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Abstract: This study introduces simplified neutrosophic linguistic numbers (SNLNs) to describe
online consumer reviews in an appropriate manner. Considering the defects of studies on SNLNs
in handling linguistic information, the cloud model is used to convert linguistic terms in SNLNs
to three numerical characteristics. Then, a novel simplified neutrosophic cloud (SNC) concept is
presented, and its operations and distance are defined. Next, a series of simplified neutrosophic
cloud aggregation operators are investigated, including the simplified neutrosophic clouds Maclaurin
symmetric mean (SNCMSM) operator, weighted SNCMSM operator, and generalized weighted
SNCMSM operator. Subsequently, a multi-criteria decision-making (MCDM) model is constructed
based on the proposed aggregation operators. Finally, a hotel selection problem is presented to verify
the effectiveness and validity of our developed approach.

Keywords: simplified neutrosophic linguistic numbers; cloud model; Maclaurin symmetric mean;
multi-criteria decision-making

1. Introduction

Nowadays, multi-criteria decision-making (MCDM) problems are attracting more and more
attention. Lots of studies suggest that it is difficult to describe decision information completely because
the information is usually inconsistent and indeterminate in real-life problems. To address this issue,
Smarandache [1] put forward neutrosophic sets (NSs). Now, NSs have been applied to many fields
and extended to various forms. Wang et al. [2] presented the concept of single-valued neutrosophic
sets (SVNSs) and demonstrated its application, Ye [3] proposed several kinds of projection measures of
SVNSs, and Ji et al. [4] proposed Bonferroni mean aggregation operators of SVNSs. Wang et al. [5] used
interval numbers to extend SVNSs, and proposed the interval-valued neutrosophic set (IVNS). Ye [6]
introduced trapezoidal neutrosophic sets (TrNSs), and proposed a series of trapezoidal neutrosophic
aggregation operators. Liang et al. [7] introduced the preference relations into TrNSs. Peng et al. [8]
combined the probability distribution with NSs to propose the probability multi-valued neutrosophic
sets. Wu et al. [9] further extended this set to probability hesitant interval neutrosophic sets. All of the
aforementioned sets are the descriptive tools of quantitative information.

Zhang et al. [10] proposed a method of using NSs to describe online reviews posted by consumers.
For example, a consumer evaluates a hotel with the expressions: ‘the location is good’, ‘the service
is neither good nor bad’, and ‘the room is in a mess’. Obviously, there is active, neutral, and passive
information in this review. According to the NS theory, such review information can be characterized by
employing truth, neutrality, and falsity degrees. This information presentation method has been proved
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to be feasible [11]. However, in practical online reviews, the consumer usually gives a comprehensive
evaluation before posting the text reviews. NSs can describe the text reviews, but they cannot represent
the comprehensive evaluation. To deal with this issue, many scholars have studied the combination
of NSs and linguistic term sets [12,13]. The semantic of linguistic term set provides precedence on a
qualitative level, and such precedence is more sensitive for decision-makers than a common ranking
due to the expression of absolute benchmarks [14–16]. Based on the concepts of NSs and linguistic
term sets, Ye [17] proposed interval neutrosophic linguistic sets (INLSs) and interval neutrosophic
linguistic numbers (INLNs). Then, many interval neutrosophic linguistic MCDM approaches were
developed [18,19]. Subsequently, Tian et al. [20] introduced the concepts of simplified neutrosophic
linguistic sets (SNLSs) and simplified neutrosophic linguistic numbers (SNLNs). Wang et al. [21]
proposed a series of simplified neutrosophic linguistic Maclaurin symmetric mean aggregation
operators and developed a MCDM method. The existed studies on SNLNs simply used the linguistic
functions to deal with linguistic variables in SNLNs. This strategy is simple, but it cannot effectively
deal with qualitative information because it ignores the randomness of linguistic variables.

The cloud model is originally proposed by Li [22] in the light of probability theory and fuzzy set
theory. It characterizes the randomness and fuzziness of a qualitative concept rely on three numerical
characters and makes the conversion between qualitative concepts and quantitative values becomes
effective. Since the introduction of the cloud model, many scholars have conducted lots of studies
and applied it to various fields [23–25], such as hotel selection [26], data detection [27], and online
recommendation algorithms [28]. Currently, the cloud model is considered as the best way to handle
linguistic information and it is used to handle multiple qualitative decision-making problems [29–31],
such as linguistic intuitionistic problems [32] and Z-numbers problems [33]. Considering the
effectiveness of the cloud model in handling qualitative information, we utilize the cloud model
to deal with linguistic terms in SNLNs. In this way, we propose a new concept by combining SNLNs
and cloud model to solve real-life problems.

The aggregation operator is one of the most important tool of MCDM method [34–37].
Maclaurin symmetric mean (MSM) operator, defined by Maclaurin [38], possess the prominent
advantage of summarizing the interrelations among input variables lying between the maximum
value and minimum value. The MSM operator can not only take relationships among criteria into
account, but it can also improve the flexibility of aggregation operators in application by adding
parameters. Since the MSM operator was proposed, it has been expanded to various fuzzy sets [39–43].
For example, Liu and Zhang [44] proposed many MSM operators to deal with single-valued trapezoidal
neutrosophic information, Ju et al. [45] proposed a series of intuitionistic linguistic MSM aggregation
operators, and Yu et al. [46] proposed the hesitant fuzzy linguistic weighted MSM operator.

From the above analysis, the motivation of this paper is presented as follows:

1. The cloud model is a reliable tool for dealing with linguistic information, and it has been
successfully applied to handle multifarious linguistic problems, such as probabilistic linguistic
decision-making problems. The existing studies have already proved the effectiveness and
feasibility of using the cloud model to process linguistic information. In view of this, this paper
introduces the cloud model to process linguistic evaluation information involved in SNLNs.

2. As an efficient and applicable aggregation operator, MSM not only takes into account the
correlation among criteria, but also adjusts the scope of the operator through the transformation
of parameters. Therefore, this paper aims to accommodate the MSM operator to simplified
neutrosophic linguistic information environments.

The remainder of this paper is organized as follows. Some basic definitions are introduced
in Section 2. In Section 3, we propose a new concept of SNCs and the corresponding operations
and distance. In Section 4, we propose some simplified neutrosophic cloud aggregation operators.
In Section 5, we put forward a MCDM approach in line with the proposed operators. Then, in Section 6,
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we provide a practical example concerning hotel selection to verify the validity of the developed
method. In Section 7, a conclusion is presented.

2. Preliminaries

This section briefly reviews some basic concepts, including linguistic term sets, linguistic scale
function, NSs, SNSs, and cloud model, which will be employed in the subsequent analyses.

2.1. Linguistic Term Sets and Linguistic Scale Function

Definition 1 ([47]). Let H = {hτ |τ =1, 2, · · · , 2t + 1, t ∈ N∗} be a finite and totally ordered discrete term
set, where N∗ is a set of positive integers, and hτ is interpreted as the representation of a linguistic variable.
Then, the following properties should be satisfied:

(1) The linguistic term set is ordered: hτ < hυ if and only if τ < υ, where (hτ , hυ ∈ H);
(2) If a negation operator exists, then neg(hτ) = h(2t+1−τ) (τ, υ = 1, 2, · · · , 2t + 1).

Definition 2 ([48]). Let hτ ∈ H be a linguistic term. If θτ ∈ [0, 1] is a numerical value, then the linguistic
scale function f that conducts the mapping from hτ to θτ (τ = 1, 2, · · · , 2t + 1) can be defined as

f : sτ → θτ (τ = 1, 2, · · · , 2t + 1), (1)

where 0 ≤ θ1 < θ2 < · · · < θ2t+1 ≤ 1.

Based on the existed studies, three types of linguistic scale functions are described as

f1(hx) = θx =
x
2t

, (x = 1, 2, · · · , 2t + 1), θx ∈ [0, 1]; (2)

f2
(
hy
)
= θy =

{
αt−αt−y

2αt−2 , (y = 1, 2, · · · , t + 1),
αt+αy−t−2

2αt−2 , (y = t + 2, t + 3, · · · , 2t + 1);
(3)

f3(hz) = θz =

 tβ−(t−z)β

2tβ , (z = 1, · · · , t + 1),
tγ+(z−t)γ

2tγ , (z = t + 2, · · · , 2t + 1).
(4)

2.2. SNSs and SNLSs

Definition 3 ([1]). Let X be a space of points (objects), and x be a generic element in X. A NS A in X
is characterized by a truth-membership function TA(x), a indeterminacy-membership function IA(x), and a
falsity-membership function FA(x). TA(x), IA(x), and FA(x) are real standard or nonstandard subsets ]0−, 1+[.
That is, TA(x) : x → ]0−, 1+[ , IA(x) : x → ]0−, 1+[ , and FA(x) : x → ]0−, 1+[ . There is no restriction on
the sum of TA(x), IA(x), and FA(x), so 0− ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+.

In fact, NSs are very difficult for application without specification. Given this, Ye [34] introduced
SNSs by reducing the non-standard intervals of NSs into a kind of standard intervals.

Definition 4 ([17]). Let X be a space of points with a generic element x. Then, an SNS
B in X can be defined as B = {(x, TB(x), IB(x), FB(x))|x ∈ X }, where TB(x) : X → [0, 1] ,
IB(x) : X → [0, 1] , and FB(x) : X → [0, 1] . In addition, the sum of TB(x), IB(x), and FB(x) satisfies
0 ≤ TB(x) + IB(x) + FB(x) ≤ 3. For simplicity, B can be denoted as B = 〈TB(x), IB(x), FB(x)〉, which is a
subclass of NSs.
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Definition 5 ([20]). Let X be a space of points with a generic element x, and
H = {hτ |τ =1, 2, · · · , 2t + 1, t ∈ N∗} be a linguistic term set. Then an SNLS C in X is defined as
C = { 〈x, hC(x), (TC(x), IC(x), FC(x))〉|x ∈ X}, where hC(x) ∈ H, TC(x) ∈ [0, 1], IC(x) ∈ [0, 1],
FC(x) ∈ [0, 1] and 0 ≤ TC(x) + IC(x) + FC(x) ≤ 3 for any x ∈ X. In addition, TC(x), IC(x),
and FC(x) represent the degree of truth-membership, indeterminacy-membership, and falsity-membership
of the element x in X to the linguistic term hC(x), respectively. For simplicity, a SNLN is expressed as
〈hC(x), (TC(x), IC(x), FC(x))〉.

2.3. The Cloud Model

Definition 6 ([22]). Let U be a universe of discourse and T be a qualitative concept in U. x ∈ U is a random
instantiation of the concept T, and x satisfies x ∼ N

(
Ex, (En∗)2

)
, where En∗ ∼ N

(
En, He2), and the degree

of certainty that x belongs to the concept T is defined as

µ = e
− (x−Ex)2

2(En∗)2 ,

then the distribution of x in the universe U is called a normal cloud, and the cloud C is presented as
C = (Ex, En, He).

Definition 7 ([33]). Let M(Ex1, En1, He1) and N(Ex2, En2, He2) be two clouds, then the operations between
them are defined as

(1) M + N =
(

Ex1 + Ex2,
√

En1
2 + En22,

√
He1

2 + He22
)

;

(2) M− N =
(

Ex1 − Ex2,
√

En1
2 + En22,

√
He1

2 + He22
)

;

(3) M× N =

(
Ex1Ex2,

√
(En1Ex2)

2 + (En2Ex1)
2,
√
(He1Ex2)

2 + (He2Ex1)
2
)

;

(4) λM =
(

λEx1,
√

λEn1,
√

λHe1

)
; and

(5) Mλ =
(

Ex1
λ,
√

λEx1
λ−1En1,

√
λEx1

λ−1He1

)
.

2.4. Transformation Approach of Clouds

Definition 8 ([33]). Let Hi be a linguistic term in H = {Hi|i = 1, 2, ..., 2t + 1}, and f be a linguistic scale
function. Then, the procedures for converting linguistic variables to clouds are presented below.

(1) Calculate θi: Map Hi to θi employing Equation (2) or (3) or (4).
(2) Calculate Exi: Exi = Xmin + θi(Xmax − Xmin).
(3) Calculate Eni: Let (x, y) be a cloud droplet. Since x ∼ N

(
Exi, En′2i

)
, we have

3En′i = max{Xmax − Exi, Exi − Xmin} in the light of 3σ principle of the normal distribution curve.

Then, En′i =

{
(1−θi)(Xmax−Xmin)

3 1 ≤ i ≤ t + 1
θi(Xmax−Xmin)

3 t + 2 ≤ i ≤ 2t + 1
. Thus Eni =

En′i−1+En′i+En′i+1
3 , (1 < i < 2t + 1),

Eni =
En′i+En′i+1

2 , (i = 1) and Eni =
En′i−1+En′i

2 , (i = 2t + 1) can be obtained.

(4) Calculate Hei: Hei =
(En′+−Eni)

3 , where En′+ = max
{

En′i
}

.

3. Simplified Neutrosophic Clouds and the Related Concepts

Based on SNLNs and the cloud transformation method, a novel concept of SNCs is proposed.
Motivated by the existing studies, we provide the operations and comparison method for SNCs and
investigate the distance measurement of SNCs.
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3.1. SNCs and Their Operational Rules

Definition 9. Let X be a space of points with a generic element x, H = {hτ |τ =1, 2, · · · , 2t + 1, t ∈ N∗} be
a linguistic term set, and 〈hC(x), (TC(x), IC(x), FC(x))〉 be a SNLN. In accordance with the cloud conversion
method described in Section 2.4, the linguistic term hC(x) ∈ H can be converted into the cloud 〈Ex, En, He〉.
Then, a simplified neutrosophic cloud (SNC) is defined as

Y = (〈Ex, En, He〉, 〈T, I, F〉)

Definition 10. Let a = 〈(Ex1, En1, He1), (T1, I1, F1)〉 and b = 〈(Ex2, En2, He2), (T2, I2, F2)〉 be two SNCs,
then the operations of SNC are defined as

(1)
a⊕ b =

(〈
Ex1 + Ex2,

√
En1

2 + En22,
√

He1
2 + He22

〉
,
〈

T1(Ex1+En1
2+He1

2)+T2(Ex2+En2
2+He2

2)
Ex1+Ex2+En1

2+He1
2+En2

2+He2
2 ,

I1(Ex1+En1
2+He1

2)+I2(Ex2+En2
2+He2

2)
Ex1+Ex2+En1

2+He1
2+En2

2+He2
2 ,

F1(Ex1+En1
2+He1

2)+F2(Ex2+En2
2+He2

2)
Ex1+Ex2+En1

2+He1
2+En2

2+He2
2

〉)
;

(2) a⊗ b = (〈Ex1Ex2, En1En2, He1He2〉, 〈〈T1T2, I1 + I2 − I1 I2, F1 + F2 − F1F2〉);
(3) λa =

(〈
λEx1,

√
λEn1,

√
λHe1

〉
, 〈T1, I1, F1〉

)
; and

(4) aλ =
(〈

Ex1
λ, En1

λ, He1
λ
〉
,
〈

T1
λ, 1− (1− I1)

λ, 1− (1− F1)
λ
〉)

.

Theorem 1. Let a = 〈(Ex1, En1, He1), (T1, I1, F1)〉, b = 〈(Ex2, En2, He2), (T2, I2, F2)〉 and
c = 〈(Ex3, En3, He3), (T3, I3, F3)〉 be three SNCs. Then, the following properties should be satisfied

(1) a + b = b + a;
(2) (a + b) + c = a + (b + c);
(3) λa + λb = λ(a + b);
(4) λ1a + λ2a = (λ1 + λ2)a;
(5) a× b = b× a;
(6) (a× b)× c = a× (b× c);
(7) aλ1 × aλ2 = aλ1+λ2 ;

(8) (a× b)λ = aλ × bλ.

3.2. Distance for SNCs

Definition 11. Let a = 〈(Ex1, En1, He1), (T1, I1, F1)〉 and b = 〈(Ex2, En2, He2), (T2, I2, F2)〉 be two SNCs,
then the generalized distance between a and b is defined as

d(a, b) = |(1− β1)Ex1 − (1− β2)Ex2|+
(

1
3

(
|(1− β1)Ex1T1 − (1− β2)Ex2T2|λ +

|(1− β1)Ex1(1− I1)− (1− β2)Ex2(1− I2)|λ + |(1− β1)Ex1(1− F1)− (1− β2)Ex2(1− F2)|λ
)) 1

λ ,
(5)

where β1 =

√
En1

2+He1
2√

En1
2+He1

2+
√

En2
2+He2

2
and β2 =

√
En2

2+He2
2√

En1
2+He1

2+
√

En2
2+He2

2
. When λ = 1 and 2, the generalized

distance above becomes the Hamming distance and the Euclidean distance, respectively.

Theorem 2. Let a = 〈(Ex1, En1, He1), (T1, I1, F1)〉, b = 〈(Ex2, En2, He2), (T2, I2, F2)〉, and
c = 〈(Ex3, En3, He3), (T3, I3, F3)〉 be three SNCs. Then, the distance given in Definition 11 satisfies the
following properties:

(1) d(a, b) ≥ 0;
(2) d(a, b) = d(b, a); and
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(3) If Ex1 ≤ Ex2 ≤ Ex3, En1 ≥ En2 ≥ En3, He1 ≥ He2 ≥ He3, T1 ≤ T2 ≤ T3, I1 ≥ I2 ≥ I3, and
F1 ≥ F2 ≥ F3, then d(a, b) ≤ d(a, c), and d(b, c) ≤ d(a, c).

Proof. It is easy to prove that (1) and (2) in Theorem 2 are true. The proof of (3) in Theorem 2 is
depicted in the following.

Let β(a,b)1 =

√
En1

2+He1
2√

En1
2+He1

2+
√

En2
2+He2

2
, β(a,b)2 =

√
En2

2+He2
2√

En1
2+He1

2+
√

En2
2+He2

2
,

β(a,c)1 =

√
En1

2+He1
2√

En1
2+He1

2+
√

En3
2+He3

2
, and β(a,c)2 =

√
En3

2+He3
2√

En1
2+He1

2+
√

En3
2+He3

2
, then there are

d(a, c) =
∣∣∣(1− β(a,c)1

)
Ex1 −

(
1− β(a,c)2

)
Ex3

∣∣∣
+
(

1
3

(∣∣∣(1− β(a,c)1

)
Ex1T1 −

(
1− β(a,c)2

)
Ex3T3

∣∣∣λ
+
∣∣∣(1− β(a,c)1

)
Ex1(1− I1)−

(
1− β(a,c)2

)
Ex3(1− I3)

∣∣∣λ
+
∣∣∣(1− β(a,c)1

)
Ex1(1− F1)−

(
1− β(a,c)2

)
Ex3(1− F3)

∣∣∣λ)) 1
λ

,

d(a, b) =
∣∣∣(1− β(a,b)1

)
Ex1 −

(
1− β(a,b)2

)
Ex2

∣∣∣
+
(

1
3

(∣∣∣(1− β(a,b)1

)
Ex1T1 −

(
1− β(a,b)2

)
Ex2T2

∣∣∣λ +
∣∣∣(1− β(a,b)1

)
+Ex1(1− I1)−

(
1− β(a,b)2

)
Ex2(1− I2)

∣∣∣λ
+
∣∣∣(1− β(a,b)1

)
Ex1(1− F1)−

(
1− β(a,b)2

)
Ex2(1− F2)

∣∣∣λ)) 1
λ

.

Thus, we have

d(a, c)− d(a, b) =
(

1− β(a,b)1

)
Ex1 −

(
1− β(a,c)1

)
Ex1

+
(

1− β(a,c)2

)
Ex3 −

(
1− β(a,b)2

)
Ex2

+
(

1
3

(∣∣∣(1− β(a,c)1

)
Ex1T1 −

(
1− β(a,c)2

)
Ex3T3

∣∣∣λ
+
∣∣∣(1− β(a,c)1

)
Ex1(1− I1)−

(
1− β(a,c)2

)
Ex3(1− I3)

∣∣∣λ
+
∣∣∣(1− β(a,c)1

)
Ex1(1− F1)−

(
1− β(a,c)2

)
Ex3(1− F3)

∣∣∣λ)) 1
λ

−
(

1
3

(∣∣∣(1− β(a,b)1

)
Ex1T1 −

(
1− β(a,b)2

)
Ex2T2

∣∣∣λ
+
∣∣∣(1− β(a,b)1

)
Ex1(1− I1)−

(
1− β(a,b)2

)
Ex2(1− I2)

∣∣∣λ
+
∣∣∣(1− β(a,b)1

)
Ex1(1− F1)−

(
1− β(a,b)2

)
Ex2(1− F2)

∣∣∣λ)) 1
λ

.

Let

p =
(

1− β(a,b)1

)
Ex1 −

(
1− β(a,c)1

)
Ex1 +

(
1− β(a,c)2

)
Ex3 −

(
1− β(a,b)2

)
Ex2

=

(
1−

√
En1

2+He1
2√

En1
2+He1

2+
√

En2
2+He2

2

)
Ex1 −

(
1−

√
En1

2+He1
2√

En1
2+He1

2+
√

En3
2+He3

2

)
Ex1

+

(
1−

√
En3

2+He3
2√

En1
2+He1

2+
√

En3
2+He3

2

)
Ex3 −

(
1−

√
En2

2+He2
2√

En1
2+He1

2+
√

En2
2+He2

2

)
Ex2.
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q =
(

1
3

(∣∣∣(1− β(a,c)1

)
Ex1T1 −

(
1− β(a,c)2

)
Ex3T3

∣∣∣λ
+
∣∣∣(1− β(a,c)1

)
Ex1(1− I1)−

(
1− β(a,c)2

)
Ex3(1− I3)

∣∣∣λ
+
∣∣∣(1− β(a,c)1

)
Ex1(1− F1)−

(
1− β(a,c)2

)
Ex3(1− F3)

∣∣∣λ)) 1
λ

−
(

1
3

(∣∣∣(1− β(a,b)1

)
Ex1T1 −

(
1− β(a,b)2

)
Ex2T2

∣∣∣λ
+
∣∣∣(1− β(a,b)1

)
Ex1(1− I1)−

(
1− β(a,b)2

)
Ex2(1− I2)

∣∣∣λ
+
∣∣∣(1− β(a,b)1

)
Ex1(1− F1)−

(
1− β(a,b)2

)
Ex2(1− F2)

∣∣∣λ)) 1
λ

,

then d(a, c)− d(a, b) = p + q.
Simplifying the above equations, the following results can be obtained.

p =

√
En2

2+He2
2√

En1
2+He1

2+
√

En2
2+He2

2
Ex1 −

√
En3

2+He3
2√

En1
2+He1

2+
√

En3
2+He3

2
Ex1

+

√
En1

2+He1
2√

En1
2+He1

2+
√

En3
2+He3

2
Ex3 −

√
En1

2+He1
2√

En1
2+He1

2+
√

En2
2+He2

2
Ex2.

Since Ex1 ≤ Ex2 ≤ Ex3, En1 ≥ En2 ≥ En3, and He1 ≥ He2 ≥ He3, we have√
En22 + He22√

En1
2 + He1

2 +
√

En22 + He22
Ex1 −

√
En32 + He32√

En1
2 + He1

2 +
√

En32 + He32
Ex1 ≥ 0,

√
En1

2 + He1
2√

En1
2 + He1

2 +
√

En32 + He32
Ex3 −

√
En1

2 + He1
2√

En1
2 + He1

2 +
√

En22 + He22
Ex2 ≥ 0.

Thus, p ≥ 0 is determined.
According to p =

∣∣∣(1− β(a,c)1

)
Ex1−

(
1− β(a,c)2

)
Ex3

∣∣∣− ∣∣∣(1− β(a,b)1

)
Ex1−

(
1− β(a,b)2

)
Ex2

∣∣∣ ≥ 0,
the following inequalities can be deduced.∣∣∣(1− β(a,c)1

)
Ex1 −

(
1− β(a,c)2

)
Ex3

∣∣∣ ≥ ∣∣∣(1− β(a,b)1

)
Ex1 −

(
1− β(a,b)2

)
Ex2

∣∣∣,
∣∣∣(1− β(a,c)1

)
Ex1 −

(
1− β(a,c)2

)
Ex3

∣∣∣λ ≥ ∣∣∣(1− β(a,b)1

)
Ex1 −

(
1− β(a,b)2

)
Ex2

∣∣∣λ.

Since T1 ≤ T2 ≤ T3, the following inequality is true.∣∣∣(1− β(a,c)1

)
Ex1T1 −

(
1− β(a,c)2

)
Ex3T3

∣∣∣λ ≥ ∣∣∣(1− β(a,b)1

)
Ex1T1 −

(
1− β(a,b)2

)
Ex2T2

∣∣∣λ.

In a similar manner, we can also obtain∣∣∣(1− β(a,c)1

)
Ex1(1− I1)−

(
1− β(a,c)2

)
Ex3(1− I3)

∣∣∣λ ≥ ∣∣∣(1− β(a,b)1

)
Ex1(1− I1)−

(
1− β(a,b)2

)
Ex2(1− I2)

∣∣∣λ,

∣∣∣(1− β(a,c)1

)
Ex1(1− F1)−

(
1− β(a,c)2

)
Ex3(1− F3)

∣∣∣λ ≥ ∣∣∣(1− β(a,b)1

)
Ex1(1− F1)−

(
1− β(a,b)2

)
Ex2(1− F2)

∣∣∣λ.
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Thus, there is

q =
(

1
3

(∣∣∣(1− β(a,c)1

)
Ex1T1 −

(
1− β(a,c)2

)
Ex3T3

∣∣∣λ
+
∣∣∣(1− β(a,c)1

)
Ex1(1− I1)−

(
1− β(a,c)2

)
Ex3(1− I3)

∣∣∣λ
+
∣∣∣(1− β(a,c)1

)
Ex1(1− F1)−

(
1− β(a,c)2

)
Ex3(1− F3)

∣∣∣λ)) 1
λ

−
(

1
3

(∣∣∣(1− β(a,b)1

)
Ex1T1 −

(
1− β(a,b)2

)
Ex2T2

∣∣∣λ
+
∣∣∣(1− β(a,b)1

)
Ex1(1− I1)−

(
1− β(a,b)2

)
Ex2(1− I2)

∣∣∣λ
+
∣∣∣(1− β(a,b)1

)
Ex1(1− F1)−

(
1− β(a,b)2

)
Ex2(1− F2)

∣∣∣λ)) 1
λ

≥ 0.

Thus, d(a, c)− d(a, b) ≥ 0⇒ d(a, c) ≥ d(a, b) . The inequality d(a, c) ≥ d(b, c) can be proved
similarly. Hence, the proof of Theorem 2 is completed. �

Example 1. Let a = 〈(0.5, 0.2, 0.1), (0.7, 0.3, 0.5)〉, and b = 〈(0.6, 0.1, 0.1), (0.8, 0.2, 0.4)〉 be two SNCs.
Then, according to Definition 11, the Hamming distance dHamming(a, b) and Euclidean distance dEuclidean(a, b)
are calculated as

dHamming(a, b) = 0.4304, and dEuclidean(a, b) = 0.3224.

4. SNCs Aggregation Operators

Maclaurin [38] introduced the MSM aggregation operator firstly. In this section, the MSM operator
is expanded to process SNC information, and the SNCMSM operator and the weighted SNCMSM
operator are then proposed.

Definition 12 ([38]). Let xi (i = 1, 2, · · · , n) be the set of nonnegative real numbers. A MSM aggregation
operator of dimension n is mapping MSM(m) : (R+)

n → R+ , and it can be defined as

MSM(m)(x1, x2, · · · , xn) =


∑

1≤i1<···<im≤n

m
∏
j=1

xij

Cm
n


1
m

, (6)

where (i1, i2, · · · , im) traverses all the m-tuple combination of (i = 1, 2, · · · , n), Cm
n = n!

m!(n−m)! is the binomial
coefficient. In the subsequent analysis, assume that i1 < i2 <, ...,< im. In addition, xij refers to the ij th element
in a particular arrangement.

It is clear that MSM(m) has the following properties:

(1) Idempotency. If x ≥ 0 and xi = x for all i, then MSM(m)(x, x, ..., x) = x.

(2) Monotonicity. If xi ≤ yi, for all i, MSM(m)(x1, x2, ..., xn) ≤ MSM(m)(y1, y2, ..., yn), where xi and yi
are nonnegative real numbers.

(3) Boundedness. MIN{x1, x2, ..., xn} ≤ MSM(m)(x1, x2, ..., xn) ≤ MAX{x1, x2, ..., xn}.

4.1. SNCMSM Operator

In this subsection, the traditional MSM(m) operator is extended to accommodate the situations
where the input variables are made up of SNCs. Then, the SNCMSM operator is developed.
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Definition 13. Let ai = 〈(Exi, Eni, Hei), (Ti, Ii, Fi)〉(i = 1, 2, ..., n) be a collection of SNCs.
Then, the SNCMSM operator can be defined as

SNCMSM(m)(a1, a2, · · · , an) =


⊕

1≤i1<···<im≤n

(
m
⊗

j=1
aij

)
Cm

n


1
m

, (7)

where m = 1, 2, ..., n and (i1, i2, · · · , im) traverses all the m-tuple combination of (i = 1, 2, · · · , n),
Cm

n = n!
m!(n−m)! is the binomial coefficient.

In light of the operations of SNCs depicted in Definition 10, Theorem 3 can be acquired.

Theorem 3. Let ai = 〈(Exi, Eni, Hei), (Ti, Ii, Fi)〉(i = 1, 2, ..., n) be a collection of SNCs, the aggregated value
acquired by the SNCMSM operator is also a SNC and can be expressed as

SNCMSM(m)(a1, a2, · · · , an)

=


〈

Cm
n

∑
k=1

m
∏
j=1

Ex
i(k)j

Cm
n


1
m

,


√√√√Cm

n
∑

k=1

(
m
∏
j=1

En
i(k)j

)2

√
Cm

n


1
m

,


√√√√Cm

n
∑

k=1

(
m
∏
j=1

He
i(k)j

)2

√
Cm

n


1
m〉

,

〈
Cm

n
∑

k=1

 m
∏
j=1

T
ikj

 m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2


Cm
n

∑
k=1

 m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2



1
m

,

1−

1−

Cm
n

∑
k=1

(1−
m
∏
j=1

(
1−I

ikj

)) m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2


Cm
n

∑
k=1

 m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2



1
m

,

1−

1−

Cm
n

∑
k=1

(1−
m
∏
j=1

(
1−F

ikj

)) m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2


Cm
n

∑
k=1

 m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2



1
m〉.

(8)

Proof.

a
i(k)j

=

(〈
Ex

i(k)j
, En

i(k)j
, He

i(k)j

〉
,
〈

T
i(k)j

, I
i(k)j

, F
i(k)j

〉)
, ((j = 1, 2, ..., m) .

⇒
m
⊗

j=1
a

i(k)j
=

(〈
m
∏
j=1

Ex
i(k)j

,
m
∏
j=1

En
i(k)j

,
m
∏
j=1

He
i(k)j

〉
,〈

m
∏
j=1

T
i(k)j

, 1−
m
∏
j=1

(
1− I

i(k)j

)
, 1−

m
∏
j=1

(
1− F

i(k)j

)〉)

⇒ ⊕
1≤t1<···<tm≤n

(
m
⊗

j=1
aij

)
=

〈 Cm
n

∑
k=1

m
∏
j=1

Ex
i(k)j

,

√√√√ Cm
n

∑
k=1

(
m
∏
j=1

En
i(k)j

)2

,

√√√√ Cm
n

∑
k=1

(
m
∏
j=1

He
i(k)j

)2〉
,

〈 Cm
n

∑
k=1

 m
∏
j=1

T
ikj

 m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2


Cm
n

∑
k=1

 m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2
 ,
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Cm
n

∑
k=1

(1−
m
∏
j=1

(
1−I

ikj

)) m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2


Cm
n

∑
k=1

 m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2
 ,

Cm
n

∑
k=1

(1−
m
∏
j=1

(
1−F

ikj

)) m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2


Cm
n

∑
k=1

 m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2


〉

⇒

 ⊕
1≤i1<···<im≤n

(
m
⊗

j=1

(
aij

))
Cm

n


1
m

=


〈

Cm
n

∑
k=1

m
∏
j=1

Ex
i(k)j

Cm
n


1
m

,


√√√√Cm

n
∑

k=1

(
m
∏
j=1

En
i(k)j

)2

√
Cm

n


1
m

,


√√√√Cm

n
∑

k=1

(
m
∏
j=1

He
i(k)j

)2

√
Cm

n


1
m〉

,

〈
Cm

n
∑

k=1

 m
∏
j=1

T
ikj

 m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2


Cm
n

∑
k=1

 m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2



1
m

,

1−

1−

Cm
n

∑
k=1

(1−
m
∏
j=1

(
1−I

ikj

)) m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2


Cm
n

∑
k=1

 m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2



1
m

,

1−

1−

Cm
n

∑
k=1

(1−
m
∏
j=1

(
1−F

ikj

)) m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2


Cm
n

∑
k=1

 m
∏
j=1

Ex
i(k)j

+

(
m
∏
j=1

En
i(k)j

)2

+

(
m
∏
j=1

He
i(k)j

)2



1
m〉.

The proof of Theorem 3 is completed. �

Theorem 4. (Idempotency) If ai = a = (〈Exa, Ena, Hea〉, 〈Ta, Ia, Fa〉) for all i = 1, 2, ..., n, then
SNCMSM(m)(a, a, · · · , a) = a = (〈Exa, Ena, Hea〉, 〈Ta, Ia, Fa〉).

Proof. Since ai = a, there are

SNCMSM(m)(a, a, · · · , a)

=


〈

Cm
n

∑
k=1

m
∏
j=1

Exa

Cm
n


1
m

,


√√√√Cm

n
∑

k=1

(
m
∏
j=1

Ena

)2

√
Cm

n


1
m

,


√√√√Cm

n
∑

k=1

(
m
∏
j=1

Hea

)2

√
Cm

n


1
m〉

,

〈
Cm

n
∑

k=1

 m
∏
j=1

Ta

 m
∏
j=1

Exa+

(
m
∏
j=1

Ena

)2

+

(
m
∏
j=1

Hea

)2


Cm
n

∑
k=1

 m
∏
j=1

Exa+

(
m
∏
j=1

Ena

)2

+

(
m
∏
j=1

Hea

)2



1
m

,
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1−

1−

Cm
n

∑
k=1

(1−
m
∏
j=1

(
1−I

ikj

)) m
∏
j=1

Exa+

(
m
∏
j=1

Ena

)2

+

(
m
∏
j=1

Hea

)2


Cm
n

∑
k=1

 m
∏
j=1

Exa+

(
m
∏
j=1

Ena

)2

+

(
m
∏
j=1

Hea

)2



1
m

,

1−

1−

Cm
n

∑
k=1

(1−
m
∏
j=1

(
1−I

ikj

)) m
∏
j=1

Exa+

(
m
∏
j=1

Ena

)2

+

(
m
∏
j=1

Hea

)2


Cm
n

∑
k=1

 m
∏
j=1

Exa+

(
m
∏
j=1

Ena

)2

+

(
m
∏
j=1

Hea

)2



1
m〉

= (〈Exa, Ena, Hea〉, 〈Ta, Ia, Fa〉) = a.

�

Theorem 5. (Commutativity). Let (a′1, a′2, · · · , a′n) be any permutation of (a1, a2, · · · , an). Then,
SNCMSM(m)(a′1, a′2, · · · , a′n) = SNCMSM(m)(a1, a2, · · · , an).

Theorem 5 can be proved easily in accordance with Definition 13 and Theorem 3.
Three special cases of the SNCMSM operator are discussed below by selecting different values for

the parameter m.

(1) If m = 1, then the SNCMSM operator becomes the simplest arithmetic average aggregation
operator as follows:

SNCMSM(1)(a1, a2, · · · , an) =
⊕n

i=1ai
n

=

(〈
n
∑

i=1
Exi,

√
n
∑

i=1
Eni

2,

√
n
∑

i=1
Hei

2

〉
,

〈 n
∑

i=1
Ti(Exi+Eni

2+Hei
2)

n
∑

i=1
(Exi+Eni

2+Hei
2)

,

n
∑

i=1
Ii(Exi+Eni

2+Hei
2)

n
∑

i=1
(Exi+Eni

2+Hei
2)

,

n
∑

i=1
Fi(Exi+Eni

2+Hei
2)

n
∑

i=1
(Exi+Eni

2+Hei
2)

〉.

(9)

(2) If m = 2, then the SNCMSM operator is degenerated to the following form:

SNCMSM(2)(a1, a2, · · · , an) =

(
⊕n

i,j=1,i 6=jai⊗aj

n(n−1)

) 1
2

=


〈


n
∑

i, j = 1
i 6= j

ExiExj

n(n−1)



1
2

,



√√√√√√√
n
∑

i, j = 1
i 6= j

(EniEnj)
2

n(n−1)



1
2

,



√√√√√√√
n
∑

i, j = 1
i 6= j

(Hei Hej)
2

n(n−1)



1
2

〉
,

〈


n
∑

i, j = 1
i 6= j

TiTj(ExiExj+Eni
2Enj

2+Hei
2 Hej

2)

n
∑

i, j = 1
i 6= j

(ExiExj+Eni
2Enj

2+Hei
2 Hej

2)



1
2

,
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1−


1−

n
∑

i, j = 1
i 6= j

[1−(1−Ii)(1−Ij)](ExiExj+Eni
2Enj

2+Hei
2 Hej

2)

n
∑

i, j = 1
i 6= j

(ExiExj+Eni
2Enj

2+Hei
2 Hej

2)



1
2

,

1−


1−

n
∑

i, j = 1
i 6= j

[1−(1−Fi)(1−Fj)](ExiExj+Eni
2Enj

2+Hei
2 Hej

2)

n
∑

i, j = 1
i 6= j

(ExiExj+Eni
2Enj

2+Hei
2 Hej

2)



1
2

〉


.

(10)

(3) If m = n, then the SNCMSM operator becomes the geometric average aggregation operator as
follows:

SNCMSM(n)(a1, a2, · · · , an) =
(
⊗n

i=1ai
) 1

n

=

(〈(
n
∏
i=1

Exi

) 1
n

,
(

n
∏
i=1

Eni

) 1
n

,
(

n
∏
i=1

Hei

) 1
n
〉

,〈(
n
∏
i=1

Ti

) 1
n

,
(

1−
n
∏
i=1

(1− Ii)

) 1
n

,
(

1−
n
∏
i=1

(1− Fi)

) 1
n
〉)

.

(11)

4.2. Weighted SNCMSM Operator

In this subsection, a weighted SNCMSM operator is investigated. Moreover, some desirable
properties of this operator are analyzed.

Definition 14. Let ai = 〈(Exi, Eni, Hei), (Ti, Ii, Fi)〉(i = 1, 2, ..., n) be a collection of SNCs, and w =

(w1, w2, ...wn)
T be the weight vector, with wi ∈ [0, 1] and ∑n

i=1 wi = 1. Then, the weighted simplified
neutrosophic clouds Maclaurin symmetric mean (WSNCMSM) operator is defined as

WSNCMSMw
(m)(a1, a2, · · · , an) =


⊕

1≤i1<···<im≤n

(
m
⊗

j=1

(
nwij · aij

))
Cm

n


1
m

, (12)

where m = 1, 2, ..., n and (i1, i2, · · · , im) traverses all the m-tuple combination of (i = 1, 2, · · · , n),
Cm

n = n!
m!(n−m)! is the binomial coefficient.

The specific expression of the WSNCMSM operator can be obtained in accordance with the
operations provided in Definition 10.

Theorem 6. Let ai = 〈(Exi, Eni, Hei), (Ti, Ii, Fi)〉(i = 1, 2, ..., n) be a collection of SNCs, and m = 1, 2, ..., n.
Then, the aggregated value acquired by the WSNCMSM operator can be expressed as

WSNCMSMw
(m)(a1, a2, · · · , an)

=


〈

Cm
n

∑
k=1

m
∏
j=1

nwij
Ex

i(k)j
Cm

n


1
m

,


√√√√Cm

n
∑

k=1

(
m
∏
j=1

√nwij
En

i(k)j

)2

√
Cm

n


1
m

,


√√√√Cm

n
∑

k=1

(
m
∏
j=1

√nwij
He

i(k)j

)2

√
Cm

n


1
m〉

,
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〈
Cm

n
∑

k=1

 m
∏
j=1

T
ikj

 m
∏
j=1

nwij
Ex

i(k)j
+

(
m
∏
j=1

√nwij
En

i(k)j

)2

+

(
m
∏
j=1

√nwij
He

i(k)j

)2


Cm
n

∑
k=1

 m
∏
j=1

nwij
Ex

i(k)j
+

(
m
∏
j=1

√nwij
En

i(k)j

)2

+

(
m
∏
j=1

√nwij
He

i(k)j

)2



1
m

,

1−

1−

Cm
n

∑
k=1

(1−
m
∏
j=1

(
1−I

ikj

)) m
∏
j=1

nwij
Ex

i(k)j
+

(
m
∏
j=1

√nwij
En

i(k)j

)2

+

(
m
∏
j=1

√nwij
He

i(k)j

)2


Cm
n

∑
k=1

 m
∏
j=1

nwij
Ex

i(k)j
+

(
m
∏
j=1

√nwij
En

i(k)j

)2

+

(
m
∏
j=1

√nwij
He

i(k)j

)2



1
m

,

1−

1−

Cm
n

∑
k=1

(1−
m
∏
j=1

(
1−F

ikj

)) m
∏
j=1

nwij
Ex

i(k)j
+

(
m
∏
j=1

√nwij
En

i(k)j

)2

+

(
m
∏
j=1

√nwij
He

i(k)j

)2


Cm
n

∑
k=1

 m
∏
j=1

nwij
Ex

i(k)j
+

(
m
∏
j=1

√nwij
En

i(k)j

)2

+

(
m
∏
j=1

√nwij
He

i(k)j

)2



1
m〉.

(13)

Theorem 6 can be proved similarly according to the proof procedures of Theorem 3.

Theorem 7. (Reducibility) Let w =
(

1
n , 1

n , ..., 1
n

)T
, then, WSNCMSMw

(m)(a1, a2, . . . , an) =

SNCMSM(m)(a1, a2, . . . , an).

Proof. When w =
(

1
n , 1

n , ..., 1
n

)T
,

WSNCMSMw
(m)(a1, a2, · · · , an)

=


〈

Cm
n

∑
k=1

m
∏
j=1

n· 1n Ex
i(k)j

Cm
n


1
m

,


√√√√Cm

n
∑

k=1

(
m
∏
j=1

√
n· 1n En

i(k)j

)2

√
Cm

n


1
m

,


√√√√Cm

n
∑

k=1

(
m
∏
j=1

√
n· 1n He

i(k)j

)2

√
Cm

n


1
m〉

,

〈
Cm

n
∑

k=1

 m
∏
j=1

T
ikj

 m
∏
j=1

n· 1n Ex
i(k)j

+

(
m
∏
j=1

√
n· 1n En

i(k)j

)2

+

(
m
∏
j=1

√
n· 1n He

i(k)j

)2


Cm
n

∑
k=1

 m
∏
j=1

n· 1n Ex
i(k)j

+

(
m
∏
j=1

√
n· 1n En

i(k)j

)2

+

(
m
∏
j=1

√
n· 1n He

i(k)j

)2



1
m

,

1−

1−

Cm
n

∑
k=1

(1−
m
∏
j=1

(
1−I

ikj

)) m
∏
j=1

n· 1n Ex
i(k)j

+

(
m
∏
j=1

√
n· 1n En

i(k)j

)2

+

(
m
∏
j=1

√
n· 1n He

i(k)j

)2


Cm
n

∑
k=1

 m
∏
j=1

n· 1n Ex
i(k)j

+

(
m
∏
j=1

√
n· 1n En

i(k)j

)2

+

(
m
∏
j=1

√
n· 1n He

i(k)j

)2



1
m

,

1−

1−

Cm
n

∑
k=1

(1−
m
∏
j=1

(
1−F

ikj

)) m
∏
j=1

n· 1n Ex
i(k)j

+

(
m
∏
j=1

√
n· 1n En

i(k)j

)2

+

(
m
∏
j=1

√
n· 1n He

i(k)j

)2


Cm
n

∑
k=1

 m
∏
j=1

n· 1n Ex
i(k)j

+

(
m
∏
j=1

√
n· 1n En

i(k)j

)2

+

(
m
∏
j=1

√
n· 1n He

i(k)j

)2



1
m〉

= SNCMSM(m)(a1, a2, · · · , an).

The proof of Theorem 7 is completed. �

Definition 15. Let ai = 〈(Exi, Eni, Hei), (Ti, Ii, Fi)〉 (i = 1, 2, ..., n) be a collection of SNCs, and

w = (w1, w2, ..., wn)
T be the weight vector, which satisfies

n
∑

i=1
wi = 1, and wi > 0 (i = 1, 2, ..., n). Then the
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generalized weighted simplified neutrosophic clouds Maclaurin symmetric mean (GWSNCMSM) operator is
defined as

GWSNCMSM(m,p1,p2,...,pm)(a1, ..., an) =

⊕1≤i1<···<im≤n

(
⊗m

j=1

(
nwij ⊗ aij

)pj
)

Cm
n


1

p1+···+pm

, (14)

where m = 1, 2, ..., n.

The specific expression of the GWSNCMSM operator can be obtained in accordance with the
operations provided in Definition 10.

Theorem 8. Let ai = 〈(Exi, Eni, Hei), (Ti, Ii, Fi)〉 (i = 1, 2, ..., n) be a collection of SNCs, and m = 1, 2, ..., n.
Then, the aggregated value acquired by the GWSNCMSM operator can be expressed as

GWSNCMSM(m,p1 ,p2 ,...,pm)(a1, ..., an) =


〈

Cm
n

∑
k=1

m
∏

j=1

nwij
Ex

i(k)j

Pj

Cm
n


1

p1+···+pm

,



√√√√√√Cm
n

∑
k=1

 m
∏

j=1

√nwij
En

i(k)j

Pj


2

√
Cm

n



1
p1+···+pm

,



√√√√√√Cm
n

∑
k=1

 m
∏

j=1

√nwij
He

i(k)j

Pj


2

√
Cm

n



1
p1+···+pm 〉

,

〈


Cm
n

∑
k=1

 m
∏

j=1

(
T

ikj

)Pj

 m
∏

j=1

nwij
Ex

i(k)j

Pj

+

 m
∏

j=1

√nwij
En

i(k)j

Pj


2

+

 m
∏

j=1

√nwij
He

i(k)j

Pj


2



Cm
n

∑
k=1

 m
∏

j=1

nwij
Ex

i(k)j

Pj

+

 m
∏

j=1

√nwij
En

i(k)j

Pj


2

+

 m
∏

j=1

√nwij
He

i(k)j

Pj


2




1
p1+···+pm

,

1−

1−

Cm
n

∑
k=1


1−

m
∏

j=1

(
1−I

ikj

)Pj

 m

∏
j=1

nwij
Ex

i(k)j

Pj

+

 m
∏

j=1

√nwij
En

i(k)j

Pj


2

+

 m
∏

j=1

√nwij
He

i(k)j

Pj


2



Cm
n

∑
k=1

 m
∏

j=1

nwij
Ex

i(k)j

Pj

+

 m
∏

j=1

√nwij
En

i(k)j

Pj


2

+

 m
∏

j=1

√nwij
He

i(k)j

Pj


2




1
p1+···+pm

,

1−

1−

Cm
n

∑
k=1


1−

m
∏

j=1

(
1−F

ikj

)Pj

 m

∏
j=1

nwij
Ex

i(k)j

Pj

+

 m
∏

j=1

√nwij
En

i(k)j

Pj


2

+

 m
∏

j=1

√nwij
He

i(k)j

Pj


2



Cm
n

∑
k=1

 m
∏

j=1

nwij
Ex

i(k)j

Pj

+

 m
∏

j=1

√nwij
En

i(k)j

Pj


2

+

 m
∏

j=1

√nwij
He

i(k)j

Pj


2




1
p1+···+pm 〉


.

(15)

Theorem 8 can be proved similarly according to the proof procedures of Theorem 3.

5. MCDM Approach under Simplified Neutrosophic Linguistic Circumstance

In this section, a MCDM approach is developed on the basis of the proposed simplified
neutrosophic cloud aggregation operators to solve real-world problems. Consider a MCDM problem
with simplified neutrosophic linguistic evaluation information, which can be converted to SNCs.
Then, let A = {a1, a2, ..., am} be a discrete set of alternatives, and C = {c1, c2, ..., cn} be the set of

criteria. Suppose that the weight of the criteria is w = (w1, w2, ..., ws)
T , where wk ≥ 0, and

s
∑

k=1
wk = 1.

The original evaluation of alternative ai under criterion cj is expressed as SNLNs γij =
〈
sij,
(
Tij, Iij, Fij

)〉
(i = 1, 2, . . . , m; j = 1, 2, . . . , n). The primary procedures of the developed method are presented in
the following.
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Step 1: Normalize the evaluation information.

Usually, two kinds of criteria—benefit criteria and cost criteria—exist in MCDM problems.
Then, in accordance with the transformation principle of SNLNs [42], the normalization of original
evaluation information can be shown as

γ̃ij =

{ 〈
sij,
(
Tij, Iij, Fij

)〉
, for benifit criterion,〈

h(2t+1−sub(sij))
,
(
Tij, Iij, Fij

)〉
, for cos t criterion.

(16)

Step 2: Convert SNLNs to SNCs.

Based on the transformation method described in Section 2.4 and Definition 9,
we can convert SNLNs to SNCs. The SNC evaluation information can be obtained as
aij =

〈(
Exij, Enij, Heij

)
,
(
Tij, Iij, Fij

)〉
(i = 1, 2, . . . , m; j = 1, 2, . . . , n).

Step 3: Acquire the comprehensive evaluation for each alternative.

The WSNCMSM operator or the GWSNCMSM operator can be employed to integrate the
evaluation of aij(j = 1, 2, ..., n) under all criteria and acquire the comprehensive evaluation
ai = 〈(Exi, Eni, Hei), (Ti, Ii, Fi)〉 for the alternative ai.

Step 4: Compute the distance between the comprehensive evaluation of ai and the PIS/NIS.

First, in accordance with the obtained overall evaluation values, the positive ideal solution (PIS)
a+ and negative ideal solution (NIS) a− are determined as

a+ = 〈(maxi(Exi), mini(Eni), mini(Hei)), (maxi(Ti), mini(Ii), mini(Fi))〉,

a− = 〈(mini(Exi), maxi(Eni), maxi(Hei)), (mini(Ti), maxi(Ii), maxi(Fi))〉.

Second, in accordance with the proposed distance of SNCs, the distance d(ai, a+) between ai and
a+, and the distance d(ai, a−) between ai and a− can be calculated.

Step 5: Compute the relative closeness of each alternative.

In the following, the relative closeness of each alternative can be calculated as

Ii =
d(ai, a+)

d(ai, a+) + d(ai, a−)
(17)

where d(ai, a+) and d(ai, a−) are obtained in Step 4.

Step 6: Rank all the alternatives.

In accordance with the relative closeness Ii of each alternative, we can rank all the alternatives.
The smaller the value of Ii, the better the alternative ai is.

6. Illustrative Example

This section provides a real-world problem of hotel selection (adapted from Wang et al. [49]) to
demonstrate the validity and feasibility of the developed approach.

6.1. Problem Description

Nowadays, consumers often book hotels online when traveling or on business trip. After they
leave the hotel, they may evaluate the hotel and post the online reviews on the website. In this
case, the online reviews are regard as the most important reference for the hotel selection decision of
potential consumers. In order to enhance the accuracy of hotel recommendation in line with lots of
online reviews, this study devotes to applying the proposed method to address hotel recommendation
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problems effectively. In practical hotel recommendation problems, many hotels (e.g., 10 hotels) need
to be recommended for consumers. In order to save space, we select five hotels from a tourism
website for recommendation here. The developed approach can be similarly applied to address hotel
recommendation problems with many hotels. The five hotels are represented as a1, a2, a3, a4 and a5.
The employed linguistic term set is described as follows:

S = {s1, s2, s3, s4, s5, s6, s7} = {extremely poor, very poor, poor, fair good, very good, extremely good}

In this paper, we focus on the four hotel evaluation criteria including, c1, location (such as near
the downtown and is the traffic convenient or not); c2, service (such as friendly staff and the breakfast);
c3, sleep quality (such as the soundproof effect of the room); and c4, comfort degree (such as the softness
of the bed and the shower). Wang et al. [49] introduced a text conversion technique to transform online
reviews to neutrosophic linguistic information. Motivated by this idea, the online reviews of five
hotels under four criteria can be described as SNLNs, as shown in Table 1. For simplicity, the weight
information of the four criteria is assumed to be w = (0.25, 0.22, 0.35, 0.18)T.

Table 1. Evaluation values in SNLNs.

ai c1 c2 c3 c4

a1 〈s4, (0.6, 0.6, 0.1)〉 〈s5, (0.6, 0.4, 0.3)〉 〈s4, (0.8, 0.5, 0.1)〉 〈s2, (0.8, 0.3, 0.1)〉
a2 〈s2, (0.7, 0.5, 0.1)〉 〈s4, (0.6, 0.4, 0.2)〉 〈s3, (0.6, 0.2, 0.4)〉 〈s4, (0.7, 0.4, 0.3)〉
a3 〈s3, (0.5, 0.1, 0.2)〉 〈s4, (0.6, 0.5, 0.3)〉 〈s6, (0.7, 0.6, 0.1)〉 〈s2, (0.5, 0.5, 0.2)〉
a4 〈s2, (0.4, 0.5, 0.3)〉 〈s3, (0.5, 0.3, 0.4)〉 〈s4, (0.6, 0.8, 0.2)〉 〈s5, (0.9, 0.3, 0.1)〉
a5 〈s5, (0.6, 0.4, 0.4)〉 〈s5, (0.8, 0.3, 0.1)〉 〈s3, (0.7, 0.5, 0.1)〉 〈s4, (0.6, 0.5, 0.2)〉

6.2. Illustration of the Developed Methods

According to the steps of the developed method presented in Section 5, the optimal alternative
from the five hotels can be determined.

6.2.1. Case 1—Approach based on the WSNCMSM Operator.

Let linguistic scale function be f 1(hx), and m = 2 in Equation (13) in the subsequent calculation.
Then, the hotel selection problem can be addressed according to the following procedures.

Step 1: Normalize the evaluation information.

Obviously, the four criteria are the benefit type in the hotel selection problem above.
Thus, the evaluation information does not need to be normalized.

Step 2: Convert SNLNs to SNCs.

Utilize the transformation method presented in Section 2.4, we transform the linguistic term si in
SNLNs to the cloud model (Exi, Eni, Hei). The obtained results are shown as follows:

s1 → (Ex1, En1, He1) = (0.833, 1.25, 0.231),
s2 → (Ex2, En2, He2) = (1.667, 1.11, 0.278) ,
s3 → (Ex3, En3, He3) = (2.5, 0.833, 0.37) ,

s4 → (Ex4, En4, He4) = (3.33, 0.556, 0.463) ,
s5 → (Ex5, En5, He5) = (4.167, 0.278, 0.556) ,

s6 → (Ex6, En6, He6) = (5, 0.741, 0.401) ,
s7 → (Ex7, En7, He7) = (5.833, 0.972, 0.324) .

Then, according to Definition 9, SNLNs can be converted to SNCs, as presented in Table 2.
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Table 2. Evaluation information in SNCs.

ai c1 c2 c3 c4

a1 〈(3.33, 0.556, 0.463), (0.6, 0.6, 0.1)〉 〈(4.167, 0.278, 0.556), (0.6, 0.4, 0.3)〉 〈(3.33, 0.556, 0.463), (0.8, 0.5, 0.1)〉 〈(1.667, 1.11, 0.278), (0.8, 0.3, 0.1)〉
a2 〈(1.667, 1.11, 0.278), (0.7, 0.5, 0.1)〉 〈(3.33, 0.556, 0.463), (0.6, 0.4, 0.2)〉 〈(2.5, 0.833, 0.37), (0.6, 0.2, 0.4)〉 〈(3.33, 0.556, 0.463), (0.7, 0.4, 0.3)〉
a3 〈(2.5, 0.833, 0.37), (0.5, 0.1, 0.2)〉 〈(3.33, 0.556, 0.463), (0.6, 0.5, 0.3)〉 〈(5, 0.741, 0.401), (0.7, 0.6, 0.1)〉 〈(1.667, 1.11, 0.278), (0.5, 0.5, 0.2)〉
a4 〈(1.667, 1.11, 0.278), (0.4, 0.5, 0.3)〉 〈(2.5, 0.833, 0.37), (0.5, 0.3, 0.4)〉 〈(3.33, 0.556, 0.463), (0.6, 0.8, 0.2)〉 〈(4.167, 0.278, 0.556), (0.9, 0.3, 0.1)〉
a5 〈(4.167, 0.278, 0.556), (0.6, 0.4, 0.4)〉 〈(4.167, 0.278, 0.556), (0.8, 0.3, 0.1)〉 〈(2.5, 0.833, 0.37), (0.7, 0.5, 0.1)〉 〈(3.33, 0.556, 0.463), (0.6, 0.5, 0.2)〉

Step 3: Acquire the comprehensive evaluation for each alternative.

The WSNCMSM operator is employed to integrate the evaluations of alternative ai under all the
criteria. Then, the overall evaluation a∗i for each alternative are obtained as

a∗1 = 〈(3.1311, 0.6228, 0.4509), (0.6866, 0.4765, 0.1589)〉,
a∗2 = 〈(2.5946, 0.7909, 0.3881), (0.642, 0.3621, 0.2638)〉,
a∗3 = 〈(3.1691, 0.801, 0.3835), (0.5986, 0.4584, 0.1895)〉,
a∗4 = 〈(2.6569, 0.727, 0.4159), (0.6231, 0.5308, 0.2358)〉,

a∗5 = 〈(3.4126, 0.5065, 0.4786), (0.6766, 0.4208, 0.2091)〉.

Step 4: Compute the distance between the comprehensive evaluation of ai and the PIS/NIS.

First, the PIS a+ and the NIS a− are determined as a+ = 〈(3.4126, 0.5065, 0.3835),
(0.6866, 0.3621, 0.1586)〉, and a− = 〈(2.5946, 0.801, 0.4786), (0.5986, 0.5308, 0.2638)〉, respectively.
Then, based on Equation (5), the distance d

(
a∗i , a+

)
, and the distance d

(
a∗i , a−

)
are computed as

d
(
a∗1 , a+

)
= 0.8324, d(a∗2 , a+) = 1.5966, d(a∗3 , a+) = 1.2447, d

(
a∗4 , a+

)
= 1.4864, and

d(a∗5 , a+) = 0.3361; d
(
a∗1 , a−

)
= 1.0135, d(a∗2 , a−) = 0.2137, d(a∗3 , a−) = 0.6535,

d
(
a∗4 , a−

)
= 0.3012, and d(a∗5 , a−) = 1.5101.

Step 5: Calculate the relative closeness of each alternative.

By using Equation (17), the relative closeness of each alternative is computed as

I1 = 0.4509, I2 = 0.882, I3 = 0.6557, I4 = 0.8315, and I5 = 0.1821.

Step 6: Rank all the alternatives.

On the basis of the comparison rule, the smaller the value of Ii, the better the alternative ai is.
We can rank the alternatives as a5 � a1 � a3 � a4 � a2. The best one is a5.

When m = 3 is used in Equation (13), the overall assessment value for each alternative ai are
derived as follows:

a∗1 = 〈(5.2615, 0.454, 0.2915), (0.5675, 0.6174, 0.229)〉,
a∗2 = 〈(4.1045, 0.6629, 0.2384), (0.5177, 0.503, 0.3688)〉,

a∗3 = 〈(5.1405, 0.6986, 0.2307), (0.4449, 0.5936, 0.2832)〉,
a∗4 = 〈(4.0855, 0.5792, 0.2593), (0.468, 0.6791, 0.3475)〉,
a∗5 = 〈(6.2421, 0.3334, 0.328), (0.5531, 0.5645, 0.2977)〉.

And the positive ideal point is determined as a+ = 〈(6.2421, 0.3334, 0.2307),
(0.5675, 0.503, 0.229)〉, the negative ideal point is determined as a− = 〈(4.0855, 0.6986, 0.328),
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(0.4449, 0.6791, 0.3688)〉. Then, the results of the distance between a∗i and a+, and the distance between
a∗i and a− are obtained as

d
(
a∗1 , a+

)
= 2.1919, d(a∗2 , a+) = 4.064, d(a∗3 , a+) = 3.7056, d

(
a∗4 , a+

)
= 3.7812, and

d(a∗5 , a+) = 0.8571; d
(
a∗1 , a−

)
= 2.4095, d(a∗2 , a−) = 0.4656, d(a∗3 , a−) = 1.085,

d
(
a∗4 , a−

)
= 0.6172, and d(a∗5 , a−) = 3.8179.

Therefore, the relative closeness of each alternative is calculated as

I1 = 0.4764, I2 = 0.8972, I3 = 0.7735, I4 = 0.8597, and I5 = 0.1833

According to the results of Ii, we can rank the alternatives as a5 � a1 � a3 � a4 � a2.
The best one is a5, which is the same as the obtained result in the situation m = 2.

6.2.2. Case 2—Approach Based on the GWSNCMSM Operator

Let the linguistic scale function be f1(hx), and m = 2, p1 = 1, p2 = 2 in Equation (15) in
the subsequent calculation. Then, the hotel selection problem can be addressed according to the
following procedures.

Step 1: Normalize the evaluation information.

Obviously, the four criteria are the benefit type in the hotel selection problem above. Thus, the
evaluation information does not need to normalize.

Step 2: Convert SNLNs to SNCs.

The obtained SNCs are the same as those in Case 1.

Step 3: Acquire the comprehensive evaluation for each alternative.

The GWSNCMSM operator is employed to integrate the evaluations of alternative ai under all
the criteria. Then, the overall evaluation a∗i for each alternative are obtained as

a∗1 = 〈(3.2899, 0.7006, 0.4668), (0.7068, 0.4812, 0.1544)〉,
a∗2 = 〈(2.693, 0.805, 0.3968), (0.6395, 0.3374, 0.29)〉,

a∗3 = 〈(3.7063, 0.8318, 0.3958), (0.6366, 0.5081, 0.1637)〉,
a∗4 = 〈(2.9311, 0.7165, 0.4401), (0.6654, 0.5197, 0.2125)〉,
a∗5 = 〈(3.3078, 0.5638, 0.4675), (0.6871, 0.4227, 0.1846)〉

Step 4: Compute the distance between the comprehensive evaluation of ai and the PIS/NIS.

First, the PIS a+ and the NIS a− are determined as a+ = 〈(3.7063,0.5638,0.3958), (0.7068,0.3374,0.1544)〉,
and a− = 〈(2.693, 0.8318, 0.4675), (0.6366, 0.5197, 0.29)〉 respectively. Then, based on Equation (5),
the distance d

(
a∗i , a+

)
, and the distance d

(
a∗i , a−

)
are computed as

d
(
a∗1 , a+

)
= 1.0407, d(a∗2 , a+) = 1.6913, d(a∗3 , a+) = 1.0619, d

(
a∗4 , a+

)
= 1.371, and

d(a∗5 , a+) = 0.6054; d
(
a∗1 , a−

)
= 0.9235, d(a∗2 , a−) = 0.2183, d(a∗3 , a−) = 0.9925,

d
(
a∗4 , a−

)
= 0.5323, and d(a∗5 , a−) = 1.2871.

Step 5: Calculate the relative closeness of each alternative.

By using Equation (17), the relative closeness of each alternative is calculated as

I1 = 0.5298, I2 = 0.8857, I3 = 0.5169, I4 = 0.7203, and I4 = 0.7203
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Step 6: Rank all the alternatives.

On the basis of the comparison rule, the smaller the value of Ii, the better the alternative ai is.
We can rank the alternatives as a5 � a3 � a1 � a4 � a2, the best one is a5.

Using the parameters m = 2, p1 = 1, and p2 = 2 in the aggregation operators, the ranking results
acquired by the developed methods with the WSNCMSM operator and the GWSNCMSM operator are
almost identical, and these rankings are described in Table 3. The basically identical ranking results
indicate that the developed methods in this paper have a strong stability.

Table 3. Ranking results based on different operators.

Proposed Operators m p1 p2 Rankings

WSNCMSM 2 \ \ a5 � a1 � a3 � a4 � a2
WSNCMSM 3 \ \ a5 � a1 � a3 � a4 � a2

GWSNCMSM 2 1 2 a5 � a3 � a1 � a4 � a2

6.3. Comparative Analysis and Sensitivity Analysis

This subsection implements a comparative study to verify the applicability and feasibility
of the developed method. The developed method aims to improve the effectiveness of handling
simplified neutrosophic linguistic information. Therefore, the proposed method can be demonstrated
by comparing with the approaches in Wang et al. [21] and Tian et al. [20] that deal with SNLNs merely
depend on the linguistic functions. The comparison between the developed method and two existed
approaches is feasible because these three methods are based on the same information description tool
and the aggregation operators developed in these methods have the same parameter characteristics.
Two existing methods are employed to address the same hotel selection problem above, and the
ranking results acquired by different approaches are described in Table 4.

Table 4. Ranking results obtained by different methods.

Methods Rankings

Wang et al.’s method [21] (m = 2) a5 � a1 � a3 � a2 � a4
The proposed approach based on WSNCMSMw

(m)(m = 2) a5 � a1 � a3 � a4 � a2
Wang et al.’s method [21] (m = 2, p1 = 1, p2 = 1) a5 � a3 � a1 � a2 � a4
Tian et al.’s method [20] (m = 2, p1 = 1, p2 = 1) a5 � a3 � a1 � a4 � a2

The proposed approach based on
GWSNCMSM(m,p1,p2,...,pm)(m = 2, p1 = 1, p2 = 1)

a5 � a1 � a3 � a4 � a2

As described in Table 4, the rankings acquired by the developed approaches and that obtained
by the existed approaches have obvious difference. However, the best alternative is always a5, which
demonstrates that the developed approach is reliable and effective for handling decision-making
problems under simplified neutrosophic linguistic circumstance. There are still differences between the
approaches developed in this paper and the methods presented by Wang et al. [21] and Tian et al. [20],
which is that the proposed approaches use the cloud model instead of linguistic function to deal with
linguistic information. The advantages of the proposed approaches in handling practical problems are
summarized as follows:

First, comparing with the existing methods with SNLNs, the proposed approaches uses the cloud
model to process qualitative evaluation information involved in SNLNs. The existing methods handle
linguistic information merely depending on the relevant linguistic functions, which may result in loss
and distortion of the original information. However, the cloud model depicts the randomness and
fuzziness of a qualitative concept with three numerical characteristics perfectly, and it is more suitable
to handle linguistic information than the linguistic function because it can reflect the vagueness and
randomness of linguistic variables simultaneously.
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Second, being compared with the simplified neutrosophic linguistic Bonferroni mean aggregation
operator given in Tain et al. [20], the simplified neutrosophic clouds Maclaurin symmetric mean
operator provided in this paper take more generalized forms and contain more flexible parameters
that facilitate selecting the appropriate alternative.

In addition, being compared with SNLNs, SNCs not only provide the truth, indeterminacy,
and falsity degrees for the evaluation object, but also utilize the cloud model to characterize linguistic
information effectively.

The ranking results may vary with different values of parameters in the proposed aggregation
operators. Thus, a sensitivity analysis will be implemented to analyze the influence of the parameter pj
on ranking results. The obtained results are presented in Table 5.

Table 5. Ranking results with different pj under m = 2.

p1 p2 Rankings Based on GWSNCMSM

1 0 a5 � a1 � a3 � a2 � a4
0 1 a4 � a5 � a3 � a2 � a1
1 2 a5 � a3 � a1 � a4 � a2
1 3 a3 � a5 � a1 � a4 � a2
1 4 a3 � a5 � a1 � a4 � a2
1 5 a3 � a1 � a5 � a4 � a2
2 1 a5 � a1 � a3 � a4 � a2
3 1 a5 � a1 � a3 � a4 � a2
4 1 a1 � a5 � a3 � a4 � a2
5 1 a1 � a3 � a5 � a4 � a2

0.5 0.5 a5 � a1 � a3 � a4 � a2
1 1 a5 � a1 � a3 � a4 � a2
2 2 a5 � a1 � a3 � a4 � a2
3 3 a5 � a1 � a3 � a4 � a2
4 4 a5 � a1 � a3 � a4 � a2
5 5 a5 � a1 � a3 � a4 � a2

The data in Table 5 indicates that the best alternative is a5 or a1, and the worst one is a2 when using
the GWSNCMSM operator with different pj under m = 2 to fuse evaluation information. When p1 = 0,
we can find the ranking result has obvious differences with other results. Therefore, p1 = 0 is not used
in practice. The data in Table 5 also suggests that the ranking vary obviously when the value of p1 far
exceeds the value of p2. Thus, it can be concluded that the values of p1 and p2 should be selected as
equally as possible in practical application. The difference of ranking results in Table 5 reveals that
the values of p1 and p2 have great impact on the ranking results. As a result, selecting the appropriate
parameters is a significant action when handling MCDM problems. In general, the values can be set as
p1 = p2 = 1 or p1 = p2 = 2, which is not only simple and convenient but it also allows the interrelationship
of criteria. It can be said that p1 and p2 are correlative with the thinking mode of the decision-maker;
the bigger the values of p1 and p2, the more optimistic the decision-maker is; the smaller the values of
p1 and p2, the more pessimistic the decision-maker is. Therefore, decision-makers can flexibly select
the values of parameters based on the certain situations and their preferences and identify the most
precise result.

7. Conclusions

SNLNs take linguistic terms into account on the basis of NSs, and they make the data description
more complete and consistent with practical decision information than NSs. However, the cloud model,
as an effective way to deal with linguistic information, has never been considered in combination with
SNLNs. Motivated by the cloud model, we put forward a novel concept of SNCs based on SNLNs.
Furthermore, the operation rules and distance of SNCs were defined. In addition, considering distinct
importance of input variables, the WSNCMSM and GWSNCMSM operators were proposed and their
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properties and special cases were discussed. Finally, the developed approach was successfully applied
to handle a practical hotel selection problem, and the validity of this approach was demonstrated.

The primary contributions of this paper can be summarized as follows. First, to process linguistic
evaluation information involved in SNLNs, the cloud model is introduced and used. In this way, a new
concept of SNCs is presented, and the operations and distance of SNCs are proposed. Being compared
with other existing studies on SNLNs, the proposed method is more effective because the cloud model
can comprehensively reflect the uncertainty of qualitative evaluation information. Second, based on
the related studies, the MSM operator is extended to simplified neutrosophic cloud circumstances, and
a series of SNCMSM aggregation operators are proposed. Third, a MCDM method is developed in
light of the proposed aggregation operators, and its effectiveness and stability are demonstrated using
the illustrative example, comparative analysis, and sensitivity analysis.

In some situations, asymmetrical and non-uniform linguistic information exists in practical
problems. For example, customers pay more attention to negative comments when selecting hotels.
In future study, we are going to introduce the unbalanced linguistic term sets to depict online linguistic
comments and propose the hotel recommendation method.
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