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Abstract: Schweizer–Sklar (SS) operation can make information aggregation more flexible, and the 

Muirhead mean (MM) operator can take into account the correlation between inputs by a variable 

parameter. Because traditional MM is only available for real numbers and single-valued 

neutrosophic set (SVNS) can better express incomplete and uncertain information in decision 

systems, in this paper, we applied MM operators to single-valued neutrosophic sets (SVNSs) and 

presented two new MM aggregation operators with the SS operation, i.e., a single-valued 

neutrosophic SS Muirhead mean (SVNSSMM) operator and a weighted single-valued neutrosophic 

SS MM (WSVNSSMM) operator. We listed some properties of them and some particular cases about 

various parameter values. We also proposed the multi-criteria decision-making method based on 

the WSVNSSMM operator in SVNS. At last, we illustrated the feasibility of this method using a 

numerical example of company investment. 

Keywords: Schweizer–Sklar operations; single-valued neutrosophic set; Muirhead mean operator; 

MCDM 

 

1. Introduction 

Since Zadeh [1] established fuzzy sets (FS), they have developed quickly. However, the 

inadequacy of FS is obvious because a FS only has a membership degree (MD) T(x), and it cannot 

deal with some complex fuzzy information. Shortly afterward, Atanassov [2–5] further presented the 

intuitionistic fuzzy set (IFS). Compared with FS, which only has a membership degree which 

expresses determinacy, IFS considers the indeterminacy and adds the non-membership degree 

(NMD) F(x). Nevertheless, in practical issues, IFS also has limitations; it cannot handle the 

information that blurs the borders between truth and falsity. In order to fix this problem, Atanassov 

[5] and Gargov [3] extended the MD and NMD to interval numbers and proposed the interval-valued 

IFS (IVIFS). In addition, Turksen [6] also proposed interval-valued fuzzy sets (IVFS), which also used 

the MD and the NMD to describe determinacy and indeterminacy. However, under some 

circumstances, the MD and NMD cannot express fuzzy information clearly. Therefore, Smarandache 

[7] proposed neutrosophic sets (NS) by increasing a hesitation degree I(x). The hesitation degree 

describes the difference between the MD and NMD. Further, a large number of theories about 

neutrosophic sets are gradually being put forward. For example, Ye [8] proposed a simple 

neutrosophic set (SNS), which is a subset of NS. Wang [9] gave the definition of interval NS (INS), 

which used the standard interval to express the functions of the MD, the hesitation degree, and the 

NMD. Ye [8] and Wang and Smarandache [10,11] proposed the single-valued neutrosophic set 

(SVNS), which can solve inaccuracy, incompleteness, and inconsistency problems well. 



Symmetry 2019, 11, 152 2 of 21 

 

In fuzzy set theory and application, Archimedean t-norm and t-conorm (ATT) occupy an 

important position. To promote the classical triangular inequality, Karl Menger [12] proposed the 

concept of trigonometric function that is the prototype of t-norm and t-conorm. Schweizer and Skar 

[13] gave a detailed definition of t-norm and t-conorm, and SS t-norm and t-conorm (SSTT) are one 

of the forms of t-norm and t-conorm [14–16]. Schweizer-Sklaroperation is an instance of ATT, but SS 

operation contains an alterable parameter; therefore, they are more agile and superior, and can better 

reflect the property of “logical and” and “logical or”, respectively. 

In fuzzy environments, information aggregation operators [17–20] are effective tools to handle 

multi-criteria decision-making problems, and now they have gained greater attention. In handling 

multi-criteria decision-making (MCDM) problems, some traditional methods, for instance, TOPSIS 

(Technique for Order Preference by Similarity to an Ideal Solution) [21] and ELECTRE (Elimination 

Et Choice Translation Reality) [22], can only give the ranking results, while aggregation operators are 

able to provide the integrated values of alternatives, and provide the ranking results. In particular, 

some aggregation operators can take into account the relationship of the aggregated parameter. For 

instance, Yager [23] gave the power average (PA) operator; this operator aggregates input data and 

allocates the weighted vector by the support degree between input parameters. Bonferroni [24] 

proposed the Bonferroni mean (BM) operator and Beliakov [25] presented the Heronian mean (HM) 

operator, and they can capture the interrelationships between input parameter very well. Then, Yager 

extended the BM operators to handle different uncertain information such as intuitionistic fuzzy 

numbers (IFNs) [26], interval-valued IFNs (IVIFNs) [27], and multi-valued neutrosophic numbers 

[28]. In addition, the HM operator was extended to IFNs [29], IVIFNs [30,31], etc. Furthermore, Yu 

and Wu [32] explained the difference between the BM and HM. However, the BM and HM operators 

only consider the relationships between two input parameters. In order to consider interrelationships 

among multiple input parameters, in 1729, Maclaurin [33] first proposed the Maclaurin symmetric 

mean (MSM) operator, which has the salient advantage of being able to capture the correlation 

between arbitrary parameters. After that, a more generalized operator was presented, that is, the 

Muirhead mean [34] was proposed by Muirhead, which was added an alterable parametric vector P 

on the basis of considering interrelationships among multiple input parameters, and some existing 

operators are its special cases, for instance, arithmetic and geometric mean (GM) operators (not 

considering the correlations), BM operator, and MSM. When dealing with MCDM problems, some 

aggregation operators cannot consider the relationship between any input parameters, while MM 

operator can take into account the correlation between inputs by a variable parameter. Therefore, the 

MM operator is more superior when deal with MCDM problems. 

Multi-criteria decision-making refers to the use of existing decision information, in the case of 

multi-criteria that are in conflict with each other and cannot coexist, and in which the limited 

alternatives are ranked or selected in a certain way. Schweizer-Sklar operation uses a variable 

parameter to make their operations more effective and flexible. In addition, SVNS can handle 

incomplete, indeterminate, and inconsistent information under fuzzy environments. Therefore, we 

conducted further research on SS operations for SVNS and applied SS operations to MCDM 

problems. Furthermore, because the MM operator considers interrelationships among multiple input 

parameters by the alterable parametric vector, hence combining the MM operator with the SS 

operation gives some aggregation operators, and it was more meaningful to develop some new 

means to solve the MCDM problems in the single-valued neutrosophic fuzzy environment. 

According to this, the purpose and significance of this article are (1) to develop a number of new MM 

operators by combining MM operators, SS operations, and SVNS; (2) to discuss some meaningful 

properties and a number of cases of these operators put forward; (3) to deal with an MCDM method 

for SVNS information more effectively based on the operators put forward; and (4) to demonstrate 

the viability and superiority of the newly developed method. 

In this article, the rest of this paper is as follows. In Section 2, we briefly state the fundamental 

conceptions of SVNS, SSTT, and MM operators. In Section 3, we develop some single-valued 

neutrosophic Schweizer–Sklar Muirhead mean operators to explore a number of ideal features and 

particular cases of the presented operators. In Section 4, we present an MCDM method based on the 
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developed operators. In Section 5, this paper provides a numerical example of company investment 

to demonstrate the activeness and feasibility of the presented method, and compare it to other 

existing methods. In Section 6, we briefly summarize this study. 

2. Preliminaries 

In the following, we illustrate the notions of SVNS, the operations of Schweizer–Sklar, and the 

Muirhead mean operator, which will be utilized in the rest of the paper. 

2.1. Single-Valued Neutrosophic Set (SVNS) 

Definition 2.1 [20] Let X  be a space of points (objects), with a generic element in X  denoted by

x . A neutrosophic set A in X  is characterized by the degree of membership function ( )AT x , the 

degree of indeterminacy function ( )AI x , and the degree of non-membership function ( )AF x . If the 

functions ( )AT x , ( )AI x  and ( )AF x  are defined in singleton subintervals or subsets in the real 

standard  0,1 , that is ( ) : [0,1], ( ) : [0,1], ( ) : [0,1]A A AT x X I x X F x X   , then the sum of 

( )AT x , ( )AI x  and ( )AF x  satisfies the condition 0 ( ) ( ) ( ) 3A A AT x I x F x     for any x X

. Then, a SVNS A is denoted as follows: 

{ , ( ), ( ), ( ) | }A A AA x T x I x F x x X     (1) 

For convenience, the ordered triple component t ( ), ( ), ( )A A AT x I x F x  , which is the core of 

SVNS, can be called a single-valued neutrosophic number (SVNN). What is more, each SVNN can be 

described as ( , , )a a aa T I F , where [0,1], [0,1], [0,1]a a aT I F   , and 

Definition 2.2 [21] For any SVNS  , ,a a aa T I F , respectively, define the score function  S a , 

accuracy function  A a  and certainty function  C a  of a as follows: 

   1 1a a aS a T I F      (2) 

    ,anda aA a T F   (3) 

  aC a T . (4) 

Definition 2.3 [21] Let  , ,a a aa T I F  and  , ,b b bb T I F  be any two SVNSs. Define the 

comparison method as follows: 

If    S a S b , then a b ; (5) 

If    S a S b  and    A a A b , then a b ; (6) 

If    S a S b ,    A a A b  and    C a C b , thena b . (7) 

2.2. Muirhead Mean Operator 

Definition 2.4 [22] Let ( 1,2,3,..., )i i n   be a set of arbitrary positive real numbers, the parameter 

vector is 1 2( , ,..., ) l
lP p p p R  . Suppose 

1

1

1 2 ( )
1

1
( , ,..., )

!

n
js js

js

n

n P
PP

n js
S js

MM
n




   


 

 
  
 

  (8) 
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Then, 
PMM  is called MM operator, the    1,2,...,js js n   is any permutation of

 1,2, ,n , and nS  is a set of all permutations of  1,2, ,n . 

Furthermore, from Equation (8), we can know that 

(1) If  = 1,0,..., 0P , the MM reduces to 

(2) 
(1,0,...,0)

1 2 1

1
( , ,..., ) n

n j jMM
n

     , which is the arithmetic averaging operator. 

(3) If (1/ ,1/ ,...,1/ )P n n n , the MM reduces to (1/ ,1/ ,...,1/ ) 1/
1 2 1( , ,..., )n n n n n

n j jMM      , 

which is the GM operator. 

(4) If  = 1,1,0,..., 0P , the MM reduces to 

1

2

1 2 , 1

1
( , ,..., ) ,

( 1)
n

n i j i j
i j

MM
n n

    


 
  

 
（1, 1, 0, 0, . . . , 0）

which is the BM operator [35]. 

(5) If  1,1,...,1,0,0,...,0

k n k

P






 the MM reduces to 

   

1

1
1,1,...,1,0,0,...,0 1

1 2

1
, ,...,

k n k

k k

k i j
j

n k
n

i i n
MM

C


  







 
    

  
 
 

  
 which is the MSM operator 

[36]. 

From Definition 2.4 and the special cases of the MM operator mentioned above, we know that 

the advantage of the MM operator is that it can capture the overall interrelationships among the 

multiple input parameters and it is a generalization of some existing aggregation operators. 

2.3. Schweizer–Sklar Operations 

Schweizer-Sklar operations contain the SS product and SS sum, they are respectively the 

particular cases of ATT. 

Definition 2.5 [20] Suppose  A= , ,A A Aa b c  and  B BB= , ,Ba b c are any two SVNSs, then the 

generalized intersection and union are defined as follows: 

      
*,

, ( ), ( ) , ( ), ( ) , ( ), ( )

T T

A B A B A B

A B

y T a y a y T b y b y T c y c y y Y 



 
 (9) 

      
*,

, ( ), ( ) , ( ), ( ) , ( ), ( )

T T

A B A B A B

A B

y T a y a y T b y b y T c y c y y Y



 
 (10) 

Where T  expresses a T-norm and 
*T  expresses a T-conorm. 

The definitions of the SS T-norm and T-conorm are described as follows: 

1/
, ( , ) ( 1)SST x y x y  
     (11) 

    
1/

, ( , ) 1 1 1 1SST x y x y
 


        (12) 

Where  0, , 0,1x y   . In addition, when 0  , we have ( , )T x y xy   and 

( , )T x y x y xy
    . They are the algebraic T-norm and algebraic T-conorm. 
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According to the T-norm ( , )T x y  and T-conorm ( , )T x y


 of SS operations, we define SS 

operations of SVNSs as follows. 

Definition 2.6 Suppose  1 , ,A A Aa T I F  and  2 , ,B B Ba T I F  are any two SVNSs, then 

present the generalized intersection and generalized union based on SS operations as follows: 

      *1 2,
, , , , ,A B A B A BT T

a a T T T T I I T F F     (13) 

      1 2,
, , , , ,A B A B A BT T

a a T T T T I I T F F

    (14) 

According to Definitions 2.3 and 2.4, the SS operational rules of SVNSs are given as follows (� < 0): 

        
1/ 1/ 1/

1 2 1 1 1 1 , 1 , 1SS A B A B A Ba a T T I I F F
                   

 
   (15) 

           
1/ 1/1/

1 2 1 ,1 1 1 1 ,1 1 1 1SS A B A B A Ba a T T I I F F
                     

 
   (16) 

          
1/ 1/ 1/

1 1 1 1 , 1 , 1 0A A Ana n T n nI n nF n n
               

 
 ，  (17) 

            
1/ 1/1/

1 1 ,1 1 1 ,1 1 1 , 0n
A A Aa nT n n I n n F n n

                
 

  (18) 

Theorem 2.1: Suppose  1 , ,A A Aa T I F  and  2 , ,B B Ba T I F  are any two SVNSs, then 

(1) 1 2 2 1SS SSa a a a       (19) 

(2) 1 2 2 1SS SSa a a a       (20) 

(3)  1 2 1 2 , 0SS SSn a a na na n        (21) 

(4)  1 1 2 2 1 2 1 1 2, , 0SSn a n a n n a n n       (22) 

(5)   1 21 2

1 1 1 1 2, , 0
n nn n

SSa a a n n


      (23) 

(6)  1 2 1 2 , 0
nn n

SS SSa a a a n        (24) 

Theorem 2.1 is demonstrated easily. 

3. Single-Valued Neutrosophic Schweizer–Sklar Muirhead Mean Aggregation Operators 

In the following, we will produce single-valued neutrosophic SS Muirhead mean (SVNSSMM) 

operators and weighted single-valued neutrosophic SS Muirhead mean (WSVNSSMM) operators 

and discuss their special cases and some of the properties of the new operators. 

3.1. The SVNSSMM Operator 

Definition 3.1 Let   , , 1,2, ,i i i iT I F i n     be a set of SVNSs, and 

 1 2, , , n
nP p p p R   be a vector of parameters. If 

   
1

1

1 2
1

1
, , ,

!

n

jjj

n

n PPP
n j

S j

SVNSSMM
n 



    

 

 
  
 

  (25) 
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Then we call 
PSVNSSMM  as the single-valued neutrosophic Schweizer–Sklar MM 

(SVNSSMM) operator, where   1,2, ,j j n    is any a permutation of  1,2, ,n , and nS  

is the set of all permutations of  1,2, ,n . 

Based on the SS operational rules of the SVNSs, we give the result of Definition 3.1 as shown as 

Theorem 3.1. 

Theorem 3.1 Let   , , 1,2, ,i i i iT I F i n     be a collection of SVNSs and 0  , then the 

result generated by Definition 3.1 can be shown as 

    

1

1

1

1 2
1

1 1

1 1 1
, , , 1 1 1 1 1 1 2 ,

!
n

n
P

n j jn n
S jj jj j

SVNSSMM P T
nP P

 

 







  
 

 


  

      
                    

               


 
 



 

  

1

1

1

j
1

1 1

1 1 1
1 1 1 1 1 1 1 1 2 ,

!
n

n

jn n
S jj jj j

P I
nP P




 




 

 

  
     
                                   

  

 
 

  

1

1

1

j
1

1 1

1 1 1
1 1 1 1 1 1 1 1 2

!
n

n

jn n
S jj jj j

P F
nP P




 




 

 


  
     

                                       
   



 
 

  

(26) 

Proof. 

By the operational laws of SVNSs based on SS operations, we get 

                
1 11

j j
1 ,1 1 1 ,1 1 1jP

j j j j j jj j
PT P P I P P F P

   
   

 
                 
    

 

  

and 

         

1 1
1

j j
1 1 1 1 1 11

1 ,1 1 1 ,1 1 1j

n n n n n n n
P

j j j j j jj j
j j j j j jj

PT P P I P P F P

 

  


   
     

 
      

                
      
 

       
 

Then 

   

1

1

1 11

1 1 1 1 ,j

n n

n n n
P

j jj j
S S j jj

PT P
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1 1

1 1

j j
1 1 1 1

1 1 1 1 , 1 1 1 1
n n

n n n n

j j j j
S j j S j j

P I P P F P

  

  

 
      


       

                             
                 



       

Further, we are able to obtain 

   

1

1

1 11

1 1 1
1 1 1 1 1 ,

! ! !
j

n n

n n n
P

j jj j
S S j jj

PT P
n n n

 




 
 


   


    
                               



     

     

1 1

1 1

j j
1 1 1 1

1 1 1 1
1 1 1 1 1 , 1 1 1 1 1

! ! ! !
n n

n n n n

j j j j
S j j S j j

P I P P F P
n n n n

  

  

 
      


          
                                                                       



     
 

 

Therefore 

 

      

1

1

1

1,2,1

1
1 1

1 1 1
, , 1 1 1 1 1 1 2 ,

!
n

n

j jn n
S jj jj j

SVNSSMM x y z P T
nP P

 

 





 
 


  

      
                    

               


 
 

  

1

1

1

j
1

1 1

1 1 1
1 1 1 1 1 1 1 1 2 ,

!
n

n

jn n
S jj jj j

P I
nP P




 




 

 

  
     
                                   

  

 
 

  

1

1

1

j
1

1 1

1 1 1
1 1 1 1 1 1 1 1 2

!
n

n

jn n
S jj jj j

P F
nP P




 




 

 


  
     

                                       
   



 
 

             

             

      

2 21 1
2 2 2 2 2 22 2

2 21 1
2 2 2 2 2 22 2

2 2 2

1 1 0.4 1 2 0.2 1 0.6 1 1 1 0.4 1 2 0.6 1 0.2 1

1 1
1 1 1 1 1 0.2 1 2 0.4 1 0.6 1 1 1 0.2 1 2 0.6 1 0.4 1

4 6

1 1 0.6 1 2 0.4 1 0.2 1

 
 

     

 
 

     


  

   
                 

   

   
                      

   

              

1
2 21

2

2 21 1
2 2 22 2

1
,

4

1 1 0.6 1 2 0.2 1 0.4 1 2
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2 21 1
2 2 2 2 2 22 2

21 1
2 2 2 2 2 22 2

1 1 1 0.3 1 2 1 0.7 1 1 0.4 1 1 1 1 0.3 1 2 1 0.4 1 1 0.7 1

1 1
1 1 1 1 1 1 1 0.7 1 2 1 0.3 1 1 0.4 1 1 1 1 0.7 1 2 1 0.4 1 1 0.3 1

4 6

 
 

     


 

     

   
                       

   
   

   
                            

  
   

                   

21

2

2

2 21 1
2 2 2 2 2 22 2

1

4

1 1 1 0.4 1 2 1 0.3 1 1 0.7 1 1 1 1 0.4 1 2 1 0.7 1 1 0.3 1 2






 
 

     

  
    
    
    
    
    
     
    
    
       
                             
              

 

1

2

,















 


                   

                   

2 21 1
2 2 2 2 2 22 2

21 1
2 2 2 2 2 22 2

1 1 1 0.8 1 2 1 0.1 1 1 0.1 1 1 1 1 0.8 1 2 1 0.1 1 1 0.1 1

1 1
1 1 1 1 1 1 1 0.1 1 2 1 0.8 1 1 0.1 1 1 1 1 0.1 1 2 1 0.1 1 1 0.8 1

4 6

 
 

     


 

     

   
                       

   
   

   
                            

  
   

                   

21

2

2

2 21 1
2 2 2 2 2 22 2

1

4

1 1 1 0.1 1 2 1 0.8 1 1 0.1 1 1 1 1 0.1 1 2 1 0.1 1 1 0.8 1 2






 
 

     

  
    
    
    
    
    
     
    
    
       
                             
              

 

1

2
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 


 0.5401,0.3966,0.4420 . 

Theorem 3.2 (Monotonicity). Let  , ,i i i iT I F   and  , ,i i i iT I F      1,2, ,n  be two sets of 

SVNSs. If 
i iT T  i iI I  i iF F   for all i , then 

   1 2 1 2, , , , , ,P P
n nSVNSSMM SVNSSMM          (27) 

Proof. 

Let 
   1 2, , , , ,P

nSVNSSMM T I F   
, 

   1 2, , , , ,P
nSVNSSMM T I F       

. 

Where 

  

1

1

1

1
1 1

1 1 1
1 1 1 1 1 1 2

!
n

n

j jn n
S jj jj j

T P T
nP P

 

 





 
 

  
     
                    

           
  

 
 

 

  

1

1

1

1
1 1

1 1 1
1 1 1 1 1 1 2

!
n

n

j jn n
S jj jj j

T P T
nP P

 

 





 

 

  
     
                     

           
  

 
 

 

 

and 
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1

1

j
1

1 1

1 1 1
1 1 1 1 1 1 1 1 2

!
n

n

jn n
S jj jj j

I P I
nP P




 




 

 

  
     
                                    

  

 
 

 

  

1

1

1

j
1

1 1

1 1 1
1 1 1 1 1 1 1 1 2

!
n

n

jn n
S jj jj j
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nP P




 




 

 

  
     
                                     

  

 
 

  

1

1

1

j
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1 1 1
1 1 1 1 1 1 1 1 2

!
n

n

jn n
S jj jj j

F P F
nP P




 




 

 

  
     
                                    

  

 
 

  

1

1

1

j
1

1 1

1 1 1
1 1 1 1 1 1 1 1 2

!
n

n

jn n
S jj jj j

F P F
nP P




 




 

 

  
     
                                     

  

 
 

 

 

Since 
i iT T   and 0   we can get    j j

T T 
 

 . 

Then 
     

1 1

1 1

1 1 1 1
n n

j jj j
j j

P T P T
 

 
 

 

   
       

   
 

 

     
1 1

1 1

1 1 1 1 1 1
n n

j jj j
j j

P T P T
 

 
 

 

   
          

   
 

 

     
1 1

1 1

1 1 1 1 1 1
n n

j jj j
j j

P T P T

 

 
 
 

 

   
                   
      

   

   

     

1 1

1 1

1 1

1 1
1 1 1 1 2 1 1 1 1 2

! !
n n

n n

j jj j
S j S j

P T P T
n n

  

 
 
 

    

         
                                   

            
         

   

     

1 1

1 1

1 1

1 1
1 1 1 1 1 2 1 1 1 1 1 2

! !
n n

n n

j jj j
S j S j

P T P T
n n
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1 1

1 1

1 1

1 1
1 1 1 1 1 2 1 1 1 1 1 2

! !
n n

n n

j jj j
S j S j

P T P T
n n

 

  

 
 
 

    

   
            
                                           

                           
   

   

     

1

1

1 1

1 1
1 1 1

1 1 1 1 1
1 1 1 1 1 1 2 1 1 1 1 1 1 2

! !
n n

n n

j jj jn n n
S j S jj j jj j j

P T P T
n nP P P

 

 

 
 
 

    
  

  
          
                                          

                       
  

   
  

1

1

1

1
n

jj
P

 





  
  
     
  
  

  



 

i.e., 
i iT T  . 

Similarly, we also have ,i i i iI I F F   . 

Therefore, we can get the following conclusion. 

   1 2 1 2, , , , , ,P P
n nSVNSSMM SVNSSMM        

 

Theorem 3.3 (Commutativity). Suppose  1,2, ,i i n     is any permutation of 

 1,2, ,i i n   . Then 

   1 2 1 2, , , = , , ,P P
n nSVNSSMM SVNSSMM          (28) 

Because this property is clear, so the proof is now omitted. 

In the following, we will research several particular forms of the SVNSSMM operator with the 

different parameters vector P . 

(1) When  1,0, ,0P   , the SVNSSMM operator will reduce to the single-valued neutrosophic 

Schweizer–Sklar arithmetic averaging operator. 

   1,0, ,0

1 2
1

1
, , ,

n

n j
j

SVNSSMM
n

   


    

=  
1 1 1

1 1 1

1 1 1
1 1 1 2 , 1 2 , 1 2

n n n

j j j
j j j

T I F
n n n

  

  

  

           
                                   

    

(29) 

(2) When  ,0, ,0P   , the SVNSSMM operator will reduce to the single valued neutrosophic 

Schweizer–Sklar generalized arithmetic averaging operator. 
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(3) When  1,1,0,0, ,0P   , the SVNSSMM operator will reduce to the single-valued 

neutrosophic Schweizer–Sklar BM operator. 
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(4) When  1,1, 1,0,0, ,0

k n k

P





  , the SVNSSMM operator will reduce to the single-valued 

neutrosophic Schweizer–Sklar Maclaurin symmetric mean (MSM) operator. 
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(5) When  1,1, ,1P   , the SVNSSMM operator will reduce to the single-valued neutrosophic 

Schweizer–Sklar geometric averaging operator. 
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(33) 

(6) When  1 ,1 , ,1P n n n  , the SVNSSMM operator will reduce to the single-valued 

neutrosophic Schweizer–Sklar geometric averaging operator. 
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(34) 

3.2. The WSVNSSMM Operator 

In real decision-making, the weight of the criteria is of great significance in the decision-making 

results. However, SVNSSMM operator cannot take into account the attribute weight, so we will 

establish weighted SVNSSMM operator in the following. 

Definition 3.2 Let 
  , , 1,2, ,i i i iT I F i n   

 be a set of SVNSs, and 

 1 2, , , n
nP p p p R 

be a vector of parameters. 
 1 2, ,

T

n    
be the weight vector of 

 1,2, ,i i n   
, which satisfies 

 0,1i 
 and  1

1
n

i
i
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n j

S j
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  (35) 

Then we call 
PWSVNSSMM  the weighted single-valued neutrosophic Schweizer–Sklar MM 

(WSVNSSMM) operator where   1,2, ,j j n    is any permutation of  1, 2, ,n , and nS  

is the collection of all permutations of  1, 2, ,n . 

Theorem 3.4 Let    , , 1, 2, ,i i i iT I F i n     be a collection of SVNSs and 0  , then the result 

from Definition 3.2 is an SVNSs, even 
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Proof that Theorem 3.4 is the same as the proof of Theorem 3.1, so it will not be repeated here.  

Theorem 3.5 (Monotonicity). Let  , ,i i i iT I F   and  , ,i i i iT I F      1,2, ,n  be two sets 

of SVNSs. If 
i iT T  i iI I  i iF F   for all i , then 

   1 2 1 2W , , , W , , ,P P
n nSVNSSMM SVNSSMM          (37) 

Theorem 3.6 (Commutativity). Suppose  1,2, ,i i n     is any permutation of 

 1,2, ,i i n   . Then 

   1 2 1 2W , , , =W , , ,P P
n nSVNSSMM SVNSSMM          (38) 

The proofs of Theorem 3.5 and 3.6 are the same as the proofs of monotonicity and commutativity 

of the SVNSSMM operator, so it will not be repeated here. 

Theorem 3.7 The SVNSSMM operator is a particular case of the WSVNSSMM operator. 

Proof. 
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4. MCDM Method Based on WSVNSSMM Operator 

In the next, we are going to put forward a novel MCDM method based on the WSVNSSMM 

operator as described below. 

Assume  1 2A= , , , MA A A  is a collection of alternatives, and  1 2C= , , , nC C C  is a 

collection of n  criteria. Suppose the weight vector of the criterion is  1 2, , ,
T

n      and 

satisfies  0,1i   and 
1

1
n

i
i




 , and i  denotes the importance of the criteria 
jc . The 

performance degree of alternative ia  in criteria 
jc  is measured by SVNSs and the decision matrix 

is  ij m n
R r


  , where  , ,ij ij ij ijr T I F . After that, ranking its alternatives is the main purpose. 

Finally, we give the detailed decision-making steps. 

Step 1: Normalizing the criterion values. 

In the real decision, there are two types of criteria: one is the benefit and the other is the cost 

type. To hold consistency of this type, the first step is to convert the criteria type to a consistent type. 

In general, the cost type should be changed to the benefit type. The formula is as follows: 

If 
jc  is the cost type, then 

 ,1 ,ij ij ij ijr F I T  , else  , ,ij ij ij ijr T I F  (39) 

Step 2: Aggregating all criterion values for each alternative.  

We would utilize Definition 3.2 to obtain the comprehensive value shown as follows: 

 1 2, , ,i i i imZ WSVNSSMM r r r   (40) 

Step 3: Calculate the score values of  1, 2, ,ir i n   by Definition 2.2.  

After that, when two score values of them are equal, we would calculate the accuracy values and 

certainty function. 

Step 4: Rank all the alternatives. 

Based on Step 3 and Definition 2.3, we will obtain the order of alternatives. 

5. Numerical Example 

In this subsection, we refer to an example of MCDM to prove the feasibility and validity of the 

presented method. 

We refer to the decision-making problem in Reference [8]. There is an investment company, 

which intends to choose the best investment in the possible alternatives. There are four possible 

options for the investment company to choose from: (1) a car company 1A ; (2) a food company 2A ; 

(3) a computer company 3A ; (4) an arms company 4A . The investment company shall consider the 

following three evaluation indexes to make choices: (1) the risk analysis 1C ; (2) the growth analysis

2C ; and (3) the environmental influence analysis. Among 1C  and 2C  are the benefit criteria and 

3C  is the cost criterion. The weight vector of the criteria is  0.35,0.25,0.4
T

  . The four possible 

alternatives are evaluated with respect to the above three criteria by the form of SVNSs, and single-

valued neutrosophic decision matrix D is constructed as listed in Table 1. 
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Table 1. Decision Matrix D. 

Options\Attributes  1C  2C  3C  

1A   0.4,0.2,0.3   0.4,0.2,0.3   0.2,0.2,0.5  

2A   0.6,0.1,0.2   0.6,0.1,0.2   0.5,0.2,0.2  

3A   0.3, 0.2,0.3   0.5,0.2, 0.3   0.5,0.3,0.2  

4A   0.7,0.0,0.1   0.6,0.1,0.2   0.4,0.3,0.2  

5.1. Rank the Alternatives by the WSVNSSMM Operator 

The step is described as follows: 

Step 1: Normalizing the criterion values. 

In this case, 1C  and 2C  are benefit types, and 3C  is a cost type, so we set-up the decision 

matrix as shown in table 2. 

Table 2. Normalize the Decision Matrix D. 

Options\Attributes 1C  2C  3C  

1A   0.4,0.2,0.3   0.4,0.2,0.3   0.2,0.2,0.5  

2A   0.6,0.1,0.2   0.6,0.1,0.2   0.5,0.2,0.2  

3A   0.3, 0.2,0.3   0.5,0.2, 0.3   0.5,0.3,0.2  

4A   0.7,0.0,0.1   0.6,0.1,0.2   0.4,0.3,0.2  

Step 2: Aggregating all criterion values for each alternative. Utilize Definition 3.2 to obtain the 

comprehensive value iZ and suppose  1,1,1P   and 2   that have 

 1 0.4878,0.1864,0.3361Z  ,              2 0.6379,0.1384,0.1864Z  , 

 3 0.5480,0.2227,0.2380Z  ,              4 0.6097,0.1667,0.1600Z  . 

Step 3: Calculate the score function   1, 2,3, 4iS z i   of the value  1, 2,3, 4iz i  .

 1 1.9653S z  ,  2 2.3131S z  ,  3 2.0872S z  ,  4 2.2831S z  . 

Step 4: Ranking all the alternatives. 

Based on the score functions   1, 2,3, 4iS z i  , we will obtain the order of alternatives

 1 2 3 4, , ,A A A A  is 2 4 3 1A A A A   . Obviously, the best alternative is 2A . 

5.2. The Influence of the Parameters Vector on Decision-Making Result of This Example 

To verify the impact of the parameters vectors   and P on the decision-making of the 

instance, we select diverse parameters vectors   and P , and give the sorting results of the 

alternatives. We can see the results in Tables 3–5. 

When 2  , parameter vector P  takes different values, the sorting results of alternatives 

are given in Table 3. 
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Table 3. Comparisons of different values of P  when 2  . 

Parameters Vector P  The Score Function  iS z  Ranking Results 

 1,0,0P   
 1 1.9417S z  ,  2 2.3175S z   

 3 2.0575S z  ,  4 2.3708S z   
4 2 3 1A A A A    

 1,1,0P   
 1 1.9400S z  ,  2 2.3046S z   

 3 2.0574S z  ,  4 2.3904S z   
4 2 3 1A A A A    

 1,1,1P   
 1 1.9653S z  ,  2 2.3131S z   

 3 2.0872S z  ,  4 2.2831S z   
2 4 3 1A A A A    

 0.25,0.25,0.25P   
 1 1.9653S z  ,  2 2.3131S z   

 3 2.0872S z  ,  4 2.2831S z   
2 4 3 1A A A A    

 2,0, 0P   
 1 2.0105S z  ,  2 2.3463S z   

 3 2.1100S z  ,  4 2.3843S z   
4 2 3 1A A A A    

 3,0,0P   
 1 2.0696S z  ,  2 2.3742S z   

 3 2.1578S z  ,  4 2.4004S z   
4 2 3 1A A A A    

When 5  , parameter vector P  takes different values, the sorting results of alternatives are 

given in Table 4. 

Table 4. Comparisons of different values of P  when 5  . 

Parameters Vector P  The Score Function  iS z  Ranking Results 

 1,0,0P   
 1 1.8855S z  ,  2 2.3067S z   

 3 2.0311S z  ,  4 2.4191S z   
4 2 3 1A A A A    

 1,1,0P   
 1 1.7815S z  ,  2 2.2522S z   

 3 1.9386S z  ,  4 2.3569S z   
4 2 3 1A A A A    

 1,1,1P   
 1 1.6546S z  ,  2 2.2027S z   

 3 1.8621S z  ,  4 2.1001S z   
2 4 3 1A A A A    

 0.25,0.25,0.25P   
 1 1.6546S z  ,  2 2.2027S z   

 3 1.8621S z  ,  4 2.1001S z   
2 4 3 1A A A A    

 2,0, 0P   
 1 1.8802S z  ,  2 2.3013S z   

 3 2.0231S z  ,  4 2.4039S z   
4 2 3 1A A A A    

 3,0,0P   
 1 1.8789S z  ,  2 2.2989S z   

 3 2.0201S z  ,  4 2.3939S z   
4 2 3 1A A A A    

When 20   and parameter vector P  takes different values, the sorting results of 

alternatives are given in Table 5. 
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Table 5. Comparisons of different values of P  when 20   . 

Parameters Vector P  The Score Function  iS z  Ranking Results 

 1,0,0P   
 1 1.8941S z  ,  2 2.3070S z   

 3 2.0761S z  ,  4 2.4799S z   
4 2 3 1A A A A    

 1,1,0P   
 1 1.8524S z  ,  2 2.2779S z   

 3 1.9840S z  ,  4 2.3632S z   
4 2 3 1A A A A    

 1,1,1P   
 1 1.5331S z  ,  2 2.1544S z   

 3 1.7619S z  ,  4 1.9668S z   
2 4 3 1A A A A    

 0.25,0.25,0.25P   
 1 1.5331S z  ,  2 2.1544S z   

 3 1.7619S z  ,  4 1.9668S z   
2 4 3 1A A A A    

 2, 0, 0P   
 1 1.8919S z  ,  2 2.3048S z   

 3 2.0724S z  ,  4 2.4753S z   
4 2 3 1A A A A    

 3,0,0P   
 1 1.8908S z  ,  2 2.3035S z   

 3 2.0703S z  ,  4 2.4724S z   
4 2 3 1A A A A    

As is shown in Tables 3–5, when the parameter vector P  are the same and   are changeable, 

the scoring functions are changes, but the ranking results are still the same. Usually, the ranking 

result is the same when 200   by verification, the different decision-makers can choice diverse 

parameters values   according to their preferences, so we might assume 2    here. What is 

more, if the parameter value   are fixed and parameter values P  are different, we can get 

different ranking results. For example, When  1,1,1P   considers interrelationships among all 

input parameters, the sorting order is 2 4 3 1A A A A   , so the best option is 2A ; nevertheless, 

when  1,0,0P   and  1,1,0P  , the sorting result is 4 2 3 1A A A A    so the best option is

4A . In addition, on the basis of the above results, we can know that for the WSVNSSMM operator 

the score function value decreases as the correlations of criteria increases, in other words, the more 0 

in the parameters vector P , the larger the value of the score functions. Hence, the decision-makers 

are able to set diverse parameters vector   and P  by means of different risk preferences. 

5.3. Comparing with the Other Methods 

So as to demonstrate the validity of the method presented in this thesis, we can use the existing 

methods including the cosine similarity measure proposed by Ye [8], the single-valued neutrosophic 

weighted Bonferroni mean (WSVNBM) operator extended from the normal neutrosophic weighted 

Bonferroni mean (NNWBM) [37] operator, the weighted correlation coefficient proposed by Ye [38] 

to illustrate this numerical example. The sorting results of these methods are given from Tables 6 and 7. 

According to Table 6, we can see that the best alternatives 2A  and the ranking results obtained 

by these methods are the same. This result indicates the validity and viability of the new method put 

forward in this thesis. After that, we further analyzed, that for when the parameter vectors were

 1,0,0P   or  2, 0, 0P  , whether the WSVNSSMM would reduce to the weighted single-

valued neutrosophic Schweizer–Sklar arithmetic averaging operator. That is to say, when

 1,0,0P   is similar to the method based on cosine similarity measurement proposed by Ye [8], 

we can think the input parameters are independent and the interrelationship between input 
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parameters is not taken into account. When  1,1,0P  , the WSVNSSMM will reduce to the 

weighted single-valued neutrosophic SS BM operator, which can take the interrelationship of two 

input parameters into account and its sorting result is the same as that of WSVNBM. In addition, 

from Table 7, we can see Ye [38] also put forward a method based on the weighted correlation 

coefficient to get a sorting result which was 2 4 3 1A A A A   . When  1,1,1P  , the sorting 

result was 2 4 3 1A A A A   , which shows that the best alternative is not only 4A , but 2A  is 

also possible, and the WSVNSSMM method developed in this thesis is more comprehensive. 

Therefore, the presented methods in this thesis are a generalization of many existing methods. 

In real decision-making environments, we should take into account two parameters, multiple 

parameters, or not consider parameters based on the preference of the decision-makers, and the 

presented methods in this paper can capture all of the above situations by changing parameter P . 

Table 6. Comparison of the different methods. 

Methods Parameter Value Ranking 

cosine similarity measure [8] No 4 2 3 1A A A A    

Methods in [37] 1p  , 1q   4 2 3 1A A A A    

Methods in this paper 

2  and  1,0,0P   4 2 3 1A A A A    

5  and  2, 0, 0P   4 2 3 1A A A A    

20   and  1,1,0P   4 2 3 1A A A A    

Table 7. Comparison of the weighted correlation coefficient method. 

Methods Parameter value Ranking 

correlation coefficient [38]  2 4 3 1A A A A    

Methods in this paper 

2  and  1,1,1P   2 4 3 1A A A A    

5  and  1,1,1P   2 4 3 1A A A A    

20   and  1,1,1P   2 4 3 1A A A A    

In short, from the above comparative analysis, we are aware that the methods in this thesis are 

better, more advanced, and more effective based on the WSVNSSMM operator. Hence, the methods 

we presented are more advantageous in dealing with such decision-making problems. 

6. Conclusions 

The MCDM problems based on SVNS information is widely applied in various fields. In this 

paper, we used the Schweizer–Sklar operation rule and we considered the MM operator’s own the 

remarkable feature, particularly the correlation between attributes through parameter vector P . In 

the single-valued neutrosophic environment, we combine the MM operator with the SS operation 

rule, then presented two new MM aggregation operators, respectively, the single-valued 

neutrosophic Schweizer–Sklar Muirhead mean (SVNSSMM) operator and the weighted single-

valued neutrosophic Schweizer–Sklar Muirhead (WSVNSSMM) operator. After that, we explained 

the ideal feature and some particular cases of the new operators in detail. Lastly, the methods 

presented in this paper were compared with other methods by numerical example to verify the 

viability of these methods. In the future, using the WSVNSSMM operator can help us to settle more 

complex MCDM problems. Moreover, we would further study other aggregation operators to handle 

MCDM problems. 
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