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Abstract: Multi-valued neutrosophic sets (MVNSs) consider the truth-membership,
indeterminacy-membership, and falsity-membership simultaneously, which can more accurately
express the preference information of decision-makers. In this paper, the normalized multi-valued
neutrosophic distance measure is developed firstly and the corresponding properties are investigated
as well. Secondly, the normalized multi-valued neutrosophic distance difference is defined and the
corresponding partial ordering relation is discussed. Thirdly, based on the developed distances and
comparison method, an extended multi-valued neutrosophic QUALItative FLEXible multiple criteria
(QUALIFLEX) method is proposed to handle MCDM problems where the weights of criteria are
completely unknown. Finally, an example for selection of medical diagnostic plan is provided to
demonstrate the proposed method, together with sensitivity analysis and comparison analysis.

Keywords: multi-valued neutrosophic sets; multi-criteria decision-making; multi-valued neutrosophic
distances; QUALIFLEX

1. Introduction

Recently, neutrosophic sets (NSs) [1–3] have become very useful in many areas [4–8] since they
collect data and provide some available information. However, because of the complexity and
ambiguity of information in the real decision-making process, it is difficult for decision-makers to
express their preference accurately by using their extensions, including single-valued neutrosophic
sets (SNSs) [9,10] and interval neutrosophic sets (INSs) [11], interval-valued neutrosophic soft
sets [12], neutrosophic soft multi-set [13], and neutrosophic refined sets [14]. Then, based on the
definitions of SNSs and the hesitant fuzzy sets (HFSs) [15,16], Wang and Li [17] and Ye [18] defined
the concept of multi-valued neutrosophic sets (MVNSs) and single-valued neutrosophic hesitant
fuzzy sets (SVNHFSs), respectively. MVNSs and SVNHFSs are denoted by truth-membership,
indeterminacy-membership, and falsity-membership functions, which comprise of a set of numerical
numbers between zero and one. In recent years, MVNSs and SVNHFSs have been extensively studied
and applied to different fields. For example, Peng et al. [19–22] defined multi-valued neutrosophic
preference relations, outranking relations and aggregation operators. Ji et al. [23] defined an extended
an acronym in Portuguese of the Interactive and Multicriteria Decision Making (TODIM) method
with multi-valued neutrosophic information. Finally, based on the concept of MVNSs, Peng et al. [24]
defined probability MVNSs, and Wu and Wang [25] investigated some cross-entropy measures of
MVNSs and applied them to the selection of a middle-level manager.

Furthermore, those aforementioned methods with MVNSs always involve in operations and
measures which impact on the final decision-making may be momentous. However, there exist other
methods to avoid these defects, namely the relation model. Relation models could rank the alternatives
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in terms of priority among the criteria by using outranking relations or priority functions, such as
Elimination Et Choix Traduisant la REalité (ELECTRE) [26,27] and QUALItative FLEXible multiple
criteria method (QUALIFLEX) [28–30].

The QUALIFLEX method, which was introduced by Paelinck [28–30], is an effective outranking
method to handle multi-criteria decision-making (MCDM) problems by arranging a set of preference
rankings [31,32]. Moreover, QUALIFLEX method assumes that all possible permutations of the
alternatives are determined. Then the best permutation can be identified by maximizing the
concordance/discordance index value based on the pair-wise comparisons of alternatives under
each criterion [33,34]. The principal advantage of QUALIFLEX method is that it can effectively
handle decision-making problems where the criteria numbers are more than the alternative numbers
obviously. Recently, several extended QUALIFLEX methods have been developed [35–39]. Moreover,
Ji et al. [40] defined a triangular neutrosophic QUALIFLEX-TODIM method for treatment selection.
Li and Wang [41] developed a probability hesitant fuzzy QUALIFLEX method to select green suppliers.

Based on the aforementioned studies, some attempts have been made to define outranking
relations, preference, aggregation operators, and cross-entropy measures of MVNSs. According to
the existing distances between MVNSs, the TODIM method proposed by Wang and Li [17] and
Ji et al. [40] forms part of the multi-valued neutrosophic distance, which is a simple extension based
on the Hamming distance. Moreover, if the distance of SNSs and HFSs were extended to MVNSs,
then this should satisfy the conditions that two MVNSs should be of equal length, i.e., the lengths
of the three memberships should be equal and ranked in ascending order; otherwise it needs to add
the same element to the shorter one. Thus, in order to address this shortcoming, the main goals of
this paper are: (1) provide the improved distance measure of MVNSs and the corresponding distance
difference; and (2) extend the QUALIFLEX method to a multi-valued neutrosophic environment based
on the proposed distance difference.

The paper is constructed as follows: In Section 2, some definitions and operations of MVNSs are
introduced. Then the normalized multi-valued neutrosophic distance measure and corresponding
difference distance as well as comparison method are developed in Section 3. The multi-valued
distance-based QUALIFLEX method with incomplete weight information is constructed in Section 4.
In Section 5, the selection of a medical diagnostic plan is presented to demonstrate the proposed
approach. Finally, we summarize the paper with further discussion in Section 6.

2. MVNSs

Some definitions and operations of MVNSs are reviewed in this section, which will be utilized in
later analysis.

Definition 1. [17,18] A MVNS M in a space of points (objects) X can be expressed as
M =

{〈
x,

.
T(x),

.
I(x),

.
F(x)

〉
|x ∈ X

}
.

.
T(x),

.
I(x), and

.
F(x) are denoted by HFSs respectively, i.e., three

sets of numerical number in [0,1], denoting the truth-membership degree, indeterminacy-membership function
and falsity-membership degree respectively, and satisfying 0 ≤ γ, η, ξ ≤ 1, 0 ≤ γ+ + η+ + ξ+ ≤ 3,
where γ ∈

.
T(x), η ∈

.
I(x), ξ ∈

.
F(x), γ+ = sup

.
T(x), η+ = sup

.
I(x) and ξ+ = sup

.
F(x).

If there exists only one element in X, then M is called a multi-valued neutrosophic number (MVNN),
denoted by M =

〈 .
T(x),

.
I(x),

.
F(x)

〉
. For convenience, a MVNN can be denoted by M =

〈 .
T,

.
I,

.
F
〉

.

Definition 2. [19] Let M ∈ MVNSs, the complement of M can be defined as

MC =

{〈
x,

.
T

C
(x),

.
I
C
(x),

.
F

C
(x)
〉
|x ∈ X

}
. Here

.
T

C
(x) = ∪

ξ∈
.
F(x){ξ(x)},

.
I
C
(x) = ∪

η∈
.
I(x){1− η(x)}

and
.
F

C
(x) = ∪

γ∈
.
T(x){γ(x)} for all x ∈ X.
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Definition 3. Let M1 =
{〈

x,
.
T1(x),

.
I1(x),

.
F1(x)

〉∣∣∣x ∈ X
}

and M2 =
{〈

x,
.
T2(x),

.
I2(x),

.
F2(x)

〉∣∣∣x ∈ X
}

be
two MVNSs. Then we have M1 ⊆M2 if γ1(x) ≤ γ2(x), η1(x) ≥ η2(x) and ξ1(x) ≥ ξ2(x) for any x ∈ X. Here
γi(x) ∈

.
Ti(x), ηi(x) ∈

.
Ii(x) and ξi(x) ∈

.
Fi(x)(i = 1, 2).

Definition 4. [19] Let M1 =
{〈

x,
.
T1(x),

.
I1(x),

.
F1(x)

〉∣∣∣x ∈ X
}

and M2 =
{〈

x,
.
T2(x),

.
I2(x),

.
F2(x)

〉∣∣∣x ∈ X
}

be two MVNSs. Also let ∀x ∈ X, all values in
.
Ti(x),

.
Ii(x) and

.
Fi(x)(i = 1, 2) be ranked in ascending order.

γ
σ(·)
i (x), η

σ(·)
i (x) and ξ

σ(·)
i (x) are the (·)-th value in

.
Ti(x),

.
Ii(x) and

.
Fi(x)(i = 1, 2) respectively. Then we have:

M1 ≤ M2 if γ
σ(j)
1 (x) ≤ γ

σ(j)
2 (x)andγ

σ(l .
T1
)

1 (x) ≤ γ
σ(l .

T2
)

2 (x)
(

j = 1,2, . . . , l .
T(x)

; l .
T(x)

= min
(

l .
T1(x)

, l .
T2(x)

))
,

η
σ(k)
1 (x) ≥ η

σ(k)
2 (x) and η

σ(l.
I1
)

1 (x) ≥ η
σ(l.

I2
)

2 (x)
(

k = 1,2, . . . , l .
I(x)

, l .
I(x)

= min
(

l .
I(x)

, l .
I(x)

))
, ξ

σ(m)
1 (x) ≥ ξ

σ(m)
2 (x)

and ξ
σ(l .

F1
)

1 (x)≥ ξ
σ(l .

F2
)

2 (x)
(

m = 1,2, . . . , l .
F(x)

, l .
F(x)

= min
(

l .
F(x)

, l .
F(x)

))
.

Where l .
T(x)

, l .
I(x)

and l .
F(x)

are the number of elements in
.
Ti(x),

.
Ii(x) and

.
Fi(x)(i = 1, 2) respectively.

Example 1. Let M1 = {x, 〈{0.1, 0.3}, {0.3}, {0.2}〉} and M2 = {x, 〈{0.2, 0.6}, {0.1, 0.2}, {0.1}〉}
be two MVNSs. According to the proposed comparison method in Definition 3, we have
l .
T

= min
(

l .
T1

, l .
T2

)
= 2, γ

σ(1)
1 ≤ γ

σ(1)
2 and γ

σ(2)
1 ≤ γ

σ(2)
2 , l Ĩ = min

(
l Ĩ1

, l Ĩ2

)
= 1, η

σ(1)
1 ≥ η

σ(1)
2

and η
σ(1)
1 ≥ η

σ(2)
2 , l .

F
= min

(
l .
F1

, l .
F2

)
= 1 and ξ

σ(1)
1 ≥ ξ

σ(1)
2 . Therefore, we have M1 ≤ M2.

3. Multi-Valued Neutrosophic Distance Measures

Based on the intuitionistic fuzzy H-max distance defined in Ngan et al. [42], the normalized
multi-valued neutrosophic distance is proposed. Then the multi-valued neutrosophic distance
difference is defined in this section.

3.1. The Normalized Multi-Valued Neutrosophic Distance

Definition 5. Let M1, M2 and M3 be three MVNSs on the universe X = {x1, x2, . . . , xn}.
A mapping D : MVNS(x)×MVNS(x)→ R is a normalized distance measure of MVNSs iff it satisfies the
following axioms:

H1. 0 ≤ D(M1, M2) ≤ 1;
H2. D(M1, M2) = D(M2, M1);
H3. D(M1, M2) = 0 iff M1 = M2;
H4. If M1 ≤ M2 ≤ M3, then D(M1, M3) ≥ D(M1, M2) and D(M1, M3) ≥ D(M2, M3).

Definition 6. Let M1 and M2 be two MVNSs on the universe X = {x1, x2, . . . , xn}. The normalized
multi-valued neutrosophic measure of M1 and M2 can be defined as:

DGm(M1, M2) =

(
1

5n

n

∑
i = 1

(
∆γλ

i,12 + ∆ηλ
i,12 + ∆ξλ

i,12 + ∆λ
12(γi, ηi) + ∆λ

12(γi, ξi)
))1/λ

(λ ≥ 1). (1)

where ∆γi,12 = max
γ1(xi) ∈

.
T1(xi)

γ2(xi) ∈
.
T2(xi)

|γ1(xi)− γ2(xi)|(i = 1, 2, . . . , n);

∆ηi,12 = max
η1(xi) ∈

.
I1(xi)

η2(xi) ∈
.
I2(xi)

|η1(xi)− η2(xi)|(i = 1, 2, . . . , n);
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∆ξi,12 = max
ξ1(xi) ∈

.
F1(xi)

ξ1(xi) ∈
.
F1(xi)

|ξ1(xi)− ξ2(xi)|(i = 1, 2, . . . , n);

∆12(γi, ηi) =

∣∣∣∣∣∣∣∣∣∣∣
max

γ1(xi) ∈
.
T1(xi)

η2(xi) ∈
.
I2(xi)

{γ1(xi), η2(xi)}− max
γ2(xi) ∈

.
T2(xi)

η1(xi) ∈
.
I1(xi)

{γ2(xi), η1(xi)}

∣∣∣∣∣∣∣∣∣∣∣
(i = 1,2, . . . , n);

∆12(γi, ξi) =

∣∣∣∣∣∣∣∣∣∣∣
max

γj1(xi) ∈ T1(xi)

ξm2(xi) ∈ F2(xi)

{
γj1(xi), ξm2(xi)

}
− max

γ2(xi) ∈
.
T2(xi)

ξ1(xi) ∈
.
F1(xi)

{γ2(xi), ξ1(xi)}

∣∣∣∣∣∣∣∣∣∣∣
(i = 1,2, . . . , n).

(1) In particular, if λ = 1, then the normalized multi-valued neutrosophic measure reduces to a normalized
multi-valued neutrosophic Hausdorff measure, i.e.:

DGm(M1, M2) =
1

5n

n

∑
i = 1

(
∆γi,12 + ∆ηi,12 + ∆ξi,12 + ∆12(γi, ηi) + ∆12(γi, ξi)

)
. (2)

(2) If λ = 2, then the normalized multi-valued neutrosophic measure reduces to a normalized multi-valued
neutrosophic Euclidean measure, i.e.:

DGm(M1, M2) =

(
1

5n

n

∑
i = 1

(
∆γ2

i,12 + ∆η2
i,12 + ∆ξ2

i,12 + ∆2
12(γi, ηi) + ∆2

12(γi, ξi)
))1/2

. (3)

Theorem 1. The normalized multi-valued neutrosophic measure defined in Definition 6 is a normalized distance
measure of MVNSs, i.e., DGm(M1, M2) satisfies the following axioms:

H1. 0 ≤ DGm(M1, M2) ≤ 1;
H2. DGm(M1, M2) = DGm(M2, M1);
H3. DGm(M1, M2) = 0 iff M1 = M2;
H4. If M1 ≤ M2 ≤ M3, then DGm(M1, M3) ≥ DGm(M1, M2) and DGm(M1, M3) ≥ DGm(M2, M3).

Proof. H1: Since 0 ≤ ∆γi,12 ≤ 1, 0 ≤ ∆ηi,12 ≤ 1, 0 ≤ ∆ξi,12 ≤ 1,
0 ≤ ∆12(γi, ηi) ≤ 1 and 0 ≤ ∆12(γi, ξi) ≤ 1, then we have

0 ≤ 1
5n

n
∑

i = 1

(
∆γλ

i,12 + ∆ξλ
i,12 + ∆ηλ

i,12 + ∆λ
12(γi, ηi) + ∆λ

12(γi, ξi)
)
≤ 1. Thus 0 ≤ DGm(M1, M2) ≤ 1.

H2: Clearly, we have DGm(M1, M2) = DGm(M2, M1).

H3: If M1 = M2, then we have γ
σ(j)
1 (xi) = γ

σ(j)
2 (xi), γ

σ(l .
T1

)

1 (xi) = γ
σ(l .

T2
)

2 (xi) and

η
σ(k)
1 (xi) = γ

σ(k)
2 (xi), η

σ(lI1 )

1 (x) = η
σ(lI2 )

2 (x) and ξ
σ(m)
1 (x) = ξ

σ(m)
2 (x), ξ

σ(l .
F1
)

1 (x) = ξ
σ(l .

F2
)

2 (x)
for any xi ∈ X, i.e., ∆γi,12 = ∆ηi,12 = ∆ξi,12 = ∆12(γi, ηi) = ∆12(γi, ξi) = 0.

Therefore, DGm(M1, M2) = 0
H4: If M1 ≤ M2 ≤ M3, then we have 0 ≤ γ

σ(j)
1 (xi) ≤ γ

σ(j)
2 (xi) ≤ γ

σ(j)
3 (xi) ≤ 1,

0 ≤ γ
σ(l .

T1
)

1 (xi) ≤ γ
σ(l .

T2
)

2 (xi) ≤ γ
σ(l .

T3
)

3 (xi) ≤ 1 and 1 ≥ η
σ(k)
1 (xi) ≥ η

σ(k)
2 (xi) ≥ η

σ(k)
3 (xi) ≥ 0,

1 ≥ η
σ(l.

I1
)

1 (xi) ≥ η
σ(l.

I2
)

2 (xi) ≥ η
σ(l.

I3
)

3 (xi) ≥ 0, and 1 ≥ ξ
σ(m)
1 (xi) ≥ ξ

σ(m)
2 (xi) ≥ ξ

σ(m)
3 (xi) ≥ 0, 1 ≥ ξ

σ(l .
F1
)

1 (xi) ≥

ξ
σ(l .

F2
)

2 (xi) ≥ ξ
σ(l .

F3
)

3 (xi) ≥ 0 for any xi ∈ X. Thus, ∆γλ
i,12 ≤ ∆γλ

i,13, ∆ηλ
i,12 ≤ ∆ηλ

i,13, ∆ξλ
i,12 ≤ ∆ξλ

i,13,
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1 ≥ max
γ3(xi) ∈

.
T3(xi)

η1(xi) ∈
.
I1(xi)

{γ3(xi),η1(xi)} ≥ max
γ2(xi) ∈

.
T2(xi)

η1(xi) ∈
.
I1(xi)

{γ2(xi),η1(xi)}≥ max
γ1(xi) ∈

.
T1(xi)

η2(xi) ∈
.
I2(xi)

{γ1(xi),η2(xi)}

≥ max
γ1(xi) ∈

.
T1(xi)

η3(xi) ∈
.
I3(xi)

{γ1(xi),η3(xi)} ≥ 0, i.e., ∆λ
12(γi,ηi) ≤ ∆λ

13(γi,ηi) and 1 ≥ max
γ3(xi) ∈

.
T3(xi)

ξ1(xi) ∈
.
F1(xi)

{γ3(xi),ξ1(xi)}

≥ max
γ2(xi) ∈

.
T2(xi)

ξ1(xi) ∈
.
F1(xi)

{γ2(xi),ξ1(xi)}≥ max
γ1(xi) ∈

.
T1(xi)

ξ2(xi) ∈
.
F2(xi)

{γ1(xi),ξ2(xi)} ≥ max
γ1(xi) ∈

.
T1(xi)

ξ3(xi) ∈
.
F3(xi)

{γ1(xi),ξ3(xi)} ≥ 0

i.e., ∆λ
12(γi,ξi) ≤ ∆λ

13(γi,ξi). Hence, DGm(M1, M3)≥ DGm(M1, M2).
Similarly, DGm(M1, M3) ≥ DGm(M2, M3) can be obtained. �

Property 1. Let M1 and M2 be two MVNSs on the universe X = {x1, x2, . . . , xn}.
γ

σ(·)
i (x), η

σ(·)
i (x) and ξ

σ(·)
i (x) are the (·)-th value in

.
Ti(x),

.
Ii(x) and

.
Fi(x)(i = 1, 2) respectively.

Then DGm

(
MC

1 , MC
2

)
= DGm(M1, M2) iff γ

σ(j)
1 (xi) = ξ

σ(j)
1 (xi) and l .

T1
(xi) = l .

F1
(xi), and

γ
σ(j)
2 (xi) = ξ

σ(j)
2 (xi) and l .

T2
(xi) = l .

F2
(xi) for any xi ∈ X.

Proof. Since MC
1 =

{〈
x, ∪

ξ1(x)∈
.
F1(x){ξ1(x)}, ∪

η1(x)∈
.
I1(x){η1(x)},∪

γ1(x)∈
.
T1(x){γ1(x)}

〉}
and

MC
2 =

{〈
x, ∪

ξ2(x)∈
.
F2(x){ξ2(x)}, ∪

η2(x)∈
.
I2(x){η2(x)},∪

γ2(x)∈
.
T2(x){γ2(x)}

〉}
, then DGm

(
M1

C, M2
C)

=

(
1

5n

n
∑

i = 1

(
∆ξλ

i,12 + ∆ηλ
i,12 + ∆γλ

i,12 + ∆λ
12(ξi, γi) + ∆λ

12(ξi, ηi)
))1/λ

. If γ
σ(j)
1 (xi) = ξ

σ(j)
1 (xi)

and l .
T1
(xi) = l .

F1
(xi), and γ

σ(j)
2 (xi) = ξ

σ(j)
2 (xi) and l .

T2
(xi) = l .

F2
(xi) for any

xi ∈ X, then max
γ1(xi) ∈

.
T1(xi)

η2(xi) ∈
.
I2(xi)

{γ1(xi), η2(xi)} = max
ξ1(xi) ∈

.
F1(xi)

η2(xi) ∈
.
I2(xi)

{ξ1(xi), η2(xi)} and

max
γ2(xi) ∈

.
T2(xi)

η1(xi) ∈
.
I1(xi)

{γ2(xi), η1(xi)} = max
ξ2(xi) ∈

.
F2(xi)

η1(xi) ∈
.
I1(xi)

{ξ2(xi), η1(xi)}, i.e., ∆λ
12(γi, ηi) = ∆λ

12(ξi, ηi).

Thus, DGm
(
M1

C, M2
C) =

(
1
5n

n
∑

i = 1

(
∆ξλ

i,12 +∆ηλ
i,12 +∆γλ

i,12 +∆λ
12(ξi,γi)+∆λ

12(ξi,ηi)
))1/λ

= DGm(M1, M2).

�

Property 2. Let M1 and M2 be two MVNSs on the universe X = {x1, x2, . . . , xn}, then we have the
following results:

(1) if M1 ⊆ M2, then DGm(M1 ∪M2, M1 ∩M2) = DGm(M1, M2);
(2) if M1 ⊇ M2, then DGm(M1 ∩M2, M1 ∪M2) = DGm(M1, M2).

Proof. (1) If M1 ⊆ M2, then we have γM1(xi) ≤ γM2(xi), ηM1(xi) ≥ ηM2(xi) and ξM1(xi) ≥ ξM2(xi) for
any xi ∈ X.

From Definition 2, we have:∣∣γM1∪M2(xi)− γM1∩M2(xi)
∣∣ =

∣∣max
{

γM1(xi), γM2(xi)
}
−min

{
γM1(xi), γM2(xi)

}∣∣ =
∣∣γM2(xi)− γM1(xi)

∣∣ = ∆γi,12;∣∣ηM1∪M2(xi)− ηM1∩M2(xi)
∣∣ =

∣∣min
{

ηM1(xi), ηM2(xi)
}
−max

{
ηM1(xi), ηM2(xi)

}∣∣ =
∣∣ηM1(xi)− ηM2(xi)

∣∣ = ηi,12;∣∣ξM1∪M2(xi)− ξM1∩M2(xi)
∣∣ =

∣∣minξ
{

νM1(xi), ξM2(xi)
}
−max

{
ξM1(xi), ξM2(xi)

}∣∣ =
∣∣ξM2(xi)− ξM1(xi)

∣∣ = ∆ξi,12.
Moreover,
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∣∣max
{

γM1∪M2(xi), ηM1∩M2(xi)
}
−max

{
γM1∩M2(xi), ηM1∪M2(xi)

}∣∣
=
∣∣max

{
max

{
γM1(xi), γP2(xi)

}
, max

{
ηM1(xi), ηM2(xi)

}}
−max

{
min

{
γM1(xi), γM2(xi)

}
, min

{
ηM1(xi), ηM2(xi)

}}∣∣
=
∣∣max

{
γM2(xi), ηM1(xi)

}
−max

{
γM1(xi), ηM2(xi)

}∣∣ = ∆12(γi, ηi);∣∣max
{

γM1∪M2(xi), ξM1∩M2(xi)
}
−max

{
γM1∩M2(xi), ξM1∪M2(xi)

}∣∣
=
∣∣max

{
max

{
γM1(xi), γM2(xi)

}
, max

{
ξM1(xi), ξM2(xi)

}}
−max

{
min

{
γM1(xi), γM2(xi)

}
, min

{
ξM1(xi), ξM2(xi)

}}∣∣
=
∣∣max

{
γM2(xi), ξM1(xi)

}
−max

{
γM1(xi), ξM2(xi)

}∣∣ = ∆12(γi, ξi).

Then DGm(M1∪M2, M1∩M2) =

(
1

5n

n
∑

i = 1

(
∆γλ

i,12 +∆ξλ
i,12 +∆ηλ

i,12 +∆λ
12(γi,ξi)+∆λ

12(γi,ηi)
))1/λ

= DGm(M1,M2).

(2) Similarly, if M1 ⊇ M2, then DGm(M1 ∩M2, M1 ∪M2) = DGm(M1, M2) can be obtained. �

Property 3. Let M, M1 and M2 be three MVNSs, M∗ = {x, 〈1, 0, 0〉} be an ideal MVNS, and DGm be the
normalized multi-valued neutrosophic distance. Then we have:

(1) ∀M ∈ MVNSS, 0 ≤ DGm(M, M∗) ≤ 1;
(2) DGm(M∗, M∗) = 0;
(3) ∀M ∈ MVNSS, DGm(M, M∗) = DGm(M∗, M);
(4) ∀M1, M2 ∈ MVNSS, i f M1 ≤ M2, then DGm(M1, M∗) = DGm(M2, M∗).

Proof. Based on Theorem 1, the results can be obtained obviously. �

3.2. The Normalized Multi-Valued Neutrosophic Distance Difference

Definition 7. Let M, M1 and M2 be three MVNSs, and M∗ = {x, 〈1, 0, 0〉} be an ideal MVNS. Then the
multi-valued neutrosophic distance difference between M1 and M2 can be defined as:

Di f f (M1, M2) = DGm(M1, M∗)− DGm(M2, M∗). (4)

Theorem 2. The multi-valued neutrosophic distance difference measure defined in Def. 7 satisfies the following
properties:

(1) −1 ≤ Di f f (M1, M2) ≤ 1;
(2) if M1 = M2, then Di f f (M1, M2) = 0;
(3) if M1 ≤ M2, then Di f f (M1, M2) ≥ 0;
(4) if M1 ≥ M2, then Di f f (M1, M2) ≤ 0;
(5) if Di f f (M1, M2) ≥ 0 and Di f f (M2, M3) ≥ 0, then Di f f (M1, M3) ≥ 0.

Proof. (1) Since 0 ≤ DGm(M1, M∗) ≤ 1 and 0 ≤ DGm(M2, M∗) ≤ 1, so we have
−1 ≤ DGm(M1, M∗)− DGm(M2, M∗) ≤ 1, i.e., −1 ≤ Di f f (M1, M2) ≤ 1.

(2) if M1 = M2, then Di f f (M1, M2) = DGm(M1, M∗)− DGm(M1, M∗) = 0.
(3) Since M∗ be an ideal MVNS, so M1 ≤ M2 ≤ M∗ can be obtained. According to Theorem 1,

we have:
DGm(M1, M∗) ≥ DGm(M2, M∗), i.e., DGm(M1, M∗)−DGm(M2, M∗) ≥ 0. Thus, Di f f (M1, M2) ≥ 0.
(4) Similarly to the proof in (3), if M1 ≥ M2, then Di f f (M1, M2) ≤ 0.
(5) Since Di f f (M1, M2) = DGm(M1, M∗) − DGm(M1, M∗) ≥ 0 and Di f f (M2, M3)

= DGm(M2, M∗)−DGm(M3, M∗) ≥ 0. So Gm(M1, M∗) − DGm(M2, M∗) + DGm(M2, M∗) −
DGm(M3, M∗) ≥ 0, i.e., DGm(M1, M∗)− DGm(M3, M∗) ≥ 0. Thus, Di f f (M1, M3) ≥ 0. �

It is noted that for any two MVNSs M1 and M2, the normalized multi-valued neutrosophic distance
DGm(M1, M∗) and DGm(M2, M∗) are real values. Then one of following three conditions should be hold:
DGm(M1, M∗) > DGm(M2, M∗), DGm(M1, M∗) = DGm(M2, M∗) or DGm(M1, M∗) < DGm(M2, M∗).
It follows that normalized multi-valued neutrosophic distance satisfies the law of trichotomy. Then the
partial ordering relation of MVNSs can be drawn via the difference distance.
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Definition 8. Let M, M1 and M2 be three MVNSs, and M∗ = {x, 〈1, 0, 0〉} be an ideal MVNS. Then the
partial ordering relation of MVNSs can be constructed as:

(1) If Di f f (M1, M2) > 0, i.e., DGm(M1, M∗)− DGm(M2, M∗) > 0, then M1 is inferior to M2, denoted by
M1 ≺ M2;

(2) If Di f f (M1, M2) = 0, i.e., DGm(M1, M∗) − DGm(M2, M∗) = 0, then M1 is indifferent to M2,
denoted by M1 ∼ M2;

(3) If Di f f (M1, M2) < 0, i.e., DGm(M1, M∗)− DGm(M2, M∗) < 0, then M1 is preferred to M2, denoted
by M1 � M2.

Example 2. Let M1 = {x, 〈{0.4, 0.7}, {0.2}, {0.3}〉} and M2 = {x, 〈{0.5, 0.6}, {0.2}, {0.3}〉} be two
MVNSs and M∗ = {x, 〈1, 0, 0〉} be an ideal MVNS.

(1) Based on the comparison method in Definition 4, we have γ
σ(1)
1 ≤ γ

σ(1)
2 and γ

σ(2)
1 � γ

σ(2)
2 . M1 � M2

can be obtained.
(2) According to Definition 10, DGm(M1, M∗) = 0.366 and DGm(M2, M∗) = 0.374 can be obtained.

From the comparison method in Definition 10, DGm(M1, M∗) > DGm(M2, M∗), then M1 is inferior to
M2, i.e., M1 ≺ M2.

4. The Multi-Valued Neutrosophic Distance-Based QUALIFLEX Approach

Assume a group of alternatives denoted by M = {M1, M2, . . . , Mn} and corresponding
criteria denoted by C = {c1, c2, . . . , cm}, and the weight of criterion wj is completely

unknown. Mij =
〈 .

TMij ,
.
IMij ,

.
FMij

〉
represents the evaluation value of Mi with respect

to criterion cj, where
.
TMij ,

.
IMij ,and

.
FMij are HFNs and indicate the truth-membership,

the indeterminacy-membership, and the falsity-membership, respectively. The proposed method
consists of the following steps.

Step 1. Transform the evaluation information into MVNNs

According to decision-makers’ knowledge and experience, experts provide evaluation values
for criteria for each alternative at three levels: high, medium and low. In other words, the option
about high, middle, and low in the evaluation process correspond to the three parameters of MVNS,
namely, positive membership, neutral membership, and negative membership, respectively. In order to
assure the accuracy and effectiveness of the evaluation information, no corresponding information was
provided during the evaluation process, and decision-makers were not allowed to communicate with
each other. Mij =

〈 .
TMij ,

.
IMij ,

.
FMij

〉
is the set of evaluation values for all decision-makers. Then the

decision-making matrix can be obtained.

Step 2. Normalize the decision matrix

For each criterion can be divided into two types, including benefit criteria, which means
the lager the better, and cost criteria, which means the smaller the better. For the benefit
criteria, nothing is done; for the cost criteria, the criterion values can be transformed as
Mij =

(
Mij
)c
(i = 1, 2, . . . , n; j = 1, 2, . . . , m). Here

(
Mij
)c is the complement of Mij as presented in

Def. 7.

Step 3. Calculate the weight of criteria

Based on the maximizing deviation method of SVNSs defined by Sahin and Liu [43], the non-linear
programming model with MVNNs can be constructed as:

(L)


max P(v) = 1

51/λ

m
∑

j = 1

n
∑

ς = 1

m
∑

τ = 1
vj
(
∆µηξ

)
subject to vj ≥ 0,

m
∑

j = 1
v2

j = 1. j = 1, 2, . . . , m
(5)
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Then according to the Lagrange function, the weight of criteria can be determined as [43]:

vj =

n
∑

ς = 1

n
∑

τ = 1

(
∆µηξ

)
√√√√ m

∑
j = 1

(
n
∑

ς = 1

n
∑

τ = 1

(
∆µηξ

))2
. (6)

In order to normalize the weight, then we have:

v∗j =

n
∑

ς = 1

n
∑

τ = 1

(
∆µηξ

)
m
∑

j = 1

n
∑

ς = 1

n
∑

τ = 1

(
∆µηξ

) . (7)

Here,
(
∆µηξ

)
=

(
1
n

n
∑

i = 1

(
∆γλ

i,12 + ∆ηλ
i,12 + ∆ξλ

i,12 + ∆λ
12(γi, ηi) + ∆λ

12(γi, ξi)
))1/λ

.

Step 4. Determine the possible permutations

For a group of alternative Mi(i = 1, 2, . . . , n), there exist n! permutations of different ranks of
alternatives. Assume Pτ represents the κ-th permutation as:

Pκ = (. . . , Mς, . . . , Mτ , . . .), κ = 1, 2, . . . , n! (8)

where Mς, Mτ ∈ M, and Mς is superior than or equal to Mτ .

Step 5. Calculate the concordance/discordance index

For each pair of alternatives (Mς, Mτ) (Mς, Mτ ∈ M) respect to the j-th criterion,
the corresponding concordance/discordance index ϕκ

j (Mς, Mτ) can be defined as:

ϕκ
j (Mς, Mτ) = Di f f

(
Mςj, Mτ j

)
. (9)

According to the multi-valued neutrosophic distance difference in Def. 10, the following can
be true:

(1) If ϕκ
j (Mς, Mτ) > 0, i.e., Di f f

(
Mςj, Mτ j

)
> 0, then Mτ ranks over Mς respect to the j-th criterion

under the τ-th permutation;
(2) If ϕκ

j (Mς, Mτ) = 0, i.e., Di f f
(
Mςj, Mτ j

)
= 0, then both Mς and Mτ have the same rank respect

to the j-th criterion under the τ-th permutation;
(3) If ϕκ

j (Mς, Mτ) < 0, i.e., Di f f
(
Mςj, Mτ j

)
< 0, then Mς ranks over Mτ respect to the j-th criterion

under the τ-th permutation.

Step 6. Determine the weighted concordance/discordance index

Considering the importance weight vj of each criterion cj ∈ C being expressed by
MVNNs, the weighted concordance/discordance index ϕκ(Mς, Mτ) for each pair of alternatives
(Mς, Mτ)(Mς, Mτ ∈ M) can be denoted as:

ϕκ(Mς, Mτ) =
m

∑
j = 1

ϕκ
j (Mς, Mτ) ·

(
1− DGm

(
vj, M∗

))
. (10)

Step 7. Calculate the comprehensive concordance/discordance index
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For the κ-th permutation, the corresponding comprehensive concordance/discordance index ϕκ

can be calculated as:
ϕκ = ∑

Mς ,Mτ∈M
ϕκ(Mς, Mτ). (11)

Step 8. Rank the alternatives

According to the partial ordering relation of MVNNs, it can be seen that the greater the
comprehensive concordance/discordance index value is, the more optimal the final ranking is. Thus,
the optimal rank can be obtained with the maximal comprehensive concordance/discordance index
ϕκ , i.e.:

P∗ = maxn!
κ = 1{ϕκ}. (12)

5. Illustrative Example

An example for selection of medical diagnostic plan (adapted from Chen et al. [37]) is provided
in this section. There is a patient who was a 48 year old female with a history of diabetes mellitus.
Her physician made a diagnosis of acute inflammatory demyelinating disease. Then the physician
assessed the patient’s medical history and her current physical conditions and provided three treatment
plans. Thus, how to select a suitable scheme is a MCDM problem. There are three possible schemes
Mi(i = 1, 2, 3) to be selected, including steroid therapy M1, plasmapheresis M2, and albumin immune
therapy M3. Each scheme can be assessed based on nine criteria, i.e., cj(j = 1, 2, . . . , 9): c1 is the
survival rate; c2 is the seriousness of the side effects; c3 is the seriousness of the complications; c4 is
the possibility of a cure; c5 is the uncomfortableness degree of the treatment; c6 is the cost; c7 is the
number of days of hospitalization; c8 is the probability of a recurrence and c9 is the self-care capacity.
Three decision-makers could assess three treatment plans under nine criteria in the form of MVNNs.
When more than one decision-maker assesses the same value, it is counted once. The weights of criteria
are completely unknown.

5.1. Illustration of the Developed Method

The steps of obtaining the optimal alternative, by using the developed approach, are as follows.

Step 1. Transform the evaluation information into MVNNs

Three decision-makers can provide evaluation values for criteria for each alternative at three levels:
high, medium and low based on their knowledge and experience. Then sets of high, medium, and low
correspond to the three parameters of MVNN, namely, positive membership, neutral membership,
and negative membership, respectively. If two or more decision-makers provide the same value,
then it is counted only once. Then the final evaluation information are in the form of MVNNs, i.e.,
Mij =

〈 .
TMij ,

.
IMij ,

.
FMij

〉
. Thus, the decision matrix can be constructed as described in Table 1.

Table 1. The evaluations of three schemes by decision-makers under criteria.

Criteria
Schemes

M1 M2 M3

c1 <{0.4,0.6,0.7},{0.1},{0.2}> <{0.4,0.5},{0.1},{0.2}> <{0.4,0.5,0.7},{0.3},{0.2}>
c2 <{0.3},{0.3},{0.5,0.7}> <{0.4},{0.1},{0.4}> <{0.1,0.3},{0.2},{0.4,0.6}>
c3 <{0.3},{0.2},{0.4,0.6}> <{0.4},{0.1},{0.5,0.6,0.7}> <{0.3},{0.2},{0.5}>
c4 <{0.5,0.7},{0.2},{0.2}> <{0.3,0.4},{0.2},{0.5}> <{0.3,0.6},{0.1},{0.6}>
c5 <{0.3},{0.2},{0.5}> <{0.2},{0.3},{0.3,0.5}> <{0.3},{0.2},{0.4}>
c6 <{0.3},{0.1},{0.6,0.7}> <{0.3},{0.2},{0.6}> <{0.1},{0.2},{0.5,0.6,0.8}>
c7 <{0.2},{0.1},{0.4,0.6,0.9}> <{0.2},{0.4},{0.6,0.8}> <{0.1},{0.2},{0.5,0.7,0.8}>
c8 <{0.1},{0.3},{0.6,0.8}> <{0.1},{0.2},{0.7,0.9}> <{0.3},{0.1},{0.7}>
c9 <{0.7,0.8,0.9},{0.1},{0.1}> <{0.6,0.7,0.8},{0.2},{0.3}> <{0.6,0.9},{0.2},{0.2}>
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Step 2. Normalize the decision-making matrix

Since c1, c4, and c9 are benefit types and other criteria are cost types, from Definition 2 the
normalized MVNN decision matrix can be determined as presented in Table 2.

Table 2. Normalized decision matrix.

Criteria
Schemes

M1 M2 M3

c1 <{0.4,0.6,0.7},{0.1},{0.2}> <{0.4,0.5},{0.1},{0.2}> <{0.4,0.5,0.7},{0.3},{0.2}>
c2 <{0.5,0.7},{0.3},{0.3}> <{0.4},{0.1},{0.4}> <{0.4,0.6},{0.2},{0.1,0.3}>
c3 <{0.4,0.6},{0.2},{0.3}> <{0.5,0.6,0.7},{0.1},{0.4}> <{0.5},{0.2},{0.3}>
c4 <{0.5,0.7},{0.2},{0.2}> <{0.3,0.4},{0.2},{0.5}> <{0.3,0.6},{0.1},{0.6}>
c5 <{0.5},{0.2},{0.3}> <{0.3,0.5},{0.3},{0.2}> <{0.4},{0.2},{0.3}>
c6 <{0.6,0.7},{0.1},{0.3}> <{0.6},{0.2},{0.3}> <{0.5,0.6,0.8},{0.2},{0.1}>
c7 <{0.4,0.6,0.9},{0.1},{0.2}> <{0.6,0.8},{0.4},{0.2}> <{0.5,0.7,0.8},{0.2},{0.1}>
c8 <{0.6,0.8},{0.3},{0.1}> <{0.7,0.9},{0.2},{0.1}> <{0.7},{0.1},{0.3}>
c9 <{0.7,0.8,0.9},{0.1},{0.1}> <{0.6,0.7,0.8},{0.2},{0.3}> <{0.6,0.9},{0.2},{0.2}>

Step 3. Calculate the weight of criteria

From Equation (5), the weight of criteria can be obtained as
v = (0.11, 0.15, 0.09, 0.15, 0.06, 0.10, 0.13, 0.11, 0.10).

Step 4. Determine all of the possible permutations

Since n = 3, so we have 6(3! = 6) permutations of alternative rankings, i.e.,
P1 = (M1, M2, M3), P2 = (M1, M3, M2), P3 = (M2, M1, M3), P4 = (M2, M3, M1),

P5 = (M3, M1, M2), P6 = (M3, M2, M1).

Step 5. Calculate the concordance/discordance index

From Equation (9), for each pair of alternatives (Mς, Mτ)(Mς, Mτ ∈ M) in the permutation Pκ

under criterion Cj, the concordance/discordance index ϕκ
j (Mς, Mτ) can be obtained. For simplicity,

let λ = 1 in Equation (1), the normalized multi-valued neutrosophic distance is reduced to the
normalized multi-valued neutrosophic Hausdorff distance, i.e., Equation (2), and the results can be
founded in Table 3.

Step 6. Calculate the weighted concordance/discordance index.

For simplicity, let λ = 1 in Equation (1), the weighted concordance/discordance indices
ϕκ(Mς, Mτ) can be calculated as presented in Table 4.

Step 7. Calculate the comprehensive concordance/discordance index.

From Equation (11), the comprehensive concordance/discordance index ϕκ can be calculated as
shown in Table 5.
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Table 3. The concordance/discordance index.

P1 ϕ1
j (M1, M2) ϕ1

j (M1, M3) ϕ1
j (M2, M3) P2 ϕ2

j (M1, M3) ϕ2
j (M1, M2) ϕ2

j (M3, M2)

c1 −0.08 −0.04 −0.04 c1 −0.04 −0.08 −0.04
c2 −0.12 −0.04 0.08 c2 −0.04 −0.12 −0.08
c3 0.06 −0.02 −0.08 c3 −0.02 0.06 0.08
c4 −0.22 −0.14 0.08 c4 −0.14 −0.22 −0.08
c5 −0.04 −0.06 −0.02 c5 −0.06 −0.04 0.02
c6 −0.06 0.04 0.10 c6 0.04 −0.06 −0.1
c7 −0.06 −0.02 0.04 c7 −0.02 −0.06 −0.04
c8 0.08 −0.02 −0.1 c8 −0.02 0.08 0.10
c9 −0.12 −0.06 0.06 c9 −0.06 −0.12 −0.06

P3 ϕ3
j (M2, M1) ϕ3

j (M2, M3) ϕ3
j (M1, M3) P4 ϕ4

j (M2, M3) ϕ4
j (M2, M1) ϕ4

j (M3, M1)

c1 0.08 0.04 −0.04 c1 0.04 0.08 0.04
c2 0.12 0.08 −0.04 c2 0.08 0.12 0.04
c3 −0.06 −0.08 −0.02 c3 −0.08 −0.06 0.02
c4 0.22 0.08 −0.14 c4 0.08 0.22 0.14
c5 0.04 −0.02 −0.06 c5 −0.02 0.04 0.06
c6 0.06 0.10 0.04 c6 0.10 0.06 −0.04
c7 0.06 0.04 −0.02 c7 0.04 0.06 0.02
c8 −0.08 −0.10 −0.02 c8 −0.10 −0.08 0.02
c9 0.12 0.06 −0.06 c9 0.06 0.12 0.06

P5 ϕ5
j (M3, M1) ϕ5

j (M3, M2) ϕ5
j (M1, M2) P6 ϕ6

j (M3, M2) ϕ6
j (M3, M1) ϕ6

j (M2, M1)

c1 0.04 −0.04 −0.08 c1 −0.04 0.04 0.08
c2 0.04 −0.08 −0.12 c2 −0.08 0.04 0.12
c3 0.02 0.08 0.06 c3 0.08 0.02 −0.06
c4 0.14 −0.08 −0.22 c4 −0.08 0.14 0.22
c5 0.06 0.02 −0.04 c5 0.02 0.06 0.04
c6 −0.04 −0.10 −0.06 c6 −0.10 −0.04 0.06
c7 0.02 −0.04 −0.06 c7 −0.04 0.02 0.06
c8 0.02 0.10 0.08 c8 0.10 0.02 −0.08
c9 0.06 −0.06 −0.12 c9 −0.06 0.06 0.12

Table 4. The weighted concordance/discordance index.

P1 ϕ1(M1, M2) ϕ1(M1, M3) ϕ1(M2, M3) P2 ϕ2(M1, M3) ϕ2(M1, M2) ϕ2(M3, M2)
−0.2688 −0.1707 0.0981 −0.1707 −0.2688 −0.0981

P3 ϕ3(M2, M1) ϕ3(M2, M3) ϕ3(M1, M3) P4 ϕ4(M2, M3) ϕ4(M2, M1) ϕ4(M3, M1)
0.2688 0.0981 −0.1707 0.0981 0.2688 0.1707

P5 ϕ5(M3, M1) ϕ5(M3, M2) ϕ5(M1, M2) P6 ϕ6(M3, M2) ϕ6(M3, M1) ϕ6(M2, M1)
0.1707 −0.0981 −0.2688 −0.0981 0.1707 0.2688

Table 5. The comprehensive concordance/discordance index.

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

−0.3414 −0.5377 0.1963 0.5377 −0.1963 0.3414

Step 8. Rank the alternatives

From the results in Step 5 and Equation (14), ϕ4 > ϕ6 > ϕ3 > ϕ5 > ϕ1 > ϕ2 and
P∗ = maxn!

κ = 1{ϕκ} = P4 can be obtained. Thus, the final order of the three plan is: M2 � M3 � M1.
The best treatment plan is M2 while the worst treatment plan is M1.

5.2. Sensitivity Analysis

In this subsection, the influence of λ on the ranking of alternatives is discussed. From Figure 1,
we can see that the rankings of alternatives are slightly different. If λ = 1, 2, 4, then the optimal
permutation is P4. The best alternative is always M2; while the worst alternative is M1; while if
λ = 6, 8, 10, then the optimal permutation is P6. The best alternative is M3. Moreover, the values of
comprehensive concordance/discordance index ϕκ become smaller as parameter λ increases. Generally
speaking, different values of parameter λ can reflect the decision-makers’ preferences and risk attitudes,
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which can provide more choices for decision-makers. Moreover, since the evaluation values for three
memberships in MVNNs are sets of numerical numbers in [0, 1], so we can see that if the value of
parameter is too large, then the difference for the distances of MVNNs will not be distinct.Information 2019, 10 FOR PEER REVIEW  13 
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Figure 1. The results of the sensitivity analysis.

5.3. Comparison Analysis

To further validate the practicability of the developed method, a comparison analysis was
investigated by utilizing some existing methods with multi-valued neutrosophic information, i.e.,
Peng et al. [19–21] and Ji et al. [23].

To facilitate a comparison analysis, the same example is used here as well. Since
the compared methods presented above cannot handle multi-valued neutrosophic information
where the weight is completely unknown, the weights of the criteria was determined as
v = (0.11, 0.15, 0.09, 0.15, 0.06, 0.10, 0.13, 0.11, 0.10)T . Then the final results can be calculated as
presented in Table 6.

Table 6. The comparison results.

Methods The Final Ranking The Best Alternative(s) The Worst Alternative(s)

Peng et al. [14] M2 � M3 � M1 or
M3 � M2 � M1

M2 or M3 M1

Peng et al. [15] M2 � M3 � M1 M2 M1
Peng et al. [16] M2 � M3 � M1 M2 M1

Ji et al. [23] M2 � M3 � M1 M2 M1
The proposed method M2 � M3 � M1 M2 M1

From the results presented in Table 4, we can see that the results from the proposed approach are
consistent with the compared methods in Peng et al. [15,16] and Ji et al. [23]; the optimal treatment
plan is M2, while the worst treatment plan is M1. For the other compared method in Peng et al. [14],
although there is a slight difference in the final rankings of these methods, the optimal treatment plan
is M2 or M3.
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From the comparison analyses presented above, some results can be summarized.
Firstly, if the multi-valued neutrosophic power weighted arithmetic averaging operator and the

multi-valued neutrosophic power weighted geometric averaging operator presented in Peng et al. [14]
are used respectively, then the different rankings M2 � M3 � M1 and M3 � M2 � M1 can be obtained.
However, different aggregation operators are always involved in the operations. Moreover, if the
number of elements in MVNNs increases, then the number of elements in the aggregated value will
exponentially increase. This will increase the difficulty of decision-making. Secondly, the method of
Peng et al. [15] is suitable to solve the MCDM problems where the number of alternatives is more
than the number of criteria; while the proposed approach and the method in Peng et al. [16] are
preferred to handle MCDM problems where the number of alternatives is fewer than the number
of criteria. Thirdly, all of the compared methods developed in Peng et al. [14–16] and Ji et al. [23]
cannot deal with some special cases that the weight information is completely unknown. However,
the proposed approach can avoid these shortcomings. Therefore, the primary characteristic of the
approach developed are not only its ability to availably express the preference information by MVNNs,
but also its consideration that the weights’ information is completely unknown. It can enlarge the
application scope of decision-making methods.

6. Conclusions

In this paper, the normalized multi-valued neutrosophic distance measure is defined, then
the normalized multi-valued neutrosophic difference distance is developed as well. Based on the
developed distances, a multi-valued neutrosophic distance-based QUALIFLEX approach is proposed
to deal with MCDM problems where the weights of criteria are completely unknown. A treatment
selection example testified the practicability of the proposed method, and showed that the results are
reasonable and credible. The mainly advantages of the developed method over the other methods is
that it can handle the MCDM problems where the number of alternatives is fewer than the number of
criteria and the weight information is completely unknown, which can be used to obtain the credible
and realistic results. However, the limitation of the developed method is that it cannot be suitable for
dealing with some problems where the number of alternatives is greater than the number of criteria.
In the future, the related distance measures of MVNSs will be further investigated.
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