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Abstract Normal neutrosophic numbers (NNNs) are a

significant tool of describing the incompleteness, indeter-

minacy, and inconsistency of the decision-making infor-

mation. In this paper, we firstly propose the definition and

the properties of the NNNs, and the accuracy function, the

score function, and the operational laws of the NNNs are

developed. Then, some operators are presented, including

the normal neutrosophic Bonferroni mean operator, the

normal neutrosophic weighted Bonferroni mean

(NNWBM) operator, the normal neutrosophic geometric

Bonferroni mean operator, and the normal neutrosophic

weighted geometric Bonferroni mean (NNWGBM) opera-

tor. We also study their properties and special cases. Fur-

ther, we put forward a multiple attribute decision-making

method which is based on the NNWBM and NNWGBM

operators. Finally, an illustrative example is given to verify

the practicality and validity of the proposed method.

Keywords Multiple attribute decision making � Normal

neutrosophic numbers � Normal neutrosophic Bonferroni

mean aggregation operator

1 Introduction

As an important research branch of decision theory, mul-

tiple attribute decision making (MADM) has a wide

application in many areas. The multiple attribute decision

making was firstly proposed and applied to select the

investment policy of the enterprises by Churchman et al.

[1]. However, because the fuzziness and indeterminacy of

the information in real decision making are a common

phenomenon, numerical values are inadequate or insuffi-

cient to model real-life decision problems. In some occa-

sions, it can be more accurate to describe the attribute

values by the fuzzy numbers in fuzzy environment. Zadeh

[2] firstly proposed the fuzzy set (FS), and Atanassov [3]

further proposed the intuitionistic fuzzy set (IFS) by adding

the non-membership function to the FS. In recent years,

Smarandache [4] proposed the neutrosophic set (NS) in

which an independent indeterminacy-membership function

was added. In NS, the truth-membership function and the

falsity-membership function are the same as the member-

ship and the non-membership of IFS; the indeterminacy-

membership function is the pivotal difference between NS

and IFS. The three parts, including the truth membership,

the indeterminacy membership, and the false membership,

are completely independent in NS.

The researches on the multiple attribute decision making

based on FS, IFS, and Ns have made many achievements.

Mardani et al. [5] and Kahraman et al [6] reviewed the fuzzy

multiple criteria decision-making techniques and applica-

tions. Because NS is a generalization of IFS and FS, and it

can be better to describe the uncertain information, now it

has been attracted wide attentions [7–15]. Wang et al. [7]

defined the interval neutrosophic set (INS) by extending the

indeterminacy membership, truth membership, and false

membership to the interval numbers. Ye [8–12], and Ridvan
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and Ahmet [13] proposed the correlation coefficient,

entropy, and similarity measures of NS or INS, respectively.

Then, they developed some multiple attribute decision-

making methods. Bausys et al [14] proposed an extended

COPRAS method for NS. Peng et al. [15] proposed an

outranking method for the MADM problems with NS.

In real-life world, the normal distribution is widely

applied to a lot of fields. But both the IFS and INS cannot

consider the normal distribution, so the researches about the

normal fuzzy information are attracting more and more

attentions. Yang and Ko [16] firstly defined the normal fuzzy

numbers (NFNs) to express the normal distribution phe-

nomena. NFNs are more reasonable and realistic to express

the decision-making information in a random fuzzy envi-

ronment. Based on the NFNs and IFS, Wang et al. [17]

proposed the normal intuitionistic fuzzy numbers (NIFNs)

and defined its corresponding operations, the stability factor,

the score function, and so on. Wang and Li [18, 19], Wang

et al. [20] further proposed some intuitionistic normal fuzzy

aggregation operators and developed some MADM methods

based on these operators. However, there have not been

researches about the combination of NFNs with NNs.

Now, more and more researchers pay attention to the

information aggregation operators, which have become an

important research topic [18–26]. Some new extended

aggregation operators for NS and INS were proposed [27–

31], and new intuitionistic normal fuzzy aggregation

operators were developed [18–20]. However, these opera-

tors cannot consider the interrelationships between the

attributes. Bonferroni [32] firstly proposed the Bonferroni

mean (BM) operator which can catch the interrelationship

between the input arguments, BM has been applied in

many application domains and attracted more and more

attentions from the researchers. Yager [33] proposed some

generalizations about the BM, such as the ordered weighted

averaging (OWA) operator [34] and Choquet integral [35].

Yager [36] and Beliakov et al. [37] defined another gen-

eralized form of BM. Nevertheless, Zhu et al. [38] pro-

posed the geometric Bonferroni mean (GBM) in which

both the BM and geometric mean (GM) are considered.

Up to now, there is no research on the normal neutro-

sophic decision-making problems considering the interrela-

tionship between the input normal neutrosophic arguments.

Therefore, it is necessary to pay more attention to this issue.

Because the BM operator can consider the interrelationship

between the attributes, the NNNs have the advantages of

considering the normal random information and the neu-

trosophic variables, which can handle the incomplete,

inconsistent, and indeterminate information. In this paper,

we extend the Bonferroni mean to aggregate the normal

neutrosophic variables by combining BM aggregation

operator with NNNs. We firstly propose two aggregation

operators called the normal neutrosophic Bonferroni mean

(NNBM) operator and the normal neutrosophic geometric

Bonferroni mean (NNGBM) operator for aggregating the

normal neutrosophic numbers. Then, we study some prop-

erties of them and discuss some of their special cases. For

the situations in which the input arguments have different

weight, we then develop the normal neutrosophic weighted

Bonferroni mean (NNWBM) operator and the normal neu-

trosophic weighted geometric Bonferroni mean

(NNWGBM) operator, and then, we propose two procedures

for multiple attribute decision making under the environ-

ments of the NNNs based on the proposed operators.

The remainder of this paper is constructed as follows. In

the next section, we introduce some basic concepts of the

NNNs, some operational laws, and the prominent charac-

teristics of NNNs. In Sect. 3, some aggregation operators

on the basis of the normal neutrosophic numbers are pro-

posed, such as the normal neutrosophic Bonferroni mean

(NNBM) operator, the normal neutrosophic weighted

Bonferroni mean (NNWBM) operator, the normal neutro-

sophic geometric Bonferroni mean (NNGBM) operator,

and the normal neutrosophic weighted geometric Bonfer-

roni mean (NNWGBM) operator, and their properties are

discussed. In Sect. 4, a multiple attribute decision-making

method on the basis of the normal neutrosophic weighted

Bonferroni mean (NNWBM) operator and the normal

neutrosophic weighted geometric Bonferroni mean

(NNWGBM) operator was proposed. In Sect. 5, a numer-

ical example is given to verify the proposed approach and

to prove its effectiveness and practicality. In Sect. 6, we

conclude the paper and give some remarks.

2 Preliminaries

2.1 The normal fuzzy set and normal intuitionistic

fuzzy set

Definition 1 [36] Let X be a real number set. A is

denoted as A = (a, r). If its membership function satisfies:

AðxÞ ¼ e�
x�a
rð Þ2 ðr[ 0Þ ð1Þ

then A is called a normal fuzzy number. The set of all

normal fuzzy numbers is denoted as ~N.

Definition 2 [37, 38] Suppose X is an ordinary finite non-

empty set and ða; rÞ 2 ~N; A ¼ h a; rð Þ; lA; mAi is a normal

intuitionistic fuzzy number (NIFN) when its membership

function is expressed as:

lAðxÞ ¼ lAe
� x�a

rð Þ2 ; x 2 X; ð2Þ

and its non-membership function is expressed as:

mAðxÞ ¼ 1� ð1� mAÞe�
x�a
rð Þ2 ; x 2 X: ð3Þ
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where 0 B lA(x) B 1, 0 B mA(x) B 1, and 0 B lA ? mA -

B 1. When lA = 1 and mA = 0, the NIFN will become a

NFN. Compared to NFNs, the NIFN adds the non-member-

ship function, which expresses the degree of not belonging to

(a, r). Moreover, pA(x) = 1 - lA(x) - mA(x) shows the

degree of hesitance. The set of NIFNs is denoted by NIFNS.

2.2 The neutrosophic set

Definition 3 [4] Let X be a universe of discourse, with a

generic element in X denoted by x. A neutrosophic number

A in X is expressed as:

AðxÞ ¼ xjðTAðxÞ; IAðxÞ;FAðxÞÞh i ð4Þ

where TA(x) is the truth-membership function, IA(x) is the

indeterminacy-membership function, and FA(x) is the fal-

sity-membership function. TA(x), IA(x), and FA(x) are real

standard or nonstandard subsets of ]0-, 1?[.

There is no restriction on the sum of TA(x), IA(x), and

FA(x), so 0- B TA(x) ? IA(x) ? FA(x) B 3?.

Definition 4 [7] Let X be a universe of discourse, with a

generic element in X denoted by x. A single-valued neu-

trosophic number A in X is

A xð Þ ¼ hxj TA xð Þ; IA xð Þ;FA xð Þð Þi ð5Þ

where TA(x) is the truth-membership function, IA(x) is the

indeterminacy-membership function, and FA(x) is the fal-

sity-membership function. For each point x in X, we have

TA(x), IA(x), FA(x) 2 [0, 1], and 0 B TA(x) ? IA(x) ?

FA(x) B 3.

2.3 The normal neutrosophic set

Definition 5 Suppose X is a universe of discourse, with a

generic element in X denoted by x, and ða; rÞ 2 ~N; a

normal neutrosophic number A in X is expressed as:

AðxÞ ¼ xj a; rð Þ; ðTAðxÞ; IAðxÞ;FAðxÞÞh i ð6Þ

where the truth-membership function TA(x) satisfies:

TAðxÞ ¼ TAe
� x�a

rð Þ2 ; x 2 X;

the indeterminacy-membership function IA(x) satisfies:

IAðxÞ ¼ 1� ð1� IAÞe�
x�a
rð Þ2 ; x 2 X:

and the falsity-membership function FA(x) satisfies:

FAðxÞ ¼ 1� ð1� FAÞe�
x�a
rð Þ2 ; x 2 X:

For each point x in X, we have TA(x), IA(x), FA(-

x) 2 [0, 1], and 0 B TA(x) ? IA(x) ? FA(x) B 3. The set

of all normal neutrosophic numbers is denoted as ~R.

Example 1 The service life of the lamp bulb obeys the

normal distribution, the normal fuzzy number is

N(1000, 302). The experts evaluate whether the service life

conforms to the normal distribution. At last, the experts

give the evaluation values: The degree of result in range

(1000, 302) is 0.6; the degree of result not in range

(1000, 302) is 0.2; and the degree of hesitance is 0.2. So,

the final evaluation result about the service life of the lamp

bulb is A = h(1000, 302), (0.6, 0.2, 0.2)i.

Definition 6 Let ~a1 ¼ a1; r1ð Þ; T1; I1;F1ð Þh i and ~a2 ¼
a2; r2ð Þ; T2; I2;F2ð Þh i be two NNNs; then, the Euclidean

distance between ~a1 and ~a2 is defined as follows:

dðx;yÞ¼1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þTL
1 �IL1 �FL

1

� �

a1� 2þTL
2 �IL2 �FL

2

� �

a2
� �2

þ1

2
2þTL

1 �IL1 �FL
1

� �

r1� 2þTL
2 �IL2 �FL

2

� �

r2

v

u

u

u

t

ð7Þ

According to the operational laws defined by Wang

et al. [19], we can give the following definition.

Definition 7 Let ~a1 ¼ a1; r1ð Þ; T1; I1;F1ð Þh i and ~a2 ¼
a2; r2ð Þ; T2; I2;F2ð Þh i be two NNNs; then, the operational

rules are defined as follows:

ð1Þ ~a1 � ~a2 ¼ a1 þ a2; r1 þ r2ð Þ;h
T1 þ T2 � T1T2; I1I2;F1F2ð Þi ð8Þ

ð2Þ ~a1 � ~a2 ¼ a1a2; a1a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r21
a21

þ r22
a22

s

 !

;

*

T1T2; I1 þ I2 � I1I2;F1 þ F2 � F1F2ð Þi ð9Þ

ð3Þ k~a1 ¼ ðka1; kr1Þh ; 1� ð1� T1Þk; Ik1 ;Fk
1

� �E

k[ 0

ð10Þ

ð4Þ ~ak1 ¼ ðak1; k1=2ak�1
1 r1Þ; Tk

1 ; 1� ð1� I1Þk; 1� ð1� F1Þk
� �ED

k[ 0

ð11Þ

Theorem 1 Let ~a1 ¼ a1; r1ð Þ; T1; I1;F1ð Þh i and ~a2 ¼
a2; r2ð Þ; T2; I2;F2ð Þh i be two NNNs, and g, g1, g2[ 0;

then, we have

ð1Þ ~a1 � ~a2 ¼ ~a2 � ~a1 ð12Þ
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ð2Þ ~a1 � ~a2 ¼ ~a2 � ~a1 ð13Þ

ð3Þ gð~a1 � ~a2Þ ¼ g~a1 � g~a2 ð14Þ

ð4Þ g1~a1 � g2~a1 ¼ ðg1 þ g2Þ~a1 ð15Þ

ð5Þ ~ag1 � ~ag2 ¼ ð~a1 � ~a2Þg ð16Þ

ð6Þ ~ag11 � ~a
g2
1 ¼ ~a

g1þg2
1 ð17Þ

Definition 8 Let ~ak ¼ ak; rkð Þ; Tk; Ik;Fkð Þh i be a NNN,

and then, its score function is

s1ð~akÞ ¼ akð2þ Tk � Ik � FkÞ;
s2ð~akÞ ¼ rkð2þ Tk � Ik � FkÞ

ð18Þ

and its accuracy function is

h1ð~akÞ ¼ akð2þ Tk � Ik þ FkÞ;
h2ð~akÞ ¼ rkð2þ Tk � Ik þ FkÞ

ð19Þ

Definition 9 Let ~a1 ¼ a1; r1ð Þ; T1; I1;F1ð Þh i and ~a2 ¼
a2; r2ð Þ; T2; I2;F2ð Þh i be two NNNs, the values of score

functions of ~a1 and ~a2 are s1ð~a1Þ; s2ð~a1Þ,and s1ð~a2Þ; s2ð~a2Þ,
and the values of accuracy functions of ~a1 and ~a2 are

h1ð~a1Þ; h2ð~a1Þ, and h1ð~a2Þ; h2ð~a2Þ, respectively. Then, there
will be:

(1) If s1ð~a1Þ[ s1ð~a2Þ; then ~a1 [ ~a2;

(2) If s1ð~a1Þ ¼ s1ð~a2Þ; then

� If h1ð~a1Þ[ h1ð~a2Þ; then ~a1 [ ~a2;

` If h1ð~a1Þ ¼ h1ð~a2Þ; then

(i) If s2ð~a1Þ\s2ð~a2Þ; then ~a1 [ ~a2;

(ii) If s2ð~a1Þ ¼ s2ð~a2Þ; then

(a) If h2ð~a1Þ\h2ð~a2Þ; then ~a1 [ ~a2;
(b) If h2ð~a1Þ ¼ h2ð~a2Þ; then ~a1 ¼ a2:

3 Normal neutrosophic Bonferroni mean
operators

3.1 NNBM and NNWBM operators

Bonferroni [32] firstly introduced the Bonferroni mean

(BM) which can provide the aggregation between the max

and min operators and the logical ‘‘or’’ and ‘‘and’’ opera-

tors. However the Bonferroni mean (BM) operator [32] has

mostly been used in the situation where the input argu-

ments are the nonnegative real numbers. In this section, we

will study the BM operator under the environments of

NNNs. Based on the definition of BM [32], we define the

Bonferroni mean operator of NNNs as follows:

Definition 10 [32] Suppose p, q[ 0 and ~a1; ~a2; . . .; ~amf g
is a set of NNNs. The Bonferroni mean operator of NNNs

is defined as

NNBMp;q ~a1; ~a2; . . .; ~amð Þ ¼ 1

m m� 1ð Þ
X

i;j¼1

m

i 6¼j

~api ~a
q
j

0

B

B

@

1

C

C

A

1
pþq

ð20Þ

Theorem 2 Let ~ak ¼ ak; rkð Þ; Tk; Ik;Fkð Þh i ðk ¼
1; 2. . .;mÞ be a set of NNNs; then, the result aggregated

from Definition 10 will be still a NNN, and even

NNBMp;q ~a1; ~a2; . . .; ~amð Þ ¼ 1

m m� 1ð Þ
X

i;j¼1

m

i 6¼j

a
p
i a

q
j

0

B

B

@

1

C

C

A

1
pþq

;

Pm
i;j¼1i6¼j a

p
i a

q
j

� � 1
pþq

�1ð Þ
Pm

i;j¼1i6¼j a
p�1
i a

q�1
j pa2j r

2
i þ qa2i r

2
j

� �1
2

ffiffiffiffiffiffiffiffiffiffiffi

pþ q
p ðpþqÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mðm� 1Þ
p

0

B

B

B

@

1

C

C

C

A

*

1�
Y

i;j¼1

m

i 6¼j

1� T
p
i T

q
j

� �

0

B

B

@

1

C

C

A

1
m m�1ð Þ

0

B

B

B

@

1

C

C

C

A

1
pþq

; 1� 1�
Y

i;j¼1

m

i 6¼j

1� 1� Iið Þp 1� Ij
� �q� �

0

B

B

@

1

C

C

A

1
m m�1ð Þ

0

B

B

B

@

1

C

C

C

A

1
pþ

0

B

B

B

B

@

;

1� 1�
Y

i;j¼1

m

i 6¼j

1� 1� Fið Þp 1� Fj

� �q� �

0

B

B

@

1

C

C

A

1
m m�1ð Þ

0

B

B

B

@

1

C

C

C

A

1
pþq

1

C

C

C

C

A

+

ð21Þ
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Proof By the operational rules of the NNNs, we have

~api ¼ a
p
i ; p

1
2a

p�1
i ri

� �

; T
p
i ; 1� 1� Iið Þp; 1� 1� Fið Þpð Þ

~aqj ¼ a
q
j ; p

1
2a

q�1
j rj

� �

; T
q
j ; 1� 1� Ij

� �q
; 1� 1� Fj

� �q
� �

and

~api � ~aqj ¼ api a
q
j ; a

p�1
i a

q�1
j pa2j r

2
i þ qa2i r

2
j

� �1
2

	 


;

�

T
p
i T

q
j ; 1� 1� Iið Þp 1� Ij
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; 1� 1� Fið Þp 1� Fj
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� �E

then

X

i;j¼1

m

i6¼j

~api � ~aqj ¼
X

i;j¼1

m

i6¼j

api a
q
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X
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1
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1
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which completes the proof of the theorem 2.

In the following, we will discuss some properties of

NNBM operator as follows:

Theorem 3 (Idempotency) Let ~a1; ~a2; . . .; ~amf g be a set

of NNNs, if all ~ak ðk ¼ 1; 2; . . .;mÞ are equal, i.e., ~ak ¼
~a ðk ¼ 1; 2; . . .;mÞ; then
NNBM ~a1; ~a2; . . .; ~amð Þ ¼ ~a

Proof Since ~ak ¼ ~a ðk ¼ 1; 2; . . .;mÞ, then according to

Definition 10,

NNBMp;q ~a1; ~a2; . . .; ~amð Þ

¼ 1

m m� 1ð Þ
X

i;j¼1

m

i6¼j

~api � ~aqj

0

B

B

@

1

C

C

A

1
pþq

¼ 1

m m� 1ð Þ
X

i;j¼1

m

i6¼j

~ap � ~aq

0

B

B

@

1

C

C

A

1
pþq

¼ 1

m m� 1ð Þ
X

i;j¼1

m

i6¼j

~a pþqð Þ

0

B

B

@

1

C

C

A

1
pþq

¼ ~a pþqð Þ
� � 1

pþq ¼ ~a

which completes the proof of theorem 3.

Theorem 4 (Commutativity) Let ~a0k ðk ¼ 1; 2; . . .;mÞ is

any permutation of ~ak ðk ¼ 1; 2; . . .;mÞ: Then,
NNBM ~a1; ~a2; . . .; ~amð Þ ¼ NNBM ~a01; ~a

0
2; . . .; ~a

0
m

� �

Proof Let NNBMp;q ~a1; ~a2; . . .; ~amð Þ ¼ 1
m m�1ð Þ

�

Pm
i;j¼1i 6¼j

~api ~a
q
j Þ

1
pþq

NNBMp;q ~a01; ~a
0
2; . . .; ~a

0
m

� �

¼ 1

m m� 1ð Þ
X

i;j¼1

m

i 6¼j

~a0pi ~a
0q
j

0

B

B

@

1

C

C

A

1
pþq

Since ~a01; ~a
0
2; . . .; ~a

0
m

� 


is any permutation of

~a01; ~a
0
2; . . .; ~a

0
m

� 


; then we have
Pm

i;j¼1i 6¼j ~a
p
i ~a

q
j ¼

Pm
i;j¼1i 6¼j ~a

0p
i ~a

0q
j :

Thus,

NNBM ~a01; ~a
0
2; . . .; ~a

0
m

� �

¼ NNBM ~a01; ~a
0
2; . . .; ~a

0
m

� �

which

completes the proof of the theorem 4.

Now we discuss some special cases of the NNBM by

assigning different values to the parameters p, q:

(1) If q = 0, then

NNBMp;0 ~a1; ~a2; . . .; ~amð Þ ¼ 1

m

X

m

i¼1

~api

 !1
p

ð22Þ

which we call it the normal neutrosophic generalized mean

(NNGM) operator.

(2) If p = 1 and q = 0, then

NNBM1;0 ~a1; ~a2; . . .; ~amð Þ ¼ 1

m

X

m

i¼1

~ai ð23Þ

which we call it the normal neutrosophic mean (NNM)

operator.

(3) If p = 2 and q = 0, then

NNBM2;0 ~a1; ~a2; . . .; ~amð Þ ¼ 1

m

X

m

i¼1

~a2i

 !1
2

ð24Þ

which we call it the normal neutrosophic square mean

(NNSM) operator.

(4) If p = 1 and q = 1, then

NNBM1;1 ~a1; ~a2; . . .; ~amð Þ ¼ 1

m m� 1ð Þ
X

i;j¼1

m

i 6¼j

~ai ~aj

0

B

B

@

1

C

C

A

1
2

ð25Þ

which we call it the normal neutrosophic interrelated

square mean (NNISM) operator.

The NNBM operator just considers the relationship of

the aggregated arguments but ignores the importance of

their weights. In the following, we will define another

Bonferroni mean operator, the normal neutrosophic

weighted Bonferroni mean (NNWBM) operator, to over-

come the shortcoming.

Definition 11 Let ~a1; ~a2; . . .; ~amf g be a set of NNNs. The

weighted Bonferroni mean operator of NNNs is defined as

NNWBMp;q ~a1; ~a2; . . .; ~amð Þ

¼ 1

m m� 1ð Þ
X

i;j¼1

m

i6¼j

wi ~aið Þp � wj ~aj
� �q

0

B

B

@

1

C

C

A

1
pþq

ð26Þ

where w = (w1, w2,…, wm)
T is the weight vector of NNNs.

~ak ðk ¼ 1; 2; . . .;mÞ 0�wk � 1 k ¼ 1; 2; . . .;mð Þ and
Pm

k¼1 wk ¼ 1:

Theorem 5 Let ~ak ¼ ak; rkð Þ; Tk; Ik;Fkð Þh i ðk ¼
1; 2; . . .;mÞ be a set of the NNNs; then, the result aggre-

gated based on the Definition 11 will be still a NNN, and

even
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The NNWBM operator has the following properties:

Theorem 6 (Idempotency) Let ~a1; ~a2; . . .; ~amf g be a

collection of NNNs, if all ~ak ðk ¼ 1; 2; . . .;mÞ are equal,

i.e., ~ak ¼ ~a(k = 1, 2,…, m), for all k, then

NNWBM ~a1; ~a2; . . .; ~amð Þ ¼ ~a

The proof of the Theorem 6 can be easily completed with

the same way as the Theorem 3.

Theorem 7 (Commutativity) Let ~a0k ðk ¼ 1; 2; . . .;mÞ is

any permutation of ~ak ðk ¼ 1; 2; . . .;mÞ: Then,
NNWBM ~a1; ~a2; . . .; ~amð Þ ¼ NNWBM ~a01; ~a

0
2; . . .; ~a

0
m

� �

The proof of the Theorem 7 can be easily completed with

the same way as the Theorem 4.

3.2 NNGBM and NNWGBM operators

Definition 12 Suppose p, q[ 0 and ~a1; ~a2; . . .; ~amf g be a

set of NNNs. The geometric Bonferroni mean operator of

the NNNs is defined as

NNGBMp;q ~a1; ~a2; . . .; ~amð Þ ¼ 1

pþ q

Y

i;j¼1

m

i6¼j

p ~ai þq ~aj
� �

0

B

B

@

1

C

C

A

1
m m�1ð Þ

ð28Þ

Theorem 8 Let ~ak ¼ ak; rkð Þ; Tk; Ik;Fkð Þh i ðk ¼
1; 2; . . .;mÞ be a set of the NNNs; then, the result aggre-

gated based on the Definition 12 will be still a NNN, and

even

1

m m� 1ð Þ
X

i;j¼1

m

i6¼j

wi ~aið Þp � wj ~aj
� �q
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1
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;

0
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@

*
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� �2

� �1
2

ffiffiffiffiffiffiffiffiffiffiffi
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p ðpþqÞ ffiffiffi
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1

C

C

A

;

1�
Y

i;j¼1

n

i 6¼j
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Proof By the operational laws of the NNNs, we have

p~ai ¼ ðpai; priÞh ; 1� ð1� TiÞp; Ipi ;F
p
ið Þi

q~aj ¼ ðqaj; qrjÞ
�

; 1� ð1� TjÞq; Iqj ;F
q
j

� �E

and

p ~ai þq ~aj ¼ p ai þq aj; p ri þq rj
� �

;
�

1� 1� Tið Þp 1� Tj
� �q

; I
p
i I

q
j ;F

p
i F

q
j

� �E

then

NNGBMp;q ~a1; ~a2; . . .; ~amð Þ ¼ 1

pþ q

Y

i;j¼1

m

i 6¼j

p ai þq aj
� �1=mðm�1Þ
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1
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0

B

B

@

1

C

C

A

1=2

Y
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m

i 6¼j
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*
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p
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and

Y
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m

i 6¼j

p~aiþq~aj
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+

then

which completes the proof of the Theorem 8.

The geometric Bonferroni mean operator of the NNNs

has some properties as follows:

Theorem 9 (Idempotency) Let ~a1; ~a2; . . .; ~amf g be a set

of the NNNs. If all ~ak ðk ¼ 1; 2; . . .;mÞ are equal, i.e.,

~ak ¼ ~a ðk ¼ 1; 2; . . .;mÞ; for all k, then
NNGBM ~a1; ~a2; . . .; ~amð Þ ¼ ~a

The proof of the Theorem 9 can be easily completed

similar to the Theorem 3.

Theorem 10 (Commutativity) Suppose ~a0k ðk ¼
1; 2; . . .;mÞ is any permutation of ~ak ðk ¼ 1; 2; . . .;mÞ:
Then

NNGBM ~a1; ~a2; . . .; ~amð Þ ¼ NNGBM ~a01; ~a
0
2; . . .; ~a

0
m

� �

The proof of the Theorem 10 can be easily completed with

the same way as the Theorem 4.

Now we discuss some special cases of the NNGBM by

assigning different values to the parameters p, q:

(1) If q = 0, then

NNGBMp;0 ~a1; ~a2; . . .; ~amð Þ ¼ 1

p

Y

m

i¼1

p ~aið Þ
 !1

m

ð30Þ

which we call it the normal neutrosophic generalized

geometric mean (NNGGM) operator.

(2) If p = 1 and q = 0, then

NNGBM1;0 ~a1; ~a2; . . .; ~amð Þ ¼
Y

m

i¼1

~aið Þ
 !1

m

ð31Þ

which we call it the normal neutrosophic geometric mean

(NNGM) operator.

(3) If p = 2 and q = 0, then
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NNGBM2;0 ~a1; ~a2; . . .; ~amð Þ ¼
Y

m

i¼1

2~aið Þ
 !1

m

ð32Þ

which we call it the normal neutrosophic square geometric

mean (NNSGM) operator.

(4) If p = 1 and q = 1, then

NNGBM1;1 ~a1; ~a2; . . .; amð Þ ¼ 1

2

Y

i;j¼1

m

i 6¼j

~ai þ ~aj
� �

0

B

B

@

1

C

C

A

1
m m�1ð Þ

ð33Þ

which we call it the normal neutrosophic interrelated

square geometric mean (NNISGM) operator.

Similar to the NNBM operator, the NNGBM operator

also just considers the interrelationship of the input argu-

ments and ignores their own importance. In the following,

we will extend the NNGBM to the normal neutrosophic

weighted Bonferroni mean (NNWGBM) operator which

can not only considers the interrelationship but also takes

the weights into account.

Definition 13 Let ~a1; ~a2; . . .; ~amf g be a set of NNNs. The

weighted geometric Bonferroni mean operator of the NNNs

will be defined as:

NNWGBMp;q ~a1; ~a2; . . .; ~amð Þ

¼ 1

pþ q

Y

i;j¼1
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i6¼j

p ~aið Þwi þq ~aj
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1
m m�1ð Þ

ð34Þ

where w = (w1, w2,…, wm)
T is the weight vector of NNNs,

~ak ðk ¼ 1; 2; . . .;mÞ ; 0�wk � 1 k ¼ 1; 2; . . .;mð Þ and
Pm

k¼1 wk ¼ 1:

Theorem 11 Let ~ak ¼ ak; rkð Þ; Tk; Ik;Fkð Þh i ðk ¼
1; 2; . . .;mÞ be a set of the NNNs; then, the result aggre-

gated based on the Definition 13 will be still a NNN, and

even

The weighted geometric Bonferroni mean of the NNNs has

some properties as follows:

Theorem 12 (Idempotency) Let ~a1; ~a2; . . .; ~amf g be a set

of NNNs, if all ~ak ðk ¼ 1; 2; . . .;mÞ are equal, i.e., ~ak ¼
~a ðk ¼ 1; 2; . . .;mÞ; for all k, then
NNWPG ~a1; ~a2; . . .; ~amð Þ ¼ ~a

The proof of the Theorem 12 can be easily completed with

the same way as the Theorem 3.

Theorem 13 (Commutativity) Let ~a0k ðk ¼ 1; 2; . . .;mÞ be
any permutation of ~ak ðk ¼ 1; 2; . . .;mÞ: Then
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NNGBM ~a1; ~a2; . . .; ~amð Þ ¼ NNGBM ~a01; ~a
0
2; . . .; ~a

0
m

� �

The proof of the Theorem 13 can be easily completed

similar to Theorem 4.

4 A multiple attribute decision-making method
on the basis of NNWBM and NNWGBM
operator

In this section, we will apply the normal neutrosophic

weighted geometric Bonferroni mean (NNWBM) operator

(or NNWGBM) to solve the multiple attribute decision-

making problems on the basis of the NNNs.

For a multiple attribute decision-making problem, sup-

pose A = {A1, A2,…, Am} is the set of the alternatives, and

C = {C1, C2,…, Cn} is the set of the attributes. Suppose

each attribute is independent, and the evaluation value of

the alternative Ai on the condition of the attribute Ci is

�aij ¼ ðaij; rijÞ; ðTij; Iij;FijÞ
� �

; which is presented in the form

of the NNN, where Tij, Iij, Fij 2 [0, 1] and Tij ? Iij ?

Fij B 3. The weight vector of the attribute is w = (w1,

w2,…, wn), which wj 2 0; 1½ �;
Pn

j¼1 wj ¼ 1:

Then, we use the normal neutrosophic weighted geo-

metric Bonferroni mean (NNWBM) operator (or

NNWGBM) to develop a method to deal with the multiple

attribute decision-making problems as follows:

Step 1 Normalize the decision matrix.

Because there are two types of attributes, i.e., the benefit

type and the cost type, we firstly convert the different types

to the same one. So, the decision matrix of normal

neutrosophic variables D ¼ ð�aijÞm�n will be converted to

the standardized matrix D ¼ ð~aijÞm�n

For the benefit type:

~aij ¼
aij

maxiðaijÞ
;

rij
maxiðaijÞ

rij
aij

	 


; Tij; Iij;Fij

� �

� �

ð36Þ

For the cost type:

~aij ¼
miniðaijÞ

aij
;

rij
maxiðaijÞ

rij
aij

	 


; Fij; 1� Iij; Tij

� �

� �

ð37Þ

Step 2 Calculate the comprehensive evaluation values of

the alternatives based on the NNWBM operator (or

NNWGBM). (Generally, we can take p = q = 1)

~ai ¼ NNWBMp;q ~ai1; ~ai2; . . .; ~ainð Þ ¼ 1
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or

where i ¼ 1; 2; . . .;m:

Step 3 Calculate the score value of each comprehensive

evaluation value by Eq. (18).

Step 4 Rank all the alternatives {A1, A2,…, Am} and

select the most desirable one(s) according to the Definition

9.

Step 5 End.

5 The numerical example

In this section, based on NNWBM operator (NNWGBM), a

numerical example is given to verify the proposed

approach.

There is a company which is planning to invest some

money to an industry (cited from [a10]). There are four

alternative companies to be chosen, including (1) A1 is a

car company; (2) A2 is a food company; (3) A3 is a com-

puter company; (4) A4 is an arms company. There are three

evaluation attributes, including: (1) C1 is the risk; (2) C2 is

the growth; (3) C3 is the environment. We can know the

attributes C1 and C2 are benefit criteria, and the type of C3

is cost. The weight vector of the attributes is

x = (0.35, 0.25, 0.4). The final evaluation outcomes are

expressed by the NNNs and shown in Table 1.

5.1 Procedure of decision-making method based

on the NNWBM operator

1. Normalize the decision matrix

Since C1 and C2 are benefit attributes, and C3 is a cost

attribute, we utilize the formulas (36) and (37) to

obtain the standardized decision matrix, which is

shown in Table 2.

2. Calculate the comprehensive evaluation value of each

alternative by formula (38) (suppose p = q = 1).

~a1 ¼ 0:1827; 0:0208ð Þ; 0:5704; 0:7848; 0:8133ð Þh i
~a2 ¼ 0:1954; 0:0169ð Þ; 0:6111; 0:7084; 0:7258ð Þh i
~a3 ¼ 0:1761; 0:0143ð Þ; 0:6232; 0:8102; 0:7834ð Þh i
~a4 ¼ 0:2251; 0:0190ð Þ; 0:5770; 0:7419; 0:7535ð Þh i

3. Calculate the score function by formula (18).

s1 ~a1ð Þ ¼ 0:1776; s1 ~a2ð Þ ¼ 0:2299; s1 ~a3ð Þ
¼ 0:1813; s1 ~a4ð Þ ¼ 0:2435

~ai ¼ NNWGBMp;q ~ai1; ~ai2; . . .; ~ainð Þ ¼ 1
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Table 1 Evaluation values of

four alternatives with respect to

the three attributes

C1 C2 C3

A1 h(3, 0.4), (0.4, 0.2, 0.3)i h(7, 0.6), (0.4, 0.1, 0.2)i h(5, 0.4), (0.7, 0.2, 0.4)i
A2 h(4, 0.2), (0.6, 0.1, 0.2)i h(8, 0.4), (0.6, 0.1, 0.2)i h(6, 0.7), (0.3, 0.5, 0.8)i
A3 h(3.5, 0.3), (0.3, 0.2, 0.3)i h(6, 0.2), (0.5, 0.2, 0.3)i h(5.5, 0.6), (0.4, 0.2, 0.7)i
A4 h(5, 0.5), (0.7, 0.1, 0.2)i h(7, 0.5), (0.6, 0.1, 0.1)i h(4.5, 0.5), (0.6, 0.3, 0.8)i

Table 2 Standardized decision

matrix
C1 C2 C3

A1 h(0.6, 0.1067), (0.4, 0.2, 0.3)i h(0.875, 0.0875), (0.4, 0.1, 0.2)i h(0.9, 0.0475), (0.4, 0.8, 0.7)i
A2 h(0.8, 0.02), (0.6, 0.1, 0.2)i h(1, 0.0333), (0.6, 0.1, 0.2)i h(0.75, 0.1167), (0.8, 0.5, 0.3)i
A3 h(0.7, 0.0514), (0.3, 0.2, 0.3)i h(0.75, 0.0111), (0.5, 0.2, 0.3)i h(0.818, 0.0935), (0.7, 0.8, 0.4)i
A4 h(1, 0.1), (0.7, 0.1, 0.2)i h(0.875, 0.0595), (0.6, 0.1, 0.1)i h(1, 0.0794), (0.8, 0.7, 0.6)i

Table 3 Standardized decision

matrix
C1 C2 C3

A1 h(0.6, 0.1067), (0.4, 0.2, 0.3)i h(0.875, 0.0875), (0.4, 0.1, 0.2)i h(0.9, 0.0475), (0.4, 0.8, 0.7)i
A2 h(0.8, 0.02), (0.6, 0.1, 0.2)i h(1, 0.0333), (0.6, 0.1, 0.2)i h(0.75, 0.1167), (0.8, 0.5, 0.3)i
A3 h(0.7, 0.0514), (0.3, 0.2, 0.3)i h(0.75, 0.0111), (0.5, 0.2, 0.3)i h(0.818, 0.0935), (0.7, 0.8, 0.4)i
A4 h(1, 0.1), (0.7, 0.1, 0.2)i h(0.875, 0.0595), (0.6, 0.1, 0.1)i h(1, 0.0794), (0.8, 0.7, 0.6)i

Table 4 Ordering of the

alternatives by utilizing the

different p, q in NNWBM

operator

p, q Score values s1ð~aiÞ Ranking

p = 0, q = 1 s1ð~a1Þ ¼ 0:1292; s1ð~a2Þ ¼ 0:1457;

s1ð~a3Þ ¼ 0:1235; s1ð~a4Þ ¼ 0:1648

A4 	 A2 	 A1 	 A3

p = 0, q = 2 s1ð~a1Þ ¼ 0:2357; s1ð~a2Þ ¼ 0:2517;

s1ð~a3Þ ¼ 0:2206; s1ð~a4Þ ¼ 0:3003

A4 	 A2 	 A1 	 A3

p = 0, q = 10 s1ð~a1Þ ¼ 0:4494; s1ð~a2Þ ¼ 0:4448;

s1ð~a3Þ ¼ 0:4163; s1ð~a4Þ ¼ 0:5902

A4 	 A1 	 A2 	 A3

p = 1, q = 0 s1ð~a1Þ ¼ 0:0879; s1ð~a2Þ ¼ 0:1338;

s1ð~a3Þ ¼ 0:1002; s1ð~a4Þ ¼ 0:1486

A4 	 A2 	 A3 	 A1

p = 2, q = 0 s1ð~a1Þ ¼ 0:1569; s1ð~a2Þ ¼ 0:2394;

s1ð~a3Þ ¼ 0:1756; s1ð~a4Þ ¼ 0:2679

A4 	 A2 	 A3 	 A1

p = 0, q = 0 s1ð~a1Þ ¼ 0:2772; s1ð~a2Þ ¼ 0:4181;

s1ð~a3Þ ¼ 0:3158; s1ð~a4Þ ¼ 0:5166

A4 	 A2 	 A3 	 A1

p = 2, q = 1 s1ð~a1Þ ¼ 0:2087; s1ð~a2Þ ¼ 0:2824;

s1ð~a3Þ ¼ 0:2179; s1ð~a4Þ ¼ 0:3061

A4 	 A2 	 A3 	 A1

p = 10, q = 1 s1ð~a1Þ ¼ 0:2853; s1ð~a2Þ ¼ 0:4185

s1ð~a3Þ ¼ 0:3181; s1ð~a4Þ ¼ 0:5075

A4 	 A2 	 A3 	 A1

p = 1, q = 1 s1ð~a1Þ ¼ 0:1776; s1ð~a2Þ ¼ 0:2299

s1ð~a3Þ ¼ 0:1813; s1ð~a4Þ ¼ 0:2435

A4 	 A2 	 A3 	 A1

p = 1, q = 2 s1ð~a1Þ ¼ 0:2408; s1ð~a2Þ ¼ 0:2848

s1ð~a3Þ ¼ 0:2350; s1ð~a4Þ ¼ 0:3161

A4 	 A2 	 A1 	 A3

p = 0, q = 10 s1ð~a1Þ ¼ 0:4270; s1ð~a2Þ ¼ 0:4328;

s1ð~a3Þ ¼ 0:3942; s1ð~a4Þ ¼ 0:5552

A4 	 A2 	 A1 	 A3
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4. Rank all of the alternatives and choose the most

desirable one by the score function.

According to the score function s1ð~aiÞ; the ranking is

A4 	 A2 	 A3 	 A1.

Thus, the best alternative is A4.

5.2 Procedure of decision-making method based

on the NNWGBM operator

1. Normalize the decision matrix

Since C1 and C2 are benefit attributes, and C3 is a cost

criterion, we use the formulas (36) and (37) to get the

standardized decision matrix, which is shown in

Table 3.

2. Calculate the comprehensive evaluation value of each

alternative by formula (39) (suppose p = q = 1).

~a1 ¼ 0:6783; 0:0302ð Þ; 0:8143; 0:0917; 0:1101ð Þh i
~a2 ¼ 0:6850; 0:0224ð Þ; 0:8556; 0:0517; 0:0596ð Þh i
~a3 ¼ 0:6748; 0:0207ð Þ; 0:8567; 0:1050; 0:0892ð Þh i
~a4 ¼ 0:7032; 0:0240ð Þ; 0:8372; 0:0643; 0:0744ð Þh i

3. Calculate the score function by formula (18).

s1 ~a1ð Þ ¼ 1:7721; s1 ~a2ð Þ ¼ 1:8798; s1 ~a3ð Þ
¼ 1:7968; s1 ~a4ð Þ ¼ 1:8977

4. Rank all of the alternatives and choose the most

desirable one by the score function.

According to the score function s1ð~aiÞ; the ranking is

A4 	 A2 	 A3 	 A1.

Thus, the best alternative is A4.

5.3 Analysis of the effect of the factor p, q

In order to demonstrate the influence of the parameter p,

q on decision-making results of this example, we use the

different values p, q in NNWBM or NNWGBM operator in

step 4 to rank the alternatives. The ranking results are

shown in Tables 4 and 5.

As shown in Table 4, the ordering of the alternatives

may be different for the different values of p, q in NNWBA

operator. But the best alternative is the same one A4. In

Table 5, the ordering of the alternatives also may be dif-

ferent for the different values of p, q. The best alternative is

A2 or A4. In practical applications, we generally adopt the

values of the two parameters as p = q = 1, which are not

Table 5 Ordering of the

alternatives by utilizing the

different p, q in NNWGBM

operator

p, q Score values s1ð~aiÞ Ranking

p = 0, q = 1 s1ð~a1Þ ¼ 2:5272; s1ð~a2Þ ¼ 2:6809;

s1ð~a3Þ ¼ 2:5721; s1ð~a4Þ ¼ 2:6587

A2 	 A4 	 A3 	 A1

p = 0, q = 2 s1ð~a1Þ ¼ 1:6499; s1ð~a2Þ ¼ 1:8015;

s1ð~a3Þ ¼ 1:7067; s1ð~a4Þ ¼ 1:7247

A2 	 A4 	 A3 	 A1

p = 0, q = 10 s1ð~a1Þ ¼ 0:6120; s1ð~a2Þ ¼ 0:7106;

s1ð~a3Þ ¼ 0:6521; s1ð~a4Þ ¼ 0:6168

A2 	 A4 	 A3 	 A1

p = 1, q = 0 s1ð~a1Þ ¼ 2:5272; s1ð~a2Þ ¼ 2:6809;

s1ð~a3Þ ¼ 2:5721; s1ð~a4Þ ¼ 2:6587

A2 	 A4 	 A3 	 A1

p = 2, q = 0 s1ð~a1Þ ¼ 0:6499; s1ð~a2Þ ¼ 1:8015;

s1ð~a3Þ ¼ 1:7067; s1ð~a4Þ ¼ 1:7247

A2 	 A4 	 A3 	 A1

p = 10, q = 0 s1ð~a1Þ ¼ 0:6121; s1ð~a2Þ ¼ 0:7106;

s1ð~a3Þ ¼ 0:6521; s1ð~a4Þ ¼ 0:6168

A2 	 A4 	 A3 	 A1

p = 2, q = 1 s1ð~a1Þ ¼ 1:3853; s1ð~a2Þ ¼ 1:5031;

s1ð~a3Þ ¼ 1:4232; s1ð~a4Þ ¼ 1:4891

A2 	 A4 	 A3 	 A1

p = 10, q = 1 s1ð~a1Þ ¼ 0:6081; s1ð~a2Þ ¼ 0:7005;

s1ð~a3Þ ¼ 0:6433; s1ð~a4Þ ¼ 0:6295

A2 	 A4 	 A3 	 A1

p = 1, q = 1 s1ð~a1Þ ¼ 1:7721; s1ð~a2Þ ¼ 1:8798

s1ð~a3Þ ¼ 1:7968; s1ð~a4Þ ¼ 1:8977

A2 	 A4 	 A3 	 A1

p = 1, q = 2 s1ð~a1Þ ¼ 1:4110; s1ð~a2Þ ¼ 1:4988

s1ð~a3Þ ¼ 1:4304; s1ð~a4Þ ¼ 1:5024

A2 	 A4 	 A3 	 A1

p = 1, q = 10 s1ð~a1Þ ¼ 0:6236; s1ð~a2Þ ¼ 0:6972;

s1ð~a3Þ ¼ 0:6486; s1ð~a4Þ ¼ 0:6370

A2 	 A4 	 A3 	 A1
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only easy and intuitive but also fully capture the correla-

tions between criteria.

6 Conclusions

Themultiple attribute decision-makingmethod on the basis of

normal neutrosophic variables has a wider application in

many domains. The normal neutrosophic set (NNS) will be

more appropriate to deal with the incompleteness, indeter-

minacy, and inconsistency of the decision-making informa-

tion, and the Bonferroni mean (BM) operator can consider the

interrelationships between the input arguments. So, in this

paper, we proposed two aggregation operators called the

normal neutrosophic Bonferroni mean (NNBM) operator and

the normal neutrosophic geometric Bonferroni mean

(NNGBM) operator for aggregating the information expres-

sed by the normal neutrosophic numbers. We studied some

properties of them and discussed some of their special cases.

For the situations in which the input arguments have different

weights,we thendeveloped thenormalneutrosophicweighted

Bonferroni mean (NNWBM) operator and the normal neu-

trosophic weighted geometric Bonferroni mean (NNWGBM)

operator, on the basis ofwhich we propose two procedures for

multiple attribute decision making under the environments

where the information is expressed by the NNNs. Moreover,

we use the NNWBM operator and NNWGBM operator to

aggregate the evaluation information of alternatives, so the

decision makers can get the desirable alternative according to

their interest and the practical need by changing the values of

p, q, whichmakes the results of the proposedmultiple attribute

decision-making method more flexible and reliable. In the

further research, the study about the applications of the new

decision-making method is necessary and significative

because the applications of the normal distribution are widely

distributed in many domains in the uncertain environment.
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