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Abstract: It is an interesting direction to study rough sets from a multi-granularity perspective.
In rough set theory, the multi-particle structure was represented by a binary relation. This paper
considers a new neutrosophic rough set model, multi-granulation neutrosophic rough set
(MGNRS). First, the concept of MGNRS on a single domain and dual domains was proposed.
Then, their properties and operators were considered. We obtained that MGNRS on dual domains
will degenerate into MGNRS on a single domain when the two domains are the same. Finally, a kind
of special multi-criteria group decision making (MCGDM) problem was solved based on MGNRS on
dual domains, and an example was given to show its feasibility.
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1. Introduction

As we all know, Pawlak first proposed a rough set in 1982, which was a useful tool of granular
computing. The relation is an equivalent in Pawlak’s rough set. After that, many researchers proposed
other types of rough set theory (see the work by the following authors [1–8]).

In 1965, Zadeh presented a new concept of the fuzzy set. After that, a lot of scholars studied it
and made extensions. For example, Atanassov introduced an intuitionistic fuzzy set, which gives two
degrees of membership of an element; it is a generalization of the fuzzy set. Smarandache introduced
a neutrosophic set in 1998 [9,10], which was an extension of the intuitionistic fuzzy set. It gives three
degrees of membership of an element (T.I.F). Smarandache and Wang [11] proposed the definition of
a single valued neutrosophic set and studied its operators. Ye [12] proposed the definition of simplified
neutrosophic sets and studied their operators. Zhang et al. [13] introduced a new inclusion relation
of the neutrosophic set and told us when it was used by an example, and its lattice structure was
studied. Garg and Nancy proposed neutrosophic operators and applied them to decision-making
problems [14–16]. Now, some researchers have combined the fuzzy set and rough set and have
achieved many running results, such as the fuzzy rough set [17] and rough fuzzy set. Broumi and
Smarandache [18] proposed the definition of a rough neutrosophic set and studied their operators and
properties. In 2016, Yang et al. [19] proposed the definition of single valued neutrosophic rough sets
and studied their operators and properties.

Under the perspective of granular computing [20], the concept of a rough set is shown by the
upper and lower approximations of granularity. In other words, the concept is represented by the
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known knowledge, which is defined by a single relationship. In fact, to meet the user’s needs or achieve
the goal of solving the problem, it is sometimes necessary to use multiple relational representation
concepts on the domain, such as illustrated by the authors of [21]. In a grain calculation, an equivalence
relation in the domain is a granularity, and a partition is considered as a granularity space [22].
The approximation that is defined by multiple equivalence relationships is a multi-granularity
approximation and multiple partitions are considered as multi-granularity spaces; the resulting
rough set is named a multi-granularity rough set, which has been proposed by Qian and Liang [23].
Recently, many scholars [24,25] have studied it and made extensions. Huang et al. [26] proposed the
notion of intuitionistic fuzzy multi-granulation rough sets and studied their operators. Zhang et al. [27]
introduced two new multi-granulation rough set models and investigated their operators. Yao et al. [28]
made a summary about the rough set models on the multi-granulation spaces.

Although there have been many studies regarding multi-granulation rough set theory, there have
been fewer studies about the multi-granulation rough set model on dual domains. Moreover,
a multi-granulation rough set on dual domains is more convenient, for example, medical diagnosis
in clinics [22,29]. The symptoms are the uncertainty index sets and the diseases are the decision
sets. They are associated with each other, but they belong to two different domains. Therefore,
it is necessary to use two different domains when solving the MCGDM problems. Sun et al. [29]
discussed the multi-granulation rough set models based on dual domains; their properties were
also obtained.

Although neutrosophic sets and multi-granulation rough sets are both useful tools to solve
uncertainty problems, there are few research regarding their combination. In this paper, we proposed
the definition of MGNRS as a rough set generated by multi-neutrosophic relations. It is useful to solve
a kind of special group decision-making problem. We studied their properties and operations and then
built a way to solve MCGDM problems based on the MGNRS theory on dual domains.

The structure of the article is as follows. In Section 2, some basic notions and operations are
introduced. In Section 3, the notion of MGNRS is proposed and their properties are studied. In Section 4,
the model of MGNRS on dual domains is proposed and their properties are obtained. Also, we obtained
that MGNRS on dual domains will degenerate into MGNRS on a single domain when the two domains
are same. In Section 5, an application of the MGNRS to solve a MCGDM problem was proposed.
Finally, Section 6 concludes this paper and provides an outlook.

2. Preliminary

In this section, we review several basic concepts and operations of the neutrosophic set and
multi-granulation rough set.

Definition 1 ([11]). A single valued neutrosophic set B is denoted by ∀ y ε Y, as follows:

B(y) = (TB(y), IB(y), FB(y))

TB(y), IB(y), FB(y) ε [0,1] and satisfies 0 ≤ TB(y) + IB(y) + FB(y) ≤ 3.

As a matter of convenience, ‘single valued neutrosophic set’ is abbreviated to ‘neutrosophic set’
later. In this paper, NS(Y) denotes the set of all single valued neutrosophic sets in Y, and NR(Y × Z)
denotes the set of all of the neutrosophic relations in Y × Z.

Definition 2 ([11]). If A and C are two neutrosophic sets, then the inclusion relation, union, intersection, and
complement operations are defined as follows:

(1) A ⊆ C iff ∀ y ε Y, TA(y) ≤ TC(y), IA(y) ≥ IC(y) and FA(y) ≥ FC(y)
(2) Ac = {(y, FA(y), 1 − IA(y), TA(y)) | y ε Y}
(3) A ∩ C = {(y, TA(y) ∧ TC(y), IA(y) ∨ IC(y), FA(y) ∨ FC(y)) | y ε Y}
(4) A ∪ C = {(y, TA(y) ∨ TC(y), IA(y) ∧ IC(y), FA(y) ∧ FC(y)) | y ε Y}
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Definition 3 ([19]). If (U, R) is a single valued neutrosophic approximation space. Then ∀ B ε SVNS(U),
the lower approximation N(B) and upper approximation N(B) of B are defined as follows:

TN(B)(y) = min
z∈U

[max(FR(y, z), TB(z))], IN(B)(y) = max
z∈U

[min((1− IR(y, z)), IB(z))],

FN(B)(y) = max
z∈U

[min(TR(y, z), FB(z))]

TN(B)(y) = max
z∈U

[min(TR(y, z), TB(z))], IN(B)(y) = min
z∈U

[max(IR(y, z), IB(z))],

FN(B)(y) = min
z∈U

[max(FR(y, z), FB(z))]

The pair
(

N(B), N(B)
)

is called the single valued neutrosophic rough set of B, with respect
to (U, R).

According to the operation of neutrosophic number in [16], the sum of two neutrosophic sets in U
is defined as follows.

Definition 4. If C and D are two neutrosophic sets in U, then the sum of C and D is defined as follows:

C + D = {<y, C(y) ⊕ D(y)> | y ε U}.

Definition 5 ([30]). If b = (Tb, Ib, Fb) is a neutrosophic number, n* = (Tb*, Ib*, Fb*) = (1, 0, 0) is an ideal
neutrosophic number. Then, the cosine similarity measure is defined as follows:

S(b, b∗) =
Tb · Tb∗ + Ib · Ib∗ + Fb · Fb∗√

Tb
2 + Ib

2 + Fb
2 ·
√
(Tb∗)

2 + (Ib∗)
2 + (Fb∗)

2

3. Multi-Granulation Neutrosophic Rough Sets

In this part, we propose the concept of MGNRS and study their characterizations. MGNRS is
a rough set generated by multi-neutrosophic relations, and when all neutrosophic relations are same,
MGNRS will degenerated to neutrosophic rough set.

Definition 6. Assume U is a non-empty finite domain, and Ri (1 ≤ i ≤ n) is the binary neutrosophic relation
on U. Then, (U, Ri) is called the multi-granulation neutrosophic approximation space (MGNAS).

Next, we present the multi-granulation rough approximation of a neutrosophic concept in an
approximation space.

Definition 7. Let the tuple ordered set (U, Ri) (1 ≤ i ≤ n) be a MGNAS. For any B ε NS (U), the three
memberships of the optimistic lower approximation Mo(B)and optimistic upper approximationMo

(B) in (U, Ri)
are defined, respectively, as follows:

TMo(B)(y) =
n

max
i=1

min
z∈U

(
max

(
FRi (y, z), TB(z)

))
IMo(B)(y) =

n
min
i=1

max
z∈U

(
min

((
1− IRi (y, z)

)
, IB(z)

))
,

FMo(B)(y) =
n

min
i=1

max
z∈U

(
min

(
TRi (y, z), FB(z)

))
, TMo

(B)(y) =
n

min
i=1

max
z∈U

(
min

(
TRi (y, z), TB(z)

))
,

IMo
(B)(y) =

n
max
i=1

min
z∈U

(
max

(
IRi (y, z), IB(z)

))
, FMo

(B)(y) =
n

max
i=1

min
z∈U

(
max

(
FRi (y, z), FB(z)

))
.

Then, Mo(B), Mo
(B) ε NS(U). In addition, B is called a definable neutrosophic set on (U, Ri) when

Mo(B) = Mo
(B). Otherwise, the pair

(
Mo(B), Mo

(B)
)

is called an optimistic MGNRS.
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Definition 8. Let the tuple ordered set (U, Ri) (1 ≤ i ≤ n) be a MGNAS. For any B ε NS(U), the three
memberships of pessimistic lower approximation Mp(B) and pessimistic upper approximation Mp

(B) in (U, Ri)
are defined, respectively, as follows:

TMp(B)(y) =
n

min
i=1

min
z∈U

(
max

(
FRi (y, z), TB(z)

))
, IMp(B)(y) =

n
max
i=1

max
z∈U

(
min

((
1− IRi (y, z)

)
, IB(z)

))
,

FMp(B)(y) =
n

max
i=1

max
z∈U

(
min

(
TRi (y, z), FB(z)

))
, TMp

(B)(y) =
n

max
i=1

max
z∈U

(
min

(
TRi (y, z), TB(z)

))
,

IMp
(B)(y) =

n
min
i=1

min
z∈U

(
max

(
IRi (y, z), IB(z)

))
, FMp

(B)(y) =
n

min
i=1

min
z∈U

(
max

(
FRi (y, z), FB(z)

))
.

Similarly, B is called a definable neutrosophic set on (U, Ri) when Mp(B) = Mp
(B). Otherwise, the pair(

Mp(B), Mp
(B)
)

is called a pessimistic MGNRS.

Example 1. Define MGNAS (U, Ri), where U = {z1, z2, z3} and Ri (1 ≤ i ≤ 3) are given in Tables 1–3

Table 1. Neutrosophic relation R1.

R1 z1 z2 z3

z1 (0.4, 0.5, 0.4) (0.5, 0.7, 0.1) (1, 0.8, 0.8)
z2 (0.5, 0.6, 1) (0.2, 0.6, 0.4) (0.9, 0.2, 0.4)
z3 (1, 0.2, 0) (0.8, 0.9, 1) (0.6, 1, 0)

Table 2. Neutrosophic relation R2.

R2 z1 z2 z3

z1 (0.9, 0.2, 0.4) (0.3, 0.9, 0.1) (0.1, 0.7, 0)
z2 (0.4, 0.5, 0.1) (0, 0.1, 0.7) (1, 0.8, 0.8)
z3 (1, 0.5, 0) (0.4, 0.4, 0.2) (0.1, 0.5, 0.4)

Table 3. Neutrosophic relation R3.

R3 z1 z2 z3

z1 (0.7, 0.7, 0) (0.4, 0.8, 0.9) (1, 0.4, 0.5)
z2 (0.8, 0.2, 0.1) (1, 0.1, 0.8) (0.1, 0.3, 0.5)
z3 (0, 0.8, 1) (1, 0, 1) (1, 1, 0)

Suppose a neutrosophic set on U is as follows: C(z1) = (0.2, 0.6, 0.4), C(z2) = (0.5, 0.4, 1),
C(z3) = (0.7, 0.1, 0.5); by Definitions 7 and 8, we can get the following:

Mo(C)(z1) = (0.4, 0.3, 0.4), Mo(C)(z2) = (0.5, 0.4, 0.5), Mo(C)(z3) = (0.7, 0.4, 0.4)
Mo

(C)(z1) = (0.3, 0.6, 0.4), Mo
(C)(z2) = (0.5, 0.4, 0.5), Mo

(C)(z3) = (0.4, 0.6, 0.5)
Mp(C)(z1) = (0.2, 0.6, 0.5), Mp(C)(z2) = (0.2, 0.6, 0.1), Mp(C)(z3) = (0.2, 0.6, 0.1)
Mp

(C)(z1) = (0.7, 0.4, 0.4), Mp
(C)(z2) = (0.7, 0.2, 0.4), Mp

(C)(z3) = (0.7, 0.4, 0.4)

Proposition 1. Assume (U, Ri) is MGNAS, Ri (1 ≤ i ≤ n) is the neutrosophic relations. ∀ C ε NS(U), Mo(C)
and Mo

(C) are the optimistic lower and upper approximation of C. Then,

Mo(C) =
n
∪

i=1
N(C)Mo

(C) =
n
∩

i=1
N(C)

where
N(C)(y) = ∩

z∈U
(Ri

c(y, z) ∪ C(z)),N(C)(y) = ∪
z∈U

(Ri(y, z) ∩ C(z))

Proof. They can be proved by Definitions 7.



Symmetry 2018, 10, 296 5 of 13

Proposition 2. Assume (U, Ri) be MGNAS, Ri (1 ≤ i ≤ n) be neutrosophic relations. ∀ C ε NS(U), Mp(C)
and Mp

(C) are the pessimistic lower and upper approximation of C. Then

Mp(C) =
n
∩

i=1
N(C)Mp

(C) =
n
∪

i=1
N(C)

where
N(C)(y) = ∩

z∈U
(Ri

c(y, z) ∪ C(z)), N(C)(y) = ∪
z∈U

(Ri(y, z) ∩ C(z))

Proof. Proposition 2 can be proven by Definition 8.

Proposition 3. Assume (U, Ri) is MGNAS, Ri (1 ≤ i ≤ n) is the neutrosophic relations. ∀ C, D ε NS(U),
we have the following:

(1) Mo(C) =∼ Mo
(∼ C), Mp(C) =∼ Mp

(∼ C);

(2) Mo
(C) =∼ Mo(∼ C), Mp

(C) =∼ Mp(∼ C);
(3) Mo(C ∩ D) = Mo(C) ∩Mo(D), Mp(C ∩ D) = Mp(C) ∩Mp(D);

(4) Mo
(C ∪ D) = Mo

(C) ∪Mo
(D), Mp

(C ∪ D) = Mp
(C) ∪Mp

(D);
(5) C ⊆ D ⇒ Mo(C) ⊆ Mo(D), Mp(C) ⊆ Mp(D) ;

(6) C ⊆ D ⇒ Mo
(C) ⊆ Mo

(D), Mp
(C) ⊆ Mp

(D) ;
(7) Mo(C ∪ D) ⊇ Mo(C) ∪Mo(D), Mp(C ∪ D) ⊇ Mp(C) ∪Mp(D);

(8) Mo
(C ∩ D) ⊆ Mo

(C) ∩Mo
(D), Mp

(C ∩ D) ⊆ Mp
(C) ∩Mp

(D).

Proof. (1), (2), (5), and (6) can be taken directly from Definitions 7 and 8. We only show (3), (4), (7),
and (8).

(3) From Proposition 1, we have the following:

Mo(C ∩ D)(y) =
n
∪

i=1

(
∩

z∈U
(Ri

c(y, z) ∪ (C ∩ D)(z))
)

=
n
∪

i=1

(
∩

z∈U
((Ri

c(y, z) ∪ C(z)) ∩ (Ri
c(y, z) ∪ D(z)))

)
=

(
n
∪

i=1

(
∩

z∈U
(Ri

c(y, z) ∪ C(z))
))
∩
(

n
∪

i=1

(
∩

z∈U
(Ri

c(y, z) ∪ D(z))
))

= MoC(y) ∩MoD(y).

Similarly, from Proposition 2, we can get the following:

Mp(C ∩ D)(y) = MpC(y) ∩MpD(y).

(4) According to Propositions 1 and 2, in the same way as (3), we can get the proof.
(7) From Definition 7, we have the following:

TMo(C∪D)(y) =
n

max
i=1

min
z∈U

{
max

[
FRi (y, z), (max(TC(z), TD(z)))

]}
=

n
max
i=1

min
z∈U

{
max

[(
max

(
FRi (y, z), TC(z)

))
,
(
max

(
FRi (y, z), TD(z)

))]}
≥ max

{[
n

max
i=1

min
z∈U

(
max

(
FRi (y, z), TC(z)

))]
,
[

n
max
i=1

min
z∈U

(
max

(
FRi (y, z), TD(z)

))]}
= max

(
TMo(C)(y), TMo(D)(y)

)
.
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IMo(C∪D)(y) =
n

min
i=1

max
z∈U

{
min

[(
1− IRi (y, z)

)
, (min(IC(z), ID(z)))

]}
=

n
min
i=1

max
z∈U

{
min

[(
min

((
1− IRi (y, z)

)
, IC(z)

))
,
(
min

((
1− IRi (y, z)

)
, ID(z)

))]}
≤ min

{[
n

min
i=1

max
z∈U

(
min

((
1− IRi (y, z)

)
, IC(z)

))]
,
[

n
min
i=1

max
z∈U

(
min

((
1− IRi (y, z)

)
, ID(z)

))]}
= min

(
IMo(C)(y), IMo(D)(y)

)
.

FMo(C∪D)(y) =
n

min
i=1

max
z∈U

{
min

[
TRi (y, z), (min(FC(z), FD(z)))

]}
=

n
min
i=1

max
z∈U

{
min

[
min

(
TRi (y, z), FC(z)

)]
,
[
min

(
TRi (y, z), FD(z)

)]}
≤ min

{[
n

min
i=1

max
z∈U

(
min

(
TRi (y, z), FC(z)

))]
,
[

n
min
i=1

max
z∈U

(
min

(
TRi (y, z), FD(z)

))]}
= min

(
FMo(C)(y), FMo(D)(y)

)
.

Hence, Mo(C ∪ D) ⊇ Mo(C) ∪Mo(D).
Also, according to Definition 8, we can get Mp(C ∪ D) ⊇ Mp(C) ∪Mp(D).
(8) From Definition 7, we have the following:

TMo
(C∩D)(y) =

n
min
i=1

max
z∈U

{
min

[
TRi (y, z), (min(TC(z), TD(z)))

]}
=

n
min
i=1

max
z∈U

{
min

[(
min

(
TRi (y, z), TC(z)

))
,
(
min

(
TRi (y, z), TD(z)

))]}
≤ min

{[
n

min
i=1

max
z∈U

(
min

(
TRi (y, z), TC(z)

))]
,
[

n
min
i=1

max
z∈U

(
min

(
TRi (y, z), TD(z)

))]}
= min

(
TMo

(C)(y), TMo
(D)(y)

)
.

IMo
(C∩D)(y) =

n
max
i=1

min
z∈U

{
max

[
IRi (y, z), (max(IC(z), ID(z)))

]}
=

n
max
i=1

min
z∈U

{
max

[(
max

(
IRi (y, z), IC(z)

))
,
(
max

(
IRi (y, z), ID(z)

))]}
≤ min

{[
n

max
i=1

min
z∈U

(
max

(
IRi (y, z), IC(z)

))]
,
[

n
max
i=1

min
z∈U

(
max

(
IRi (y, z), ID(z)

))]}
= min

(
IMo

(C)(y), IMo
(D)(y)

)
.

FMo
(C∩D)(y) =

n
max
i=1

min
z∈U

[
FRi (y, z) ∨ (FC(z) ∨ FD(z))

]
=

n
max
i=1

min
z∈U

[(
FRi (y, z) ∨ FC(z)

)
∨
(

FRi (y, z) ∨ FD(z)
)]

≥
[

n
max
i=1

min
z∈U

(
FRi (y, z) ∨ FC(z)

)]
∨
[

n
max
i=1

min
z∈U

(
FRi (y, z) ∨ FD(z)

)]
= max

(
FMo

(C)(y), FMo
(D)(y)

)
.

Hence, Mo
(C ∩ D) ⊆ Mo

(C) ∩Mo
(D).

Similarly, according Definition 8, we can get Mp
(C ∩ D) ⊆ Mp

(C) ∩Mp
(D).

Next, we will give an example to show that maybe Mo(C ∪ D) 6= Mo(C) ∪Mo(D).

Example 2. Define MGNAS (U, Ri), where U = {z1, z2, z3} and Ri (1 ≤ i ≤ 3) are given in Example 1.
Suppose there are two neutrosophic sets on universe U, as follows: C(z1) = (0.5, 0.1, 0.2), C(z2) = (0.5,

0.3, 0.2), C(z3) = (0.6, 0.2, 0.1), D(z1) = (0.7, 0.2, 0.1), D(z2) = (0.4, 0.2, 0.1), D(z3) = (0.2, 0.2, 0.5), we have
(C ∪ D)(z1) = (0.7, 0.1, 0.1), (C ∪ D)(z2) = (0.5, 0.2, 0.1), (C ∪ D)(z3) = (0.6, 0.2, 0.1), (C ∩ D)(z1) = (0.5, 0.1,
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0.2), (C ∩ D)(z2) = (0.4, 0.2, 0.2), (C ∩ D)(z3) = (0.2, 0.2, 0.5). Then, from Definitions 7 and 8, we can get
the following:

Mo(C)(z1) = (0.5, 0, 0.2), Mo(C)(z2) = (0.5, 0.1, 0.2), Mo(C)(z3) = (0.5, 0.1, 0.2);
Mo(D)(z1) = (0.4, 0, 0.1), Mo(D)(z2) = (0.2, 0.1, 0.2), Mo(D)(z3) = (0.4, 0.1, 0.2);

Mo(C ∪ D)(z1) = (0.5, 0, 0.1), Mo(C ∪ D)(z2) = (0.5, 0.1, 0.1), Mo(C ∪ D)(z3) = (0.5, 0.1, 0.1)
(Mo(C) ∪Mo(D))(z1) = (0.5, 0, 0.1),(Mo(C) ∪Mo(D))(z2) = (0.5, 0.1, 0.2),

(Mo(C) ∪Mo(D))(z3) = (0.5, 0.1, 0.2)

So, Mo(C ∪ D) 6= Mo(C) ∪Mo(D).
Also, there are examples to show that maybe Mp(C ∪ D) 6= Mp(C) ∪Mp(D),
Mo

(C ∩ D) 6= Mo
(C) ∩Mo

(D), Mp
(C ∩ D) 6= Mp

(C) ∩Mp
(D). We do not say anymore here.

4. Multi-Granulation Neutrosophic Rough Sets on Dual Domains

In this section, we propose the concept of MGNRS on dual domains and study their
characterizations. Also, we obtain that the MGNRS on dual domains will degenerate into MGNRS,
defined in Section 3, when the two domains are same.

Definition 9. Assume that U and V are two domains, and Ri ε NS(U × V) (1 ≤ i ≤ n) is the binary
neutrosophic relations. The triple ordered set (U, V, Ri) is called the (two-domain) MGNAS.

Next, we present the multi-granulation rough approximation of a neutrosophic concept in
an approximation space on dual domains.

Definition 10. Let (U, V, Ri) (1 ≤ i ≤ n) be (two-domain) MGNAS. ∀ B ε NS(V) and y ε U, the three
memberships of the optimistic lower and upper approximation Mo(B), Mo

(B) in (U, V, Ri) are defined,
respectively, as follows:

TMo(B)(y) =
n

max
i=1

min
z∈V

[
max

(
FRi (y, z), TB(z)

)]
IMo(B)(y) =

n
min
i=1

max
z∈V

[
min

((
1− IRi (y, z)

)
, IB(z)

)]
FMo(B)(y) =

n
min
i=1

max
z∈V

[
min

(
TRi (y, z), FB(z)

)]
TMo

(B)(y) =
n

min
i=1

max
z∈V

[
min

(
TRi (y, z), TB(z)

)]
I n

∑
i=1

Ri

o

(B)
(y) =

n
max
i=1

min
z∈V

[
max

(
IRi (y, z), IB(z)

)]
FMo

(B)(y) =
n

max
i=1

min
z∈V

[
max

(
FRi (y, z), FB(z)

)]

Then Mo(B), Mo
(B) ε NS(U). In addition, B is called a definable neutrosophic set on (U, V, Ri)

on dual domains when Mo(B) = Mo
(B). Otherwise, the pair

(
Mo(B), Mo

(B)
)

is called an optimistic
MGNRS on dual domains.

Definition 11. Assume (U, V, Ri) (1 ≤ i ≤ n) is (two-domain) MGNAS. ∀ B ε NS(V) and y ε U, the three
memberships of the pessimistic lower and upper approximation Mp(B), Mp

(B) in (U, V, Ri) are defined,
respectively, as follows:

TMp(B)(y) =
n

min
i=1

min
z∈V

[
max

(
FRi (y, z), TB(z)

)]
, IMp(B)(y) =

n
max
i=1

max
z∈V

[
min

((
1− IRi (y, z)

)
, IB(z)

)]
,

FMp(B)(y) =
n

max
i=1

max
z∈V

[
min

(
TRi (y, z), FB(z)

)]
, TMp

(B)(y) =
n

max
i=1

max
z∈V

[
min

(
TRi (y, z), TB(z)

)]
,

IMp
(B)(y) =

n
min
i=1

min
z∈V

[
max

(
IRi (y, z), IB(z)

)]
, FMp

(B)(y) =
n

min
i=1

min
z∈V

[
max

(
FRi (y, z), FB(z)

)]
.
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Then, B is called a definable neutrosophic set on (U, V, Ri) when Mp(B) = Mp
(B). Otherwise,

the pair
(

Mp(B), Mp
(B)
)

is called a pessimistic MGNRS on dual domains.

Remark 1. Note that if U = V, then the optimistic and pessimistic MGNRS on the dual domains will be the
same with the optimistic and pessimistic MGNRS on a single domain, which is defined in Section 3

Proposition 4. Assume (U, V, Ri) (1 ≤ i ≤ n) is (two-domain) MGNAS, Ri (1 ≤ i ≤ n) is the neutrosophic
relations. ∀ C, D ε NS(U), we have the following:

(1) Mo(C) =∼ Mo
(∼ C), Mp(C) =∼ Mp

(∼ C);

(2) Mo
(C) =∼ Mo(∼ C), Mp

(C) =∼ Mp(∼ C);
(3) Mo(C ∩ D) = Mo(C) ∩Mo(D), Mp(C ∩ D) = Mp(C) ∩Mp(D);

(4) Mo
(C ∪ D) = Mo

(C) ∪Mo
(D), Mp

(C ∪ D) = Mp
(C) ∪Mp

(D);
(5) C ⊆ D ⇒ Mo(C) ⊆ Mo(D), Mp(C) ⊆ Mp(D) ;

(6) C ⊆ D ⇒ Mo
(C) ⊆ Mo

(D), Mp
(C) ⊆ Mp

(D) ;
(7) Mo(C ∪ D) ⊇ Mo(C) ∪Mo(D), Mp(C ∪ D) ⊇ Mp(C) ∪Mp(D);

(8) Mo
(C ∩ D) ⊆ Mo

(C) ∩Mo
(D), Mp

(C ∩ D) ⊆ Mp
(C) ∩Mp

(D).

Proof. These propositions can be directly proven from Definitions 10 and 11.

5. An Application of Multi-Granulation Neutrosophic Rough Set on Dual Domains

Group decision making [31] is a useful way to solve uncertainty problems. It has developed
rapidly since it was first proposed. Its essence is that in the decision-making process, multiple
decision makers (experts) are required to participate and negotiate in order to settle the corresponding
decision-making problems. However, with the complexity of the group decision-making problems,
what we need to deal with is the multi-criteria problems, that is, multi-criteria group decision making
(MCGDM). The MCGDM problem is to select or rank all of the feasible alternatives in multiple,
interactive, and conflicting standards.

In this section, we build a neo-way to solve a kind of special MCGDM problem using the MGNRS
theory. We generated the rough set according the multi-neutrosophic relations and then used it to
solve the decision-making problems. We show the course and methodology of it.

5.1. Problem Description

Firstly, we describe the considered problem and we show it using a MCGDM example of
houses selecting.

Let U = {x1, x2, . . . , xm} be the decision set, where x1 represents very good, x2 represents good,
x3 represents less good, . . . , and xm represents not good. Let V = {y1, y2, . . . , yn} be the criteria set to
describe the given house, where y1 represents texture, y2 represents geographic location, y3 represents
price, . . . , and yn represents solidity. Suppose there are k evaluation experts and all of the experts give
their own evaluation for criteria set yj (yj ε V) (j = 1, 2, . . . , n), regarding the decision set elements
xi (xi ε U) (i = 1, 2, . . . , m). In this paper, let the evaluation relation R1, R2, . . . , Rk between V and U
given by the experts, be the neutrosophic relation, R1, R2, . . . , Rk ε SNS (U × V). That is, Rl (xi, yj)
(l = 1, 2, . . . , k) represents the relation of the criteria set yj and the decision set element xi, which is
given by expert l, based on their own specialized knowledge and experience. For a given customer, the
criterion of the customer is shown using a neutrosophic set, C, in V, according to an expert’s opinion.
Then, the result of this problem is to get the opinion of the given house for the customer.

Then, we show the method to solve the above problem according to the theory of optimistic and
pessimistic MGNRS on dual domains.
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5.2. New Method

In the first step, we propose the multi-granulation neutrosophic decision information system
based on dual domains for the above problem.

According to Section 5.1′s description, we can get the evaluation of each expert as a neutrosophic
relation. Then, all of the binary neutrosophic relations Rl given by all of the experts construct a relation
set R (i.e., Rl ε R). Then, we get the multi-granulation neutrosophic decision information systems
based on dual domains, denoted by (U, V,R).

Secondly, we compute Mo(C), Mo
(C), Mp(C), Mp

(C) for the given customer, regarding (U, V,R).
Thirdly, according to Definition 4, we computed the sum of the optimistic and pessimistic

multi-granulation neutrosophic lower and upper approximation.
Next, according Definition 5, we computed the cosine similarity measure. Define the choice x∗

with the idea characteristics value α ∗ = (1, 0, 0) as the ideal choice. The bigger the value of S(αxi , α∗)
is, the closer the choice xi with the ideal alternative x ∗, so the better choice xi is.

Finally, we compared S(αxi , α∗) and ranked all of the choices that the given customer can choose
from and we obtained the optimal choice.

5.3. Algorithm and Pseudo-Code

In this section, we provide the algorithm and pseudo-code given in table Algorithm 1.

Algorithm 1. Multi-granulation neutrosophic decision algorithm.

Input Multi-granulation neutrosophic decision information systems (U, V,R).
Output The optimal choice for the client.
Step 1 Computing Mo(C), Mo

(C), Mp(C), Mp
(C) of neutrosophic set C about (U, V,R);

Step 2 From Definition 4., we get Mo(C) + Mo
(C) and Mp(A) + Mp

(A);
Step 3 From Definition 5., we computer So(αxi , α∗) and Sp(αxi , α∗) (i = 1, 2, . . . , m);
Step 4 The optimal decision-making is to choose xh if

S(αxh , α∗) = maxi∈{1,2,··· ,m}(S(αxi , α∗)).
pseudo-code
Begin
Input (U, V,R), where U is the decision set, V is the criteria set, andR denotes the binary neutrosophic

relation between criteria set and decision set.
Calculate Mo(C), Mo

(C), Mp(C), Mp
(C). Where Mo(C), Mo

(C), Mp(C), Mp
(C) , which represents the

optimistic and pessimistic multi-granulation lower and upper approximation of C, which is defined in
Section 4.

Calculate Mo(C) + Mo
(C) and Mp(C) + Mp

(C), which is defined in Definition 4.

Calculate So
(

Mo(C) + Mo
(C), α∗

)
and Sp

(
Mp(C) + Mp

(C), α∗
)

, which is defined in Definition 5.

For i = 1, 2, . . . , m; j = 1, 2, . . . , n; l = 1, 2, . . . , k;

If So(αxi , α∗) < So
(

αxj , α∗
)

, then So
(

αxj , α∗
)
→Max,

else So(αxi , α∗)→Max,
If So(αxl , α∗) > Max, then So(αxl , α∗)→Max;

Print Max;
End

5.4. An Example

In this section, we used Section 5.2’s way of solving a MCGDM problem, using the example of
buying houses.

Let V = {y1, y2, y3, y4} be the criteria set, where y1 represents the texture, y2 represents the
geographic location, y3 represents the price, and y4 represents the solidity. Let U = {z1, z2, z3, z4} be
a decision set, where z1 represents very good, z2 represents good, z3 represents less good, and z4

represents not good.
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Assume that there are three experts. They provide their opinions about all of the criteria sets yj
(yj ε V) (j = 1, 2, 3, 4) regarding the decision set elements zi (xi ε U) (i = 1, 2, 3, 4). Like the discussion
in Section 5.1, the experts give three evaluation relations, R1, R2, and R3, which are neutrosophic
relations between V and U, that is, R1, R2, R3 ε NR(U × V). TRk(zi, yj) shows the expert, k, give the
truth membership of yj to zi; IRk(zi, yj) shows the expert, k, give the indeterminacy membership of yj to
zi; FRk(zi, yj) shows the expert, k, give the falsity membership of yj to zi. For example, the first value
(0.2, 0.3, 0.4) in Table 4, of 0.2 shows that the truth membership of the texture for the given house is
very good, 0.3 shows that the indeterminacy membership of the texture for the given house is very
good, and 0.4 shows that the falsity membership of the texture for the given house is very good.

Table 4. Neutrosophic relation R1.

R1 y1 y2 y3 y4

z1 (0.2, 0.3, 0.4) (0.3, 0.5, 0.4) (0.4, 0.6, 0.2) (0.1, 0.3, 0.5)
z2 (0.8, 0.7, 0.1) (0.2, 0.5, 0.6) (0.6, 0.6, 0.7) (0.4, 0.6, 0.3)
z3 (0.5, 0.7, 0.2) (0.6, 0.2, 0.1) (1, 0.9, 0.4) (0.5, 0.4, 0.3)
z4 (0.4, 0.6, 0.3) (0.5, 0.5, 0.4) (0.3, 0.8, 0.4) (0.2, 0.9, 0.8)

So, we build the multi-granulation neutrosophic decision information system (U, V, R) for
the example.

Assume that the three experts give three evaluation relations, the results are given in Tables 4–6.

Table 5. Neutrosophic relation R2.

R2 y1 y2 y3 y4

z1 (0.3, 0.4, 0.5) (0.6, 0.7, 0.2) (0.1, 0.8, 0.3) (0.5, 0.3, 0.4)
z2 (0.5, 0.5, 0.4) (1, 0, 1) (0.8, 0.1, 0.8) (0.7, 0.8, 0.5)
z3 (0.7, 0.2, 0.1) (0.3, 0.5, 0.4) (0.6, 0.1, 0.4) (1, 0, 0)
z4 (1, 0.2, 0) (0.8, 0.1, 0.5) (0.1, 0.2, 0.7) (0.2, 0.2, 0.8)

Table 6. Neutrosophic relation R3.

R3 y1 y2 y3 y4

z1 (0.6, 0.2, 0.2) (0.3, 0.1, 0.7) (0, 0.2, 0.9) (0.8, 0.3, 0.2)
z2 (0.1, 0.1, 0.7) (0.2, 0.3, 0.8) (0.7, 0.1, 0.2) (0, 0, 1)
z3 (0.8, 0.4, 0.1) (0.9, 0.5, 0.3) (0.2, 0.1, 0.6) (0.7, 0.2, 0.3)
z4 (0.6, 0.2, 0.2) (0.2, 0.2, 0.8) (1, 1, 0) (0.5, 0.3, 0.1)

Assume C is the customer’s evaluation for each criterion in V, and is given by the following:

C(y1) = (0.6, 0.5, 0.5), C(y2) = (0.7, 0.3, 0.2), C(y3) = (0.4, 0.5, 0.9), C(y4) = (0.3, 0.2, 0.6).

From Definitions 10 and 11, we can compute the following:

Mo(C)(z1) = (0.4, 0.5, 0.4), Mo(C)(z2) = (0.5, 0.4, 0.6), Mo(C)(z3) = (0.3, 0.3, 0.6),
Mo(C)(z4) = (0.6, 0.4, 0.4)

Mo
(C)(z1) = (0.4, 0.3, 0.5), Mo

(C)(z2) = (0.4, 0.5, 0.7), Mo
(C)(z3) = (0.6, 0.3, 0.4),

Mo
(C)(z4) = (0.5, 0.5, 0.5)

Mp(C)(z1) = (0.3, 0.5, 0.6), Mp(C)(z2) = (0.3, 0.5, 0.8), Mp(C)(z3) = (0.3, 0.5, 0.9),
Mp(C)(z4) = (0.3, 0.5, 0.9)

Mo
(C)(z1) = (0.6, 0.3, 0.2), Mo

(C)(z2) = (0.7, 0.2, 0.5), Mo
(C)(z3) = (0.7, 0.2, 0.2),

Mo
(C)(z4) = (0.7, 0.2, 0.4)
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According Definition 4, we have the following:(
Mo(C) + Mo

(C)
)
(z1) = (0.64, 0.15, 0.2),

(
Mo(C) + Mo

(C)
)
(z2) = (0.7, 0.2, 0.42),(

Mo(C) + Mo
(C)
)
(z3) = (0.72, 0.09, 0.24),

(
Mo(C) + Mo

(C)
)
(z4) = (0.8, 0.2, 0.2)

(
Mp(C) + Mp

(C)
)
(z1) = (0.72, 0.15, 0.12),

(
Mp(C) + Mp

(C)
)
(z2) = (0.79, 0.1, 0.4),(

Mp(C) + Mp
(C)
)
(z3) = (0.79, 0.1, 0.18),

(
Mp(C) + Mp

(C)
)
(z4) = (0.79, 0.1, 0.36)

Then, according Definition 5, we have the following:

So(αz1 , α∗) = 0.9315, So(αz2 , α∗) = 0.8329, So(αz3 , α∗) = 0.8588, So(αz4 , α∗) = 0.9428. (1)

Sp(αz1 , α∗) = 0.9662, Sp(αz2 , α∗) = 0.8865, Sp(αz3 , α∗) = 9677, Sp(αz4 , α∗) = 0.9040. (2)

Then, we have the following:

So(αz4 , α∗) > So(αz1 , α∗) > So(αz3 , α∗) > So(αz2 , α∗). (3)

Sp(αz3 , α∗) > Sp(αz1 , α∗) > Sp(αz4 , α∗) = Sp(αz2 , α∗). (4)

So, the optimistic optimal choice is to choose x4, that is, this given house is “not good” for the
customer; the pessimistic optimal choice is to choose x3, that is, this given house is “less good” for
the customer.

6. Conclusions

In this paper, we propose the concept of MGNRS on a single domain and dual domains, and
obtain their properties. I addition, we obtain that MGNRS on dual domains will be the same as the
MGNRS on a single domain when the two domains are same. Then, we solve a kind of special group
decision-making problem (based on neutrosophic relation) using MGNRS on dual domains, and we
show the algorithm and give an example to show its feasibility.

In terms of the future direction, we will study other types of combinations of multi-granulation
rough sets and neutrosophic sets and obtain their properties. At the same time, exploring the
application of MGNRS in totally dependent-neutrosophic sets (see [32]) and related algebraic systems
(see [33–35]), and a new aggregation operator, similarity measure, and distance measure (see [36–39]),
are also meaningful research directions for the future.
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