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)e information expression and modeling of decision-making are critical problems in the fuzzy decision theory and method.
However, existing trapezoidal neutrosophic numbers (TrNNs) and neutrosophic Z-numbers (NZNs) and their multicriteria
decision-making (MDM) methods reveal their insufficiencies, such as without considering the reliability measures in TrNN and
continuous Z-numbers in NZN. To overcome the insufficiencies, it is necessary that one needs to propose trapezoidal neu-
trosophic Z-numbers (TrNZNs), their aggregation operations, and an MDM method for solving MDM problems with TrNZN
information. Hence, this study first proposes a TrNZN set, some basic operations of TrNZNs, and the score and accuracy functions
of TrNZN and their ranking laws. )en, the TrNZN weighted arithmetic averaging (TrNZNWAA) and TrNZN weighted
geometric averaging (TrNZNWGA) operators are presented based on the operations of TrNZNs. Next, an MDM approach using
the proposed aggregation operators and score and accuracy functions is established to carry out MDM problems under the
environment of TrNZNs. In the end, the established MDM approach is applied to an MDM example of software selection for
revealing its rationality and efficiency in the setting of TrNZNs. )e main advantage of this study is that the established approach
not only makes assessment information continuous and reliable but also strengthens the decision rationality and efficiency in the
setting of TrNZNs.

1. Introduction

In fuzzy decision-making problems, various new fuzzy
decision-making methods [1–3] have received many ap-
plications under neutrosophic, simplified neutrosophic
hesitant fuzzy, and bipolar neutrosophic environments.
)en, triangular and trapezoidal fuzzy numbers are usually
used for real decision-making problems because they can be
depicted by the continuous fuzzy numbers of membership
functions rather than exact/discrete fuzzy values. Hence,
some researchers extended triangular fuzzy numbers to
intuitionistic fuzzy sets (IFSs) and presented triangular
intuitionistic fuzzy sets (TIFSs), where the values of the
membership and nonmembership functions are triangular
fuzzy numbers, and some triangular intuitionistic fuzzy
aggregation operators for multicriteria decision-making
(MDM) problems with triangular intuitionistic fuzzy

information [4–7]. As the extension of TIFSs, Ye [8] in-
troduced a trapezoidal intuitionistic fuzzy set (TrIFS), in
which the values of its membership and nonmembership
functions are trapezoidal fuzzy numbers rather than trian-
gular fuzzy numbers, and some prioritized weighted ag-
gregation operators of trapezoidal intuitionistic fuzzy
numbers (TrIFNs) for MDM problems with TrIFNs.
However, TIFSs and TrIFSs cannot depict inconsistence and
indeterminacy information. Hence, Ye [9] generalized TrIFS
and proposed a trapezoidal neutrosophic set (TrNS), in
which the values of its truth, falsity, and indeterminacy
membership functions are trapezoidal fuzzy numbers, to
express incomplete, indeterminate, and inconsistent infor-
mation, and then he presented some basic operations of
trapezoidal neutrosophic numbers (TrNNs), score and ac-
curacy functions of TrNNs, and TrNN weighted arithmetic
averaging (TrNNWAA) and TrNN weighted geometric

Hindawi
Journal of Mathematics
Volume 2021, Article ID 6664330, 13 pages
https://doi.org/10.1155/2021/6664330

mailto:yejun1@nbu.edu.cn
https://orcid.org/0000-0003-2841-6529
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6664330


averaging (TrNNWGA) operators for MDM problems in the
setting of TrNNs. )en, some researchers utilized the in-
tegrated approach [10] and defuzzification method [11] for
the evaluation and MDM problems with interval-valued
TrNNs. Further, Giri et al. [12] applied TOPSIS method in
MDMproblems with interval-valued TrNNs. Also, Jana et al.
[13] and Khatter [14] presented some basic operations of
interval-valued TrNNs, score and accuracy functions of an
interval-valued TrNN, and the interval-valued TrNNWAA
and TrNNWGA operators for MDM problems in the setting
of interval-valued TrNNs.

)e notion of a Z-number introduced by Zadeh [15] is
described by a fuzzy number and its reliability measure to
strengthen the reliability of the fuzzy information. After that,
Z-numbers have been used for many areas [16–22]. Based on
the truth, falsity, and indeterminacy Z-numbers, Du et al.
[23] extended the Z-number concept and proposed neu-
trosophic Z-numbers (NZNs) to enhance the reliability of
the neutrosophic information, and then they presented basic
operations of NZNs, score and accuracy functions of NZN,
and the NZN weighted geometric averaging (NZNWGA)
and NZN weighted arithmetic averaging (NZNWAA) op-
erators and further established their MDM method under
the environment of NZNs.

However, TrNN is described only by the trapezoidal fuzzy
numbers of its truth, falsity, and indeterminacy membership
functions without considering their reliability measures, while
NZN is depicted only by exact/discrete truth, falsity, and in-
determinacy Z-numbers rather than continuous Z-numbers.
Hence, TrNN and NZN and their MDM methods reveal their
insufficiencies in their information expressions and applica-
tions. To express both the continuous Z-numbers of truth,
falsity, and indeterminacy membership functions and the re-
liability measures in MDM problems, it is necessary that this
study needs to propose an MDMmethod based on trapezoidal
neutrosophic Z-numbers (TrNZNs) to make up such insuffi-
ciencies of existing information expressions andMDMmethods
in the environments of TrNNs and NZNs. To do so, the main
aims of this article are (1) to propose a TrNZN set and some
basic operations of TrNZNs, (2) to introduce score and accuracy
functions of TrNZN for ranking TrNZNs, (3) to put forward the
TrNZNWAA and TrNZNWGA operators for aggregating
TrNZNs, (4) to develop a MDM approach using the proposed
aggregation operators and score and accuracy functions for
solving MDM problems under the environment of TrNZNs,
and (5) to apply the established MDM approach to an MDM
example of software selection for revealing its efficiency in the
setting of TrNZNs.

)e rest of the article is composed of the following
sections. Section 2 introduces some basic notions of TrNNs
as preliminaries of this study. Section 3 proposes a TrNZN
set, basic operations of TrNZNs, the score and accuracy
functions of TrNZN, and their ranking laws of TrNZNs.
)en, the TrNZNWAA and TrNZNWGA operators and
their relative properties are presented in section 4. Section 5
develops an MDM approach using the TrNZNWAA and
TrNZNWGA operators and score and accuracy functions of
TrNZNs. In Section 6, the developed MDM approach is

applied to anMDM example of software selection to indicate
its efficiency in the setting of TrNZNs. In the end, con-
clusions and further study are contained in Section 7.

2. Preliminaries of TrNSs

In this section, we introduce preliminaries of TrNSs, in-
cluding TrNNs, operations of TrNNs, two TrNN weighted
aggregation operators, and score and accuracy functions of
TrNNs for ranking TrNNs.

Ye [9] first proposed TrNS in a universe set U, which is
denoted as

Y � u,TNY(u), INY(u), FNY(u) , u ∈ U , (1)

where TNY(u)⊆[0, 1], INY(u)⊆[0, 1], and FNY(u)⊆[0, 1] are
the truth, indeterminacy, and falsity membership functions;
then their values are three trapezoidal fuzzy numbers
TNY(u) � (TN1(u),TN2(u),TN3(u), TN4(u)): U⟶ [0,
1], INY(u) � (IN1(u), IN2(u), IN3(u), IN4(u)): U⟶ [0,
1], and FNY(u) � (FN1(u), FN2(u), FN3(u), FN4(u)): U
⟶ [0, 1] with the condition
0≤TN4(u) + IN4(u) + FN4(u)≤ 3 for u ∈ U. For conve-
nience, a TrNN in Y is simply denoted by y � <(TN1, TN2,
TN3, TN4), (IN1, IN2, IN3, IN4), (FN1, FN2, FN3, FN4)>.

Regarding two TrNNs y1 � <(TN11, TN12, TN13, TN14),
(IN11, IN12, IN13, IN14), (FN11, FN12, FN13, FN14)> and y2 �

<(TN21, TN22, TN23, TN24), (IN21, IN22, IN23, IN24), (FN21,
FN22, FN23, FN24)>, Ye [14] defined the following basic
operations:

(1) y1⊕y2 � (TN11 + TN21 − TN11TN21, TN12+

TN22 − TN12TN22, TN13 + TN23 − TN13TN23,

TN14 + TN24 − TN14TN24), (IN11IN21, IN12IN22,

IN13IN23, IN14IN24), (FN11FN21, FN12FN22,

FN13FN23, FN14FN24)〉

(2) y1 ⊗ y2 � (TN11TN21, TN12TN22, TN13TN23,

TN14TN24), (IN11 + IN21 − IN11IN21, IN12 +

IN22 − IN12IN22, IN13 + IN23 − IN13IN23, IN14 +

IN24 − IN14 IN24), (FN11 + FN21 − FN11FN21,

FN12 + FN22 − FN12FN22, FN13 + FN23 − FN13
FN23, FN14 + FN24 − FN14FN24)〉

(3) λy1 � (1 − (1 − TN11)
λ
, 1 − (1 − TN12)

λ
, 1 − (1−

TN13)
λ, 1 − (1 − TN14)

λ
), (IN

λ
11, IN

λ
12, IN

λ
13, IN

λ
14),

(FN
λ
11, FN

λ
12, FN

λ
13, FN

λ
14)〉, λ> 0

(4) yλ
1 � (TN

λ
11, TN

λ
12, TN

λ
13, TN

λ
14), (1 − (1− IN11)

λ,

1 − (1 − IN12)
λ
, 1 − (1 − IN13)

λ
, 1 − (1 − IN14)

λ
),

(1 − (1 − FN11)
λ
, 1 − (1 − FN12)

λ
, 1 − (1 − FN13)

λ
,

1 − (1 − FN14)
λ
)〉, λ≥ 0

Regarding a group of TrNNs yj � <(TNj1, TNj2, TNj3,
TNj4), (INj1, INj2, INj3, INj4), (FNj1, FNj2, FNj3, FNj4)> (j� 1,
2,. . .,n) with their weights λj (j� 1, 2,. . .,n) for λj ∈ [0, 1] and


n
j�1 λj � 1, Ye [9] proposed the TrNNWAA and

TrNNWGA operators:
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TrNNWAA y1, y2, . . . , yn(  � ⊕
n
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λj yj
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(2)
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j
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n
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n
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λj
, 1 − 

n

j�1
1 − INj3 

λj
, 1 − 

n

j�1
1 − INj4 

λj⎛⎝ ⎞⎠,

1 − 
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(3)

)en, the score and accuracy functions of the TrNN y �

<(TN1, TN2, TN3, TN4), (IN1, IN2, IN3, IN4), (FN1, FN2, FN3,
FN4)> were defined as follows [9]:

S (y) �
1
3

2 +
TN1 + TN2 + TN3 + TN4

4
−

IN1 + IN2 + IN3 + IN4

4
−

FN1 + FN2 + FN3 + FN4

4
 , S(y) ∈ [0, 1], (4)

H(y) �
TN1 + TN2 + TN3 + TN4

4
−

FN1 + FN2 + FN3 + FN4

4
, H(y) ∈ [− 1, 1]. (5)

Based on the score and accuracy functions of TrNNs, the
ranking relations between two TrNNs y1 � <(TN11, TN12,
TN13, TN14), (IN11, IN12, IN13, IN14), (FN11, FN12, FN13,
FN14)> and y2 � <(TN21, TN22, TN23, TN24), (IN21, IN22,
IN23, IN24), (FN21, FN22, FN23, FN24)> were defined as
follows [9]:

(1) y1≻y2 for S(y1) � S(y2)

(2) y1≻y2 for S(y1) � S(y2) and H(y1)>H(y2)

(3) y1 � y2 for S(y1) � S(y2) and H(y1) � H(y2)

3. Trapezoidal Neutrosophic Z-Number
(TrNZN) Sets

To make trapezoidal neutrosophic information reliable, this
section gives the following definitions of a TrNZN set,
operations of TrNZNs, score and accuracy functions of
TrNZN, and ranking laws of TrNZNs.

Definition 1. Set U as a universe set; then, a TrNZN set in U
is defined as the following mathematical representation:

Z � u, TZV(u), TZR(u) , IZV(u), IZR(u) , FZV(u), FZR(u)  |u ∈ U , (6)

where (TZV(u), TZR(u)), (IZV(u), IZR(u)), and (FZV(u),

FZR(u)) are the truth, indeterminacy, and falsity trapezoidal
Z-numbers that are composed of the truth, indeterminacy, and
falsity trapezoidal fuzzy numbers and their reliability measures,
denoted as (TZV(u), TZR(u)) � ((TV1(u), TV2(u), TV3(u),

TV4(u)), (TR1(u), TR2(u), TR3(u), TR4 (u))): U⟶ [0, 1]×

[0, 1], ((IZV(u), IZR(u) � ((IV1(u), IV2(u), IV3(u), IV4(u)),

(IR1(u), IR2(u), IR3(u), IR4(u))): U⟶ [0, 1]×[0, 1], and
(FZV(u),FZR(u))�((FV1(u),FV2(u),FV3(u), FV4(u)),(FR1
(u), FR2(u), FR3(u),FR4(u))): U⟶ [0, 1]×[0, 1] with the
conditions 0≤TV4(u)+IV4(u)+FV4(u)≤3 and 0≤TR4(u)+

IR4(u)+FR4(u)≤3 for u∈U.
For convenience, the three trapezoidal Z-numbers in Z

are simply denoted as (TZV(u), TZR(u)) � ((TV1,
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TV2, TV3, TV4), (TR1, TR2, TR3, TR4)), (IZV(u), IZR(u)) �

((IV1, IV2, IV3, IV4), (IR1, IR2, IR3, IR4)), and (FZV(u), FZR
(u)) � ((FV1, FV2, FV3, FV4), (FR1, FR2, FR3, FR4)). )us, a
TrNZN in Z is simply denoted as z � <((TV1, TV2, TV3, TV4),
(TR1, TR2, TR3, TR4)), ((IV1, IV2, IV3, IV4), (IR1, IR2, IR3, TR4)),
((FV1, FV2, FV3, FV4), (FR1, FR2, FR3, FR4))>.

If TV2 �TV3, TR2 �TR3, IV2 � IV3, IR2 � IR3, and FV2 � FV3,
FR2 � FR3 hold in the TrNZN z; it is reduced to the triangular
neutrosophic Z-number, which is a special case of TrNZN.

Definition 2. Set z1� <((TV11, TV12, TV13, TV14), (TR11, TR12,
TR13, TR14)), ((IV11, IV12, IV13, IV14), (IR11, IR12, IR13, TR14)),
((FV11, FV12, FV13, FV14), (FR11, FR12, FR13, FR14))> and z2�

<((TV21, TV22, TV23, TV24), (TR21, TR22, TR23, TR24)), ((IV21,
IV22, IV23, IV24), (IR21, IR22, IR23, TR24)), ((FV21, FV22, FV23,
FV24), (FR21, FR22, FR23, FR24))> as two TrNZNs. )en they
are defined as the following basic operations:

(1) z1⊕ z2 � ((TV11 + TV21 − TV11TV21, TV12 + TV22 −

TV12TV22, TV13 + TV23 − TV13TV23, TV14 + TV24 −

TV14TV24), (TR11 + TR21 − TR11TR21, TR12 + TR22 −

TR12TR22, TR13 + TR23 − TR13TR23, TR14 + TR24−

TR14TR24)), ((IV11IV21, IV12IV22, IV13IV23, IV14IV24),

(IR11IR21, IR12IR22, IR13IR23, IR14IR24)), ((FV11FV21,

FV12FV22, FV13FV23, FV14FV24), (FR11FR21, FR12FR22,

FR13FR23, FR14FR24))〉

(2) z1 ⊗ z2 � ((TV11TV21, TV12TV22, TV13TV23, TV14
TV24)(TR11TR21, TR12TR22, TR13TR23, TR14TR24)),

(IV11 + IV21 − IV11IV21,( IV12 + IV22 − IV12IV22,

IV13+ IV23 − IV13IV23, IV14 + IV24 − IV14IV24), (IR11 +

IR21 − IR11IR21, IR12 + IR22 − IR12IR22, IR13 + IR23 −

IR13IR23, IR14 + IR24 − IR14IR24)), (FV11 + FV21−(

FV11FV21, FV12+ FV22 − FV12FV22, FV13 + FV23 − FV13
FV23, FV14 + FV24 − FV14FV24), (FR11 + FR21 − FR11
FR21, FR12 + FR22 − FR12FR22, FR13 + FR23 − FR13FR23,

FR14 + FR24 − FR14FR24))〉

(3) λz1 � ((1 − (1 − TV11)
λ
, 1 − (1 − TV12)

λ
, 1 − (1−

TV13)
λ, 1 − (1 − TV14)

λ
), (1 − (1 − TR11)

λ
, 1 − (1−

TR12)
λ, 1 − (1 − TR13)

λ
, 1− (1 − TR14)

λ
)), ((I

λ
V11, I

λ
V12,

I
λ
V13, I

λ
V14), (I

λ
R11, I

λ
R12, I

λ
R13, I

λ
R14)), ((F

λ
V11, F

λ
V12,

F
λ
V13, F

λ
V14), (F

λ
R11, F

λ
R12, F

λ
R13, F

λ
R14))〉, λ> 0

(4) zλ
1 � ((T

λ
V11, T

λ
V12, T

λ
V13, T

λ
V14), (T

λ
R11, T

λ
R12, T

λ
R13,

T
λ
R14)), ((1 − (1 − IV11)

λ
, 1 − (1 − IV12)

λ
, 1 − (1−

IV13)
λ, 1 − (1 − IV14)

λ
), (1 − (1 − IR11)

λ
, 1 − (1−

IR12)
λ, 1 − (1 − IR13)

λ
, 1 − (1 − IR14)

λ
)), ((1 − (1−

FV11)
λ, 1 − (1 − FV12)

λ
, 1 − (1 − FV13)

λ
, 1 − (1−

FV14)
λ), (1 − (1 − FR11)

λ
, 1 − (1 − FR12)

λ
, 1 − (1−

FR13)
λ, 1 − (1 − FR14)

λ
))〉, λ> 0

For ranking TrNZNs, the score and accuracy functions of
TrNZN are defined according to the expected value of a
trapezoidal fuzzy number and score and accuracy functions
of TrNN [9].

Definition 3. Set z1� <((TV11, TV12, TV13, TV14), (TR11, TR12,
TR13, TR14)), ((IV11, IV12, IV13, IV14), (IR11, IR12, IR13, TR14)),
((FV11, FV12, FV13, FV14), (FR11, FR12, FR13, FR14))> as TrNZN.
)en the score and accuracy functions of the TrNZN z1 can
be defined as follows:

S z1(  �
1
3

2 +
TV11 + TV12 + TV13 + TV14

4
×

TR11 + TR12 + TR13 + TR14

4

−
IV11 + IV12 + IV13 + IV14

4
×

IR11 + IR12 + IR13 + IR14

4

−
FV11 + FV12 + FV13 + FV14

4
×

FR11 + FR12 + FR13 + FR14

4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, S z1(  ∈ [0, 1], (7)

H z1(  �
TV11 + TV12 + TV13 + TV14

4
×

TR11 + TR12 + TR13 + TR14

4
−

FV11 + FV12 + FV13 + FV14

4

×
FR11 + FR12 + FR13 + FR14

4
, H(z) ∈ [− 1, 1].

(8)

Based on equations (7) and (8), ranking laws between
two TrNZNs are given by the following definition.

Definition 4. Set z1� <((TV11, TV12, TV13, TV14), (TR11, TR12,
TR13, TR14)), ((IV11, IV12, IV13, IV14), (IR11, IR12, IR13, TR14)),
((FV11, FV12, FV13, FV14), (FR11, FR12, FR13, FR14))> and z2�

<((TV21, TV22, TV23, TV24), (TR21, TR22, TR23, TR24)), ((IV21,
IV22, IV23, IV24), (IR21, IR22, IR23, TR24)), ((FV21, FV22, FV23,
FV24), (FR21, FR22, FR23, FR24))> as two TrNZNs. )en, the
ranking laws between two TrNZNs are defined as follows:

(1) If S(z1) > S(z2), then z1≻z2

(2) If S(z1)� S(z2) and H(z1)>H(z2), then z1≻z2

(3) If S(z1)� S(z2) and H(z1)�H(z2), then z1 � z2

4. Weighted Aggregation Operators of TrNZNs

Regarding information aggregation in MDM problems, one
usually utilizes the weighted arithmetic and geometric av-
eraging operators as the most basic information aggregation
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approaches. To aggregate TrNZNs, therefore, this section
proposes the two following weighted aggregation operators
of TrNZNs based on the basic operations of TrNZNs in
Definition 2.

4.1. Weighted Arithmetic Averaging Operator of TrNZNs

Definition 5. Set zj� <((TVj1, TVj2, TVj3, TVj4), (TRj1, TRj2,
TRj3, TRj4)), ((IVj1, IVj2, IVj3, IVj4), (IRj1, IRj2, IRj3, IRj4)), ((FVj1,
FVj2, FVj3, FVj4), (FRj1, FRj2, FRj3, FRj4))> (j� 1, 2,. . .,n) as a
series of TrNZNs.)en, the TrNZNWAA operator is defined
as

TrNZNWAA z1, z2, . . . , zn(  � ⊕
n

j�1
λjzj, (9)

where λj (j� 1, 2,. . .,n) is the weight of the jth TrNZN zj

(j� 1, 2,. . .,n) for λj ∈ [0, 1] and 
n
j�1 λj � 1.

Based on the basic operations of TrNZNs in Definition 2
and equation (9), we have the following theorem.

Theorem 1. Set zj� <((TVj1, TVj2, TVj3, TVj4), (TRj1, TRj2,
TRj3, TRj4)), ((IVj1, IVj2, IVj3, IVj4), (IRj1, IRj2, IRj3, IRj4)), ((FVj1,
FVj2, FVj3, FVj4), (FRj1, FRj2, FRj3, FRj4))> (j� 1, 2,. . .,n) as a
series of TrNZNs.4en, the aggregated value of equation (9) is
also TrNZN, which is yielded by the following equation:

TrNZNWAA z1, z2, . . . , zn( 

�

1 − 
n

j�1
1 − TVj1 

λj
, 1 − 

n

j�1
1 − TVj2 

λj
, 1 − 

n

j�1
1 − TVj3 

λj
, 1 − 

n

j�1
1 − TVj4 

λj⎛⎝ ⎞⎠, 1 − 
n

j�1
1 − TRj1 

λj
, 1 − 

n

j�1
1 − TRj2 

λj
, 1 − 

n

j�1
1 − TRj3 

λj
, 1 − 

n

j�1
1 − TRj4 

λj⎛⎝ ⎞⎠⎛⎝ ⎞⎠,


n

j�1
I
λj

Vj1, 
n

j�1
I
λj

Vj2, 
n

j�1
I
λj

Vj3, 
n

j�1
I
λj

Vj4
⎛⎝ ⎞⎠, 

n

j�1
I
λj

Rj1, 
n

j�1
I
λj

Rj2, 
n

j�1
I
λj

Rj3, 
n

j�1
I
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠, 

n

j�1
F
λj

Vj1, 
n

j�1
F
λj

Vj2, 
n

j�1
F
λj

Vj3, 
n

j�1
F
λj

Vj4
⎛⎝ ⎞⎠, 

n

j�1
F
λj

Rj1, 
n

j�1
F
λj

Rj2, 
n

j�1
F
λj

Rj3, 
n

j�1
F
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

 ,

(10)

where λj (j� 1, 2,. . .,n) is the weight of the jth TrNZN zj (j� 1,
2, . . ., n) for λj ∈ [0, 1] and 

n
j�1 λj � 1.

Proof. )e proof of equation (10) can be given by mathe-
matical induction.

(1) Set n� 2. )en there is the following result:

TrNZNWAA z1, z2(  � λ1z1 ⊕ λ2z2

� 1 − 1 − TV11( 
λ1 + 1 − 1 − TV21( 

λ2 − 1 − 1 − TV11( 
λ1  1 − 1 − TV21( 

λ2  ,

1 − 1 − TV12( 
λ1 + 1 − 1 − TV22( 

λ2 − 1 − 1 − TV12( 
λ1  1 − 1 − TV22( 

λ2 ,

1 − 1 − TV13( 
λ1 + 1 − 1 − TV23( 

λ2 − 1 − 1 − TV13( 
λ1  1 − 1 − TV23( 

λ2 ,

1 − 1 − TV14( 
λ1 + 1 − 1 − TV24( 

λ2 − 1 − 1 − TV14( 
λ1  1 − 1 − TV24( 

λ2 ,

1 − 1 − TR11( 
λ1 + 1 − 1 − TR21( 

λ2 − 1 − 1 − TR11( 
λ1  1 − 1 − TR21( 

λ2 ,

1 − 1 − TR12( 
λ1 + 1 − 1 − TR22( 

λ2 − 1 − 1 − TR12( 
λ1  1 − 1 − TR22( 

λ2 ,

1 − 1 − TR13( 
λ1 + 1 − 1 − TR23( 

λ2 − 1 − 1 − TR13( 
λ1  1 − 1 − TR23( 

λ2 ,

1 − 1 − TV14( 
λ1 + 1 − 1 − TR24( 

λ2 − 1 − 1 − TR14( 
λ1  1 − 1 − TR24( 

λ2 ,

I
λ1
V11I

λ2
V21, I

λ1
V12I

λ2
V22, I

λ1
V13I

λ2
V23, I

λ1
V14I

λ2
V24 , I

λ1
R11I

λ2
R21, I

λ1
R12I

λ2
R22, I

λ1
R13I

λ2
R23, I

λ1
R14I

λ2
R24  ,

F
λ1
V11F

λ2
V21, F

λ1
V12F

λ2
V22, F

λ1
V13F

λ2
V23, F

λ1
V14F

λ2
V24 , F

λ1
R11F

λ2
R21, F

λ1
R12F

λ2
R22, F

λ1
R13F

λ2
R23, F

λ1
R14F

λ2
R24  

� 1 − 1 − TV11( 
λ1 1 − TV21( 

λ2 , 1 − 1 − TV12( 
λ1 1 − TV22( 

λ2 ,

1 − 1 − TV13( 
λ1 1 − TV23( 

λ2 , 1 − 1 − TV14( 
λ1 1 − TV24( 

λ2

1 − 1 − TR11( 
λ1 1 − TR21( 

λ2 , 1 − 1 − TR12( 
λ1 1 − TR22( 

λ2 ,

1 − 1 − TR13( 
λ1 1 − TR23( 

λ2 , 1 − 1 − TR14( 
λ1 1 − TR24( 

λ2,



2

j�1
I
λj

Vj1, 
2

j�1
I
λj

Vj2, 
2

j�1
I
λj

Vj3, 
2

j�1
I
λj

Vj4
⎛⎝ ⎞⎠, 

2

j�1
I
λj

Rj1, 
2

j�1
I
λj

Rj2, 
2

j�1
I
λj

Rj3, 
2

j�1
I
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠,



2

j�1
F
λj

Vj1, 
2

j�1
F
λj

Vj2, 
2

j�1
F
λj

Vj3, 
2

j�1
F
λj

Vj4
⎛⎝ ⎞⎠, 

2

j�1
F
λj

Rj1, 
2

j�1
F
λj

Rj2, 
2

j�1
F
λj

Rj3, 
2

j�1
F
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(11)
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(2) Set n� k. )en, equation (10) can hold in the fol-
lowing equation:

TrNZNWAA z1, z2, . . . , zk(  � ⊕
k

j�1
λjzj

� 1 − 
k

j�1
1 − TVj1 

λj
, 1 − 

k

j�1
1 − TVj2 

λj
, 1 − 

k

j�1
1 − TVj3 

λj
, 1 − 

k

j�1
1 − TVj4 

λj⎛⎝ ⎞⎠,⎛⎝

1 − 
k

j�1
1 − TRj1 

λj
, 1 − 

k

j�1
1 − TRj2 

λj
, 1 − 

k

j�1
1 − TRj3 

λj
, 1 − 

k

j�1
1 − TRj4 

λj⎛⎝ ⎞⎠⎞⎠,



k

j�1
I
λj

Vj1, 
k

j�1
I
λj

Vj2, 
k

j�1
I
λj

Vj3, 
k

j�1
I
λj

Vj4
⎛⎝ ⎞⎠, 

k

j�1
I
λj

Rj1, 
k

j�1
I
λj

Rj2, 
k

j�1
I
λj

Rj3, 
k

j�1
I
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠,



k

j�1
F
λj

Vj1, 
k

j�1
F
λj

Vj2, 
k

j�1
F
λj

Vj3, 
k

j�1
F
λj

Vj4
⎛⎝ ⎞⎠, 

k

j�1
F
λj

Rj1, 
k

j�1
F
λj

Rj2, 
k

j�1
F
λj

Rj3, 
k

j�1
F
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(12)

(3) Set n� k+ 1. By equations (11) and (12), we can
obtain

TrNZNWAA z1, z2, . . . , zk, zk+1(  � ⊕
k

j�1
λjzj⊕λk+1zk+1

�

1 − 
k

j�1
1 − TVj1 

λj
+ 1 − 1 − TV(k+1)1 

λk+1
− 1 − 

k

j�1
1 − TVj1 

λj⎛⎝ ⎞⎠ 1 − 1 − TV(k+1)1  
λk+1⎛⎝ ⎞⎠, 1 − 

k

j�1
1 − TVj2 

λj
+ 1 − 1 − TV(k+1)2 

λk+1
− 1 − 

k

j�1
1 − TVj2 

λj⎛⎝ ⎞⎠ 1 − 1 − TV(k+1)2  
λk+1⎛⎝ ⎞⎠,

1 − 
k

j�1
1 − TVj3 

λj
+ 1 − 1 − TV(k+1)3 

λk+1
− 1 − 

k

j�1
1 − TVj3 

λj⎛⎝ ⎞⎠ 1 − 1 − TV(k+1)3  
λk+1⎛⎝ ⎞⎠, 1 − 

k

j�1
1 − TVj4 

λj
+ 1 − 1 − TV(k+1)4 

λk+1
− 1 − 

k

j�1
1 − TVj4 

λj⎛⎝ ⎞⎠ 1 − 1 − TV(k+1)4  
λk+1⎛⎝ ⎞⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 − 

k

j�1
1 − TRj1 

λj
+ 1 − 1 − TR(k+1)1 

λk+1
− 1 − 

k

j�1
1 − TRj1 

λj⎛⎝ ⎞⎠ 1 − 1 − TR(k+1)1  
λk+1⎛⎝ ⎞⎠,⎛⎝ 1 − 

k

j�1
1 − TRj2 

λj
+ 1 − 1 − TR(k+1)2 

λk+1
− 1 − 

k

j�1
1 − TRj2 

λj⎛⎝ ⎞⎠ 1 − 1 − TR(k+1)2  
λk+1⎛⎝ ⎞⎠,

1 − 

k

j�1
1 − TRj3 

λj
+ 1 − 1 − TR(k+1)3 

λk+1
− 1 − 

k

j�1
1 − TRj3 

λj⎛⎝ ⎞⎠ 1 − 1 − TR(k+1)3  
λk+1⎛⎝ ⎞⎠, 1 − 

k

j�1
1 − TRj4 

λj
+ 1 − 1 − TR(k+1)4 

λk+1
− 1 − 

k

j�1
1 − TRj4 

λj⎛⎝ ⎞⎠ 1 − 1 − TR(k+1)4  
λk+1⎛⎝ ⎞⎠,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



k+1

j�1
I
λj

Vj1, 
k+1

j�1
I
λj

Vj2, 
k+1

j�1
I
λj

Vj3, 
k+1

j�1
I
λj

Vj4
⎛⎝ ⎞⎠, 

k+1

j�1
I
λj

Rj1, 
k+1

j�1
I
λj

Rj2, 
k+1

j�1
I
λj

Rj3, 
k+1

j�1
I
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠, 

k+1

j�1
F
λj

Vj1, 
k+1

j�1
F
λj

Vj2, 
k+1

j�1
F
λj

Vj3, 
k+1

j�1
F
λj

Vj4
⎛⎝ ⎞⎠, 

k+1

j�1
F
λj

Rj1, 
k+1

j�1
F
λj

Rj2, 
k+1

j�1
F
λj

Rj3, 
k+1

j�1
F
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

 

�

1 − 
k+1

j�1
1 − TVj1 

λj
, 1 − 

k+1

j�1
1 − TVj2 

λj
, 1 − 

k+1

j�1
1 − TVj3 

λj
, 1 − 

k+1

j�1
1 − TVj4 

λj
,⎛⎝ ⎞⎠ 1 − 

k+1

j�1
1 − TRj1 

λj
, 1 − 

k+1

j�1
1 − TRj2 

λj
, 1 − 

k+1

j�1
1 − TRj3 

λj
, 1 − 

k+1

j�1
1 − TRj4 

λj⎛⎝ ⎞⎠⎛⎝ ⎞⎠,



k+1

j�1
I
λj

Vj1, 
k+1

j�1
I
λj

Vj2, 
k+1

j�1
I
λj

Vj3, 
k+1

j�1
I
λj

Vj4
⎛⎝ ⎞⎠, 

k+1

j�1
I
λj

Rj1, 
k+1

j�1
I
λj

Rj2, 
k+1

j�1
I
λj

Rj3, 
k+1

j�1
I
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠, 

k+1

j�1
F
λj

Vj1, 
k+1

j�1
F
λj

Vj2, 
k+1

j�1
F
λj

Vj3, 
k+1

j�1
F
λj

Vj4
⎛⎝ ⎞⎠, 

k+1

j�1
F
λj

Rj1, 
k+1

j�1
F
λj

Rj2, 
k+1

j�1
F
λj

Rj3, 
k+1

j�1
F
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

 .

(13)

Regarding the above results, equation (10) can hold for
any n. )us, the proof is completed.

Especially when λj � 1/n (j� 1, 2, . . ., n), the TrNZNWAA
operator is reduced to the TrNZN arithmetic averaging
operator. □

Theorem 2. 4e TrNZNWAA operator contains the three
following properties:

(P1) Idempotency: set zj� <((TVj1, TVj2, TVj3, TVj4),
(TRj1, TRj2, TRj3, TRj4)), ((IVj1, IVj2, IVj3, IVj4), (IRj1, IRj2,
IRj3, IRj4)), ((FVj1, FVj2, FVj3, FVj4), (FRj1, FRj2, FRj3, FRj4))
> (j� 1, 2, . . ., n) as a series of TrNZNs. If zj � z for j� 1,
2, . . ., n, then there exists TrNZNWAA(z1, z2, . . . ,
zn) � z.
(P2) Set zj� <((TVj1, TVj2, TVj3, TVj4), (TRj1, TRj2, TRj3,
TRj4)), ((IVj1, IVj2, IVj3, IVj4), (IRj1, IRj2, IRj3, IRj4)), ((FVj1,
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FVj2, FVj3, FVj4), (FRj1, FRj2, FRj3, FRj4)) > (j� 1, 2, . . ., n)
as a series of TrNZNs; then, set the minimum and
maximum TrNZNs as

z
−

�

min
j

TVj1,min
j

TVj2,min
j

TVj3,min
j

TVj4 , min
j

TRj1,min
j

TRj2,min
j

TRj3,min
j

TRj4  ,

max
j

IVj1,max
j

IVj2,max
j

IVj3,max
j

IVj4 , max
j

IRj1,max
j

IRj2,max
j

IRj3,max
j

IRj4  ,

max
j

FVj1,max
j

FVj2,max
j

FVj3,max
j

FVj4 , max
j

FRj1,max
j

FRj2,max
j

FRj3,max
j

FRj4  

 ,

z
+

�

max
j

TVj1,max
j

TVj2,max
j

TVj3,max
j

TVj4 , max
j

TRj1,max
j

TRj2,max
j

TRj3,max
j

TRj4  ,

min
j

IVj1,min
j

IVj2,min
j

IVj3,min
j

IVj4 , min
j

IRj1,min
j

IRj2,min
j

IRj3,min
j

IRj4  ,

min
j

FVj1,min
j

FVj2,min
j

FVj3,min
j

FVj4 , min
j

FRj1,min
j

FRj2,min
j

FRj3,min
j

FRj4  

 .

(14)

4en, there is z− ≤TrNZNWAA(z1, z2, . . . , zn)≤ z+.
(P3) Monotony: set zj� <((TVj1, TVj2, TVj3, TVj4),
(TRj1, TRj2, TRj3, TRj4)), ((IVj1, IVj2, IVj3, IVj4),
(IRj1, IRj2, IRj3, IRj4)), ((FVj1, FVj2, FVj3, FVj4),
(FRj1, FRj2, FRj3, FRj4))> (j� 1, 2, . . ., n) as a series of
TrNZNs. If zj ≤ z∗j for j� 1, 2, . . ., n, then there is
TrNZNWAA(z1, z2, . . . , zn)≤TrNZNWAA (z∗1 ,
z∗2 , . . . , z∗n ).

Proof.

(P1) Owing to zj � z for j� 1, 2, . . ., n, there is the
following result:

TrNZNWAA z1, z2, ..., zn(  � ⊕
n

j�1
λjzj

� 1 − 
n

j�1
1 − TVj1 

λj
, 1 − 

n

j�1
1 − TVj2 

λj
, 1 − 

n

j�1
1 − TVj3 

λj
, 1 − 

n

j�1
1 − TVj4 

λj⎛⎝ ⎞⎠⎛⎝ ,

1 − 
n

j�1
1 − TRj1 

λj
, 1 − 

n

j�1
1 − TRj2 

λj
, 1 − 

n

j�1
1 − TRj3 

λj
, 1 − 

n

j�1
1 − TRj4 

λj⎛⎝ ⎞⎠⎞⎠,



n

j�1
I
λj

Vj1, 
n

j�1
I
λj

Vj2, 
n

j�1
I
λj

Vj3, 
n

j�1
I
λj

Vj4
⎛⎝ ⎞⎠, 

n

j�1
I
λj

Rj1, 
n

j�1
I
λj

Rj2, 
n

j�1
I
λj

Rj3, 
n

j�1
I
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠,



n

j�1
F
λj

Vj1, 
n

j�1
F
λj

Vj2, 
n

j�1
F
λj

Vj3, 
n

j�1
F
λj

Vj4
⎛⎝ ⎞⎠, 

n

j�1
F
λj

Rj1, 
n

j�1
F
λj

Rj2, 
n

j�1
F
λj

Rj3, 
n

j�1
F
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

� 1 − 1 − TV1( 

j�1nλj, 1 − 1 − TV2( 


j�1nλj, 1 − 1 − TV3( 


j�1nλj, 1 − 1 − TV4( 


j�1nλj

⎛⎝ ⎞⎠,⎛⎝

1 − 1 − TR1( 

j�1nλj, 1 − 1 − TR2( 


j�1nλj, 1 − 1 − TR3( 


j�1nλj, 1 − 1 − TR4( 


j�1nλj

⎛⎝ ⎞⎠⎞⎠,
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I

V1 j � 1n

wj, I

V2 j � 1n

wj, I

V3 j � 1n

wj, I

V4 j � 1n

wj
⎛⎝ ⎞⎠,⎛⎝

I

R1 j � 1n

wj, I

R2 j � 1n

wj, I

R3 j � 1n

wj, I

R4 j � 1n

wj
⎛⎝ ⎞⎠⎞⎠,

F

V1 j � 1n

wj, F

V2 j � 1n

wj, F

V3 j � 1n

wj, F

V4 j � 1n

wj
⎛⎝ ⎞⎠,⎛⎝

F

R1 j � 1n

wj, F

R2 j � 1n

wj, F

R3 j � 1n

wj, F

R4 j � 1n

wj
⎛⎝ ⎞⎠⎞⎠

� TV1, TV2, TV3, TV4( , TR1, TR2, TR3, TR4( ( , IV1, IV2, IV3, IV4( , IR1, IR2, IR3, IR4( (  ,

IV1, IV2, IV3, IV4( , IR1, IR2, IR3, IR4( (  � z.
(15)

(P2) Due to z− ≤ zj ≤ z+ for j� 1, 2, . . ., n, there exists
⊕nj�1λjz− ≤⊕nj�1λjzj ≤⊕nj�1λjz+. So, the inequality
z− ≤⊕nj�1λjzj ≤ z+ can hold according to (P1); that is,
z− ≤TrNZNWAA(z1,

n2, . . . , nn)≤ z+.
(P3) Due to zj ≤ z∗j for j� 1, 2, . . ., n, there is ⊕nj�1λjzj

≤⊕nj�1λjz∗j ; that is, TrNZNWAA(z1, z2, . . . , zn)≤
TrNZNWAA(z∗1 , z∗2 , . . . , z∗n ).

)us, the proof of these properties is completed. □

4.2. Weighted Geometric Averaging Operator of TrNZNs

Definition 6. Set zj� <((TVj1, TVj2, TVj3, TVj4), (TRj1, TRj2,
TRj3, TRj4)), ((IVj1, IVj2, IVj3, IVj4), (IRj1, IRj2, IRj3, IRj4)), ((FVj1,
FVj2, FVj3, FVj4), (FRj1, FRj2, FRj3, FRj4))> (j� 1, 2, . . ., n) as a

series of TrNZNs.)en, the TrNZNWGA operator is defined
as

TrNZNWGA z1, z2, . . . , zn(  � ⊗
n

j�1
z
λj

j , (16)

where λj (j� 1, 2,. . .,n) is the weight of the jth TrNZN zj for
λj ∈ [0, 1] and 

n
j�1 λj � 1.

Regarding the basic operations of TrNZNs in Definition
2 and equation (16), we can give the theorem below.

Theorem 3. Set zj� <((TVj1, TVj2, TVj3, TVj4), (TRj1, TRj2,
TRj3, TRj4)), ((IVj1, IVj2, IVj3, IVj4), (IRj1, IRj2, IRj3, IRj4)), ((FVj1,
FVj2, FVj3, FVj4), (FRj1, FRj2, FRj3, FRj4))> (j� 1, 2, . . ., n) as a
series of TrNZNs. 4en, the aggregated value of the
TrNZNWGA operator is also TrNZN, which is obtained by

TrNZNWGA z1, z2, . . . , zn(  � ⊗
n

j�1
z
λj

j

� 
n

j�1
T
λj

Vj1, 
n

j�1
T
λj

Vj2, 
n

j�1
T
λj

Vj3, 
n

j�1
T
λj

Vj4
⎛⎝ ⎞⎠, 

n

j�1
T
λj

Rj1, 
n

j�1
T
λj

Rj2, 
n

j�1
T
λj

Rj3, 
n

j�1
T
λj

Rj4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠ ,

1 − 

n

j�1
1 − IVj1 

λj
, 1 − 

n

j�1
1 − IVj2 

λj
, 1 − 

n

j�1
1 − IVj3 

λj
, 1 − 

n

j�1
1 − IVj4 

λj⎛⎝ ⎞⎠,⎛⎝

1 − 
n

j�1
1 − IRj1 

λj
, 1 − 

n

j�1
1 − IRj2 

λj
, 1 − 

n

j�1
1 − IRj3 

λj
, 1 − 

n

j�1
1 − IRj4 

λj⎛⎝ ⎞⎠⎞⎠,

1 − 
n

j�1
1 − FVj1 

λj
, 1 − 

n

j�1
1 − FVj2 

λj
, 1 − 

n

j�1
1 − FVj3 

λj
, 1 − 

n

j�1
1 − FVj4 

λj⎛⎝ ⎞⎠,⎛⎝

1 − 
n

j�1
1 − FRj1 

λj
, 1 − 

n

j�1
1 − FRj2 

λj
, 1 − 

n

j�1
1 − FRj3 

λj
, 1 − 

n

j�1
1 − FRj4 

λj⎛⎝ ⎞⎠⎞⎠.

(17)
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where λj (j� 1, 2, . . ., n) is the weight of the jth TrNZN zj for
λj ∈ [0, 1] and 

n
j�1 λj � 1.

Based on the similar proof process of 4eorem 1, we can
verify 4eorem 3, which is omitted.

In particular, the TrNZNWGA operator is reduced to the
TrNZN geometric averaging operator when λj � 1/n (j� 1, 2,
. . ., n).

Theorem 4. 4e TrNZNWGA operator also contains the
three following properties:

(P1) Idempotency: set zj� <((TVj1, TVj2, TVj3, TVj4),
(TRj1, TRj2, TRj3, TRj4)), ((IVj1, IVj2, IVj3, IVj4), (IRj1, IRj2,
IRj3, IRj4)), ((FVj1, FVj2, FVj3, FVj4), (FRj1, FRj2, FRj3, FRj4))
> (j� 1, 2,. . .,n) as a series of TrNZNs. If zj � z for j� 1,
2, . . ., n, then there exists TrNZNWGA(z1, z2, . . . , zn) �
z.
(P2) Boundedness: set zj� <((TVj1, TVj2, TVj3, TVj4),
(TRj1, TRj2, TRj3, TRj4)), ((IVj1, IVj2, IVj3, IVj4), (IRj1, IRj2,
IRj3, IRj4)), ((FVj1, FVj2, FVj3, FVj4), (FRj1, FRj2, FRj3, FRj4))
> (j� 1, 2, . . ., n) as a series of TrNZNs; then set the
minimum and maximum TrNZNs as

z
−

�

min
j

TVj1,min
j

TVj2,min
j

TVj3,min
j

TVj4 , min
j

TRj1,min
j

TRj2,min
j

TRj3,min
j

TRj4  ,

max
j

IVj1,max
j

IVj2,max
j

IVj3,max
j

IVj4 , max
j

IRj1,max
j

IRj2,max
j

IRj3,max
j

IRj4  ,

max
j

FVj1,max
j

FVj2,max
j

FVj3,max
j

FVj4 , max
j

FRj1,max
j

FRj2,max
j

FRj3,max
j

FRj4  

 ,

z
+

�

max
j

TVj1,max
j

TVj2,max
j

TVj3,max
j

TVj4 , max
j

TRj1,max
j

TRj2,max
j

TRj3,max
j

TRj4  ,

min
j

IVj1,min
j

IVj2,min
j

IVj3,min
j

IVj4 , min
j

IRj1,min
j

IRj2,min
j

IRj3,min
j

IRj4  ,

min
j

FVj1,min
j

FVj2,min
j

FVj3,min
j

FVj4 , min
j

FRj1,min
j

FRj2,min
j

FRj3,min
j

FRj4  

 

(18)

4en, there is z− ≤TrNZNWGA(z1, z2, . . . , zn)≤ z+.
(P3) Monotony: set zj� <((TVj1, TVj2, TVj3, TVj4), (TRj1,
TRj2, TRj3, TRj4)), ((IVj1, IVj2, IVj3, IVj4), (IRj1, IRj2, IRj3,
IRj4)), ((FVj1, FVj2, FVj3, FVj4), (FRj1, FRj2, FRj3, FRj4))>
(j� 1, 2, . . ., n) as a series of TrNZNs. If zj ≤ z∗j for j� 1,
2, . . ., n, then there exists TrNZNWGA(z1, z2, . . . , zn)≤
TrNZNWGA(z∗1 , z∗2 , . . . , z∗n ).

By the same proof process of 4eorem 2, the properties of
the TrNZNWGA operator can be also verified, which are not
repeated here.

5. MDM Approach Using the TrNZNWAA and
TrNZNWGA Operators and Score and
Accuracy Functions

)is section establishes an MDM approach by using the
TrNZNWAA and TrNZNWGA operators and score and
accuracy functions to handle MDM problems with TrNZN
information.

Regarding an MDM problem with TrNZN information,
a set of alternatives Q� {Q1, Q2, . . ., Qm} are commonly
presented and satisfactorily assessed by a set of criteria S�

{s1, s2, . . ., sn}. Each alternative over criteria is assessed by

decision makers and then their given assessment values are
expressed in the form of TrNZNs zij� <((TVij1, TVij2, TVij3,
TVij4), (TRij1, TRij2, TRij3, TRij4)), ((IVij1, IVij2, IVij3, IVij4), (IRij1,
IRij2, IRij3, IRij4)), ((FVij1, FVij2, FVij3, FVij4), (FRij1, FRij2, FRij3,
FRij4))> (j� 1, 2,. . .,n; i� 1, 2,. . .,m), where (TVij1, TVij2, TVij3,
TVij4) ⊆ [0, 1] and (TRij1, TRij2, TRij3, TRij4) ⊆ [0, 1] indicate the
truth degrees and reliability measures of the alternativeQi over
the criteria sj, (IVij1, IVij2, IVij3, IVij4) ⊆ [0, 1] and (IRij1, IRij2, IRij3,
IRij4) ⊆ [0, 1] indicate the indeterminate degrees and reliability
measures of the alternative Qi over the criteria sj, and (FVij1,
FVij2, FVij3, FVij4) ⊆ [0, 1] and (FRij1, FRij2, FRij3, FRij4) ⊆ [0, 1]
indicate the falsity degrees and reliability measures of the al-
ternative Qi over the criteria sj, along with
0≤TVij4 + IVij4 +FVij4≤ 3 and 0≤TRij4 + IRij4 +FRij4≤ 3 for j� 1,
2, . . ., n and i� 1, 2, . . ., m. )en, all the specified TrNZNs are
constructed as their decision matrix Z � (zij)m×n.

)us, the TrNZNWAA and TrNZNWGA operators
and the score and accuracy functions can be applied to
MDM problems with TrNZN information, and then their
MDM approach can be indicated by the following
procedures:

Step 1: the aggregated TrNZN zi for Qi (i� 1, 2, . . ., m)
is obtained by applying the TrNZNWAA or
TrNZNWGA operator:
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zi � TrNZNWAA zi1, zi2, . . . , zin(  � ⊕
n

j�1
λjzij

� 1 − 
n

j�1
1 − TVij1 

λj
, 1 − 

n

j�1
1 − TVij2 

λj
, 1 − 

n

j�1
1 − TVij3 

λj
, 1 − 

n

j�1
1 − TVij4 

λj⎛⎝ ⎞⎠,⎛⎝

1 − 
n

j�1
1 − TRij1 

λj
, 1 − 

n

j�1
1 − TRij2 

λj
, 1 − 

n

j�1
1 − TRij3 

λj
, 1 − 

n

j�1
1 − TRij4 

λj⎛⎝ ⎞⎠⎞⎠,



n

j�1
I
λj

Vij1, 
n

j�1
I
λj

Vij2, 
n

j�1
I
λj

Vij3, 
n

j�1
I
λj

Vij4
⎛⎝ ⎞⎠, 

n

j�1
I
λj

Rij1, 
n

j�1
I
λj

Rij2, 
n

j�1
I
λj

Rij3, 
n

j�1
I
λj

Rij4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠,



n

j�1
F
λj

Vij1, 
n

j�1
F
λj

Vij2, 
n

j�1
F
λj

Vij3, 
n

j�1
F
λj

Vij4
⎛⎝ ⎞⎠, 

n

j�1
F
λj

Rij1, 
n

j�1
F
λj

Rij2, 
n

j�1
F
λj

Rij3, 
n

j�1
F
λj

Rij4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

(19)

zi � TrNZNWGA zi1, zi2, . . . , zin(  � ⊗
n

j�1
z
λj

ij

� 

n

j�1
T
λj

Vij1, 

n

j�1
T
λj

Vij2, 

n

j�1
T
λj

Vij3, 

n

j�1
T
λj

Vij4
⎛⎝ ⎞⎠, 

n

j�1
T
λj

Rij1, 

n

j�1
T
λj

Rij2, 

n

j�1
T
λj

Rij3, 

n

j�1
T
λj

Rij4
⎛⎝ ⎞⎠⎛⎝ ⎞⎠ ,

1 − 
n

j�1
1 − IVij1 

λj
, 1 − 

n

j�1
1 − IVij2 

λj
, 1 − 

n

j�1
1 − IVij3 

λj
, 1 − 

n

j�1
1 − IVij4 

λj⎛⎝ ⎞⎠,⎛⎝

1 − 

n

j�1
1 − IRij1 

λj
, 1 − 

n

j�1
1 − IRij2 

λj
, 1 − 

n

j�1
1 − IRij3 

λj
, 1 − 

n

j�1
1 − IRij4 

λj⎛⎝ ⎞⎠⎞⎠,

1 − 
n

j�1
1 − FVij1 

λj
, 1 − 

n

j�1
1 − FVij2 

λj
, 1 − 

n

j�1
1 − FVij3 

λj
, 1 − 

n

j�1
1 − FVij4 

λj⎛⎝ ⎞⎠,⎛⎝

1 − 

n

j�1
1 − FRij1 

λj
, 1 − 

n

j�1
1 − FRij2 

λj
, 1 − 

n

j�1
1 − FRij3 

λj
, 1 − 

n

j�1
1 − FRij4 

λj⎛⎝ ⎞⎠⎞⎠.

(20)

Step 2: by equation (7), we calculate the score values of
S(zi). If necessary, we calculate the accuracy values of
H(zi) (i� 1, 2, . . ., m) by equation (8).
Step 3: all the alternatives Qi (i� 1, 2, . . .,m) are ranked
corresponding to the score values (the accuracy values)
and the best one(s) is chosen in the set of alternatives.
Step 4: end.

6. MDMExampleandComparisonwithExisting
MDM Approaches

6.1. MDM Example of Software Selection. )is section in-
dicates anMDM example of software selection adapted from
[9] to reveal the usability and efficiency of the established
MDM approach under the environment of TrNZNs.

In an MDM example, an investment company needs to
select a suitable software system from potential software
systems, where five candidate software systems are provided
preliminarily and denoted as a set of five alternatives Q�

{Q1, Q2, Q3, Q4, Q5}. )en, these alternatives must satisfy the
requirements of the four criteria: s1 (the contribution to

organization performance), s2 (the effort to transform from
current system), s3 (the costs of hardware/software invest-
ment), and s4 (the outsourcing software developer reli-
ability). Regarding the importance of the four criteria, the
weight values of the four criteria are specified as the weight
vector λ� (0.25, 0.25, 0.3, 0.2). )us, decision makers/ex-
perts assess the satisfiability of the five alternatives over the
four criteria by TrNZNs zij� <((TVij1, TVij2, TVij3, TVij4),
(TRij1, TRij2, TRij3, TRij4)), ((IVij1, IVij2, IVij3, IVij4), (IRij1, IRij2,
IRij3, IRij4)), ((FVij1, FVij2, FVij3, FVij4), (FRij1, FRij2, FRij3, FRij4))
> (j� 1, 2, 3, 4; i� 1, 2, 3, 4, 5), where (TVij1, TVij2, TVij3, TVij4)
⊆ [0, 1] and (TRij1, TRij2, TRij3, TRij4) ⊆ [0, 1] indicate that the
alternative Qi satisfies the degrees and reliability measures of
the criteria sj, (IVij1, IVij2, IVij3, IVij4) ⊆ [0, 1] and (IRij1, IRij2,
IRij3, IRij4) ⊆ [0, 1] indicate the indeterminate degrees and
reliability measures of the alternative Qi over the criteria sj,
and (FVij1, FVij2, FVij3, FVij4) ⊆ [0, 1] and (FRij1, FRij2, FRij3,
FRij4) ⊆ [0, 1] indicate that the alternative Ai does not satisfy
the degrees and reliability measures of the criteria sj, along
with 0≤TVij4 + IVij4 + FVij4≤ 3 and 0≤TRij4 + IRij4 + FRij4≤ 3.
Hence, all the specified TrNZNs can be constructed as the
following decision matrix Z � (zij)5×4:
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Z �

((0.4, 0.5, 0.6, 0.7), (0.4, 0.5, 0.6, 0.7)), ((0.0, 0.1, 0.2, 0.3), (0.3, 0.4, 0.5, 0.6)), ((0.1, 0.1, 0.1, 0.1), (0.3, 0.4, 0.5, 0.6)〈 〉

((0.3, 0.4, 0.5, 0.5), (0.5, 0.6, 0.7, 0.8)), ((0.1, 0.2, 0.3, 0.4), (0.4, 0.5, 0.6, 0.7)), ((0.0, 0.1, 0.1, 0.1), (0.5, 0.6, 0.7, 0.8))〈 〉

((0.1, 0.1, 0.1, 0.1), (0.5, 0.6, 0.7, 0.8)), ((0.1, 0.1, 0.1, 0.1), (0.6, 0.7, 0.8, 0.9)), ((0.6, 0.7, 0.8, 0.9), (0.5, 0.6, 0.7, 0.8))〈 〉

((0.7, 0.7, 0.7, 0.7), (0.4, 0.5, 0.6, 0.7)), ((0.0, 0.1, 0.2, 0.3), (0.4, 0.5, 0.6, 0.7)), ((0.1, 0.1, 0.1, 0.1), (0.3, 0.4, 0.5, 0.6))〈 〉

((0.0, 0.1, 0.2, 0.2), (0.4, 0.5, 0.6, 0.7)), ((0.1, 0.1, 0.1, 0.1), (0.3, 0.4, 0.5, 0.6)), ((0.5, 0.6, 0.7, 0.8), (0.5, 0.6, 0.7, 0.8))〈 〉

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

((0.0, 0.1, 0.2, 0.3), (0.3, 0.4, 0.5, 0.6)), ((0.0, 0.1, 0.2, 0.3), (0.4, 0.5, 0.6, 0.7)), (0.2, 0.3, 0.4, 0.5), (0.3, 0.4, 0.5, 0.6)〈 〉

((0.2, 0.3, 0.4, 0.5), (0.6, 0.7, 0.8, 0.9)), ((0.0, 0.1, 0.2, 0.3), (0.5, 0.6, 0.7, 0.8)), ((0.0, 0.1, 0.2, 0.3), (0.4, 0.5, 0.6, 0.7))〈 〉

((0.0, 0.1, 0.1, 0.2), (0.5, 0.6, 0.7, 0.8)), ((0.0, 0.1, 0.2, 0.3), (0.5, 0.6, 0.6, 0.7)), ((0.3, 0.4, 0.5, 0.6), (0.3, 0.4, 0.5, 0.6))〈 〉

((0.4, 0.5, 0.6, 0.7), (0.5, 0.6, 0.7, 0.8)), ((0.1, 0.1, 0.1, 0.1), (0.6, 0.7, 0.7, 0.8)), ((0.0, 0.1, 0.2, 0.2), (0.5, 0.6, 0.7, 0.8))〈 〉

((0.4, 0.4, 0.4, 0.4), (0.3, 0.4, 0.5, 0.6)), ((0.0, 0.1, 0.2, 0.3), (0.4, 0.5, 0.6, 0.7)), ((0.0, 0.1, 0.2, 0.3), (0.5, 0.6, 0.7, 0.8))〈 〉

((0.3, 0.4, 0.5, 0.6), (0.4, 0.5, 0.6, 0.7)), ((0.0, 0.1, 0.2, 0.3), (0.4, 0.5, 0.5, 0.6)), ((0.1, 0.1, 0.1, 0.1), (0.4, 0.5, 0.5, 0.6))〈 〉

((0.0, 0.1, 0.1, 0.2), (0.5, 0.6, 0.7, 0.8)), ((0.1, 0.1, 0.1, 0.1), (0.4, 0.5, 0.6, 0.7)), ((0.5, 0.6, 0.7, 0.8), (0.3, 0.4, 0.5, 0.6))〈 〉

((0.2, 0.3, 0.4, 0.5), (0.3, 0.4, 0.5, 0.6)), ((0.0, 0.1, 0.2, 0.3), (0.5, 0.6, 0.7, 0.8)), ((0.1, 0.2, 0.2, 0.3), (0.4, 0.5, 0.6, 0.7))〈 〉

((0.2, 0.3, 0.4, 0.5), (0.5, 0.6, 0.6, 0.7)), ((0.0, 0.1, 0.2, 0.3), (0.5, 0.6, 0.7, 0.8)), ((0.1, 0.2, 0.3, 0.3), (0.3, 0.4, 0.5, 0.6))〈 〉

((0.6, 0.7, 0.7, 0.8), (0.5, 0.5, 0.5, 0.5)), ((0.1, 0.1, 0.1, 0.1), (0.5, 0.6, 0.7, 0.8)), ((0.0, 0.1, 0.1, 0.2), (0.4, 0.5, 0.5, 0.6))〈 〉

((0.3, 0.4, 0.5, 0.6), (0.3, 0.4, 0.5, 0.6)), ((0.1, 0.1, 0.1, 0.1), (0.4, 0.5, 0.6, 0.7)), ((0.1, 0.2, 0.3, 0.4), (0.5, 0.6, 0.6, 0.7))〈 〉

((0.3, 0.4, 0.5, 0.5), (0.5, 0.6, 0.6, 0.7)), ((0.0, 0.1, 0.2, 0.3), (0.3, 0.4, 0.5, 0.6)), ((0.0, 0.1, 0.1, 0.2), (0.4, 0.5, 0.6, 0.7))〈 〉

((0.1, 0.2, 0.3, 0.4), (0.6, 0.7, 0.8, 0.9)), ((0.1, 0.1, 0.1, 0.1), (0.5, 0.6, 0.7, 0.8)), ((0.3, 0.4, 0.5, 0.6), (0.4, 0.5, 0.6, 0.7))〈 〉

((0.1, 0.2, 0.3, 0.4), (0.5, 0.6, 0.7, 0.8)), ((0.1, 0.1, 0.1, 0.1), (0.4, 0.5, 0.5, 0.6)), ((0.4, 0.5, 0.6, 0.6), (0.3, 0.4, 0.5, 0.6))〈 〉

((0.1, 0.2, 0.3, 0.3), (0.4, 0.5, 0.6, 0.7)), ((0.1, 0.2, 0.3, 0.4), (0.4, 0.5, 0.5, 0.6)), ((0.2, 0.3, 0.4, 0.5), (0.4, 0.5, 0.6, 0.7))〈 〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(21)

)us, we utilize the establishedMDM approach to obtain
the most suitable software system(s), which can be depicted
by the following decision process.

First, by equation (19) or equation (20), we obtain the
following aggregated TrNZNs zi (i� 1, 2, 3, 4, 5):

z1� <((0.2636, 0.3656, 0.4682, 0.5719), (0.3569, 0.4572,
0.5577, 0.6585)), ((0, 0.1000, 0.1741, 0.2408), (0.3722,
0.4729, 0.5428, 0.6431)), ((0.1189, 0.1512, 0.1762,
0.1973), (0.3622, 0.4638, 0.5186, 0.6188))>
z2� <((0.1945, 0.2958, 0.3758, 0.4243), (0.5271, 0.6278,
0.7129, 0.8176)), ((0, 0.1189, 0.1798, 0.2319), (0.3993,
0.5005, 0.6012, 0.7018)), ((0, 0.1712, 0.2132, 0.2821),
(0.3880, 0.4894, 0.5904, 0.6911))>
z3� <((0.1081, 0.1848, 0.2421, 0.3245), (0.4710, 0.5735,
0.6776, 0.7856)), ((0, 0.1000, 0.1464, 0.1830), (0.5233,
0.6236, 0.6964, 0.7969)), ((0.2566, 0.3737, 0.4272,
0.5393), (0.3936, 0.4949, 0.5958, 0.6964))>
z4� <((0.4035, 0.4652, 0.5298, 0.5983), (0.4767, 0.5771,
0.6486, 0.7500)), ((0, 0.1000, 0.1464, 0.1830), (0.4733,
0.5745, 0.6297, 0.7305)), ((0, 0.1699, 0.2366, 0.2366),
(0.3409, 0.4427, 0.5439, 0.6447))>
z5� <((0.3454, 0.4287, 0.4599, 0.5218), (0.4096, 0.4767,
0.5478, 0.6242)), ((0, 0.1149, 0.1481, 0.1737), (0.3980,
0.4995, 0.5789, 0.6798)), ((0, 0.1950, 0.2552, 0.3760),
(0.4472, 0.5477, 0.6136, 0.7145))>

Or we obtain the following aggregated TrNZNs zi (i� 1,
2, 3, 4, 5):

z1� <((0, 0.2991, 0.4162, 0.5244), (0.3514, 0.4522,
0.5527, 0.6531)), ((0.0209, 0.1000, 0.1809, 0.2639),
(0.3764, 0.4767, 0.5478, 0.6486)), ((0.1261, 0.1745,
0.2266, 0.2835), (0.3751, 0.4762, 0.5218, 0.6224))>

z2� <((0, 0.2456, 0.2918, 0.3798), (0.5233, 0.6236,
0.7018, 0.8022)), ((0.0563, 0.1261, 0.1984, 0.2737),
(0.4088, 0.5096, 0.6108, 0.7129)), ((0.1877, 0.2944,
0.3715, 0.4743), (0.3996, 0.5005, 0.6020, 0.7045))>
z3� <((0, 0.1597, 0.1888, 0.2543), (0.4449, 0.5479,
0.6499, 0.7513)), ((0.0463, 0.1000, 0.1565, 0.2162),
(0.5271, 0.6278, 0.7087, 0.8139)), ((0.3437, 0.4500,
0.5422, 0.6655), (0.4042, 0.5051, 0.6064, 0.7087))>
z4� <((0.2832, 0.3885, 0.4807, 0.5658), (0.4729, 0.5733,
0.6431, 0.7434)), ((0.0463, 0.1000, 0.1565, 0.2162),
(0.4867, 0.5884, 0.6430, 0.7458)), ((0.1480, 0.2276,
0.3109, 0.3109), (0.3565, 0.4578, 0.5599, 0.6636))>
z5� <((0, 0.2912, 0.3756, 0.3910), (0.3980, 0.4729,
0.5428, 0.6089)), ((0.0760, 0.1210, 0.1690, 0.2206),
(0.4096, 0.5106, 0.5943, 0.6976)), ((0.1958, 0.3012,
0.3877, 0.5020), (0.4523, 0.5528, 0.6296, 0.7330))>

)en, the results of the MDM approach based on the
TrNZNWAA and TrNNWGA operators and the score
function are shown in Table 1.

From the results of Table 1, the ranking orders based on
the TrNZNWAA and TrNZNWGA operators are identical
and the best one indicates the same selection as the software
system Q4.

6.2. Comparison with Existing MDM Approaches. For con-
venient comparison with existing MDM approach in the
setting of TrNNs [9], we may ignore the reliability measures
in TrNZNs and only contain the decision matrix of TrNNs in
the MDM example as its special case. )us, existing MDM
approach in the setting of TrNNs [9] can be used for the
special case of the MDM example. In this case, the decision
results based on the TrNNWAA and TrNNWGA operators
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(equations (2) and (3)) and the score function of TrNNs
(equation (4)) are introduced from [9], which are shown in
Table 2.

Based on the decision results in Tables 1 and 2, we can see
that the ranking orders based on the established MDM
approach and the existing MDM approach [9] reveal their
difference, but the best alternative Q4 (the best software
system) is identical. )en, the reason for their ranking
difference is that decision information in the existing MDM
approach [9] only contains TrNNs without considering the
reliability measures of TrNNs in this MDM example, while
decision information in the established MDM approach
contains both TrNNs and their reliability measures. Hence,
different decision information can result in different ranking
results. It is obvious that the reliability measures in this
example can affect the ranking order of alternatives, which
shows the efficiency and rationality of the established MDM
approach under the environment of TrNZNs.

However, the different decision information and deci-
sion methods can have an impact on the ranking of alter-
natives in the MDM problem, which reveals their
importance in MDM applications. )us, existing MDM
methods [11–14, 23] only contain the TrNN or NZN in-
formation without considering the reliability measures in
TrNNs or continuous Z-numbers in NZNs; they may lose
some useful decision information so as to result in decision
distortion/unreasonable decision results, which reveal some
insufficiencies, while the new established approach can
contain much more information than existing MDM
methods and overcome the insufficiencies. Furthermore,
existing methods [11–14, 23] also cannot deal with such
MDM problems with TrNZNs.

Based on the above comparative analysis, the new
established approach in setting of TrNZNs not only makes
assessment information of TrNNs more reliable but also
strengthens the effectiveness and continuity of decision
information by comparison with existing MDM methods
with TrNN and NZN information [9, 11–14, 23], which
reveals the highlighting advantages of the new established
approach in the information representation and MDM
applications. )erefore, the new established approach not

only extends existing methods but also demonstrates its
superiority over them.

7. Conclusion

To make TrNN reliable, this paper presented a TrNZN set
based on the truth, falsity, and indeterminacy trapezoidal
Z-numbers as the generalization of the Z-number concept
and then defined basic operations of TrNZNs, score and
accuracy functions of TrNZNs, and ranking laws of TrNZNs.
Next, the TrNZNWAA and TrNZNWGA operators were
proposed to aggregate the TrNZN information. Further-
more, an MDM approach based on the two aggregation
operators and score and accuracy functions was established
in the setting of TrNZNs, in which the assessment values of
alternatives over the criteria take the form of TrNZNs
containing TrNNs and their reliability measures. Finally, an
MDM example of software selection was provided to reveal
the suitability and efficiency of the established MDM ap-
proach in the setting of TrNZNs.

)e main advantage of this study is that the established
method not only makes assessment information of TrNNs
more reliable but also strengthens the decision rationality
and efficiency in solving MDM problems with TrNZN in-
formation. However, the established method only uses the
basic aggregation algorithms of TrNZNWAA and
TrNZNWGA for MDM problems without considering the
interactions of some evaluation criteria with each other,
which implies the limitation of the proposed method in
MDM applications. For capturing these relationships, the
future study is to develop other aggregation algorithms and
to use them for some other MDM problems including slope
design schemes, energy and environmental managements,
and medicine options.
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