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Abstract
The neutrosophic sets are the prevailing frameworks that not only generalize the concept of
fuzzy sets, but also analyse the connectivity of neutralities with different ideational spec-
tra. In this article, we define a special type of neutrosophic set, named four-valued refined
neutrosophic set (FVRNO), based on which various set-theoretic operators and properties
of four-valued refined neutrosophic sets are studied. Often in many optimization problems
of the real world, only the partial information about the values of parameters is available. In
such situations, where impreciseness is involved in the information, classical techniques do
not exhibit an appropriate optimal solution. A new concept to handle imprecise information
is introduced and computational algorithm is formulated in four-valued refined neutrosophic
environment. The new concept of optimization problem is an extension of intuitionistic fuzzy
optimization as well as single-valued neutrosophic optimization. In this extended concept,
indeterminacy is further refined as uncertain (U) and contradiction (C = T∧F). Some exam-
ples to illustrate FVRNO are given and a comparative study of optimal solution between
intuitionistic fuzzy optimization, single-valued neutrosophic optimization, multi-objective
optimization using genetic algorithm,multi-objective goal attainment and four-valued refined
neutrosophic optimization techniques were carried out and that concludes better optimal
approximation is attained with new proposed optimization technique.
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1 Introduction

The theory of fuzzy set was introduced by Zadeh (1965). A fuzzy set basically consists of
subjects with a series of grades. The fuzzy set is described by a function(commonly termed as
membership function) from any non-empty set to the closed interval [0, 1]. The set-theocratic
ideas of relation, union, inclusion, complement, intersection, convexity, etc. are extended to
fuzzy sets. Moreover, several characteristics of all those notions are established in the context
of the fuzzy sets. After the introduction of fuzzy set, the fuzzy logic (FL) has been used in
several substantial applications to address the uncertainty (Singh et al. 2013). The extension
of FS to intutionistic fuzzy set was given by Atansassov (1986).

To exhibit the inexact, uncertain, incoherent and indefinite information that is faced by
the world, the notion of neutrosophic set was proposed for philosophical perspectives by
Smarandache (1999). The neutrosophic sets are the prevailing frameworks that generalize
the ideas of a fuzzy set (Zadeh 1965), classic set, interval-valued fuzzy set (Turksen 1986),
intuitionistic fuzzy set (Atansassov 1986), paraconsistent set, interval-valued intuitionistic
fuzzy set, tautological set and the paradoxist set. Single-valued neutrosophic set is the case of
neutrosophic set which is utilized in the engineering and scientific application. Indeterminacy
is associated with the uncertainty that everyone faces in every domain of life. Double-refined
neutrosophic sets and triple-refined neutrosophic sets are believed to handle incomplete and
inconsistent information more efficiently than single-valued neutrosophic set (Kandasamy
and Smarandache 2016; Zadeh 2018). Further generalizations such as single- and double-
valued neutrosophic set and neutrosophic logic are studied by Smarandache (2013). These
generalizations have made research more sensitive and realistic by introducing the uncertain
aspect of the life as an idea.

In previous optimization methods, all parameters are assumed to be exactly known and
fixed. However, these types of assumptions are not adequate to tackle various problems of
real life, where most parameters are inexact and inexplicit. Zimmermann (1978) was the first
to model such situations and acquainted the concept of fuzzy linear programming problem.
One can consider Zimmermann’s work as an extension of Zadeh and Bellman’s (1970) work
which proposes the basic concept of fuzzy goals, fuzzy constraints and fuzzy decisions.Many
researchers have studied and applied the optimization in fuzzy and generalized fuzzy environ-
ment. For this matter, Tanaka and Asai (1984) presented the fuzzy solutions of fuzzy linear
programming problem.Moreover, in addition to that, Chanas (1983), Verdegay (1984), Carls-
son andKorhonen (1986), Campos (1989), Luhandjula (1989), Sakawa andYano (1989), Jain
and Deb (2013), Guu and Wu (2018), Zhou et al. (2018), Ghodousian (2019), etc., worked
on linear and non-linear, single and multi-objective fuzzy optimization. A short survey of
studies of different researchers on optimization under impression can be found in the work
of Sahinidis (1983). Chakrabortty et al. (2013) and Wan et al. (2017) applied intuitionistic
fuzzy optimization to find the optimal solution of manufacturing inventory models and group
decision making with interval-valued fuzzy preference relations. Bharati (2018a, b), in his
recent work, proposed a new computational algorithm for multi-objective linear program-
ming problem in interval-valued intuitionistic fuzzy and hesitant fuzzy environments. Das
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and Roy (2015) and Sarkar and Roy (2018) presented an algorithm for non-linear program-
ming problem in neutrosophic environment and also applied the proposed method on riser
design and welded beam problems.

Uncertain programming has been widely applied in engineering, management, and design
problems. These prevailing methods dealing with uncertain data do not successfully imply
indeterminate solutions. Latitude is actually provided by introducing indeterminacy in deci-
sion making which acquire an indeterminate optimal solution for the objective function as
well as for decision variables. Hence, it is important to see how to deal with indeterminate
real life situation and yield indeterminate solutions. Whenever optimization was carried out
in neutrosophic and generalized neutrosophic environment, we get better and refined results.
Thesemodels are based on the conversion of objective functions into neutrosophic fuzzy con-
straints. The refined neutrosophic set handles impression and inconsistency more efficiently.
Our motivation is to establish a refined neutrosophic model, which could be more efficiently
applied in the decision-making process to get effective results. This model is proficient when
it is required to express an ill-known quantity with some uncertain numerical value or in
situations where decision makers have to abstain from expressing their assessments. In this
study, we define the four-valued refined neutrosophic set and set-theoretic operators and also
furnish them with various properties of four-valued refined neutrosophic set. We also aim to
give a computational algorithm for solving multi-objective non-linear programming prob-
lem by four-valued refined neutrosophic optimization approach. In addition, we have made
a comparative study between the new and some of the existing techniques.

2 Preliminaries

2.1 Fuzzy set

A fuzzy set (Zadeh 1965) is a set that can contain elements partially, that is, the property that
an element belongs to the set under consideration can be true with a partial degree of truth.
Given a universe set X , a fuzzy set ÃF is an ordered set (universe-element, truth degree of
membership of that element denoted mathematically as

ÃF = {(x, TÃF (x)) : x ∈ X},

where TÃF (x) ∈ [0, 1].

2.2 Intuitionistic fuzzy set (IFS)

Given a universe X , an intuitionistic fuzzy set (Atansassov 1986) is a set of triplet
(x, TÃI (x), FÃI (x)), where TÃI (x), FÃI (x) represents the truth and falsity grades, respec-
tively, and 0 ≤ TÃI (x) + FÃI (x) ≤ 1 , TÃI (x), FÃI (x) ∈ [0, 1]. Clearly, one can obtain a
fuzzy set when TÃI (x) + FÃI (x) = 1.

2.3 Neutrosophic set

Neutrosophic set (Smarandache 1995) is a generalized concept in which each component
x ∈ X to a set ÃN has a membership degree T

ÃN (x), nonmembership degree F
ÃN (x) as well
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as a degree of indeterminacy I
ÃN (x), where T

ÃN (x), I
ÃN (x) and F

ÃN (x) are real standard
or nonstandard subsets of ]0−, 1+[.

2.4 Single-valued neutrosophic set (SVNS)

In single-valued neutrosophic set (Smarandache 1998), each x ∈ X to a set ÃSN is character-
ized by TÃSN(x), I ÃSN(x), FÃSN(x), where TÃSN(x), I ÃSN(x), FÃSN(x) belongs to [0, 1] and
0 ≤ TÃSN(x) + I ÃSN(x) + FÃSN(x) ≤ 3.

Thus, a single-valued neutrosophic set ÃSN is expressed as

ÃSN = {(x, TÃSN(x), I ÃSN(x), FÃSN(x)) : x ∈ X}.

2.5 Fuzzy optimization

Fuzzy optimization is a process to solve the fuzziness model “optimally” using existing
optimization tools and techniques, purely depending on the formulation of fuzzy information
in terms of membership functions. There are seven stages introduced by Tang et al. (2004)
to carry out fuzzy optimization. These steps can be used for any kind of problem whether
it is linear or non-linear, single or multi-objective and decision variables are discrete or
continuous:

• Understanding the problem, identifying constraints and objectives of the framework and
connections among them.

• Formulation of fuzzy coefficient, fuzzy objective and fuzzy constraints based on the fuzzy
information in the problem.

• Using fuzzy coefficient, fuzzy objective, fuzzy constraints and mathematical techniques
development of a fuzzy optimization model.

• Formulation of fuzzy membership function based on the problem and decision makers’
choice to transform fuzzy model into fuzzy optimization.

• Transformation of the fuzzy optimization model into an equivalent or an approximate
crisp optimization model.

• Solution of the crisp optimization model by using appropriate optimization techniques.
• Upgradation of fuzzy optimization system iteratively if the attained optimal solution is

not satisfactory.

3 Four-valued refined neutrosophic set (FVRNS)

Refinement of any of T , I , and F involves the extenics (Zadeh 2018). Four-valued refined
neutrosophic set can be defined in a number of ways by splitting indeterminacy in different
manners. Here in the present work, we only focus on the below mentioned criteria. A four-
valued refined neutrosophic set is such a type of neutrosophic set in which indeterminacy is
split into two parts as U =uncertain and C = contradiction, where C = T ∧ F . The values
of T , I , C and F belong to [0, 1] and 0 ≤ T +U +C + F ≤ 4. Thus, FVRNS is represented
as

ÃRN = {(x, TÃRN(x),UÃRN(x),CÃRN(x), FÃRN(x)) : x ∈ X}.
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When X is continuous, then

ÃRN =
∫
X
{x, TÃRN(x),UÃRN(x),CÃRN(x), FÃRN(x)�dx : x ∈ X},

and when X is discrete, its representation will be

ÃRN =
n∑

i=1

{TÃRN(xi ),UÃRN(xi ),CÃRN(xi ), FÃRN(xi )�xi : xi ∈ X}.

The complement of the four-valued refined neutrosophic set is denoted by Cr and is defined
as

TCr (x) = FÃRN(x),

UCr (x) = 1 −UÃRN(x),

CCr (x) = 1 − CÃRN(x),

FCr (x) = TÃRN(x),

for all x ∈ X .
The definition of FVRNS and the complement guarantees the following results.

Theorem 1 For two FVRNS ÃRN and BRN, ÃRN ⊆ BRN if and only if

TÃRN(x) ≤ TB̃RN(x),

UÃRN(x) ≤ UB̃RN(x),

CÃRN(x) ≤ CB̃RN(x),

FÃRN(x) ≥ FB̃RN(x).

Theorem 2 ÃRN ⊆ B̃RN if and only if Cr (B̃RN) ⊆ Cr ( ÃRN).

The union of two four-valued refined neutrosophic sets ÃRN and B̃RN is a four-valued
refined neutrosophic set C̃RN, indicated as C̃RN = ÃRN ∪ B̃RN, whose truth membership T ,
uncertainty U , contradictory C and falsity memberships F are identified with those of ÃRN

and B̃ RN as follow:

TC̃RN(x) = max(TÃRN(x), TB̃RN(x));
UC̃RN(x) = max(UÃRN(x),UB̃RN(x));
CC̃RN(x) = max(CÃRN(x),CB̃RN(x));
FC̃RN(x) = min(FÃRN(x), FB̃RN(x)).

Theorem 3 ÃRN ∪ B̃RN is the smallest four-valued refined neutrosophic set containing both
ÃRN and B̃RN.

Proof It is unvarnished from the concept of the union operator. �	
The intersection of two four-valued refined neutrosophic set ÃRN and B̃RN is a four-valued
refined neutrosophic set C̃RN, indicated as C̃RN = ÃRN ∩ B̃RN, whose truth membership,
uncertainty U , contradictory C , and falsity memberships are identified with those of ÃRN

and B̃RN as follows.

TC̃RN(x) = min(TÃRN(x), TB̃RN(x));
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UC̃RN(x) = min(UÃRN(x),UB̃RN(x));
CC̃RN(x) = min(CÃRN(x),CB̃RN(x));
FC̃RN(x) = max(FÃRN(x), FB̃RN(x)).

Theorem 4 ÃRN ∩ B̃RN is the largest four-valued refined neutrosophic set containing both
ÃRN and B̃RN.

Proof It is unvarnished from the concept of intersection operator. �	
The difference of two four-valued refined sets ÃRN and B̃RN is FVRNS C̃RN, indicated

as C̃RN = ÃRN\B̃RN, whose truth membership, uncertainty U , contradictory C , and falsity
memberships are identified with those of ÃRN and B̃RN as follows.

TC̃RN(x) = min(TÃRN(x), FB̃RN(x));
UC̃RN(x) = min(UÃRN(x), 1 −UB̃RN(x));
CC̃RN(x) = min(CÃRN(x), 1 − CB̃RN(x));
FC̃RN(x) = max(FÃRN(x), TB̃RN(x)).

It can easily be checked that four-valued refined neutrosophic set satisfies most properties
such as associativity, distributivity, idempotency, absorption, involution and De Morgan’s
laws, but it does not satisfy the principle of excluded middle like fuzzy set, IFS and SNVS.
All of the above defined operations can be verified by example as given below.

Example 1 Semantic web service quality evaluation Zadeh (2018) is done by some domain
experts. Assume A = [a1, a2, a3] in which a1 is capability, a2 is trustworthiness and a3 is
price, where a1, a2, a3 are in [0, 1]. From the experts’ questionnaire, the option could be a
grade of “ excellent service”, a grade of “intermediate service”, a grade of “ contradictory
service” and a grade of “bad service”. X and Y are four-valued refined neutrosophic sets of
A defined by

X = 〈0.2, 0.6, 0.3, 0.5〉
a1

+ 〈0.5, 0.3, 0.7, 0.4〉
a2

+ 〈0.7, 0.3, 0.4, 0.2〉
a3

Y = 〈0.4, 0.7, 0.3, 0.5〉
a1

+ 〈0.2, 0.8, 0.3, 0.5〉
a2

+ 〈0.3, 0.6, 0.8, 0.5〉
a3

.

4 Four-valued refined neutrosophic optimization technique

Consider a non-linear multi-objective optimization problem,

Minimize { fi (x)} i = 1, 2, . . . , p,

such that

g j (x) ≤ b j j = 1, 2, . . . , q,

where x are decision variables, fi (x) represents objective functions, g j (x) represents the
constraint functions, and p and q represent the number of objective functions and constraints,
respectively. Now the decision set D̃, a conjunction of four-valued neurotrophic objectives
and constraints, is defined as

D̃ = (∩k
p=1 Õk) ∩ (∩k

p=1 L̃ j ) = {x, TD̃,UD̃,CD̃, FD̃)},

123



Multi-objective non-linear four valued. . . Page 7 of 17 35

where

TD̃(x) = min(TÕ1
(x), TÕ2

(x), . . . , TÕp
(x); TL̃1

(x), TL̃2
(x), . . . , TL̃q

(x))

UD̃(x) = min(UÕ1
(x),UÕ2

(x), . . . ,UÕp
(x);UL̃1

(x),UL̃2
(x), . . . ,UL̃q

(x))

CD̃(x) = min(CÕ1
(x),CÕ2

(x), . . . ,CÕp
(x);CL̃1

(x),CL̃2
(x), . . . ,CL̃q

(x))

FD̃(x) = max(FÕ1
(x), FÕ2

(x), . . . , FÕp
(x); FL̃1

(x), FL̃2
(x), . . . , FL̃q

(x))

for all x ∈ X .
Where TD̃, UD̃ , CD̃ , and FD̃ represent truth, uncertainty, contradictory and falsity grade
of membership of four-valued refined neutrosophic decision set, respectively. Now using
the four-valued refined neutrosophic optimization, the above problem is remodeled into a
non-linear optimization as

Max α, Max γ, Min β, Max δ,

Such that

TÕk
(x) ≥ α, TL̃ j

(x) ≥ α,

UÕk
(x) ≥ γ, UL̃ j

(x) ≥ γ,

FÕk
(x) ≤ β, FL̃ j

(x) ≤ β,

CÕk
(x) ≥ δ, CL̃ j

(x) ≥ δ,

α ≥ β, α ≥ γ α ≥ δ,

α + β + γ + δ ≤ 4,

α, β, γ, δ ∈ [0, 1],
g j (x) ≤ b j , x ≥ 0, j = 1, 2, . . . , q.

Computational Algorithm
Step 1: Solve the first objective function as a single objective function taken from set of K
objectives. The values of decision variables and objective functions will be computed subject
to the given constraints.
Step 2: Now compute the values of the unresolved objective, i.e., (k − 1) using the decision
variables from step 1.
Step 3: Continue to the remaining (k − 1) objective function by going through step 1 and
step 2.

⎡
⎢⎢⎢⎣

f ∗
1 (x1) f2(x1) · · · f p(x1)
f1(x2) f ∗

2 (x2) · · · f1(x2)
...

...
. . .

...

f1(xr ) f2(xr ) · · · f ∗
p (xr )

⎤
⎥⎥⎥⎦ .

Step 4: Find the lower bound L̂T
p and the upper bound Û T

p corresponding to each objective
fk(x). The lower and upper bounds for truth membership of objectives are

Û T
p = max{ f p(xr )} and L̂T

p = min{ f p(xr )},
where r = 1, 2, . . . , p.
The upper Û F

p and lower L̂ F
p bounds for falsity membership of objectives are

Û F
p = Û T

p and L̂ F
p = L̂T

p + t(Û T
p − L̂T

p )
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Upper ÛU
p and lower L̂U

p bounds for uncertainty membership of objectives are

L̂U
p = L̂T

p and ÛU
p = L̂T

p + s(Û T
p − L̂T

p ),

and the upper and lower bounds for contradictory membership of objectives are

L̂C
p = L̂T

p ∧ L̂ F
p and ÛC

p = L̂T
p ∧ L̂ F

p + l(Û T
p ∧ Û F

p − L̂T
p ∧ L̂ F

p ),

where t, s, l ∈ (0, 1).

Step 5: In this step, we will define truth, uncertainty, falsity, and contradictory membership
functions as follows:

Tp( f p(x)) =

⎧⎪⎪⎨
⎪⎪⎩

1 f p(x) ≤ L̂T
p

Û T
p − f p(x)

Û T
p −L̂T

p
L̂T
p ≤ f p(x) ≤ Û T

p

0 f p(x) ≥ Û T
p

,

Up( f p(x)) =

⎧⎪⎪⎨
⎪⎪⎩

1 f p(x) ≤ L̂U
p

ÛU
p − f p(x)

ÛU
p −L̂U

p
L̂U
p ≤ f p(x) ≤ ÛU

p

0 f p(x) ≥ ÛU
p

,

Fp( f p(x)) =

⎧⎪⎪⎨
⎪⎪⎩

0 f p(x) ≤ L̂ F
p

f p(x)−L̂ F
p

Û F
p −L̂ F

p
L̂ F
p ≤ f p(x) ≤ Û F

p

1 f p(x) ≥ Û F
p

,

Cp( f p(x)) =

⎧⎪⎪⎨
⎪⎪⎩

1 f p(x) ≤ L̂C
p

ÛC
p − f p(x)

ÛC
p −L̂C

p
L̂C
p ≤ f p(x) ≤ ÛC

p

0 f p(x) ≥ ÛC
p

.

Step 6: Now four-valued refined neutrosophic optimization method for multi-objective non-
linear programming problem gives a corresponding non-linear problem as
Max α − β + γ + δ, such that

Tp( f p(x)) ≥ α,

Up( f p(x)) ≥ γ,

Fp( f p(x)) ≤ β,

Cp( f p(x)) ≥ δ,

with

α + β + γ + δ ≤ 4,

and

α ≥ β, α ≥ γ, α ≥ δ,

where

α, β, γ, δ ∈ [0, 1].
g j (x) ≤ b j , x ≥ 0, j = 1, 2, . . . , q.
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This corresponds to non-linear programming as:

Max α − β + γ + δ,

such that

f p(x) + (Û T
p − L̂T

p ).α ≤ Û T
p ,

f p(x) + (ÛU
p − L̂U

p ).γ ≤ ÛU
p ,

f p(x) − (Û F
p − L̂ F

p ) .β ≤ L̂ F
p ,

f p(x) + (ÛC
p − L̂C

p ).δ ≤ ÛC
p ,

for p = 1, 2, . . . , k. We have

α + β + γ + δ ≤ 4

and

α ≥ β, α ≥ γ, α ≥ δ,

where

α, β, γ, δ ∈ [0, 1]
g j (x) ≤ b j , x ≥ 0, j = 1, 2, . . . , q.

Numerical example
Consider the following optimization problem:

Min f1(x1, x2) = x1
−1x2

−2,

Min f2(x1, x2) = 2x1
−2x2

−3,

such that

x1 + x2 ≤ 1.

Step 1: Solve the first objective function as a single objective non-linear programming prob-
lem subject to given constraints, thenwe get the value of x1 = 0.33, x2 = 0.67, ( f1)1 = 6.75.
Step 2:Byusing these decision variables,we compute the other remaining objective functions
whose values are ( f2)1 = 60.78
Step 3: Now, repeat step 1 and step 2 for other remaining objective functions. The ideal
solution is given as

P =
[
6.75 60.78
6.94 57.87

]
.

Step 4: Find the lower bound and the upper bound corresponding to each objective f p(x).

Û T
1 = Û F

1 = 6.94,

ÛC
1 = 6.75 + t(0.19) = 6.845,

L̂T
1 = 6.75L̂ F

1 = 6.75 + (0.19)r = 6.807,

ÛU
1 = 6.75 + (.19)s = 6.826,

L̂U
1 = L̂C

1 = 6.75,

Û T
2 = U2

F = 60.78,
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ÛC
2 = 57.87 + t(2.91) = 59.325,

L̂T
2 = 57.87,

L̂ F
2 = 57.87 + (2.91)r = 58.743,

ÛU
2 = 57.87 + (2.91)s = 59.034,

L̂U
2 = L̂C

2 = 57.87,

where r , s, t = (0, 1), taking r = 0.3, s = 0.4, and t = 0.5.
Step 5: Now, we define the membership functions for T , F,U and C as:

T1(x1
−1x2

−2) =
⎧⎨
⎩
1 x1−1x2−2 ≤ 6.75
6.94−x1−1x2−2

6.94−6.75 6.75 ≤ x1−1x2−2 ≤ 6.94
0 x1−1x2−2 ≥ 6.94

,

T2(2x1
−2x2

−3) =
⎧⎨
⎩
1 2x1−2x2−3 ≤ 57.87
60.78−2x1−2x2−3

60.78−57.87 57.87 ≤ 2x1−2x2−3 ≤ 60.78
0 x1−1x2−2 ≥ 60.78

,

U1(x1
−1x2

−2) =
⎧⎨
⎩
1 x1−1x2−2 ≤ 6.75
6.826−x1−1x2−2

6.826−6.75 6.75 ≤ x1−1x2−2 ≤ 6.826
0 x1−1x2−2 ≥ 6.826

,

U2(2x1
−2x2

−3) =
⎧⎨
⎩
1 2x1−2x2−3 ≤ 57.87
59.034−2x1−2x2−3

59.034−57.87 57.87 ≤ 2x1−2x2−3 ≤ 59.034
0 2x1−2x2−3 ≥ 59.034

,

F1(x1
−1x2

−2) =
⎧⎨
⎩
0 x1−1x2−2 ≤ 6.807
x1−1x2−2−6.807

6.94−6.807 6.807 ≤ x1−1x2−2 ≤ 6.94
1 x1−1x2−2 ≥ 6.94

,

F2(2x1
−2x2

−3) =
⎧⎨
⎩
0 2x1−2x2−3 ≤ 58.743
2x1−2x2−3−58.743

60.78−58.743 58.743 ≤ 2x1−2x2−3 ≤ 60.78
1 2x1−2x2−3 ≥ 60.78

,

C1(x1
−1x2

−2) =
⎧⎨
⎩
1 x1−1x2−2 ≤ 6.75
6.75−x1−1x2−2

6.845−6.75 6.75 ≤ x1−1x2−2 ≤ 6.845
0 x1−1x2−2 ≥ 6.845

,

C2(2x1
−2x2

−3) =
⎧⎨
⎩
1 2x1−2x2−3 ≤ 57.87
59.325−2x1−2x2−3

59.325−57.87 57.87 ≤ 2x1−2x2−3 ≤ 59.325
0 2x1−2x2−3 ≥ 59.325

.

Step 6: Non-linear programming problem in FVRN is

Maximize α − β + γ + δ

such that

x1
−1x2

−2 + (0.19)α ≤ 6.94,

2x1
−2x2

−3 + (2.91)α ≤ 60.78,

x1
−1x2

−2 + (0.076)γ ≤ 6.826,

2x1
−2x2

−3 + (1.164)γ ≤ 59.034,

123



Multi-objective non-linear four valued. . . Page 11 of 17 35

x1
−1x2

−2 + (0.095)δ ≤ 6.845,

2x1
−2x2

−3 + (1.455)δ ≤ 59.325,

x1
−1x2

−2 − (0.133)β ≤ 6.807,

2x1
−2x2

−3 − (2.037)β ≤ 58.743,

x1 + x2 ≤ 1,

0 ≤ α ≤ 1,

0 ≤ β ≤ 1,

0 ≤ γ ≤ 1,

0 ≤ δ ≤ 1.

Comparison of the proposed optimal solution with those of intuitionistic fuzzy optimization
and neutrosophic optimization techniques is given as below.

5 Application of four-valued refined neutrosophic set

In this section, we present application of FVRNS in riser design and car-side impact problem.

5.1 Riser design

A riser is a part of gating system in the mold and it is used for ensuring the complete filling of
the mold cavity. It compensates shrinkage happening during the solidification. Generally, the
porosity of the shrinkage occurs either in the cope or in a part of the casting under the surface.
Casting is a procedure where the melted material is permitted to freeze and yields its final
form. It depends upon the surface area and the rate of heat transfer. Solidification of themolten
metal is built upon how quickly heat is transferred to mold wall. Solidification associates
the solubility of metals back into the solid metal. There are three stages of solidification in a
mold.

1. Liquid contraction.
2. Transformation from liquid to solid contraction.
3. Solid contractions.

Risers are used to compensate the contractions in the first stage and second stage. In the
third stage, allowance is used to take care of contractions. Riser supplies redundant metal to
compensate for the shrinkage of volume.

There are different types of risers. In this research, the cylindrical riser is considered
because it has a large area with a broad inlet and molten metal fills the shrinkage cavity
as quickly as possible. The metal solidifies in the mold earlier than the riser, so by using
Chvorinov’s rule the volume and solidification time of the riser can be calculated,

St = k

(
v

As

)2

,

where “k” is solidification factor (seconds/meter square), V is the volume of the riser, As is
the surface area of the riser, st = solidification time, volume of riser= π

4 ·d2 · h, surface area
of riser = 2. π

4 · d2 + (π · d · h).
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The solidification time depends on the shape of the casting. In cylindrical casting:

st = π · d2 · h
4

.

Our objective is to design a smaller riser in such a way that solidification of the riser takes
place after the solidification of the casting, that is,

tr ≥ tc,

which means the time taken by the riser to solidify will be greater than the time taken by the
casting to solidify.

kr

(
vr

Ar
s

)2

≥ kc

(
vc

Ac
s

)2

.

It is assumed that the riser and casting are made up of the same metal. Then,

kr = kc,
vr

Ar
s

= vc

Ac
s
.

If the casting has a specified volume and surface area, then

vc

Ac
s

= mc = constant.

vr

Ar
s

≥ mc.

dh

4h + 2d
≥ mc.

Take vc = 2.8.6 = 96 cube inches, and Ac
s = 2.(2.8+2.6+6.8) = 152 square inches, then

48

19
d−1 + 24

19
h−1 ≤ 1.

The multi-objective non-linear problem is

Minimize vr (d, h) = πd2h

4
; Minimize st (d, h) = dh

4h + 2d
,

such that

48

19
d−1 + 24

19
h−1 ≤ 1.

Here, the pay-off matrix is

P =
[
42.75642 0.631579
12.510209 0.6315786

]
.

5.2 Car-side impact

Jain and Deb (2013) discussed the car-side impact problem by defining evolutionary
many-objective optimization algorithm using reference point-based non-dominated sorting
approach. Car-side impact test aims tominimizing theweight of the car, the pubic force expe-
rienced by a passenger and the average velocity of the V-Pillar responsible for withstanding
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the impact load. These three objectives are conflicting; several constraints including body
weight, structure and movement, pubic force and velocity, and design variables of car turn it
into a complex engineering design optimization problem. The mathematical formulation is
given as:

s1(y) = 1.98 + 4.9y1 + 6.67y2 + 6.98y3 + 4.01y4 + 1.78x5 + 0.00001y6 + 2.73y7,

s2(y) = F,

s3(y) = 0.5(VMBP + VFD),

such that

c1(y) = 1.16 − 0.3717y2y4 − 0.0092928y3 ≤ 1,

c2(y) = 0.261 − 0.0159y1y2 − 0.06486y1 − 0.019y2y7 + 0.0144y3y5
+ 0.0154464y6 ≤ 0.32,

c3(y) = 0.214 + 0.00817y5 − 0.045195y1 − 0.0135168y1 + 0.03099y2y6 − 0.018y2y7,

+ 0.007176y3 + 0.023232y3 − 0.00364y5y6 − 0.018y2
2 ≤ 0.32,

c4(y) = 0.74 − 0.61y2 − 0.031296y3 − 0.013872y7 + 0.227y2
2 ≤ 0.32,

c5(y) = 28.98 + 3.818y3 − 4.2y1y2 + 1.27296y6 − 2.68065y7 ≤ 32,

c6(y) = 33.86 + 2.95y3 − 5.057y1y2 − 3.795y2 − 3.4431y7 + 1.45728 ≤ 32,

c7(y) = 46.36 − 9.9x2 − 4.4505y1 ≤ 32,

c8(y) = F = 4.72 − 0.5y4 − 0.19y2y3 ≤ 4,

c9(y) = VMBP = 10.58 − 0.674y1y2 − 0.67275y2 ≤ 9.9,

c10(y) = VFD = 16.45 − 0.489y3y7 − 0.843y5y6 ≤ 15.7

0.5 ≤ y1 ≤ 1.5, 0.45 ≤ y2 ≤ 1.35,

0.5 ≤ y3 ≤ 1.5, 0.5 ≤ y4 ≤ 1.5,

0.875 ≤ y5 ≤ 2.625, 0.4 ≤ y6 ≤ 1.2,

0.4 ≤ y7 ≤ 1.2,

where s1, s2, s3 are objective functions; yi s are decision variables and ci s are constraints.
Here, the pay-off matrix is

=
⎡
⎣23.5857 4.0000 −3.1642
39.9449 3.5853 −2.9400
33.4058 3.8440 −3.6965

⎤
⎦ .

6 Conclusion

In this paper, first, we have defined a four-valued refined neutrosophic set, set-theoretic oper-
ators over this extenics of a neutrosophic set were studied. Secondly to find the optimal
solution of multi-objective non-linear optimization model, we give a computational algo-
rithm in a four-valued refined neutrosophic environment by defining truth (T ), uncertain
(U ), contradiction (C) and falsity (F) grades of memberships which are independent of
each other. Comparison of the results obtained from the proposed optimization method for
the riser design and car-side impact problems proves the superiority of four-valued opti-
mization method over intuitionistic fuzzy optimization as well as single-valued neutrosophic
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Table 1 Comparison of optimal solutions

Optimization
techniques

Optimal decision
variables x∗

1 , x∗
2

Optimal objective functions
f ∗
1 , f ∗

2

Sum of optimal
objective values
f ∗
1 + f ∗

2

IFO 0.3659009, 0.6356811 6.797078, 58.79110 65.588178

NSO 0.3635224, 0.6364776 6.790513, 58.68732 65.487833

FVRNO 0.365902, 0.634098 6.797081071, 58.59104971 65.38813078

Table 2 Percentage gap for different fuzzy optimization techniques

Optimization
techniques

Objective function f ∗
1 (%) Objective function f ∗

2 (%) Cumulative
percentage gap (%)

IFO 0.096585621 0.321672345 0.418257966

NSO 0 0.162417483 0.162417483

FVRNO 0.086026083 0 0.086026083

Table 3 Comparison of optimal solutions

Optimization
techniques

Optimal decision
variables d∗, h∗

Optimal objective functions
v∗
r , S∗

t

Cumulative
percentage gap (%)

NSO 3.152158, 3.152158 24.60870, 0.6315787 0.178614379

FVRNO 2.979, 3.50964 24.44968309, 0.5228508083 0

Table 4 Comparison of optimal solutions

Optimization
techniques

Optimal decision variables
y∗
1 , y∗

2 , y∗
3 , y∗

4 , y∗
5 , y∗

6 , y∗
7

Optimal objective
functions
s∗1 , s∗2 , s∗3

Multiobjective
optimization using
genetic algorithm

0.5000, 1.3500,1.5000, 1.5000, 0.9023, 0.7853, 0.4116 32.6493, 3.5852
−3.1669

Multiobjective goal
attainment

0.5680, 1.2832,1.1581, 1.4524, 1.2466, 1.0443, 0.5711 31.0085, 3.7114,
−2.9018

Four-valued refined
neutrosophic
optimization

0.8550, 1.3500,0.8728, 1.5000, 0.8750, 0.7853, 0.4000 29.9305, 3.7461,
−3.4031

optimization. Results of Tables 1, 2, 3 and 4 also prove the authenticity of the four-valued
refined neutrosophic optimization technique. Thus, the proposed method is reliable, efficient
and a more generalized optimization technique for solving the non-linear multi-objective
optimization problem in the less certain environment.

Performance evaluation of the proposed methodology
The riser design problem was already solved with two different fuzzy optimization tech-

niques: intuitionistic fuzzy optimization and neutrosophic fuzzy optimization. To analyze
the performance of the proposed methodology, we need to find the percentage gap of all the
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Fig. 1 Comparison of the proposed methodology with percentage gap

Fig. 2 Comparison of proposed methodology with percentage gap

objective functions by using the equation that is given below:

Percentage gap = Acheived Value − Best Value

Acheived Value
× 100.

By Figs. 1 and 2, we can analyze that the percentage gap of the proposed algorithm is less
than that of the existing algorithm.

The car-side impact problem was solved as crisp optimization problem by using multi-
objective genetic algorithm and multi-objective goal attainment. The results in Table 4 show
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that the proposed methodology is more efficient to attain the desired goals with conflicting
objectives.

The work presented here opens the gates for future research not only in optimization, but
also to establish improved methods in sampling survey analysis, cost function estimation
analysis, and engineering.
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