pattern recognition, 
automation, and the development of fuzzy logic inference systems. Atanassov [2,3] introduced a 
generalization of FSs called an intuitionistic fuzzy set (IFS). The IFS model is characterized by two 
grades of membership, namely a membership function and a non-membership function. As the name 
indicates, both these functions represent the degree of belongingness and degree of non-
belongingness of an object to the fuzzy set that is being studied. One of the limitations of the IFS 
model is that the sum of the membership and non-membership value must lie within the closed unit 
interval of [0, 1]. To overcome this limitation, Yager [4,5] introduced a concept of a Pythagorean fuzzy 
set (PyFS) in which he relaxed this limitation by defining the sum of the squares of the membership 
function and non-membership function must lie within the interval [0, 1]. This presents the decision 
makers with wider options when modelling a situation using PyFS, yet there are still restrictions as 
the decision makers are only free to assign values that fit a certain condition. To overcome this issue, 
Yager [6] introduced the notion of q-rung ortho pair fuzzy set (q-ROPFS) in which there are no 
limitations as to the type of membership functions that can be assigned to the objects. 

The concept of picture fuzzy sets (PFSs) were introduced by Cuong [7,8]. In the PFS model, there 
are three functions called the membership function, the abstinence function, and the non-
membership function. The PFS model has a similar restriction to the IFS model, in which the sum of 
the membership, abstinence, and non-membership functions must lie within the interval of [0, 1]. To 
further overcome this issue, Mahmood et al. [9] introduced the concept of spherical fuzzy sets (SFSs) 
in which they relaxed this condition so that the sum of the squares of these three membership values 
must lie within the interval of [0, 1]. In the same paper, the authors also went on to introduce the 
concept of T-spherical fuzzy sets (T-SFSs) in which there were no limitations or conditions on the 
values that are allowed for the membership grades. 

All of the tools used to handle uncertainties that have been discussed above have proven to have 
many applications in multi-attribute decision making (MADM) problems related to pattern 
recognition, similarity measures, and information measures. Many authors have proposed various 
methods based on aggregation operators for solving MADM problems. These include Xu [10] who 
proposed a decision-making method based on weighted averaging operators to solve MADM 
problems based on intuitionistic fuzzy information (IFI). Garg [11,12] introduced interactive 
aggregation operators for IFI, whereas He et al. [13] proposed the use of interactive geometric 
operators for IFSs to solve MADM problems based on IFI. Zhao and Wei [14] proposed a decision-
making method based on Einstein hybrid aggregation operators for IFI, whereas Liu [15] introduced 
frank aggregation operators for MADM problems based on the interval-valued IFI framework. Garg 
[16,17] introduced Einstein norms to solve MADM problems for PyFSs, Peng et al. [18] proposed an 
exponential operation and aggregation operator for q-rung ortho pair fuzzy information, while Wei 
[19] introduced geometric aggregation operators for PFSs. Garg [20] proposed picture fuzzy 
aggregation operators, whereas Garg et al. [21] proposed interactive geometric operators for T-SFSs, 
and applied these in solving MADM problems in various areas. Li and Deng [22] introduced a 
generalized ordered proposition fusion based on belief entropy, whereas Fei et al. [23] introduced a 
new vector valued similarity measure for intuitionistic fuzzy sets based on OWA operators. We refer 
the readers to [24–83] for a comprehensive, overall view of the many different methods that are 
available in literature pertaining to the IFS, PyFS and PFS models. 

There are shortcomings and inaccuracies in the existing Einstein operations that have been 
introduced previously in literature. The existing Einstein operations for IFSs that were introduced in 
[13] fail under certain circumstances. For example, if 𝑃 = (𝑚 , 0) and 𝑃 = (0, 𝑛 ) are intuitionistic 
fuzzy numbers (IFNs), then intuitionistic fuzzy Einstein weighted averaging operator (IFEWAO) 
aggregates these IFNs as (𝑠𝑜𝑚𝑒 𝑣𝑎𝑙𝑢𝑒, 0)  and intuitionistic fuzzy Einstein weighted geometric 
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operator (IFEWGO) aggregates these IFNs as (0, 𝑠𝑜𝑚𝑒 𝑣𝑎𝑙𝑢𝑒). From this simple example, it can be 
clearly observed that the IFEWAO will not aggregate the whole non-membership value if one IFN 
happens to have a non-membership value of zero, and similarly the IFEWGO will not aggregate the 
whole membership value if one IFN happens to have a membership value of zero, which are clearly 
inaccurate. This and other similar problems served as the motivation for us to propose some new 
Einstein aggregation operators for the T-SFS model that will be able to overcome this and similar 
shortcomings in existing structures.  

In this paper, we developed some new operational laws for T-spherical fuzzy sets with their 
properties. Based on these new operations, two types of Einstein aggregation operators are proposed, 
namely, the Einstein interactive averaging aggregation operators and the Einstein interactive 
geometric aggregation operators. The properties of the newly developed aggregation operators were 
then investigated and verified. The T-spherical fuzzy aggregation operators were then applied to a 
multi-attribute decision making (MADM) problem related to the degree of pollution of five major 
cities in China. Actual datasets sourced from the UCI Machine Learning Repository were used. A 
detailed study was done to determine the most and least polluted city for different perceptions for 
different situations. Several compliance tests were then outlined to test and verify the accuracy of the 
results obtained via our proposed decision-making algorithm. 

The rest of the paper is organized as follows. A brief but comprehensive background study of 
the important concepts related to this paper is recapitulated in Section 2. In Section 3, we present a 
detailed study of the important properties of aggregation operators, namely, the boundedness, 
monotonicity, idempotency and commutativity. In Section 4, we introduce two operators, namely, 
the generalized t-spherical fuzzy w-weighted geometric and arithmetic interaction functions, and 
study the properties of these operators. In Section 5, two decision making algorithms are introduced 
for the newly introduced operators. These algorithms are subsequently applied to solve a multi-
attribute multi-perception decision making problem related to the ranking of the pollution level of 
five major Chinese cities using real-life datasets of the concentration of PM2.5 pollutant in five major 
cities in China. Concluding remarks are presented in Section 7, followed by the acknowledgements 
and list of references. 

2. Preliminaries 

Some basic notions over a universal set 𝑋 are defined and these notions will help us in our 
proposed work. 

Definition 1. ([9]) Let 𝑡 be a positive real number. Let 𝑚 , 𝑖 , 𝑛  be three real numbers in [0,1] satisfying 0 ≤ 𝑚 + 𝑖 + 𝑛 ≤ 1 for all 𝜏 ≥ 𝑡. Then the triplet 𝒻 = 〈𝑚 , 𝑖 , 𝑛 〉 is said to be a t-spherical fuzzy 
number (abbr. 𝑆𝐹 𝑛). 

Definition 2. ([9]) Let 𝑡 be a positive real number. Let 𝑚, 𝑖, 𝑛: 𝑋 → [0,1] be such that 0 ≤ 𝑚 (𝑥) + 𝑖 (𝑥) +𝑛 (𝑥) ≤ 1 for all 𝑥 ∈ 𝑋 and for all 𝜏 ≥ 𝑡. Then: 

(i) 𝑃 = {(𝑥, 〈𝑚(𝑥), 𝑖(𝑥), 𝑛(𝑥)〉) ∣ 𝑥 ∈ 𝑋} is said to be a t-spherical fuzzy set (abbr. 𝑆𝐹 𝑆) in 𝑋. 
(ii) 𝑚, 𝑖, 𝑛 are respectively called the membership function, the abstinence function, and the non-membership 

function of 𝑃. 
(iii) 𝑟(𝑥) = 1 − (𝑚 (𝑥) + 𝑖 (𝑥) + 𝑛 (𝑥)) is called the degree of refusal of 𝑥 in 𝑃. 

We however do not agree with such definitions defined by the previous authors. We found that 
the algorithm works for all 〈𝑚 , 𝑖 , 𝑛 〉 as long as 𝑚 , 𝑖 , 𝑛  are real numbers in [0,1] (see [46]). In 
fact it is clear that a t-spherical fuzzy number will also be a f-spherical fuzzy number for all 𝑓 > 𝑡, 
simply because the satisfaction of 0 ≤ 𝑚 + 𝑖 + 𝑛 ≤ 1 for all 𝜏 ≥ 𝑡  will have included all 𝜏 
with 𝜏 ≥ 𝑓 as well. Moreover, by such definition, if 𝑚 , 𝑖 , 𝑛  all < 1, then 〈𝑚 , 𝑖 , 𝑛 〉 will always 
be a t-spherical fuzzy number for all 𝑡 that is large enough. Not to mention that, in the context of 0 ≤ 𝑚 + 𝑖 + 𝑛 ≤ 1, the choices of 𝜏 in the existing literatures of t-spherical fuzzy number is 
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limited to natural numbers. This hinders the flexibility of the structure making it incapable of being 
fine-tuned to suit a situation. 

Definition 3. ([47]) Let 𝑡 be a positive real number. Let 𝑚 , 𝑖 , 𝑛  be three real numbers in [0,1]. Then the 
triplet 𝒻 = 〈𝑚 , 𝑖 , 𝑛 〉 is said to be a single-valued neutrosophic number (abbr. 𝑆𝑉𝑁𝑛). Moreover, 𝑚 , 𝑖 , 𝑛  
are called the membership value 𝒻〈𝑚〉, the abstinence value 𝒻〈𝑖〉 and the non-membership value 𝒻〈𝑛〉 of 𝒻, 
respectively. The set of all 𝑆𝑉𝑁𝑛 is denoted by 𝕊 . 

Remark 1. In this particular case, we write 𝒻〈𝑚〉 = 𝑚 , 𝒻〈𝑖〉 = 𝑖 , 𝒻〈𝑛〉 = 𝑛 . 

Remark 2. The condition of “0 ≤ 𝑚 + 𝑖 + 𝑛 ≤ 1 for all 𝜏 ≥ 𝑡“ is now removed. Thus an 𝑆𝐹 𝑛 is 
always an 𝑆𝑉𝑁𝑛 regardless of the value of 𝑡, and therefore the properties of 𝑆𝐹 𝑛 is similar to the properties 
of 𝑆𝑉𝑁𝑛. 
Definition 4. ([47]) Let 𝑡 be a positive real number. Let, 𝑖, 𝑛: 𝑋 → [0,1]. Then: 

i) 𝑃 = {(𝑥, 〈𝑚(𝑥), 𝑖(𝑥), 𝑛(𝑥)〉) ∣ 𝑥 ∈ 𝑋} is said to be a single-valued neutrosophic set (abbr. 𝑆𝑉𝑁𝑆) in 𝑋. 
ii) 𝑚, 𝑖, 𝑛 are called the truth-membership function, the indeterminacy-membership function, and the falsity-

membership function of 𝑃, respectively. 

Remark 3. It is straightforward that 𝑃 ⊆ 𝕊 . 
In the literature of intuitionistic fuzzy numbers, there has been some well-established operations 

defined for them. One well known group of operations are called the Einstein operations and these 
are defined as follows. 

Definition 5. ([14]) Let 𝑃 = 〈𝑚 , 𝑛 〉 and 𝑃 = 〈𝑚 , 𝑛 〉 be two intuitionistic fuzzy numbers. The Einstein 
operations are defined as given below: 

(i) 𝑃 ⊗ 𝑃 = ( )( ) ,  

(ii) 𝑃 ⊕ 𝑃 = , ( )( )  

(iii) 𝜆𝑃 = ( ) ( )( ) ( ) , ( ) , 𝜆 > 0 

(iv) 𝑃 = ( ) , ( ) ( )( ) ( ) , 𝜆 > 0 

There has also been a set of operations for SVNn as proposed by Wang et al. [47] which are 
defined as follows: 

Definition 6. ([47]) Let 𝒻 = 〈𝑚 , 𝑖 , 𝑛 〉, 𝒻 = 〈𝑚 , 𝑖 , 𝑛 〉 ∈ 𝕊 . The operations for all elements 𝕊  
can be defined as follows: 

(i) 𝒻 ⊗ 𝒻 = 〈𝑚 𝑚 ,  𝑖 + 𝑖 − 𝑖 𝑖 ,  𝑛 + 𝑛 − 𝑛 𝑛 〉 
(ii) 𝒻 ⊕ 𝒻 = 〈𝑚 + 𝑚 − 𝑚 𝑚 , 𝑖 𝑖 ,  𝑛 𝑛 〉 
(iii) 𝜆𝒻 = 〈 1 − (1 − 𝑚 ) ,  𝑖 ,  𝑛 〉, 𝜆 > 0 
(iv) 𝒻 = 〈 𝑚 , 1 − (1 −  𝑖 ) , 1 − (1 −  𝑛 ) 〉, 𝜆 > 0 

3. Monotonicity, Boundedness, Idempotency, and Commutativity of Operations 

In order to use an operation in the procedure to aggregate a group of data, it is desirable that the 
operation satisfies the following properties. Furthermore, the higher the extent to which the operation 
satisfies these properties, the higher the extent to which the proposed operation is able to resemble 
human intuition effectively. In this section, we define the properties of monotonicity, boundedness, 
idempotency, and commutativity for the SF n. 
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Definition 7. Let ℱ be a function that maps a 𝑆𝑉𝑁𝑛 to a number in [0,1] i.e., ℱ: 𝕊 ⟶ [0,1]. Then we 
have the following properties. 

(1) Boundedness: ℱ is said to be bounded if all of the following conditions hold: 

(i) ℱ(〈1,0,1〉) = 1 
(ii) ℱ(〈0,0,0〉) = 0 
(iii) 0 ≤ ℱ(𝒻) ≤ 1, for all 𝒻 being an SVNn 

(2) Monotonicity: ℱ is said to be monotone if the following condition holds: 
If 𝑚 ≤ 𝑚 , 𝑖 ≤ 𝑖  and 𝑛 ≤ 𝑛 , then ℱ(〈𝑚 , 𝑖 , 𝑛 〉) ≤ ℱ(〈𝑚 , 𝑖 , 𝑛 〉). 
It is therefore necessary to generalize such a theorem for functions that map a 𝑘-tuple of SVNn 

(i.e., an element of 𝕊 ) to a single SVNn, where 𝑘 may not be 1. Furthermore, for the definition 
of boundedness, emphasis should be given to 〈1,0,0〉 instead of 〈1,0,1〉. This is because 〈1,0,0〉 is an 
indication of perfect membership in any generalizations from the classical literature of sets. This leads 
us to the following definitions. 

Definition 8. Let ℳ be a function that maps a 𝑘-tuple of 𝑆𝑉𝑁𝑛 to an 𝑆𝑉𝑁𝑛 i.e., ℳ: 𝕊 ⟶ 𝕊 . An 
example of this function would be the function defined in Definition 11 in which ⊗ : 𝕊 ⟶ 𝕊 . Then the 
following properties hold. 

(1) Boundedness: ℳ is said to be bounded if all the following conditions hold for all (𝒻 , 𝒻 , … , 𝒻 ) ∈ 𝕊 . 
(i) 𝒻 = 𝒻 = ⋯ = 𝒻 = 〈1,0,0〉 implies ℳ(𝒻 , 𝒻 , … , 𝒻 ) = 〈1,0,0〉 
(ii) 𝒻 = 𝒻 = ⋯ = 𝒻 = 〈0,0,0〉 implies ℳ(𝒻 , 𝒻 , … , 𝒻 ) = 〈0,0,0〉 
(iii) 0 ≤ ℳ(𝒻 , 𝒻 , … , 𝒻 )〈𝜉〉 ≤ 1, for all 𝜉 ∈ {𝑚, 𝑖, 𝑛} 

Moreover, ℳ is said to be strictly bounded, if all of the following conditions hold too for all (𝒻 , 𝒻 , … , 𝒻 ) ∈ 𝕊  and for all 𝜉 ∈ {m, i, n}. 

(i) 𝒻 〈𝜉〉 = 𝒻 〈𝜉〉 = ⋯ = 𝒻 〈𝜉〉 = 1 implies ℳ(𝒻 , 𝒻 , … , 𝒻 )〈𝜉〉 = 1 
(ii) 𝒻 〈𝜉〉 = 𝒻 〈𝜉〉 = ⋯ = 𝒻 〈𝜉〉 = 0 implies ℳ(𝒻 , 𝒻 , … , 𝒻 )〈𝜉〉 = 0 
(iii) 0 ≤ min{𝒻 〈𝜉〉, 𝒻 〈𝜉〉, … , 𝒻 〈𝜉〉} ≤ ℳ(𝒻 , 𝒻 , … , 𝒻 )〈𝜉〉 ≤ max{𝒻 〈𝜉〉, 𝒻 〈𝜉〉, … , 𝒻 〈𝜉〉} ≤ 1 

Otherwise, ℳ is said to be loosely bounded. 

(2) Monotonicity: ℳ is said to be monotone if the following condition holds for all (𝒻 , 𝒻 , … , 𝒻 ), (ℊ , ℊ , … , ℊ ) ∈𝕊 : 
If 𝒻 〈𝜉〉 ≤ ℊ 〈𝜉〉 holds for all 𝜉 ∈ {m, i, n} and for all 𝑗 = 1,2, ⋯ , 𝑘, then ℳ(𝒻 , 𝒻 , … , 𝒻 )〈𝜉〉 ≤ℳ(ℊ , ℊ , … , ℊ )〈𝜉〉 holds for all 𝜉 ∈ {m, i, n} as well. 
Moreover, ℳ  is said to be strictly monotone if the following condition holds too for all (𝒻 , 𝒻 , … , 𝒻 ), (ℊ , ℊ , … , ℊ ) ∈ 𝕊 , and for all 𝜉 ∈ {m, i, n}. 
If 𝒻 〈𝜉〉 ≤ ℊ 〈𝜉〉 for all 𝑗 = 1,2, ⋯ , 𝑘, then ℳ(𝒻 , 𝒻 , … , 𝒻 )〈𝜉〉 ≤ ℳ(ℊ , ℊ , … , ℊ )〈𝜉〉. 
Otherwise, ℳ is said to be loosely monotone. 
As there are now more than one SVNn that act as inputs, we further define the following. 

(3) Idempotency: ℳ is said to be idempotent if the following condition holds for all (𝒻 , 𝒻 , … , 𝒻 ) ∈ 𝕊 , and for 
all 𝒻 ∈ 𝕊 : 𝒻 = 𝒻 = ⋯ = 𝒻 = 𝒻 implies ℳ(𝒻 , 𝒻 , … , 𝒻 ) = 𝒻.  
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Moreover, ℳ  is said to be strictly idempotent, if the following condition holds too for all (𝒻 , 𝒻 , … , 𝒻 ) ∈ 𝕊 , for all 𝑘 ∈ [0,1] and for all 𝜉 ∈ {m, i, n}: 𝒻 〈𝜉〉 = 𝒻 〈𝜉〉 = ⋯ = 𝒻 〈𝜉〉 = 𝑘 implies ℳ(𝒻 , 𝒻 , … , 𝒻 )〈𝜉〉 = 𝑘.  

Otherwise, ℳ is said to be loosely idempotent. 

(4) Commutativity: ℳ is said to be commutative if the following condition holds for all (𝒻 , 𝒻 , … , 𝒻 ) ∈ 𝕊 : ℳ(𝒻 , 𝒻 , … , 𝒻 )  =  ℳ(ℊ , ℊ , … , ℊ ) whenever {𝒻 , 𝒻 , … , 𝒻 } = {ℊ , ℊ , … , ℊ }.  

Moreover, ℳ  is said to be strictly commutative if the following condition holds for all (𝒻 , 𝒻 , … , 𝒻 ) ∈ 𝕊 and for all 𝜉 ∈ {m, i, n}. ℳ(𝒻 , 𝒻 , … , 𝒻 )〈𝜉〉  =  ℳ(ℊ , ℊ , … , ℊ )〈𝜉〉 whenever {𝒻 〈𝜉〉, 𝒻 〈𝜉〉, … , 𝒻 〈𝜉〉} ={ℊ 〈𝜉〉, ℊ 〈𝜉〉, … , ℊ 〈𝜉〉}.  

Otherwise, ℳ is said to be loosely commutative. 

Definition 9. Let 𝒘 = (𝑤 , 𝑤 , … , 𝑤 )  be a 𝑘 -dimensional vector, with 𝑤 ∈ [0,1]  for all 𝑗  and ∑ 𝑤 = 1. Then 𝒘 is said to be an ordered 𝑘-partition of 1. The set of all 𝑘-partition of 1 is denoted by 𝕁 . 
Definition 10. Let 𝒬: 𝕁 × 𝕊 ⟶ 𝕊 . Then the following properties hold. 

(1) Boundedness: 𝒬  is said to be bounded if all of the following conditions hold for all 𝐟 = (𝒻 , 𝒻 , … , 𝒻 ) ∈𝕊 and for all 𝐰 ∈ 𝕁 . 
(i) 𝒻 = 𝒻 = ⋯ = 𝒻 = 〈1,0,0〉 implies 𝒬(𝐰, 𝐟) = 〈1,0,0〉 
(ii) 𝒻 = 𝒻 = ⋯ = 𝒻 = 〈0,0,0〉 implies 𝒬(𝐰, 𝐟) = 〈0,0,0〉 
(iii) 0 ≤ 𝒬(𝐰, 𝐟)〈𝜉〉 ≤ 1, for all 𝜉 ∈ {m, i, n} 

Moreover, 𝒬 is said to be strictly bounded, if all of the following conditions hold too for all 𝐟 =(𝒻 , 𝒻 , … , 𝒻 ) ∈ 𝕊 , for all 𝐰 ∈ 𝕁 , and for all 𝜉 ∈ {m, i, n}. 

(i) 𝒻 〈𝜉〉 = 𝒻 〈𝜉〉 = ⋯ = 𝒻 〈𝜉〉 = 1 implies 𝒬(𝐰, 𝐟)〈𝜉〉 = 1 
(ii) 𝒻 〈𝜉〉 = 𝒻 〈𝜉〉 = ⋯ = 𝒻 〈𝜉〉 = 0 implies 𝒬(𝐰, 𝐟)〈𝜉〉 = 0 
(iii) 0 ≤ min{𝒻 〈𝜉〉, 𝒻 〈𝜉〉, … , 𝒻 〈𝜉〉} ≤ 𝒬(𝐰, 𝐟)〈𝜉〉 ≤ max{𝒻 〈𝜉〉, 𝒻 〈𝜉〉, … , 𝒻 〈𝜉〉} ≤ 1 

Otherwise, 𝒬 is said to be loosely bounded. 

(2) Monotonicity: 𝒬  is said to be monotone if the following conditions holds for all 𝐟 = (𝒻 , 𝒻 , … , 𝒻 ) , 𝐠 =(ℊ , ℊ , … , ℊ ) ∈ 𝕊  and for all 𝐰 ∈ 𝕁 . 
If 𝒻 〈𝜉〉 ≤ ℊ 〈𝜉〉 holds for all 𝜉 ∈ {m, i, n} and for all 𝑗 = 1,2, ⋯ , 𝑘, then 𝒬(𝐰, 𝐟)〈𝜉〉 ≤ 𝒬(𝐰, 𝐠)〈𝜉〉 

holds for all 𝜉 ∈ {m, i, n} too. 
Moreover, 𝒬  is said to be strictly monotone if the following condition holds too for all 𝐟 =(𝒻 , 𝒻 , … , 𝒻 ), 𝐠 = (ℊ , ℊ , … , ℊ ) ∈ 𝕊 , for all 𝐰 ∈ 𝕁 , and for all 𝜉 ∈ {m, i, n}. 
If 𝒻 〈𝜉〉 ≤ ℊ 〈𝜉〉 for all 𝑗 = 1,2, ⋯ , 𝑘, then 𝒬(𝐰, 𝐟)〈𝜉〉 ≤ 𝒬(𝐰, 𝐠)〈𝜉〉. 
Otherwise, 𝒬 is said to be loosely monotone. 
As there are now more than one SVNn that act as inputs, we further define the following. 

(3) Idempotency: 𝒬 is said to be idempotent if the following condition holds for all 𝐟 = (𝒻 , 𝒻 , … , 𝒻 ) ∈ 𝕊 , for 
all 𝐰 ∈ 𝕁 , and for all 𝒻 ∈ 𝕊 . 
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𝒻 = 𝒻 = ⋯ = 𝒻 = 𝒻 implies 𝒬(𝐰, 𝐟) = 𝒻.  

Moreover, 𝒬 is said to be strictly idempotent, if the following condition holds too for all 𝐟 =(𝒻 , 𝒻 , … , 𝒻 ) ∈ 𝕊 , for all 𝐰 ∈ 𝕁 , for all 𝑘 ∈ [0,1], and for all 𝜉 ∈ {m, i, n}. 𝒻 〈𝜉〉 = 𝒻 〈𝜉〉 = ⋯ = 𝒻 〈𝜉〉 = 𝑘 implies 𝒬(𝐰, 𝐟)〈𝜉〉 = 𝑘.  

Otherwise, 𝒬 is said to be loosely idempotent. 

(4) Commutativity: 𝒬  is said to be commutative if the following condition holds for all 𝐟 = (𝒻 , 𝒻 , … , 𝒻 ), 𝐠 =(ℊ , ℊ , … , ℊ ) ∈ 𝕊  and for all 𝐰 = (𝑤 , 𝑤 , … , 𝑤 ), 𝐱 = (𝑥 , 𝑥 , … , 𝑥 ) ∈ 𝕁 , 𝒬 (𝑤 , 𝑤 , … , 𝑤 ), (𝒻 , 𝒻 , … , 𝒻 )  =  𝒬 (𝑥 , 𝑥 , … , 𝑥 ), (ℊ , ℊ , … , ℊ )  whenever the set of 
ordered pairs: {(𝑤 , 𝒻 ), (𝑤 , 𝒻 ), … , (𝑤 , 𝒻 )} = {(𝑥 , ℊ ), (𝑥 , ℊ ), … , (𝑥 , ℊ )}.  

Moreover, 𝒬  is said to be strictly commutative if the following condition holds for all 𝐟 =(𝒻 , 𝒻 , … , 𝒻 ) ∈ 𝕊 and for all 𝜉 ∈ {m, i, n}. 𝒬 (𝑤 , 𝑤 , … , 𝑤 ), (𝒻 , 𝒻 , … , 𝒻 ) 〈𝜉〉  =  𝒬 (𝑥 , 𝑥 , … , 𝑥 ), (ℊ , ℊ , … , ℊ ) 〈𝜉〉  whenever the set of 
ordered pairs: {(𝑤 , 𝒻 〈𝜉〉), (𝑤 , 𝒻 〈𝜉〉), … , (𝑤 , 𝒻 〈𝜉〉)} = {(𝑥 , ℊ 〈𝜉〉), (𝑥 , ℊ 〈𝜉〉), … , (𝑥 , ℊ 〈𝜉〉)}.  

Otherwise, 𝒬 is said to be loosely commutative. 

4. Generalized T-Spherical Fuzzy Subjectively Weighted Interaction Operators 

In this section, we introduce the concepts of the generalized t-spherical fuzzy subjectively 
weighted interaction operators and study some of its properties.  

Lemma 1. Let 𝑡  be any positive real number. Let 𝒘 = (𝑤 , 𝑤 , … , 𝑤 ) ∈ 𝕁 . Let 𝑛 ∈ [0,1] . Then the 
following holds: 1 − 1 − ∏ (2 − (1 − 𝑛 ) ) − ∏ ((1 − 𝑛 ) )∏ (2 − (1 − 𝑛 ) ) + ∏ ((1 − 𝑛 ) )

= ∏ (1 + 𝑛 ) − ∏ (1 − 𝑛 )∏ (1 + 𝑛 ) + ∏ (1 − 𝑛 ) = 𝑛  

 

Proof. 
As ∑ 𝑤 = 1, it follows that 1 − 1 − ∏ (2 − (1 − 𝑛 ) ) − ∏ ((1 − 𝑛 ) )∏ (2 − (1 − 𝑛 ) ) + ∏ ((1 − 𝑛 ) )

= 1 − 1 − (2 − (1 − 𝑛 ) )∑ − ((1 − 𝑛 ) )∑(2 − (1 − 𝑛 ) )∑ + ((1 − 𝑛 ) )∑
= 1 − 1 − 2 − (1 − 𝑛 ) − (1 − 𝑛 )2 − (1 − 𝑛 ) + (1 − 𝑛 ) = 1 − 1 − 2 − 2(1 − 𝑛 )2= 1 − 1 − 1 + (1 − 𝑛 )  = 𝑛  

 

Furthermore, 
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∏ (1 + 𝑛 ) − ∏ (1 − 𝑛 )∏ (1 + 𝑛 ) + ∏ (1 − 𝑛 ) = (1 + 𝑛 )∑ − (1 − 𝑛 )∑(1 + 𝑛 )∑ + (1 − 𝑛 )∑
= (1 + 𝑛 ) − (1 − 𝑛 )(1 + 𝑛 ) + (1 − 𝑛 ) = 2𝑛2 = 𝑛 .  

□ 

Lemma 2. Let 𝜆 be any positive real number. Let 𝑛, 𝑢 be such that 0 ≤ 𝑛 ≤ 𝑢 ≤ 1. Then 1 − (1 − 𝑛) ≤1 − (1 − 𝑢) . 

Proof. 𝑛 ≤ 𝑢 ⟹  1 − 𝑛 ≥ 1 − 𝑢 ⟹  (1 − 𝑛) ≥ (1 − 𝑢)  ⟹  1 − (1 − 𝑛) ≤ 1 − (1 − 𝑢) . □ 

Lemma 3. Let 𝑡  be any positive real number. Let 𝒘 = (𝑤 , 𝑤 , … , 𝑤 ) ∈ 𝕁 . Let 𝑛 , 𝑢  be such that 0 ≤ 𝑛 ≤ 𝑢 ≤ 1 for all 𝑗 = 1,2, ⋯ , 𝑘. Then 

(i) 0 ≤ ∏ ∏∏ ∏ ≤ ∏ ∏∏ ∏ ≤ 1 

(ii) 0 ≤ 1 − 1 − ∏ ∏ ( )∏ ∏ (( ) ) ≤ 1 − 1 − ∏ ( ( ) ) ∏ (( ) )∏ ( ( ) ) ∏ (( ) ) ≤ 1 

Proof. 

(1) With 𝑡 being a positive real number, 𝐰 = (𝑤 , 𝑤 , … , 𝑤 ) ∈ 𝕁 , and 𝑛 , 𝑢  satisfying 0 ≤ 𝑛 ≤𝑢 ≤ 1 for all 𝑗 = 1,2, ⋯ , 𝑘, it follows that: 0 ≤ 𝑛  ≤ 𝑢 ≤ 1  𝑛  − 𝑢 ≤ 0 ≤ −𝑛  + 𝑢   1 + 𝑛 1 − 𝑢 = 1 + 𝑛  − 𝑢 − 𝑛 𝑢 ≤ 1 − 𝑛  + 𝑢 − 𝑛 𝑢 = 1 − 𝑛 1 + 𝑢   1 + 𝑛 1 − 𝑢 ≤ 1 − 𝑛 1 + 𝑢  for all 𝑗.  

As a result, 

1 + 𝑛 1 − 𝑢 = 1 + 𝑛 1 − 𝑢 ≤ 1 − 𝑛 1 + 𝑢
= 1 − 𝑛 1 + 𝑢  

 

1 + 𝑛 1 − 𝑢 − 1 − 𝑛 1 + 𝑢 ≤ 0
≤ − 1 + 𝑛 1 − 𝑢 + 1 − 𝑛 1 + 𝑢  .  

This further implies that 

1 + 𝑛 − 1 − 𝑛 1 + 𝑢 + 1 − 𝑢   

= 1 + 𝑛 1 + 𝑢 + 1 + 𝑛 1 − 𝑢 − 1 − 𝑛 1 + 𝑢
− 1 − 𝑛 1 − 𝑢  
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≤ 1 + 𝑛 1 + 𝑢 − 1 + 𝑛 1 − 𝑢 + 1 − 𝑛 1 + 𝑢
− 1 − 𝑛 1 − 𝑢  

 

= 1 + 𝑢 − 1 − 𝑢 1 + 𝑛 + 1 − 𝑛   

We now obtain ∏ 1 + 𝑛 − ∏ 1 − 𝑛∏ 1 + 𝑛 + ∏ 1 − 𝑛 ≤ ∏ 1 + 𝑢 − ∏ 1 − 𝑢∏ 1 + 𝑢 + ∏ 1 − 𝑢   

On the other hand, it is clear that 0 ≤ 𝑥 ≤ 1 implies that 0 ≤ (1 − 𝑥) ≤ (1 + 𝑥). 
Thus 

0 ≤ ∏ 1 + 𝑛 − ∏ 1 − 𝑛∏ 1 + 𝑛 + ∏ 1 − 𝑛 ≤ ∏ 1 + 𝑢 − ∏ 1 − 𝑢∏ 1 + 𝑢 + ∏ 1 − 𝑢  ≤ 1,  

and therefore 

0 ≤ ∏ 1 + 𝑛 − ∏ 1 − 𝑛∏ 1 + 𝑛 + ∏ 1 − 𝑛 ≤ ∏ 1 + 𝑢 − ∏ 1 − 𝑢∏ 1 + 𝑢 + ∏ 1 − 𝑢 ≤ 1  

holds for all positive real numbers 𝑡. 

(2) For each 𝑗 , as 0 ≤ 𝑛 ≤ 𝑢 ≤ 1 , so 1 − (1 − 𝑛 ) ≤ 1 − (1 − 𝑢 )  holds by taking 𝜆 = 𝑡  in 
Lemma 2. By following the same procedure as part (1) of this lemma, with 1 − (1 − 𝑛 )  and 1 − (1 − 𝑢 )  taking place of 𝑛  and 𝑢  respectively: 

0 ≤ ∏ ( ) ∏ ( )∏ ( ) ∏ ( ) ≤
∏ ( ) ∏ ( )∏ ( ) ∏ ( ) ≤ 1 follows. 

 

This further implies that 0 ≤ ∏ (2 − (1 − 𝑛 ) ) − ∏ ((1 − 𝑛 ) )∏ (2 − (1 − 𝑛 ) ) + ∏ ((1 − 𝑛 ) )≤ ∏ (2 − (1 − 𝑢 ) ) − ∏ ((1 − 𝑢 ) )∏ (2 − (1 − 𝑢 ) ) + ∏ ((1 − 𝑢 ) ) ≤ 1 
 

by taking 𝜆 =  in Lemma 2, again 

0 ≤ 1 − 1 − ∏ ∏ ( )∏ ∏ (( ) ) ≤ 1 −
1 − ∏ ( ( ) ) ∏ (( ) )∏ ( ( ) ) ∏ (( ) ) ≤ 1 follows. 

 

□ 

Corollary 1. Let 𝑡 be any positive real number. Let 𝒘 = (𝑤 , 𝑤 , … , 𝑤 ) ∈ 𝕁 . Let{𝑚 , 𝑚 , … , 𝑚 } ⊂ [0,1]. 
Then: 
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(i) 𝑚𝑖𝑛{𝑚 , 𝑚 , … , 𝑚 } ≤ ∏ ∏∏ ∏ ≤ 𝑚𝑎𝑥{𝑚 , 𝑚 , … , 𝑚 } 

(ii) 𝑚𝑖𝑛{𝑚 , 𝑚 , … , 𝑚 } ≤ 1 − 1 − ∏ ( ( ) ) ∏ (( ) )∏ ( ( ) ) ∏ (( ) ) ≤ 𝑚𝑎𝑥{𝑚 , 𝑚 , … , 𝑚 } 

Proof. Since min{𝑚 , 𝑚 , … , 𝑚 } ≤ 𝑚 ≤ max{𝑚 , 𝑚 , … , 𝑚 }  for all 𝑗 = 1,2, ⋯ , 𝑘 , the corollary is 
thus a direct consequence of Lemma 3. □ 

Definition 11. Let 𝑡 be a positive real number. 

(i) The Generalized t-Spherical Fuzzy Weighted Geometric Interaction Function, is defined as GSF G: 𝕁 × 𝕊 ⟶ 𝕊  for all 𝑘, where 

GSF G(𝐰, 𝐟)
= 〈1 − 1 − ∏ 2 − 1 − 𝑚 − ∏ ( 1 − 𝑚 )∏ 2 − 1 − 𝑚 + ∏ ((1 − 𝑚 ) ) , ∏ (1 + 𝑖 ) − ∏ (1 − 𝑖 )∏ (1 + 𝑖 ) + ∏ (1 − 𝑖 ) ,

∏ (1 + 𝑛 ) − ∏ (1 − 𝑛 )∏ (1 + 𝑛 ) + ∏ (1 − 𝑛 )
〉  

for all 𝐟 = (𝒻 , 𝒻 , … , 𝒻 ) = (〈𝑚 , 𝑖 , 𝑛 〉, 〈𝑚 , 𝑖 , 𝑛 〉, … , 〈𝑚 , 𝑖 , 𝑛 〉) ∈ 𝕊 , for all 𝐰 ∈ 𝕁 . 
In such a case, 

(a) GSF G(𝐰: 𝐟) is said to be the Generalized t-Spherical Fuzzy 𝐰-Weighted Geometric Interaction on 𝐟. 
(b) 𝐰 is said to be the weight vector of 𝐟 in GSF G(𝐰: 𝐟). 

(ii) The Generalized t-Spherical Fuzzy Weighted Arithmetic Interaction Function, is defined as GSF A: 𝕁 × 𝕊 ⟶ 𝕊  for all 𝑘, where 

GSF A(𝐰, 𝐟)
= 〈

∏ (1 + 𝑚 ) − ∏ (1 − 𝑚 )∏ (1 + 𝑚 ) + ∏ (1 − 𝑚 ) , 1 − 1 − ∏ 2 − 1 − 𝑖 − ∏ ( 1 − 𝑖 )∏ 2 − 1 − 𝑖 + ∏ ((1 − 𝑖 ) ) ,
 1 − 1 − ∏ 2 − 1 − 𝑛 − ∏ ((1 − 𝑛) )∏ 2 − 1 − 𝑛 + ∏ ((1 − 𝑛 ) )

〉  

for all 𝐟 = (𝒻 , 𝒻 , … , 𝒻 ) = (〈𝑚 , 𝑖 , 𝑛 〉, 〈𝑚 , 𝑖 , 𝑛 〉, … , 〈𝑚 , 𝑖 , 𝑛 〉) ∈ 𝕊 , for all 𝐰 ∈ 𝕁 . 
In such a case, 

(a) GSF A(𝐰, 𝐟) is said to be the Generalized t-Spherical Fuzzy 𝐰-Weighted Arithmetic Interaction on 𝐟. 
(b) 𝐰 is said to be the weight vector of 𝐟 in GSF G(𝐰, 𝐟). 

Remark 4. It is “generalized” in the sense that the operator is now allowed to take any positive real numbers, 
thus it is no longer limited to natural numbers. 

Remark 5. In other words, 𝐺𝑆𝐹 𝐴 and 𝐺𝑆𝐹 𝐺 work on 𝕁 × 𝕊  for all values of 𝑘, and will map any 
element from such 𝕁 × 𝕊  to an element of 𝕊 . 

Theorem 1. 𝐺𝑆𝐹 𝐺 and 𝐺𝑆𝐹 𝐴 are strictly idempotent, regardless of the value of 𝑡. 
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Proof. Let 𝐟 = (𝒻 , 𝒻 , … , 𝒻 ) ∈ 𝕊 , and let 𝐰 = (𝑤 , 𝑤 , … , 𝑤 ) ∈ 𝕁 . If 𝒻 = 𝒻  for all 𝑗, then 1 − 1 − ∏ (2 − (1 − 𝑓 ) ) − ∏ ((1 − 𝑓 ) )∏ (2 − (1 − 𝑓 ) ) + ∏ ((1 − 𝑓 ) ) = ∏ (1 + 𝑓 ) − ∏ (1 − 𝑓 )∏ (1 + 𝑓 ) + ∏ (1 − 𝑓 ) = 𝑓  

follows due to Lemma 1. Consequently, GSF G(𝐰, 𝐟) = GSF A(𝐰, 𝐟) = 𝒻  follows due to Definition 
11. The theorem now follows by Definition 10. □ 

Theorem 2. 𝐺𝑆𝐹 𝐺 and 𝐺𝑆𝐹 𝐴 are strictly bounded, regardless of the value of 𝑡. 

Proof. Let 𝐟 = (𝒻 , 𝒻 , … , 𝒻 ) ∈ 𝕊 , and let 𝐰 = (𝑤 , 𝑤 , … , 𝑤 ) ∈ 𝕁 . Denote  𝒻 = 〈𝑚 , 𝑖 , 𝑛 〉 for all 𝑗, GSF G(𝐰, 𝐟) = 〈𝑚 , 𝑖 , 𝑛 〉 and GSF A(𝐰, 𝐟) = 〈𝑚 , 𝑖 , 𝑛 〉. Without loss of generality, by Corollary 
1, it follows that 

min{𝑚 , 𝑚 , … , 𝑚 } ≤ ∏ ∏∏ ∏ ≤ max{𝑚 , 𝑚 , … , 𝑚 },  

min{𝑚 , 𝑚 , … , 𝑚 } ≤ 1 − 1 − ∏ ( ( ) ) ∏ (( ) )∏ ( ( ) ) ∏ (( ) ) ≤max{𝑚 , 𝑚 , … , 𝑚 }. 

 

□ 

By Definition 11, we now have min{𝑚 , 𝑚 , … , 𝑚 } ≤ 𝑚 ≤ max{𝑚 , 𝑚 , … , 𝑚 }, min{𝑚 , 𝑚 , … , 𝑚 } ≤ 𝑚 ≤max{𝑚 , 𝑚 , … , 𝑚 },  min{𝑖 , 𝑖 , … , 𝑖 } ≤ 𝑖 ≤ max{𝑖 , 𝑖 , … , 𝑖 }, min{𝑖 , 𝑖 , … , 𝑖 } ≤ 𝑖 ≤ max{𝑖 , 𝑖 , … , 𝑖 },  min{𝑛 , 𝑛 , … , 𝑛 } ≤ 𝑛 ≤ max{𝑛 , 𝑛 , … , 𝑛 }, min{𝑛 , 𝑛 , … , 𝑛 } ≤ 𝑛 ≤max{𝑛 , 𝑛 , … , 𝑛 }.  

Furthermore, by Theorem 1, GSF G and GSF A are strictly idempotent. As a result, we also 
have 𝑚 , 𝑚 , … , 𝑚 = 0  implies 𝑚 = 𝑚 = 0, 𝑚 , 𝑚 , … , 𝑚 = 1  implies 𝑚 = 𝑚 = 1 , 𝑖 , 𝑖 , … , 𝑖 = 0  implies 𝑖 = 𝑖 = 0 , 𝑖 , 𝑖 , … , 𝑖 = 1  implies 𝑖 = 𝑖 = 1 , 𝑛 , 𝑛 , … , 𝑛 = 0  implies 𝑛 = 𝑛 = 0, 𝑛 , 𝑛 , … , 𝑛 = 1 implies 𝑛 = 𝑛 = 1. The theorem now follows by Definition 10. 

Theorem 3. 𝐺𝑆𝐹 𝐺 and 𝐺𝑆𝐹 𝐴 are strictly monotone, regardless of the value of 𝑡. 

Proof. Let 𝐟 = (𝒻 , 𝒻 , … , 𝒻 ), 𝐠 = (ℊ , ℊ , … , ℊ ) ∈ 𝕊 , and let 𝐰 = (𝑤 , 𝑤 , … , 𝑤 ) ∈ 𝕁 . Denote:  𝒻 = 〈𝑚𝐟, , 𝑖𝐟, , 𝑛𝐟, 〉,  ℊ = 〈𝑚𝐠, , 𝑖𝐠, , 𝑛𝐠, 〉 for all 𝑗. GSF G(𝐰, 𝐟) = 〈𝑚𝐟, , 𝑖𝐟, , 𝑛𝐟, 〉, GSF A(𝐰, 𝐟) = 〈𝑚𝐟, , 𝑖𝐟, , 𝑛𝐟, 〉; GSF G(𝐰, 𝐠) =〈𝑚𝐠, , 𝑖𝐠, , 𝑛𝐠, 〉, GSF A(𝐰, 𝐠) = 〈𝑚𝐠, , 𝑖𝐠, , 𝑛𝐠, 〉.  

□ 

The following statements hold: 

(i) If 𝑚𝐟, ≤ 𝑚𝐠,  for all 𝑗, then both 𝑚𝐟, ≤ 𝑚𝐠,  and 𝑚𝐟, ≤ 𝑚𝐠,  
(ii) If 𝑖𝐟, ≤ 𝑖𝐠,  for all 𝑗, then both 𝑖𝐟, ≤ 𝑖𝐠,  and 𝑖𝐟, ≤ 𝑖𝐠,  
(iii) If 𝑛𝐟, ≤ 𝑛𝐠,  for all 𝑗, then both 𝑛𝐟, ≤ 𝑛𝐠,  and 𝑛𝐟, ≤ 𝑛𝐠,  

which follows from Lemma 3 and Definition 11. The theorem now follows by Definition 10. 

Theorem 4. 𝐺𝑆𝐹 𝐺 and 𝐺𝑆𝐹 𝐴 are strictly commutative, regardless of the value of 𝑡. 

Proof. This theorem is a direct consequence of Definition 11 and Definition 10. □ 
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As the aggregation will involve comparison of SVNn . A way of assessment is needed to 
determine the superiority of the choices based on the contents of the SVNn. The following properties 
hold for spherical fuzzy numbers and SVNn. 

Definition 12. [21] Let 𝒻 = 〈𝑚 , 𝑖 , 𝑛 〉 be a spherical fuzzy number. Then 

(i) 𝑆 (𝒻) = 𝑚 − 𝑛  is said to be the score value of 𝒻. 
(ii) 𝐴 (𝒻) = 𝑚 + 𝑖 + 𝑛  is said to be the accuracy value of 𝒻. 

The following properties holds for all SVNn. 

Definition 13. [46] Let 𝒻 = 〈𝑚 , 𝑖 , 𝑛 〉 ∈ 𝕊 . Then 

(i) 𝑆 (𝒻) = 2 + 𝑚 − 𝑖 − 𝑛  is said to be the score function of 𝒻. 
(ii) 𝐴 (𝒻) = 𝑚 − 𝑛  is said to be the accuracy function of 𝒻. 

In light of the nature of our work, we shall adopt the following for the remaining sections of this 
paper. 

Definition 14. Let 𝒻 = 〈𝑚 , 𝑖 , 𝑛 〉 ∈ 𝕊 . Then 

(i) 𝑆(𝒻) = 2+𝑚0−𝑖0−𝑛03  is said to be the Generalized t-Spherical score value (abbr. 𝐺𝑆𝐹 - score value) of 𝒻. 
(ii) 𝐴(𝒻) = 𝑚 + 𝑖 + 𝑛  is said to be the Generalized t-Spherical accuracy value (abbr. 𝐺𝑆𝐹 - accuracy 

value) of 𝒻. 

Definition 15. Let 𝒻 = 〈𝑚 , 𝑖 , 𝑛 〉, 𝒻 = 〈𝑚 , 𝑖 , 𝑛 〉 ∈ 𝕊 . Then 𝒻  is said to be superior to 𝒻 , denoted 
as 𝒻 ≻ 𝒻 , if any one of the following statements holds. 

(i) 𝑆(𝒻 ) > 𝑆(𝒻 ) 
(ii) 𝑆(𝒻 ) = 𝑆(𝒻 ) but 𝐴(𝒻 ) > 𝐴(𝒻 ). 

On the other hand, 𝒻  is said to be similar to 𝒻 , denoted as 𝒻 ∼ 𝒻 , if both S(𝒻 ) = S(𝒻 ) and A(𝒻 ) = A(𝒻 ) are true. Furthermore, we denote 𝒻 ≽ 𝒻 , if either 𝒻 ≻ 𝒻  or 𝒻 ∼ 𝒻  holds. 

Definition 16. Let 𝒻 = 〈𝑚 , 𝑖 , 𝑛 〉, 𝒻 = 〈𝑚 , 𝑖 , 𝑛 〉 ∈ 𝕊 . Then 𝒻 is said to be equal to 𝒻 , denoted as 𝒻 = 𝒻 , if all values of 𝑚 = 𝑚 , 𝑖 = 𝑖  and 𝑛 = 𝑛  holds. 

Definition 17. Let 𝒇 = (𝒻 , 𝒻 , … , 𝒻 ) ∈ 𝕊 . A 𝑆𝑉𝑁𝑛𝒽 is said to be a relative maximum of 𝒇, if: 

(i) 𝒽 ≽ 𝒻  for all 𝑗. 
(ii) If 𝒷 is such that 𝒷 ≽ 𝒻  for all 𝑗 then 𝒷 ≽ 𝒽. 

The set of all relative maxima of 𝐟 is denoted by rmax(𝐟). 

Definition 18. Let 𝒇 = (𝒻 , 𝒻 , … , 𝒻 ) ∈ 𝕊 . A 𝑆𝑉𝑁𝑛𝒽 is said to be a relative minimum of 𝒇 if: 

(i) 𝒻 ≽ 𝒽 for all 𝑗. 
(ii) If 𝒷 is such that 𝒻 ≽ 𝒷 for all 𝑗, then 𝒽 ≽ 𝒷. 

The set of all relative minima of 𝐟 is denoted by rmin(𝐟). 

Remark 6. Let 𝒽 , 𝒽 ∈ 𝑟𝑚𝑎𝑥(𝒇). Then 𝒽 ∼ 𝒽 . The relationships ≽, ≻ and ∼ as defined in Definition 
15 can therefore be extended to relate among 𝑟𝑚𝑎𝑥(𝒇) with any 𝑆𝑉𝑁𝑛. However, that does not mean that 𝒽 = 𝒽 . 

Remark 7. If |𝑟𝑚𝑎𝑥(𝒇)| = 1, then its sole element is also said to be the absolute maximum of 𝒇. 

5. Algorithms for Multi-Attribute Multi-Perception Decision-Making Based on 𝐆𝐒𝐅𝒕𝐆 and 𝐆𝐒𝐅𝒕𝐀 
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Consider a set of 𝑛 different alternatives 𝔄 = {𝔞 , 𝔞 , … , 𝔞 }, where each one of them are judged 
on a set of 𝑘 different attributes 𝔅 = {𝔟 , 𝔟 , … , 𝔟 }. For each combination of 𝔞 , 𝔟 ∈ 𝔄 × 𝔅, the 
outcome of the judgement is characterized by an SF n 𝒻 , = 〈𝑚 , , 𝑖 , , 𝑛 , 〉. The subjective weight 
that each of the 𝑘 attribute carries, which is set by the user, are in accordance with a weight vector 𝐰 = (𝑤 , 𝑤 , … , 𝑤 ) ∈ 𝕁 , where 𝑤  corresponds to the weights of 𝔟  for all 𝑗 . The strictness of 
accessing an attribute is addressed by a real number 𝑡 which is chosen by the user subject to his 
perception on the data he is investigating (see Section 6.2 for examples on our case study). This 
decision-making method is called the multi-attribute multi-perception decision making (MAMPDM). 

5.1. Prologue: The Derivation of 𝑆𝑉𝑁𝑛 from a Raw Dataset 

To justify the practical usefulness of our algorithm, we are employing the use of raw actual 
datasets that are obtained from various real-life situations, in which the entities in such datasets can 
potentially be in many different formats as shown in Table 1. 

Table 1. Types of datasets. 

Type of Entity in Datasets Examples 

Qualitative 
Nominal Nationality 

(Malaysia, Singapore, China …) 

Ordinal Customer Feedback 
(Poor, Fair, Good …) 

Quantitative 
Discrete Number of stations 

(1, 2, 3, …) 

Continuous Measurement 
(12.3 kg, 34.1 m, …) 

Moreover, a given dataset may even contain more than one of such type of entities. Thus, it is 
extremely unlikely to have the raw entities from a given data set resembling the characteristics of SVNn (or any structure in the literature of fuzzy theory). 

It is for this reason that whenever we need to deal with a given dataset, there must always be a 
dedicated method for converting the raw data to SVNn, as decided by the investigators. Such methods 
of conversion will certainly depend on the type of entities being studied in a dataset. For example, a 
given method (which can involve the use of formulae and algorithms) of converting one single entity 
of “daily mean temperature of a city” into an SVNn, will be totally inadequate and would not be 
contextually accurate for converting “the number of customers visiting a restaurant at a given point 
in time” into an SVNn. 

But as a real-life dataset may contain a large amount of data, there may be more than one reading 
presented for a given entity. For example, even in the case of “daily mean temperature of a city”, 
there could be multiple readings taken at different stations within that particular city, all of which 
are presented in the dataset. Therefore, the method of conversion in this case may involve the 
conversion of multiple entities into one SVNn. 

Nirmal and Bhatt [48], suggested four different methods of such conversion in the context of 
selecting automated guided vehicles, all of which involved the conversion of a single quantitative, 
continuous entity into an SVNn. However, such methods only provide a formula for obtaining the 
value of 𝑚 in a SVNn 𝒻 = 〈𝑚, 𝑖, 𝑛〉, where both 𝑖 and 𝑛 are simply taken to be 1 − 𝑚. As a result, 
the three membership values 〈𝑚, 𝑖, 𝑛〉 obtained in such a way, only possess one degree of freedom. It 
is therefore evident that such methods of conversion radically contradicts the purpose of establishing 
a SVNn with three independent entities representing the truth, indeterminacy, and falsity membership 
values. Not to mention that, in most existing literature about fuzzy-based decision making, the 
authors simply use a very small amount of data made by the authors themselves. Such practice, 
though avoiding the needs of such conversion, severely hinders the establishment of the application 
of fuzzy theory in real life scenarios. 
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Therefore, it is evident that a faithful generation of SVNn will necessitate a dataset with a 
significant caliber, so that the conversion of multiple entities into one SVNn can take place. Only then 
we can possibly generate SVNn that stays true to the concept of SVNSs where the values of 𝑚, 𝑖, 𝑛 
are independent of one another. 

On the other hand, there may even be cases where the data is mentioned to be completely absent 
during some part of the dataset. In such a case, the approaches of dealing with the dataset will again 
depend on the nature of the problem being investigated, as well as the personality of the investigator 
(e.g., stock buyers).As a result, such approaches can very possibly range from “complete ignorance” 
(e.g., if the stock buyer is a conservative investor who is fearful of the unknown) all the way to 
“utmost importance” (e.g., if the stock buyer is very curious of the unknown). 

We refer the readers to Section 6.6 for such a method of obtaining SVNn from our dataset of 
investigation. 

Definition 19. Let 𝒻 = 〈𝑚 , 𝑖 , 𝑛 〉, 𝒻 = 〈𝑚 , 𝑖 , 𝑛 〉 ∈ 𝕊 . The Euclidean distance between 𝒻  and 𝒻 , 
denoted by 𝑑(𝒻 , 𝒻 ), is defined to be: d(𝒻 , 𝒻 ) = (𝑚 − 𝑚 ) + (𝑖 − 𝑖 ) + (𝑛 − 𝑛 )   

5.2. Algorithm for 𝐺𝑆𝐹 𝐺 Based Multi-Attribute Multi-Perception Decision Making 

Step 1. For each of the 𝑘 attributes under each of the 𝑛 alternatives, derive an SF n from the raw 
data using a suitable method, as explained in Section 5.1. This forms a matrix  

𝐌 = ⎝⎛
𝒻 , 𝒻 ,𝒻 , 𝒻 , ⋯ 𝒻 ,𝒻 ,⋮ ⋱ ⋮𝒻 , 𝒻 , ⋯ 𝒻 , ⎠⎞,  

where 𝒻 ,  is the SF n value for the alternative 𝔞  on the attribute 𝔟 , for all 𝑝 and 𝑞. 
Denote 𝐟  = 𝑐-th row of 𝐌 = 𝒻 , , 𝒻 , , … , 𝒻 , , for all 𝑐. 
Remark 8: The method of obtaining SVNn from the raw dataset is presented in Section 6.6. 

Step 2. For each of the 𝑘  attributes, calculate the objective weight 𝛉 = (𝜃 , 𝜃 , … , 𝜃 )  using the 
formula given below: 

𝜃 = ∑ ∑ d 𝒻 , , 𝒻 ,∑ ∑ ∑ d 𝒻 , , 𝒻 ,   

Step 3. For each of the 𝑘 attributes, calculate the integrated weight 𝛗 = (𝜑 , 𝜑 , … , 𝜑 ) using the 
formula given below: 

𝜑 = 𝑤𝑗𝜃𝑗∑ 𝑤𝑗𝜃𝑗𝑘𝑗=1   

Step 4. Calculate the geometric interaction value 𝓅 = GSF G(𝛗, 𝐟 ), for all 𝑐 = 1,2, ⋯ , 𝑛. 

Step 5. Determine the superiority of each 𝓅  using Definition 17. 

5.3. Algorithm for 𝐺𝑆𝐹 𝐴 Based Multi-Attribute Multi-Perception Decision-Making 

Step 1–Step 3. Same as Step 1–Step 3 in Section 5.3. 

Remark 9: The method used to derive the SF n may differ from the one used in Section 5.3, even in 
the case where both this algorithm and the algorithm in Section 5.3 are used to deal with the same 
raw dataset. 

Step 4. Calculate the arithmetic interaction value 𝓆 = GSF A(𝛗, 𝐟 ), for all 𝑐 = 1,2, ⋯ , 𝑛. 
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Step 5. Same as Step 5 of the algorithm in Section 5.3. 

6. Application of the Proposed Algorithms to Air Pollution in China 

6.1. An Overview of the Scenario—Air Pollution in China 

The air pollution in China has long been a worldwide health concern ever since China’s 
industrial boom. In China’s capital Beijing in particular, the concentration of PM2.5 had even reached 
nearly 1000 μg m  around the year 2013, a historic high in China at that time. 

6.1.1. The Two Major Smog Outbreaks in 2013 

The year 2013 was also marked by two severe outbreaks of smog that had occurred, namely the 
2013 Northeastern China smog and the 2013 Eastern China smog. The former occurred on 21–25 
October 2013, due to the start-up of Harbin’s coal-powered district heating system, which affects the 
three northern provinces of China: Heilongjiang, Jilin, and Liaoning. The level of PM2.5 even reached 
1000 μg m  in Harbin, surpassing the historic high in Beijing. Subsequently, the visibility has 
dropped to 50 m in general, more than 2000 schools were closed, and all the scheduled flights in the 
airports were cancelled. Even in Jilin, the level of PM2.5 reached 845 μg m  on 22 October 2013, 
reaching a 63-year record high value. The latter occurred from 2–14 December 2013 affecting an even 
wider region: All parts of the municipalities of Shanghai and Tianjin, and the provinces of Anhui, 
Henan, Hebei, Shandong, Jiangsu, and Zhejiang. The level of PM2.5 surpassed 300 μg m  in many 
areas. Likewise, many airports, schools, and highways surrounding the affected region were closed. 

The severity of the smog is evident from the two satellite images captured by NASA which are 
given below in Figures 1 and 2. 

 

Figure 1. Northeastern China smog 
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Figure 2. Eastern China smog 

6.1.2. The Sources of Pollution 

The burning of coal during winter season by itself is yet to be a main constituent of air pollution. 
Burning coal during the period where the air is still causes massive pollution, as the still air is 
incapable of dispersing the pollutant. 

Another major constituent of pollution in China is the immense traffic flow, more during holiday 
seasons. Traffic congestion has already become an issue in many major cities in China. One much 
notable case is the 110 h traffic jam that occurred in the China National Highway on 13 August 2010, 
which lasted for about two weeks continuously. 

Furthermore, the concentration of pollutants may experience a sudden increase during the 
Lunar New Year season as millions of people start igniting fireworks across all the regions in China, 
causing a sudden appearance of thick smog in cities which has been called “the spring smog”. 

It is plain to see that each constituents of pollution take place according to a certain pattern 
within a year. For example, the burning of coal takes place during winter season, causing the PM2.5 
concentration to be generally higher during the winter season. Such pattern can even be observed 
from the values of PM2.5 concentrations contained in our dataset of choice (see Section 6.3). 

6.1.3. Actions Taken to Combat Pollution in China 

In response to the pollution, China has revised the method of assessment of air quality in 2012. 
The old method of assessment of air quality, in accordance with the standard GB 3095-1996, was by 
measuring the concentration of only three pollutants: SO2, NO2, and PM10 in the air. Those readings 
were the inputs to calculate the API (air pollution index). Such procedures were repeated daily. The 
revised method of accessing air quality that is in accordance with the revised standard GB 3095-2012, 
not only imposes stricter thresholds on the concentration of the previous 3 pollutants SO2, NO2, and 
PM10, but also measures the concentration of PM2.5, O3, and CO in the air. Moreover, the value of 
concentration of all the six pollutants are used to calculate the AQI (air quality index). Such 
procedures are repeated hourly, thus providing a much more frequent update compared to the 
previously used method. 

In this information age, the value of the hourly updated AQI for many major cities in China, are 
readily accessible to the public and can be found by visiting the relevant websites. Some websites 
even show the concentration of each of the six pollutants individually. The following Figures 3 shows 
the addresses and the interface. 

1. Shanghai 
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Figure 3. Interface of a website in China showing the AQI 

The Chinese government has also controlled the use of fireworks during the Lunar New Year 
seasons to address these pollution concerns. Many cities have now outlawed fireworks, or only allow 
the use of fireworks in specific locations at specific times and dates. 

Nonetheless, when compared with other countries, there is still some difference on how the 
output value (whether AQI or API or anything similar) is deduced from the concentration of the 
pollutants. Notably in the aspect of PM2.5 concentration, different nations have different ways of 
classifying the concentration of PM2.5 and other pollutants in the air that is they have different 
methods of calculating the API or AQI. As a result, it is more objective to describe the degree of 
pollution by referring to the concentration of the pollutants, rather than solely relying on the AQI 
value output that is provided by a country. 

For China in particular, among the six pollutants, the main constituent used in the calculation of 
the API and AQI indexes has been identified as the concentration of PM2.5. Thus in this paper, we 
will be emphasizing on the concentration of PM2.5 in five selected major cities in China. 

6.2. The Multiple Perception of Comparing the Severity of Pollution 

When the severity of air pollution between two cities is compared, there are multiple perceptions 
to judge the severity. One can consider the pollution in an “overview” manner by averaging the 
readings of PM2.5 concentrations on all cities across all days, or one can judge in a “pinpointing” 
manner by considering which city registered the most extreme daily PM2.5 concentrations recorded. 
With regards to the way of pinpointing, this further gives rise to two ways of doing so:  

(i) by pinpointing which city registered the highest daily PM2.5 concentrations recorded 
(ii) by pinpointing which city registered the lowest daily PM2.5 concentrations recorded 

These ways correspond to the way two different sectors of a country deals with pollution, 
namely, environmental management and tourism marketing, both of which are sectors that are 
indispensable in the development of a nation. 

6.2.1. From the View of Environmental Management 

Suppose that some regional governments of China are investigating which of their cities are the 
most polluted and decide to take action to combat the pollution. Some of the actions can be drastic 
and risky and can only be done on few days of a year (e.g., forced shutting down of factories and 
power stations, or evacuations). Some other actions are safer and can be done on many days of a year, 
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but are not as effective (e.g., giving away face masks to residents). As a result, the environmental 
management sector of China will pinpoint the city with very high daily PM2.5 concentrations, no 
matter how few the days are. 

As an illustration, consider an example of three cities as given below. 

City A 

With PM2.5 concentration reaching more than 500 μg m  for 10 random days of a year, but on 
all the other 355 days (or 356 days if it is a leap year), the PM2.5 concentrations are below 50 μg m . 

City B 

With PM2.5 concentration staying within 120 to 150 μg m  all year round. 

City C 

With PM2.5 concentration within 200 to 400 μg m  for the entire month of January and 
December, but on all the other 10 months, the PM2.5 concentrations are below 50 μg m . 

If we were to judge solely by the maximum PM2.5 concentration reached (i.e., in a “pinpointing” 
manner), then City A will be deemed the most polluted. On the other hand, a PM2.5 concentration of 
75 μg m is deemed “unhealthy” by Chinese AQI standards. So, if we were to judge solely by the 
number of days with PM2.5 concentration surpassing 75 μg m  (i.e., in an “overviewing” manner), 
then City B will be deemed the most polluted. Moreover, if “burning coal during winter” is the main 
concern (i.e., not so “pinpointing” nor “overviewing”), then City C will be deemed the most polluted. 

6.2.2. From the View of Tourism Marketing 

Suppose a tourism company wishes to promote China by taking some beautiful pictures of a 
city. The company will be pinpointing just a few days with clear skies (i.e., low PM2.5 concentration) 
to have the photographs taken. To accomplish this, the company will dispatch a photographic team 
to be stationed in a city, preparing to take picture of the scenery whenever the clear sky appears. As a 
result, the photographic team will pinpoint the city with very low daily PM2.5 concentrations, no 
matter how few the days are. This is in contrast with the environmental management sector. 

Nonetheless, the choice of the best city is again subject to different situations faced by the 
company, i.e., whether the company need the photographs very urgently, or the company is willing 
to wait long enough and invest enough money for the best scene to occur. 

Again as an illustration, consider an example of three cities as given below. 

City P 

With PM2.5 concentration reaching less than 50 μg m  for 10 random days of a year, but on all 
the other 355 days (or 356 days if it is a leap year), the PM2.5 concentrations are above 300 μg m . 

City Q 

With PM2.5 concentration staying within 100 μg m  to 150 μg m  all year round. 

City R 

With PM2.5 concentrations within 50 μg m  to 100 μg m  for 50 random days of a year, but 
on all the other days, the PM2.5 concentrations are within 200 μg m  to 300 μg m . 

Among these three cities, if the company is willing to wait long enough for the best scenes to 
occur (“quality” is of concern), then City P will be the best choice, even if that city is overall very 
polluted. On the other hand, if the company needs the photographs very urgently (“speed” is of 
concern), then City Q will be the best choice. 

Remark 10. Obviously, City A in the previous section will be an even better choice than City P, Q, and R as 
it has 355 days in a year with PM2.5 concentrations of below 50 𝜇𝑔 𝑚 . 

6.2.3. On Dealing with the Complete Absence of Data 
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As far as two different sectors are concerned, if the data on PM2.5 reading is completely absent 
for a city, then the common practice is to ignore that city altogether. 

Thus, a city whose data are totally absent will be assigned a low membership value by the 
environmental management sector (not worth spending money to combat “pollution” and therefore 
presume clean air). On the other hand, that city will be assigned a high membership value by the 
tourism marketing sector (not worth sending crew to wait for a “clear sky” and therefore presume 
dirty air). 

In this paper we shall adopt such an approach of dealing with the absence of data. 

6.3. Application of Our Proposed Method Using a Real Life Dataset 

In this section, we apply our proposed decision-making algorithm to a real-life data set of the 
pollution data for five Chinese cities. This data set was obtained from the UCI Machine Learning 
Repository.  

6.3.1. A Brief Description of the Dataset 

The dataset contains the hourly reading of PM2.5 (in μg m ) of five cities in China, namely 
Beijing, Chengdu, Guangzhou, Shanghai, and Shenyang. The data ranges from 00:00 on 1 January 
2010 to 23:00 on 31 December 2015, i.e., six years in total. In each of the five cities, the PM2.5 
concentrations are measured hourly from several stations within the city. In particular, there were 
four stations for Beijing, two stations for Guangzhou, and three stations for each of the other three 
cities. Each of those stations, however, may or may not produce a PM2.5 concentration given a one-
hour interval of any year. 

Remark 11: Although the dataset provides readings for three stations in Guangzhou, it was found 
that two of the stations, namely “City Station” and “US post” share identical readings throughout the 
entire 6-year interval. Based on the knowledge of measurement, it is very unlikely that “City Station” 
and “US post” stations independently obtain their own readings. Thus “City Station” and “US post” 
in Guangzhou are counted as one single station in our investigation. 

6.3.2. Notations Used in the Dataset 

The following notations shall be used for all of the remaining parts of this paper: 

(a) Denote 𝔜 = {𝔶 , 𝔶 , 𝔶 , 𝔶 , 𝔶 , 𝔶 }  to be the six years of concern, where 𝔶 , 𝔶 , 𝔶 , 𝔶 , 𝔶 , 𝔶  
represent the years 2010, 2011, 2012, 2013, 2014 and 2015, respectively. 

(b) For each year 𝔶 : 

1. Denote 𝔄( ) = 𝔞( ), , 𝔞( ), , 𝔞( ), , 𝔞( ), , 𝔞( ),  to be the 5 cities in that year, where 𝔞( ), , 𝔞( ), , 𝔞( ), , 𝔞( ), , 𝔞( ),  represents the city of Beijing, Chengdu, Guangzhou, Shanghai, 
and Shenyang, respectively. 

2. Denote 𝔅( ) = 𝔟( ), , 𝔟( ), , … , 𝔟( ),  to be all the hours within that year, starting with the 
00:00 of 1st January, till 23:00 of 31st December. It is to be noted that 𝑘 = 𝑘 = 𝑘 = 𝑘 =𝑘 = 8760, but 𝑘 = 8784 as the year 2012 is a leap year. 

3. Denote all the PM2.5 readings within that year by a matrix whose elements are ordered sets 
of the following form: 

𝐑( ) = ⎝⎛
𝓇( ), , 𝓇( ), ,𝓇( ), , 𝓇( ), , ⋯ 𝓇( ), ,𝓇( ), ,⋮ ⋱ ⋮𝓇( ), , 𝓇( ), , ⋯ 𝓇( ), , ⎠⎞,  

where 𝓇( ), , = 𝜌( ), , , , 𝜌( ), , , , 𝜌( ), , , , 𝜌( ), , , , 𝓇( ), , = 𝜌( ), , , , 𝜌( ), , ,  and 𝓇( ), , = 𝜌( ), , , , 𝜌( ), , , , 𝜌( ), , ,  for 𝑣 = 2,4,5 for all 𝑦. 
4. The rows of 𝐑( )  from the 1st to the 5th represents the readings from the city of 𝔞( ), , 𝔞( ), , 𝔞( ), , 𝔞( ), , 𝔞( ), , respectively.  
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5. The columns of 𝐑( )  from the 1st to the 𝑘 -th represents the readings from the hour 𝔟( ), , 𝔟( ), , … , 𝔟( ), , respectively. 
6. For each 𝑗, 𝜍, 𝜇: if the reading exists in the dataset for the 𝜇 th station in the city of 𝔞( ),  

during the hour of 𝔟( ), , then 𝜌( ), , , ∈ ℝ  is taken to be that reading, otherwise, 𝜌( ), , ,  
is assigned to be −1. 

(c) For each 𝓇( ), ,  in 𝐑( ): 
1. Denote the set 𝓈( ), , = 𝜌 ∈ 𝓇( ), ,  | 𝜌 ∈ ℝ . 
2. Denote max 𝓈( ), ,  and min 𝓈( ), ,  to be the maximum and minimum value of 𝓈( ), , . 
3. Denote 𝝈 ( ), ,  to be the population variance of PM2.5 concentration for city 𝔞( ),  during 

the hour 𝔟( ),  of the year 𝔶 , which we can never know. 
4. Denote var 𝓈( ), ,  to be the unbiased estimate of 𝝈 ( ), ,  using elements of 𝓈( ), , . 

6.4. The Objectives 

For each of the six years, the five cities are to be sorted from the most polluted to the least 
polluted. That value of t is decided by the user based on whichever perception he is investigating, as 
mentioned in Section 6.2. 

6.5. The Chosen Method of Obtaining the SVNn 

6.5.1. The Formulas 

For each year 𝔶 , obtain the matrix 

𝐌( ) = ⎝⎜
⎛𝒻( ), , 𝒻( ), ,𝒻( ), , 𝒻( ), , ⋯ 𝒻( ), ,𝒻( ), ,⋮ ⋱ ⋮𝒻( ), , 𝒻( ), , ⋯ 𝒻( ), , ⎠⎟

⎞
  

from 𝐑( )  by calculating all the 𝒻( ), , = 〈𝑚( ), ,  , 𝑖( ), ,  , 𝑛( ), , 〉  in 𝐌( )  with the following 
formulas: 

(1) For the GSF G based approach used by the environment management sector, take (𝜙 , 𝜙 ) =(0,1). For the GSF A based approach used by the tourism marketing sector, take (𝜙 , 𝜙 ) =(1,0). (See Section 6.2.3.) 

(2) 𝑚( ), , = ⎩⎪⎨
⎪⎧  0.9 × 𝓈( ), ,  if max 𝓈( ), , < 5001 − 0.1 × 𝓈( ), ,  if max 𝓈( ), , ≥ 500𝜙  if 𝓈( ), , = 0  

(3) 𝑛( ), , = ⎩⎪⎨
⎪⎧1 − 0.9 × 𝓈( ), ,  if min 𝓈( ), , < 500 0.1 × 𝓈( ), ,  ifmin 𝓈( ), , ≥ 500𝜙  if 𝓈( ), , = 0  

(4) 𝑖( ), , = ⎩⎪⎨
⎪⎧ 0.9 × . ( ), ,  ifσ . ( ), , < 5001 − 0.1 × . ( ), ,  if σ . ( ), , ≥ 500 1 if 𝓈( ), , ≤ 1 ,  where 𝜎 . ( ), , =

𝓈( ), ,. , 𝓈( ), , var 𝓈( ), , . 

 

6.5.2. Motive behind the Choices of Formulas 
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In this scenario, the number of stations within one city is already quite few from a statistical 
perspective (i.e., less than 30 in accordance with most literature). In view of this matter, we took the 
liberty of assuming that the PM2.5 concentration within any city during any hour of a year is normally 

distributed. Thus it follows that 
𝓈( ), ,𝝈 ( ), , var 𝓈( ), , ∼ 𝜒 𝓈( ), , . Moreover, in this dataset, 𝓈( ), ,  may be smaller than 𝓇( ), , . As 𝑖( ), ,  is a measurement of indeterminacy by Definition 

4, such uncertainties of var 𝓈( ), ,  at estimating 𝝈 ( ), , , on top of the value of var 𝓈( ), ,  itself, 
should be taken into account. It is for these reasons that the 95% upper critical value of 𝝈 ( ), , : 𝜎 . ( ), , , instead of var 𝓈( ), ,  itself, is used to characterize 𝑖( ), , .  

The critical values from the statistical table is only accurate to 4 significant figures. Therefore, 
approximations accurate to 25 significant figures are used, which were obtained using SAGE. For 
example: 𝜒 , . = 0.003932140000019522731309468  𝜒 , . = 0.1025865887751010668523923  𝜒 , . = 0.3518463177492713960244376  𝜒 , . = 0.7107230213973241044476521  

The number 500 is involved in our formulas because 500 𝜇g m  is the upper limit of PM2.5 
concentration that corresponds to the upper bound of AQI level 6 (i.e., “severely polluted”) in China. 
In actual measurement, the PM2.5 concentration can still potentially exceed 500 𝜇g m  indeed, it is 
for this reason we allocate 0.0 to 0.9 that corresponds to the PM2.5 concentration reading from 0 𝜇g m  to 500 𝜇g m . On the other hand, 0.9 to 1.0 are dedicated for the extreme cases where the 
PM2.5 concentration exceeds 500 𝜇g m  with no upper bound imposed, as seen by the reciprocal 
relationship of the formulas in Section 6.5.1. This applies for all the three values of 𝑚( ), , , 𝑖( ), , , 
and 𝑛( ), , . 

6.6. Results for Some Values of t 

As 𝑡 may theoretically take infinite number of values, here the results for both the GSF G and GSF A  approaches are given for the instances of 𝑡 = , , 1, 4, 20  representing five different 
perceptions of making decision. As there are six years in our dataset, the sorting for all the six years 
are given accordingly in Table 2. 

As mentioned previously in Section 6.3.2: for each 𝑞 , 𝔞( ), , 𝔞( ), , 𝔞( ), , 𝔞( ),  and 𝔞( ),  
represents the city of Beijing, Chengdu, Guangzhou, Shanghai, and Shenyang, respectively, in the 
year 2010 + 𝑞. 

Table 2. Results for the GSF G and GSF A approaches for the chosen dataset. 

Value of 𝒕 
(Environment Management/Tourism Marketing) 

Results for the 𝐆𝐒𝐅𝒕𝐆 Approach 
Most Polluted ⟶ Least Polluted 

Results for the 𝐆𝐒𝐅𝒕𝐀 Approach 
Most Polluted ⟶ Least Polluted 

1/20 
(very overviewing/very urgent) 

𝔞( ), ≻ 𝔞( ), ∼  𝔞( ), ∼ 𝔞( ),∼ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),∼ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  

𝔞( ), ∼  𝔞( ), ∼ 𝔞( ), ∼ 𝔞( ),≻ 𝔞( ),  𝔞( ), ∼ 𝔞( ), ≻ 𝔞( ), ≻ 𝔞( ), ≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  

¼ 
(rather overviewing/rather urgent) 

𝔞( ), ≻ 𝔞( ), ∼  𝔞( ), ∼ 𝔞( ),∼ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),∼ 𝔞( ),  

𝔞( ), ∼  𝔞( ), ∼ 𝔞( ), ∼ 𝔞( ),≻ 𝔞( ),  𝔞( ), ∼ 𝔞( ), ≻ 𝔞( ), ≻ 𝔞( ), ≻ 𝔞( ),  
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𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  

𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  

1 
(balanced) 

𝔞( ), ≻ 𝔞( ), ∼  𝔞( ), ∼ 𝔞( ),∼ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),∼ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  

𝔞( ), ∼  𝔞( ), ∼ 𝔞( ), ∼ 𝔞( ),≻ 𝔞( ),  𝔞( ), ∼ 𝔞( ), ≻ 𝔞( ), ≻ 𝔞( ), ≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  

4 
(rather pin-pointing/rather patient) 

𝔞( ), ≻ 𝔞( ), ∼  𝔞( ), ∼ 𝔞( ),∼ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),∼ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  

𝔞( ), ∼  𝔞( ), ∼ 𝔞( ), ∼ 𝔞( ),≻ 𝔞( ),  𝔞( ), ∼ 𝔞( ), ≻ 𝔞( ), ≻ 𝔞( ), ≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  

20 
(very pin-pointing/very patient) 

𝔞( ), ≻ 𝔞( ), ∼  𝔞( ), ∼ 𝔞( ),∼ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),∼ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  

𝔞( ), ∼  𝔞( ), ∼ 𝔞( ), ∼ 𝔞( ),≻ 𝔞( ),  𝔞( ), ∼ 𝔞( ), ≻ 𝔞( ), ≻ 𝔞( ), ≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  𝔞( ), ≻ 𝔞( ), ≻  𝔞( ), ≻ 𝔞( ),≻ 𝔞( ),  

Remark 12: The change in the results as 𝑡  increases (i.e., going down the rows of Table 2) are 
highlighted for easier identification. 

7. Compliance Tests to Investigate the Accuracy of our Algorithm 

7.1. The Range of the Values of t to Be Investigated 

In accordance with the formulas for GSF A and GSF G as defined in Definition 11, both 𝑡 and 
 represents the power for which some numbers are to be raised to. In the aspect of computing, it is 

therefore evident that the further the values of 𝑡 and  are deviated from 1, the more resource 
intensive the calculation will be. It is for this practical reason that all the tests that we performed in 
this paper are restricted for values of 𝑡 ranging from 10  to 10  inclusively (and thus the same 
range holds for ). 

7.2. Test 1: Test for Small Values [46] 

In Test 1, we are testing on how GSF A and GSF G handles data that are very close to 0. 

7.2.1. The Test Inputs 
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There are four cities 𝔄(1) = 𝔞(1), , 𝔞(1), , 𝔞(1), , 𝔞(1),  to be accessed during the interval of two 
days, 𝔅(1) = 𝔟(1), , 𝔟(1),  for the severity of pollution on a given perception characterized by the 
value of t. 

𝐌( ) = 〈0.5000, 0.5000, 0.5000〉〈0.5000, 0.5000, 0.5000〉〈0.5000, 0.5000, 0.5000〉〈0.5000, 0.5000, 0.5000〉
〈0.9999, 0.0001, 0.0000〉〈0.9999, 0.0001, 0.0001〉〈0.9999, 0.0000, 0.0001〉〈0.0001, 0.0000, 0.0000〉   

𝛗( ) = (0.50 0.50)  

Denote 𝐟( ),  = 𝑐-th row of 𝐌( ), 𝒽( ), = GSF A(𝛗( ), 𝐟( ), ) and 𝒷( ), = GSF G(𝛗( ), 𝐟( ), ) for 
all 𝑐. 

7.2.2. The Criteria of Compliance 

For all 10 < 𝑡 < 10 , and for both GSF A and GSF G, city 𝔞(1),  should be classified as the 
least polluted, followed immediately by city 𝔞(1), . 
7.2.3. The Results of Our Algorithm 

 
Figure 4. The results of our algorithms GSF A and GSF A for compliance of Test 1  

Thus, it can be seen in Figure 4 that both of our algorithms GSF A and GSF A fully comply with 
Test 1. 

7.3. Test 2: Priority Test for Subjective Weights [46] 

In the second test we are testing on how GSF A and GSF G handles a case where the subjective 
weights prioritize over the objective weights. 

7.3.1. The Test Inputs 

There are two cities 𝔄(2) = 𝔞(2), , 𝔞(2),  to be accessed during the interval of two days, 𝔅(2) =𝔟(2), , 𝔟(2),  for the severity of pollution on a given perception characterized by the value of t. 
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𝐌( ) = 〈0.80, 0.10,0.10〉 〈0.19, 0.50,0.50〉〈0.20, 0.50,0.50〉 〈0.81, 0.10,0.10〉   𝛗( ) = (0.99 0.01)  

Denote 𝐟( ),  = 𝑐-th row of 𝐌( ), 𝒽( ), = GSF A(𝛗( ), 𝐟( ), ) and 𝒷( ), = GSF G(𝛗( ), 𝐟( ), ) for 
all 𝑐. 

7.3.2. The Criteria of Compliance 

For all 10 < 𝑡 < 10 , and for both GSF A and GSF G, city 𝔞(2),  should be classified as more 
polluted than city 𝔞(2), . 

7.3.3. The Results of Our Algorithm 

 
Figure 5. The results of our algorithms GSF A and GSF A for compliance of Test 2 

Thus it can be seen in Figure 5 that both of our algorithms GSF A and GSF A fully comply with 
Test 2. 

7.4. Test 3: Priority Test for Objective Weights [46] 

In the third test we are testing on how GSF A and GSF G handles a case where the objective 
weights prioritize over the subjective weights. 

7.4.1. The Test Inputs 

There are 20 cities 𝔄(3) = 𝔞(3), , 𝔞(3), , ⋯ , 𝔞(3),  to be accessed during the interval of two days, 𝔅(3) = 𝔟(3), , 𝔟(3),  for the severity of pollution on a given perception characterized by the value of 𝑡. 
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𝐌( ) =

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎛

〈0.90, 0.00,0.10〉 〈0.80, 0.00,0.10〉〈0.80, 0.00,0.10〉〈0.50, 0.50,0.50〉〈0.50, 0.50,0.50〉〈0.50, 0.50,0.50〉〈0.50, 0.50,0.50〉〈0.50, 0.50,0.50〉〈0.50, 0.50,0.50〉〈0.50, 0.50,0.50〉〈0.50, 0.50,0.50〉〈0.50, 0.50,0.50〉〈0.50, 0.50,0.50〉〈0.50, 0.50,0.50〉〈0.50, 0.50,0.50〉〈0.50, 0.50,0.50〉〈0.50, 0.50,0.50〉〈0.50, 0.50,0.50〉〈0.50, 0.50,0.50〉〈0.50, 0.50,0.50〉〈0.50, 0.50,0.50〉

〈0.90, 0.00,0.10〉〈0.00, 0.90,0.90〉〈0.10, 0.90,0.80〉〈0.20, 0.90,0.70〉〈0.30, 0.90,0.60〉〈0.40, 0.90,0.50〉〈0.50, 0.90,0.40〉〈0.60, 0.90,0.30〉〈0.70, 0.30,0.90〉〈0.70, 0.90,0.30〉〈0.00, 0.30,0.30〉〈0.70, 0.90,0.90〉〈0.70, 0.30,0.30〉〈0.60, 0.40,0.30〉〈0.50, 0.50,0.30〉〈0.40, 0.60,0.30〉〈0.30, 0.70,0.30〉〈0.20, 0.80,0.30〉〈0.10, 0.90,0.30〉⎠⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎞

  

𝛗( ) = (0.5001 0.4999)  

Denote 𝐟( ),  = 𝑐-th row of 𝐌( ), 𝒽( ), = GSF A(𝛗( ), 𝐟( ), ) and 𝒷( ), = GSF G(𝛗( ), 𝐟( ), ) for 
all 𝑐. 

7.4.2. The Criteria of Compliance 

For all 10 < 𝑡 < 10 , and for both GSF A and GSF G, city 𝔞(3),  should be classified as the 
most polluted, followed immediately by city 𝔞(3), . 

7.4.3. The Results of Our Algorithm 

 
Figure 6. The results of our algorithms GSF A and GSF A for compliance of Test 3 

Thus it can be seen in Figure 6 that both of our algorithms GSF Aand GSF A fully comply with 
Test 3. 
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7.5. Test 4: t–Dependence Test 

In the fourth test we are testing on the effectiveness of the choices of 𝑡 at influencing the sorting 
of the cities, for both GSF Aand GSF G. 
 

7.5.1. t-Dependence Test of Type-A: For Environmental Management 

The Test Inputs 

There are 4 cities 𝔄(4,A) = 𝔞(4,A), , 𝔞(4,A), , 𝔞(4,A), , 𝔞(4,A),  to be accessed during the interval of 10 
days, 𝔅(4,A) = 𝔟(4,A), , 𝔟(4,A), , … , 𝔟(4,A),  for the severity of pollution on a given perception 
characterized by the value of 𝑡. For easier identification, 𝔞(4,A), , 𝔞(4,A), , 𝔞(4,A), , 𝔞(4,A),  shall also be 
addressed as City P, Q, R, S respectively. 

𝐌( , ) =

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎛

〈0.05,0.05,0.90〉〈0.05,0.05,0.90〉〈0.05,0.05,0.90〉〈0.99,0.01,0.01〉〈0.05,0.05,0.90〉〈0.05,0.05,0.90〉〈0.05,0.05,0.90〉〈0.05,0.05,0.90〉〈0.05,0.05,0.90〉〈0.05,0.05,0.90〉
〈0.99,0.01,0.01〉〈0.05,0.05,0.90〉〈0.05,0.05,0.90〉〈0.05,0.05,0.90〉〈0.05,0.05,0.90〉〈0.05,0.05,0.90〉〈0.05,0.05,0.90〉〈0.05,0.05,0.90〉〈0.05,0.05,0.90〉〈0.05,0.05,0.90〉
〈0.50,0.05,0.30〉〈0.50,0.05,0.30〉〈0.50,0.05,0.30〉〈0.10,0.05,0.52〉〈0.10,0.05,0.52〉〈0.10,0.05,0.52〉〈0.10,0.05,0.52〉〈0.10,0.05,0.52〉〈0.10,0.05,0.52〉〈0.10,0.05,0.52〉
〈0.30,0.10,0.40〉〈0.30,0.10,0.40〉〈0.30,0.10,0.40〉〈0.30,0.10,0.40〉〈0.30,0.10,0.40〉〈0.30,0.10,0.40〉〈0.30,0.10,0.40〉〈0.30,0.10,0.40〉〈0.30,0.10,0.40〉〈0.30,0.10,0.40〉⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎞

  

𝛗( , ) = (0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10)  

Denote 𝐟( , ),  = 𝑐-th row of 𝐌( , ), 𝓆 = GSF A(𝛗( , ), 𝐟( , ), ) for all 𝑐. 

The Criteria of Compliance 

There should exist 𝑡 , 𝑡 , 𝑡 , , 𝑡 , , with 10 < 𝑡 < 𝑡 < 𝑡 , < 10  and 𝑡 < 𝑡 , < 10 .  
This is for the algorithm to yield: 

1. 𝓆 ≽ 𝓆 ≽ 𝓆  and 𝓆 ≽ 𝓆 ≽ 𝓆  whenever 𝑡 ∈ (10 , 𝑡 ) 
2. 𝓆 ≽ 𝓆 ≽ 𝓆  and 𝓆 ≽ 𝓆 ≽ 𝓆  whenever 𝑡 ∈ (𝑡 , 𝑡 ) 
3. 𝓆 ≽ 𝓆 ≽ 𝓆  whenever 𝑡 ∈ 𝑡 , 𝑡 ,  
4. 𝓆 ≽ 𝓆 ≽ 𝓆  whenever 𝑡 ∈ 𝑡 , 𝑡 ,  
5. 𝓆 ≽ 𝓆 ≽ 𝓆  whenever 𝑡 ∈ 𝑡 , , 10  
6. 𝓆 ≽ 𝓆 ≽ 𝓆  whenever 𝑡 ∈ 𝑡 , , 10  

This is because: 

1. All the 10 days of City S are “slightly polluted”: 〈0.30,0.10,0.40〉. Thus, the low values of 𝑡 should 
produce an “overview” or “generalizing” perception, where a general value or trend of the 
degree of pollution across all the days is of primary concern. This perception consequently 
results in the deduction of City S as the most polluted city, for low values of 𝑡. 

2. City P and City Q contains one day that is “severely polluted”: 〈0.99,0.01,0.01〉. Thus, the high 
values of 𝑡 should produce a “pinpointing” perception, where the highest degree of pollution 
recorded on a particular day is of primary concern. This perception consequently results in the 
deduction of City P and City Q as the two most polluted cities, for high values of 𝑡. 

Remark 13: The most polluted city, out of City P and City Q depends on the objective weight 
which was already dealt by Test 3 from Section 7.4. 

3. City R contains three days that is “medially polluted”: 〈0.50,0.05,0.30〉. Thus, the medium 
values of 𝑡  should produce a perception that is between “overview” and “pinpointing” in 
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nature. This perception consequently results in the selection of City R as the most polluted city, 
for medium values of 𝑡. 

The Results of Our Algorithm 

 

Figure 7. The results of our algorithms GSF A and GSF A for compliance of t-dependence test of type-A. 

Thus, it can be seen in Figure 7 that our algorithm GSF A fully complies with the 𝑡-dependence test 
of type-A. 

7.5.2. 𝑡-Dependence Test of Type-B: For Tourism Marketing 

The Test Inputs 

There are 4 cities 𝔄(4,B) = 𝔞(4,B), , 𝔞(4,B), , 𝔞(4,B), , 𝔞(4,B),  to be accessed during the interval of 10 
days, 𝔅(4,B) = 𝔟(4,B), , 𝔟(4,B), , … , 𝔟(4,B),  for the severity of pollution on a given perception 
characterized by the value of t. For easier identification, 𝔞(4,B), , 𝔞(4,B), , 𝔞(4,B), , 𝔞(4,B),  shall also be 
addressed as City T, U, V, W respectively. 

𝐌( , ) =

⎝⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎛

〈0.40,0.10,0.10〉〈0.40,0.10,0.10〉〈0.40,0.10,0.10〉〈0.40,0.10,0.10〉〈0.01,0.01,0.99〉〈0.40,0.10,0.10〉〈0.40,0.10,0.10〉〈0.40,0.10,0.10〉〈0.40,0.10,0.10〉〈0.40,0.10,0.10〉
〈0.40,0.10,0.10〉〈0.40,0.10,0.10〉〈0.40,0.10,0.10〉〈0.40,0.10,0.10〉〈0.40,0.10,0.10〉〈0.01,0.01,0.99〉〈0.40,0.10,0.10〉〈0.40,0.10,0.10〉〈0.40,0.10,0.10〉〈0.40,0.10,0.10〉
〈0.30,0.10,0.20〉〈0.30,0.10,0.20〉〈0.30,0.10,0.20〉〈0.30,0.10,0.20〉〈0.30,0.10,0.20〉〈0.05,0.05,0.80〉〈0.05,0.05,0.80〉〈0.05,0.05,0.80〉〈0.30,0.10,0.20〉〈0.30,0.10,0.20〉
〈0.20,0.10,0.40〉〈0.20,0.10,0.40〉〈0.20,0.10,0.50〉〈0.20,0.10,0.40〉〈0.20,0.10,0.40〉〈0.20,0.10,0.40〉〈0.20,0.10,0.40〉〈0.20,0.10,0.40〉〈0.20,0.10,0.40〉〈0.20,0.10,0.40〉⎠⎟

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎞

  

𝛗( , ) = (0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10)  

Denote 𝐟( , ),  = 𝑐-th row of 𝐌( , ), for all 𝑐, 𝓅 = GSF G(𝛗( , ), 𝐟( , ), ) for all 𝑐. 

The Criteria of Compliance 

There should exist 10 < 𝑡 < 𝑡 < 𝑡 < 𝑡 < 𝑡 < 10 . 
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There should exist 𝑡 , 𝑡 , 𝑡 , , 𝑡 ,  with 10 < 𝑡 < 𝑡 < 𝑡 , < 10  and 𝑡 < 𝑡 , < 10 . 
This is for the algorithm to yield: 

1. 𝓅 ≽ 𝓅 ≽ 𝓅  and 𝓅 ≽ 𝓅 ≽ 𝓅 whenever 𝑡 ∈ (10 , 𝑡 ). 
2. 𝓅 ≽ 𝓅 ≽ 𝓅  and 𝓅 ≽ 𝓅 ≽ 𝓅 whenever 𝑡 ∈ (𝑡 , 𝑡 ). 
3. 𝓅 ≽ 𝓅 ≽ 𝓅  whenever ∈ 𝑡 , 𝑡 , . 
4. 𝓅 ≽ 𝓅 ≽ 𝓅  whenever ∈ 𝑡 , 𝑡 , . 
5. 𝓅 ≽ 𝓅 ≽ 𝓅  whenever ∈ 𝑡 , , 10 . 
6. 𝓅 ≽ 𝓅 ≽ 𝓅  whenever ∈ 𝑡 , , 10 . 

This is because: 

1. All the 10 days of City W are “slightly polluted”: 〈0.20,0.10,0.40〉. Thus, the low values of 𝑡 
should produce an “urgent” perception, where time is at stake and therefore the photographic 
team must quickly take photographs of a city. This perception consequently results in the 
deduction of City W as the least polluted city for low values of 𝑡. 

2. City T and City U contain one day that is “good”: 〈0.01,0.01,0.99〉. Thus, the high values of 𝑡 
should produce a “quality” perception, where the photographic team must wait for the clearest 
possible sky to produce the best possible photographs to market China tourism. This perception 
consequently results in the deduction of City T and City U as the two least polluted cities, for 
high values of 𝑡. 

Remark 14: The least polluted city, out of City T and City U depends on the objective weight 
which was already dealt by Test 3 from Section 7.4. 

3. City V  contains three days that is “okay”: 〈0.50,0.05,0.80〉 . Thus, the medium values of 𝑡 
should produce a perception that is between “urgent” and “quality” in nature. This perception 
consequently results in the deduction of City V as the least polluted city for medium values of 𝑡. 

The Results of Our Algorithm 

 

Figure 8. The results of our algorithms GSF A and GSF A for compliance of t-dependence test of type-B  

Thus, it can be seen in Figure 8 that our algorithm GSF G fully complies with the 𝑡-dependence 
test of type-B. 

It can be clearly observed that our algorithms comply with all of the tests that were outlined 
above, hence proving the accuracy of our algorithms and the corresponding formulas. 
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8. Conclusions 

In this paper, we introduced two operators, namely, the generalized 𝑡 -spherical fuzzy 𝑤 -
weighted geometric and arithmetic interaction functions. The structural properties of these operators 
were thoroughly studied and it was proven that the two newly introduced operators satisfy these 
properties. The highlight of this work is the development of two decision making algorithms based 
on these two operators, and the application of these algorithms in a multi-attribute multi-perception 
decision-making problem related to the ranking of the pollution level of five major Chinese cities. 
Further, we also presented a novel method to convert the values in the raw dataset into single-valued 
neutrosophic numbers, something which has not been done in existing literature. In addition to this, 
we have also outlined several tests to investigate the accuracy of the results yielded by our algorithm, 
and it was proven that our algorithm has demonstrated compliance with all of the tests that were 
outlined, thereby proving the accuracy of the results. Hence this work is definitely an important 
addition to the body of knowledge in this area of study. 
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