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ABSTRACT As an expansion of 2-tuple linguistic intuitionistic fuzzy set, the newly developed 2-tuple 
linguistic neutrosophic set (2-TLNS) is more satisfactory to define decision maker’s assessment 
information in decision making problems. 2-TLN aggregation operators are of great significance in multiple 
attribute group decision making (MAGDM) problems with a 2-tuple linguistic environment. Therefore, in 
this article our main contribution is to develop novel 2-TLN power Heronian aggregation (2-TLNPHM) 
operators. Firstly, we develop new operational laws established on Dombi T-norm (DTN) and Dombi T-
conorm (DTCN). Secondly, Taking full advantages of the power average (PA) operator and Heronian mean 
(HM) operator, we develop some new novel power Heronian mean operator and discuss its related 
properties and special cases. The main advantages of developed aggregation operators are that not only 
remove the effect of awkward data which may be too high or too low, but also have a good capacity to 
model the extensive correlation between attributes, making them more worthy for successfully solving 
more and more complicated MAGDM problems. Thus, we develop a new algorithm to handle MAGDM 
based on the developed aggregation operators. Lastly, we apply the proposed method and algorithm to risk 
assessment for construction of engineering projects to show the efficiency of the developed method and 
algorithm. The dominant novelties of this contribution are triplex. Firstly, new operational laws are 
proposed for 2-TLNNs. Secondly, novel 2-TLNPHM operators are developed. Thirdly, a new approach for 
2-tuple linguistic neutrosophic MAGDM is developed.  

INDEX TERMS 2-TLNS, Dombi T-norm, Dombi T-conorm, PA operator, Heronian mean, MAGDM. 

I. INTRODUCTION 
  In actual life, multiple attribute group decision making 
(MAGDM) problems are the vital part of decision theory in 
which we select the optimal one from the group of finite 
alternatives based on the overall information. 
Conventionally, it has been accepted that the information 
concerning acquiring the alternatives is taken in the form of 
real number. But in our daily life, it is hard for a decision 
maker to give his evaluations regarding the object in crisp 
values due to vagueness and insufficient information. 
Rather, it has been enhance acceptable that these 
evaluations are given by fuzzy set (FS) or its extended form. 
Intuitionistic fuzzy set (IFS) [1] is the vigorous 

augmentation of FS [2] to deal with vagueness by including 
an identical falsity-membership into the analysis. A lot of 
studies by different researchers were conducted on IFS in 
different fields. IFSs have good capability to explain and 
articulate decision maker’s (DMs) fuzzy decision 
information in MAGDM problems. However, IFS still have 
shortcomings and there exist relatively a few situations in 
which it is inappropriate to employ IFS to articulate DMs 
preference information. The key motive is that the 
hesitancy/indeterminacy degree is dependent of 
membership degree and non-membership degree in IFSs, 
for example when a DM utilizes an IFN (0.6, 0.2) to 
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represent his/her assessment on a certain attribute. Then, 
the indeterminacy/hesitancy degree of the DM is 1 − 0.6 − 
0.2 = 0.2. In simple words, once the truth-membership and 
falsity-membership degrees are determined, the degree of 
indeterminacy is determined automatically. Some other 
generalizations FS are proposed by some scholars such as 
Pythagorean fuzzy sets [3], hesitant Pythagorean fuzzy sets 
[4].  However, these are rather different from real MAGDM 
problems. In real MAGDM, the indeterminacy/hesitancy 
degrees should not be determined automatically and should 
be provided by DMs. For example, if a DM thinks the 
membership degree is 0.6, the membership degree is 0.4, 
and the degree that he/she is not sure about the result is 0.2, 
then the DMs evaluation value can be denoted as (0.6, 0.4, 
0.2), which cannot be represented by IFSs. In order to deal 
with this case, Smarandache [5, 6] initially developed the 
concept of neutrosophic set (NS), which has the capacity of 
dealing inconsistent and indeterminate information. In the 
NS, its degree of membership ( )ATR a , degree of 
indeterminacy ( )AIN a and degree of falsity ( )AFL a are 
expressed independently, which lie real standard or non-
standard subsets of 0 ,1 ,− +    that is ( ) : 0 ,1 ,ATR a U − + →  

( ) : 0 ,1AIN a U − + →   and ( ) : 0 ,1AFL a U − + →   , such that 

0 ( ) ( ) ( ) 3 .A AATR a IN a FL a− +≤ + + ≤  Thus, the use of nonstandard 
interval 0 ,1− +   may verdict some difficulty in real 
applications. To utilize NS easily in real application Wang 
et al. [7] proposed the concept of single valued 
neutrosophic set (SVNS) by changing the non-standard unit 
interval into the standard unit interval [ ]0,1 . Further, Wang 
et al. [8] proposed the concept of interval neutrosophic set 
(INS). Ye [9] developed simplified neutrosophic set (SNS), 
which consist of both concepts of SVNS and INS. Some 
researcher developed improved operational laws for these 
sets [10,11].  
In recent time, information aggregation operators [12-15] 
have enticed comprehensive recognitions of researchers and 
have become a vital part of MAAGDM. Generally, for 
aggregating a group of data, it is mandatory to assess the 
functions and the operations of aggregation operators. For 
the functions, the conventional aggregation operator 
developed Xu, Xu and Yager [16, 17] only can aggregate a 
group of real values into a single real value. In the past few 
years, some expanded aggregation operators have been 
developed by different researchers. For example, Sun et al. 
[18] developed some Choquet integral operator for INS. Liu 
and Tang, Peng et al. [19, 20] extended the power average 
(PA) operator developed by Yager [21] to interval 
neutrosophic and multi-valued neutrosophic environment, 
which has the capacity of removing the bad impact of 
awkward data. Wu et al [22] developed cross entropy and 
prioritized aggregation operators for SNNs, which take the 
priorities of criterion by priority weights. Besides, some 
aggregation operators can consider interrelationship among 
aggregated arguments. That is Bonferroni mean (BM) 

operator developed by Bonferroni [23], Heronian mean 
(HM) operator developed by Sykora [24].  
All the above aggregation operators are capable to deal with 
information available in the form of real numbers. However, 
in various actual situations, mostly for various actual 
MAGDM problems, the assessment information associated 
with every alternatives are normally unpredictable or vague, 
due to the increasing complexity such as lack of time, lack 
of knowledge and various other limitations. Therefore, it is 
often hard for DMs to represent the assessment information 
about alternatives in the form of numeric values. Hence, to 
deal with such type of situations, Zadeh [25] initially 
proposed the concept of linguistic variable. It has also been 
generalized to various linguistic environments such as 2-
tuple linguistic representation model [26-30], intuitionistic 
2-tuple linguistic model [31] and so on [32, 33].  These 
developed concepts have also the same limitations to that of 
FS and IFS have. To overcome these limitations,   Wang et 
al. [34] developed the concept of 2-tuple linguistic 
neutrosophic set (2-TLNS) based on the SVNS and 2-tuple 
linguistic information model , which is the generalization of 
several concepts such as 2-tuple linguistic set, 2-tuple 
linguistic fuzzy set and 2-tuple linguistic intuitionistic fuzzy 
set [35]. They described some operational laws for 2-tuple 
linguistic neutrosophic number (2-TLNN) , proposed some 
aggregation operators and apply these aggregation 
operators to solve MADM problems. Wang et al. [36, 37] 
further developed MAGDM method based TODIM and 
Muirhead mean operators to deal with 2-tuple linguistic 
environment. Wu et al. [38] proposed some 2-tuple 
linguistic neutrosophic Hamy mean (2-TLNHM) operators. 
Wu et al. [39] proposed the idea of SVN 2-tuple linguistic 
set (SVN2TLS), SVN 2 tuple linguistic number (SVN2TN), 
basic operational laws based on Hamacher triangular norm 
and conorm. Then based on these operational laws propose 
some aggregation operators and apply these aggregation 
operator to deal with MAGDM problem under SVN2TL 
information. 
The Dombi t-norm (DTN) and Dombi t-conorm (DTCN) 
proposed by Dombi [40] have general parameter, which 
makes the information aggregation process more flexible. 
In the past few years, some researchers proposed Dombi 
operational laws for various sets and based on these Dombi 
operational laws they developed different aggregation 
operators [41-56].  
Due to the increasing complexity in real decision making 
problems day by day, we have to look at the following 
questions, when selecting the best alternative. (1) In various 
situations, the assessment values of the attributes presented 
by the DMs may be too high or too low, have a negative 
effect on the final ranking results. The PA operator is a 
useful aggregation operator that authorizes the assessed 
values to equally supported and improved. Therefore, we 
may utilize the PA operator to vanish such bad effect by 
choosing different weights constructed by the support 
measure. (2) In various practical decision making problems 
the assessment values of attribute are dependent. Therefore, 



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2925344, IEEE Access

 

VOLUME XX, 2017 9 

the interrelationship among the values of the attributes 
should be scrutinized. The HM operator can gain this 
function. However, HM operator has some advantages over 
BM. From the existing literature, we can notice that there is 
a need to combine PA operator with HM operator to deal 
with 2-TLN environment and achieved the above 
advantages.  
Therefore, the main aim of this article is to propose some 
Dombi operational laws for 2-TLNNs, combine PA 
operator with HM operator, and extend the idea to 2-TLN 
environment, and develop some new aggregation operators 
such as 2-TLN power HM (2-TLNHM) operator, its 
weighted form, 2-LN power geometric HM (2-TLNHM) 
operator, its weighted form and discussed some special 
cases of the developed aggregation operator and apply them 
to MAGDM to achieve the two requirements discussed 
above.  

To do so, the rest of the article is organized as follows. 
In section 1, some basic definitions about SVNS, 2-TLNS, 

PA operator, HM operator and related properties are 
discussed. In section 3, we developed some operational laws 
for 2-TLNNs. In section 4, based on these operational laws 
we developed some 2-tuple linguistic Dombi power 
Heronian mean operators, related properties and special cases 
are discussed. In section 5, MAGDM method is developed 
based on these newly developed aggregation operators and a 
numerical example is given to show the effectiveness of the 
proposed MAGDM approach. In section 6, comparison of 
the developed approach and some existing approaches are 
given. At the end Conclusion, future work and references are 
given.  
II. Preliminaries 
In this part, we gave some basic definitions and results 
about 2-TLNSs, PA operator and HM operator. 

A. 2-TLNS and their operations 

Definition 1[7]. Let Θ  be a space of points (objects), with 
a common component in Θ  denoted by .η  A SVNS SN  in 
Θ  is expressed by, 





( )


( )


( ){ }, , , |SN SN SNSN η ξ η ψ η ζ η η= ∈Θ                             (1) 

Where 


( )


( ),SN SNξ η ψ η  and 


( )SNζ η respectively denote the 

TMD, IMD and FMD of the element η ∈Θ  to the set .SN  
For each point η ∈Θ , we have



( )


( )


( ) [ ], , 0,1SN SN SNξ η ψ η ζ η ∈ , 
and 



( )


( )


( )0 3.SN SN SNξ η ψ η ζ η≤ + + ≤                 

Definition 2 [34]. Suppose that { }1 2, ,...., pΓ = Γ Γ Γ  is a 2-TLSs 
with 1p +  cardinality. That is the order of 2-TLSs is odd. If 

( ) ( ) ( ), , , , ,t i fs s sΓ = Ξ Ψ ϒ is described for ( ) ( ) ( ), , , , ,t i fs s sΞ Ψ ϒ ∈Γ

and [ ], , , ,o pΞ Ψ ϒ∈  where ( ) ( ), , ,t is sΞ Ψ and ( ),fs ϒ

respectively, represents the truth-membership degree, 
indeterminacy-membership degree and falsity-membership 

degree by 2-TLNSs, then the 2-TLNSs is described as 
follows: 
   ( ) ( ) ( ){ }, , , , ,

g g gg t g i g f gs s sΓ = Ξ Ψ ϒ                              (2)  

where, ( ) ( ) ( )1 1 10 , ,0 , ,0 ,
g g gt i fs p s p s p− − −≤ ∆ Ξ ≤ ≤ ∆ Ψ ≤ ≤ ∆ ϒ ≤  such 

that ( ) ( ) ( )1 1 10 , , , 3 .
g g gt i fs s s p− − −≤ ∆ Ξ + ∆ Ψ + ∆ ϒ ≤  

Definition 3 [34]. Let ( ) ( ) ( ), , , , ,t i fs s sΓ = Ξ Ψ ϒ be a 2-

TLNN. Then, the score and accuracy functions are 
described as follows: 

( )
( ) ( ) ( ) ( ) [ ]

1 1 12 , , ,
, 0,1 ;

3
t i fp s s s

SR SR
p

− − − + ∆ Ξ − ∆ Ψ − ∆ ϒ Γ = ∆ Γ ∈ 
  

(3)  

( ) ( ) ( ){ } ( ) [ ]1 1, , , , .t fAC s s AC p p− −Γ = ∆ ∆ Ξ − ∆ ϒ Γ ∈ −                  (4) 

Definition 4 [34]. Let ( ) ( ) ( )1 1 11 1 1 1, , , , ,t i fs s sΓ = Ξ Ψ ϒ  and 

( ) ( ) ( )2 2 22 2 2 2, , , , ,t i fs s sΓ = Ξ Ψ ϒ be any two arbitrary 2-TLNNs. 
Then, the comparison rules are described as follows: 

(1) If ( ) ( )1 2SR SRΓ > Γ , then 1 2Γ > Γ ; 

(2) If ( ) ( )1 2SR SRΓ = Γ , then  

i. If ( ) ( )1 2AC ACΓ > Γ , then 1 2Γ > Γ ; 

ii. If ( ) ( )1 2AC ACΓ = Γ , then 1 2Γ = Γ . 

Definition 5 [36]. Let ( ) ( ) ( )1 1 11 1 1 1, , , , ,t i fs s sΓ = Ξ Ψ ϒ  and 

( ) ( ) ( )2 2 22 2 2 2, , , , ,t i fs s sΓ = Ξ Ψ ϒ be any two arbitrary 2-TLNNs. 
Then, the normalized Hamming distance is described as 
follows: 

( )

( ) ( ) ( ) ( )
( ) ( )

1 2 1 2

1 2

1 2

1 1 1 1
1 2 1 2

1 1
1 2

,

, , , ,1
3 , ,

H

t t i i

f f

D

s s s s

p s s

− − − −

− −

Γ Γ

 ∆ Ξ − ∆ Ξ + ∆ Ψ − ∆ Ψ + =  
∆ ϒ − ∆ ϒ  

    (5)   

B. The PA operator 
 
Yager [21] was the first one who presented the concept of 
the PA which is one of the important aggregation operators.  
The PA operator diminishes some negative effects of 
unnecessarily high or unnecessarily low arguments given 
by experts. The conventional PA operator can only deal 
with crisp numbers, and is defined as follows. 
Definition 6 [21]. Let ( 1,2,..., )ib i m= be a group of non-
negative crisp numbers, the PA is a function defined by 

( )
( )( )

( )( )
1

1 2

1

1
, ,....,

1

m

i i
i

m m

i
i

T b b
PA b b b

T b
=

=

+
=

+

∑

∑
                            (6) 

Where ( )
1

( , )
m

i i j
j
j i

T b Sup b b
=
≠

= ∑ and ( ),Sup b c is the support 

degree for b from ,c which satisfies some axioms. 1) 
( ) [ ], 0,1Sup b c ∈ ; 2) ( ) ( ), ,Sup b c Sup c b= ; 3) 

( ) ( ), , ,Sup b c Sup d e≥ if .b c d e− < −  
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C. HM operator 
 
HM [24] is also an important tool, which can represent the 
interrelationships of the input values, and it is defined as 
follows: 
Definition 7 [24]. Let [ ] ,0,1 , , 0, : ,x y mI x y H I I= ≥ → if ,x yH  
satisfies; 

( )
1

,
1 2 2

1

2, ,...,
m m x yx y x y

m i j
i j i

H b b b b b
m m

+

= =

 =  + 
∑∑                           (7)        

Then the mapping ,x yH  is said to be HM operator with 
parameters. The HM satisfies the properties of idem 
potency, boundedness and monotonicity.   
 
III. Dombi operational laws for 2-TLNNs 
   
 
A. Dombi TN and TCN 
 
Dombi operations consist of the Dombi sum and Dombi 
product. 
Definition 8 [40]. Let α and β  be any two real number. 
Then, the DTN and DTCN among α and β are explain as 
follows: 

1

1( , ) ;

1 11

DT α β

α β
α β

ℑℑ ℑ

=
  − −  + +   
     

                             (8) 

*
1

1( , ) 1 .

1
1 1

DT α β

α β
α β

ℑℑ ℑ

= −
    + +   − −     

                      (9) 

Where 1,ℑ≥ and ( ) [ ] [ ], 0,1 0,1 .α β ∈ ×  
According to the DTN and DTCN, we develop few 
operational rules for 2-TLNNs. 
 
Definition 9. Let ( ) ( ) ( )1 1 11 1 1 1, , , , ,t i fs s sΓ = Ξ Ψ ϒ  and 

( ) ( ) ( )2 2 22 2 2 2, , , , ,t i fs s sΓ = Ξ Ψ ϒ be an arbitrary 2-TLNNs 

and 0,ℑ >  for simplicity, we assume that 
( ) ( ) ( )1 1 1, , ,

, ,g g gt g i g f g
g g g

s s s
t i f

h h h

− − −∆ Ξ ∆ Ψ ∆ ϒ
= = =  for 

1,2g =  . Then, the operational laws can be described as 
follows: 

1 2 1

1 2

1 2

1

1 2 1

1 2 1

1(1) ,

1 11

1 11 , 1

1 1
1 1 1

h

t t
t t

h h

i i f
i i f

ℑ ℑ ℑ

ℑ ℑ ℑ

  
  
  
  

Γ ⊗ Γ = ∆  
      − −      + +              

  
  
  
  

∆ − ∆ −  
             + + +       − − −        

1

2

21
f

f

ℑ ℑ ℑ

  
  
  
  
  
           +       −      

(10)  

1 2 1

1 2

1 2

1

1 2 1

1 2 1

1(2) 1 ,

1
1 1

1 1,

1 1 11 1

h

t t
t t

h h

i i f
i i f

ℑ ℑ ℑ

ℑ ℑ ℑ

  
  
  
  

Γ ⊗ Γ = ∆ −  
            + +      − −       

  
  
  
  

∆ ∆  
       − − −       + + +                

1

2

2

;

1 f
f

ℑ ℑ ℑ

  
  
  
  
  
     −     +            

(11) 

1 1 1

1 1

1 1

1

1

1

1 1(3) 1 , ,

11 1
1

1

11

h h

t i
t i

h

f
f

ξ

ξ ξ

ξ

ℑ ℑℑ ℑ

ℑ ℑ

      
      
      
      

Γ = ∆ − ∆      
            −            + +               −               

 
 
 
 

∆  
   −   +       

, 0;ξ

 
 
 
 
  >
 
 
  
 

(12)  

1 1 1

1 1

1 1

1

1

1

1 1(4) , 1 ,

11 1
1

11

1
1

h h

t i
t i

h

f
f

ξ

ξ ξ

ξ

ℑ ℑℑ ℑ

ℑ ℑ

      
      
      
      

Γ = ∆ ∆ −      
            −            + +               −               

 
 
 


∆ −
      +    −   

, 0.ξ

 
 
 
 
  >
 
 
  
 

(13) 

IV. The 2-tuple linguistic neutrosophic Dombi Heronian 
aggregation operators  
 
In this part, based on the Dombi operational laws for 2-
TLNNs, we combine PA operator and HM operator to 
propose 2-TLNDPHM operator, 2-TLNDWPHM operator, 
2-TLNDPGHM operator, 2-TLNDWPGHM operator and 
discuss some related properties. 
 
A. The 2-LNDPHM and 2-LNDWPHM operators 
 
Definition 10. Let ( )1,2,...,g g pΓ =  be a group of 2-TLNNs, 

, 0.x y ≥  Then, the 2-TLNNDPHM operator is described as 
follows: 

( )

( )( )
( )( )

( )( )
( )( )

,
1 2

1

2
1

1 1

2 , ,...,

1 12 .
1 1

x y
p

x y x y

p p
g q

g D qp p
g q g

r r
r r

TLNDPHM

p T p T

p p T T

+

= =

= =

− Γ Γ Γ

        + Γ + Γ    = Γ ⊗ Γ +    + Γ + Γ         

∑∑
∑ ∑

(14) 
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Where ( ) ( ) ( ) ( )
1,

, , , 1 ,
p

g g q g q g q
q g q

T Sup Sup D
= ≠

Γ = Γ Γ Γ Γ = − Γ Γ∑  is the 

support degree for gΓ  from ,qΓ which satisfy the 
following conditions: (1) ( ) [ ], 0,1g qSup Γ Γ ∈ ; (2) 

( ) ( ), , ;g q g qSup SuppΓ Γ = Γ Γ (3) ( ) ( ), ,g q r sSup SupΓ Γ ≥ Γ Γ , if 

( ) ( ), ,g q r sD DΓ Γ < Γ Γ , in which ( ),g qD Γ Γ is the 
distance measure between 2-TLNNs gΓ  and qΓ  
defined in Definition (5).  
  
In order, to represent Equation (14) in a simple form, we 
assume that 

 ( )( )
( )( )

1

1

1

g
g p

r
r

T

T
=

+ Γ
ℵ =

+ Γ∑
                                                     (15) 

Therefore, Equation (14) takes the form 
( )

( ) ( )

,
1 2

1

2
1

2 , ,...,

2 .

x y
p

p p x yx y

g g D q q
g q g

TLNDPHM

p
p p

+

= =

− Γ Γ Γ

 
= ℵ Γ ⊗ ℵ Γ 

+ 
∑∑

                          (16) 

Theorem 1. Let , 0,x y ≥  and ,x y  do not take the value 0  at 
the same time, ( 1,2,..., )g g pΓ =  be a group of 2-TLNNs and 

let 
( ) ( ) ( )1 1 1, , ,

, ,g g gt g i g f g
g g g

s s s
t i f

h h h

− − −∆ Ξ ∆ Ψ ∆ ϒ
= = = . Then, 

the aggregated value utilizing Equation (14), is still a 2-
TLNN, and 

( )1 2

1

2

1,

2 , ,...,

1 1 1 1 ,
2( )

1 1

p

p

g g qq q
g q

g q

TLNPHM

p p x yh
x y t tp p

t t

h

ℑ

ℑ ℑ
=
=

− Γ Γ Γ =

   
      
      
      +      ∆ + × +
   +                ℵ ℵ         − −            

∆

∑

1

2

1

2

1 1 1 1 1 ,
2( ) 1 1

1 1 1 1 1
2( )

p

g g qq g
g q

g q

g

p p x y
x y i ip p

i i

p p xh
x y

p

ℑ

ℑ ℑ
=
=

   
      
      
      +      − + × +
   +       − −         ℵ ℵ                     

+
∆ − + ×

+
ℵ

∑

1

1
.

1 1

p

g
q g g q

q

g q

y

f f
p

f f

ℑ

ℑ ℑ
=
=

   
      
      
      
      +          − −         ℵ                          

∑

(17) 

Proof.  According to operational laws, we have 
1

11

1 1 1 ,
1

111 1 , 1 1 ,

g
g g g

g

g g
g g

g g

tp h p
t

fih p h p
i f

ℑ ℑ
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        ℵ Γ = ∆ − + ℵ     −      

               −−          ∆ + ℵ ∆ + ℵ                          

  

and 
1

11

1 1 1 ,
1

111 1 , 1 1 .

q
q q q

q

q q
q q

q q

tp h p
t

fih p h p
i f

ℑ ℑ

ℑℑ ℑℑ

  
        ℵ Γ = ∆ − + ℵ     −      

               −−          ∆ + ℵ ∆ + ℵ                          

 

Let 1 11 1, , , , , .
1 1

g q g q g q
g q g q g q

g q g q g q

f ft t i ia a b b c c
t t i i f f

− −− −
= = = = = =

− −
 

Then, we can obtain 

 
( )

( ) ( )

1

1 1

1 1 1 ,

1 1 , 1 1 ,

gg g g

g gg g

p h p a

h p b h p c

ℑ

ℑ ℑ

  
ℵ Γ = ∆ − + ℵ     

      
∆ + ℵ ∆ + ℵ               

 

( )

( ) ( )

1

1 1

1 1 1 ,

1 1 , 1 1 ,

qq q q

q qq q

p h p a

h p b h p c

ℑ

ℑ ℑ

  
ℵ Γ = ∆ − + ℵ     

      
∆ + ℵ ∆ + ℵ               

 

and  

( ) ( )

( ) ( )

1 1

1 11 1

1 1 ,

1 1 1 , 1 1 1 ,

x
gg g g

g gg g

p h x p a

h x p b h x p c

ℑ ℑ

ℑ ℑℑ ℑ

  
ℵ Γ = ∆ + ℵ      

      
∆ − + ℵ ∆ − + ℵ                  

 

( ) ( )

( ) ( )

1 1

1 11 1

1 1 ,

1 1 1 , 1 1 1 .

y
qq q q

q qq q

p h y p a

h y p b h y p c

ℑ ℑ

ℑ ℑℑ ℑ

  
ℵ Γ = ∆ + ℵ      

      
∆ − + ℵ ∆ − + ℵ                  

 

Furthermore, we can have 

( ) ( )
1

1 1

1 1 ,

1 1 1 , 1 1 1 ,

x y

g g D q q
g qg q

g q g qg q g q

yxp p h
p a p a

y yx xh h
p b p b p c p c

ℑ

ℑ ℑ

ℑ ℑ

ℑ ℑ ℑ ℑ

  
   
  ℵ Γ ⊗ ℵ Γ = ∆ + + 
   ℵ ℵ     

      
         
      ∆ − + + ∆ − + +   
         ℵ ℵ ℵ ℵ               

 
and  
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( ) ( )
1,

1

1 1
1,

1 11 1 1 1

1 1

p x y

g g D q q
g
q g

p

g
q g

g q g qg q g q

p p

h

y yx x
p a p a p a p a

=
=

ℑ ℑ

= ℑ ℑ=

ℑ ℑ ℑ ℑ

ℵ Γ ⊗ ℵ Γ

 
                              = ∆ − + −                   + + + +              ℵ ℵ ℵ ℵ          

 

∑

∑

1

1 1
1,

,

1 11 1 1 1 1

1 1

p

g
q g

g q g qg q g q

h

y yx x
p b p b p b p b

ℑ ℑ

= ℑ ℑ=

ℑ ℑ ℑ ℑ

 
 
 
 
 
 
 
 
 
 
 
 


                              ∆ + − + −                 + + + +            ℵ ℵ ℵ ℵ         



∑

1 1
1,

,

1 11 1 1 1 1

1 1
g

g q g qg q g q

h

y yx x
p c p c p c p c

ℑ

= ℑ ℑ

ℑ ℑ ℑ ℑ

  
  
  
  
  
  
   
   
   
   
      

    
    
    
    
    ∆ + − + −
    

          + + + +           ℵ ℵ ℵ ℵ       

1

,
p

q g

ℑ

=

   
    
    
    
    
    
    
    
    
             

∑

1

1,

1

1,

1 1 1 1 ,

1 1 1 ,

1 1 1

p

g g qg qq g

p

g g qg qq g

g qg q

x yh
p a p a

x yh
p b p b

x yh
p c p c

ℑ

ℑ ℑ
=
=

ℑ

ℑ ℑ
=
=

ℑ ℑ

   
     
     = ∆ − + +      ℵ ℵ     

   

   
     
     ∆ + +      ℵ ℵ     

   


∆ + +

ℵ ℵ

∑

∑

1

1,
.

p

g
q g

ℑ

=
=

   
    
     
          

   

∑

  

So, we can have 

( ) ( )2
1,

2 p x y

g g D q q
g
q g

p p
p p =

=

ℵ Γ ⊗ ℵ Γ
+ ∑  

1

1 1

2
1, 1,

21 1 1 1 1 1 1 1 1 1 1 1
p p

g gg q g qg q g qq g q g

x y x yh
p p p a p a p a p a

ℑ ℑ

ℑ ℑ

ℑ ℑ ℑ ℑ
= =
= =

 
                                 = ∆ − + − + + − + + +             +       ℵ ℵ ℵ ℵ                     

 

∑ ∑

1 1

2
1, 1,

,

21 1 1 1 1 1 1 1 1
p p

g gg q g qg q g qq g q g

x y x yh
p p p b p b p b p b

ℑ

ℑ ℑ

ℑ ℑ ℑ ℑ
= =
= =

  
  
  
  
  
  
      

      
           
           ∆ + − + + + +           +       ℵ ℵ ℵ ℵ           

     

∑ ∑

1

1

2
1, 1,

,

21 1 1 1 1 1 1 1 1
p p

g gg q g qg q g qq g q g

x y x yh
p p p c p c p c p c

ℑ

ℑ

ℑ ℑ ℑ ℑ
= =
= =

   
   

    
    
    
             

  
        
        ∆ + − + + + +        +      ℵ ℵ ℵ ℵ        

  

∑ ∑

1

1

,

ℑ ℑ

ℑ

   
                                          

 

1

2
1,

1

2
1,

2

21 1 1 1 ,

21 1 1 ,

21 1

p

g g qg qq g

p

g g qg qq g

x yh
p p p a p a

x yh
p p p b p b

h
p

ℑ

ℑ ℑ
=
=

ℑ

ℑ ℑ
=
=

   
     
     = ∆ − + +     +   ℵ ℵ     

   

   
     
     ∆ + +     +   ℵ ℵ     

   

∆ +
+

∑

∑

1

1,
1 .

p

g g qg qq g

x y
p p c p c

ℑ

ℑ ℑ
=
=

   
     
     +       ℵ ℵ     

   

∑

  

 Then  

( ) ( )

1

2
1,

2
x y

p x y

g g D q q
g
q g

p p
p p

+

=
=

 
 ℵ Γ ⊗ ℵ Γ + 
 

∑  

( )

( )

1

2

1,

1

2

1,

1 1 1 ,
2

1 1 1 1 ,
2

1 1 1

p

g g qg qq g

p

g g qg qq g

p p x yh
x y p a p a

p p x yh
x y p b p b

h

ℑ

ℑ ℑ
=
=

ℑ

ℑ ℑ
=
=

   
     +     = ∆ + +    +  ℵ ℵ     

   

   
     +     ∆ − + +    +  ℵ ℵ     

   

∆ − +

∑

∑

( )

1

2

1,
1 .

2

p

g g qg qq g

p p x y
x y p c p c

ℑ

ℑ ℑ
=
=

   
     +     +    +  ℵ ℵ     

   

∑

(18) 

Now put 
1 11 1, , , , ,

1 1
g q g q g q

g q g q g q
g q g q g q

f ft t i ia a b b c c
t t i i f f

− −− −
= = = = = =

− −
in 

Equation (18), we can have 
 

( )

( )

1

2

1,

2

1 1 1 ,
2

1 1

1 1 1 1
2 1 1

p

g g qq g
g q

g q

g
g q

g

p p x yh
x y t tp p

t t

p p x yh
x y ip p

i

ℑ

ℑ ℑ
=
=

ℑ

   
     
     
     +    = ∆ + + 
 +        
       ℵ ℵ         − −           

+
∆ − + +

+  − − ℵ ℵ 
 

∑

( )

1

1,

2

1,

,

1 1 1 1
2 1 1

p

g qq g

q

p

g
q g g g

g q

g g

i
i

p p x yh
x y f f

p p
f f

ℑ

ℑ
=
=

ℑ ℑ
=
=

   
     
     
     
     
      
                     

  
 
 

+  ∆ − + + +    − −    ℵ ℵ         

∑

∑

1

.

ℑ
   

   
    
    
    
    
    
             

 
This completes the proof of Theorem (1). 
Theorem 2 (Idempotency). Let ( 1,2,..., )g g pΓ =  be a group 
of 2-TLNNs, if all ( 1,2,..., )g g pΓ = are same, that is 
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( ) ( ) ( ) ( ), , , , , 1, 2,...,g t i fs s s g pΓ = Γ = Ξ Ψ ϒ = . Assume that 

( ) ( ) ( )1 1 1, , ,
, ,g g gt g i g f g

g g g

s s s
t i f

h h h

− − −∆ Ξ ∆ Ψ ∆ ϒ
= = = , then 

( )1 22 , ,..., .pTLNPHM− Γ Γ Γ = Γ                                          (19) 

Proof. Since all ( ) ( ) ( ) ( ), , , , , 1, 2,..., ,g t i fs s s g pΓ = Γ = Ξ Ψ ϒ = so 

we can have ( ), 1,g qSup Γ Γ =  for all , 1, 2,..., ,g q p=  so 
1 ,g p

ℵ =  for all 1,2,..., .g p=  Then 

( ) ( ), ,
1 22 , ,..., 2 , ,...,x y x y

pTLNPHM TLNPHM− Γ Γ Γ = − Γ Γ Γ  

( )

( )

1

2

1,

2

1 1 1 ,
2 1 1

1 1

1 1 1 1
2 1 1 1 1

p

g
q g

p p x yh
x y t tp p

p pt t

p p x yh
x y i ip p

p pi i

ℑ

ℑ ℑ
=
=

ℑ

   
     
     
     +    = ∆ + + 
 +        
                − −           

+
∆ − + +

+   − −  
  
  

∑

( )

1

1,

2

1,

,

1 1 1 1
2 1 1 1 1

p

g
q g

p

g
q g

p p x yh
x y f fp p

p pf f

ℑ

ℑ
=
=

ℑ ℑ
=
=

   
     
     
     
     
     
                  

  
  
  +  ∆ − + +
 +     − −     

          

∑

∑

1

,

ℑ
   
   
   
   
   
   
   

         

 

( )

( )

1

2

1,

2

1,

1 1 1 ,
2

1

1 1 1 1
2 1

p

g
q g

p

g
q g

p p x yh
x y t

t

p p x yh
x y i

i

ℑ

ℑ
=
=

ℑ
=
=

   
     
     
     + +   = ∆ +  
 +      
           −           

  
  
  + +  ∆ − +
 +   −        

∑

∑

( )

1

1

2

1,

,

1 1 1 1
2 1

p

g
q g

p p x yh
x y f

f

ℑ

ℑ

ℑ
=
=

   
   
   
   
   
   
   
         

   
     
     
     + +  ∆ − +  
 +      −                     

∑ ,







 

( )

( )

1

1

11 1 1 ,

1

11 1 1 1
1

x yh
x y t

t

x yh
x y i

i

ℑ

ℑ

ℑ

ℑ

   
     
     
     +  = ∆ + ×   +      
         −           

 
   
   
   +  ∆ − + × +    −           

 

( )

1

,

11 1 1 1 ,
1

x yh
x y f

f

ℑ

ℑ

  
  
  
  
  
  
  
      

   
     
     
     +  ∆ − + ×   +      −                    

 

( ) ( ) ( ), , , , ,t i fs s s= Ξ Ψ ϒ = Γ  
Theorem 3 (Boundedness). Let ( 1,2,..., )g g pΓ =  be a group 

of 2-TLNNs. If ( ) ( ) ( )min , , max , , max ,
g g gg t g g i g g f gm s s s

−
= Ξ Ψ ϒ

and ( ) ( ) ( )max , , min , , min ,
g g gg t g g i g g f gm s s s

+
= Ξ Ψ ϒ , then 

 ( ),
1 22 , ,...,x y

pm TLNPHM m
− +
≤ − Γ Γ Γ ≤                            (20) 

Proof.  To prove this let us assume that, 

( ) ( ) ( )1 1 1, , ,
, ,g g gt g i g f g

g g g

s s s
t i f

h h h

− − −∆ Ξ ∆ Ψ ∆ ϒ
= = = , 

( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 1 1

, , ,
, , ,

, , ,
, , .

g g g

g g g

g g gt i f
g g g

g g gt i f
g g g

s s s
t i f

h h h

s s s
t i f

h h h

− − −

+ + +

− − − − − −
− − −

− + − + − +
+ + +

∆ Ξ ∆ Ψ ∆ ϒ
= = =

∆ Ξ ∆ Ψ ∆ ϒ
= = =

 

Since ( ) ( ) ( )max , , min , , min ,
g g gg t g g i g g f gm s s s

+
= Ξ Ψ ϒ , 

( ) ( ) ( )min , , max , , max ,
g g gg t g g i g g f gm s s s

−
= Ξ Ψ ϒ . Then, there are 

( ) ( ) ( ), ,g g gt t t i i i f f f
− + − + − +

≤ Γ ≤ ≤ Γ ≤ ≤ Γ ≤ for all 
1,2,...., .g p=  So, we have 
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( ) ( )

( )

1

2

1,

2

1 1 1
2

1 1

1 1 1
2

1

p

g
g g qq g

g q
g q

g
g q

g

p p x yt h
x y t tp p

t t

p p x yh
x y t tp p

t

ℑ

ℑ ℑ
=
=

ℑ−

−

   
     
     
     +  Γ = ∆ + +   +        
 ℵ ℵ            − −             

+
≥ ∆ + +

+  
 ℵ ℵ
 − 

∑

1

1,
,

1

p

g
qq g

q

t

t

ℑ

−

ℑ−
=
=

−

   
     
     
     
      =                    −          

∑

 

( ) ( )

( )

1

2

1,

2

1 1 1 1
2 1 1

1 1 1 1
2

1

p

g
g g qq g

g q
g q

g
g

g

p p x yi h
x y i ip p

i i

p p xh
x y

ip
i

ℑ

ℑ ℑ
=
=

ℑ+

+

   
     
     
     +    Γ = ∆ − + + 
 +        − −       ℵ ℵ                    

+
≤ ∆ − +

+  − ℵ
 
 

∑

1

1,
,

1

p

g
qq g

q

q

y i
ip

i

ℑ

+

ℑ+=
=

+

   
     
     
     
     + =          −  ℵ                   

∑

 

( ) ( )

( )

1

2

1,

2

1 1 1 1
2 1 1

1 1 1 1
2

1

p

g
g
q g g q

g q

g q

g
g

g

p p x yf h
x y f f

p p
f f

p p xh
x y

f
p

f

ℑ

ℑ ℑ
=
=

+

+

   
     
     
     +     Γ = ∆ − + +     +    − −        ℵ ℵ                      

+
≤ ∆ − +

+  −ℵ



∑

1

1,
.

1

p

g
q g q

q

q

y f
f

p
f

ℑ

+

ℑ ℑ+=
=

+

   
     
     
     
     

+ =     
       −       ℵ                    

   

∑

 
Then, there is the following comparison: 
(1) For the expected value: 

( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

1 1 1

1 1 1

1 1

2 , , ,
3

2 , , ,

3

, , , .

t i f

t i f

t i f

h s s s
SR

h

h s s s

h

SR s s s

− + +

− − −

− − −

− − − + − +

− −

 + ∆ Ξ − ∆ Ψ − ∆ ϒ Γ = ∆ 
  

 + ∆ Ξ − ∆ Ψ − ∆ ϒ ≥ ∆ 
  

= Ξ − ∆ Ψ − ∆ ϒ

 

If ( ) ( ) ( ) ( )( )1 1, , ,
t i f

SR SR s s s− − −
− −Γ > Ξ − ∆ Ψ − ∆ ϒ ,  

then 
( ) ( ) ( ) ( )1 1 ,

1 2, , , 2 , ,..., ,x y
pt i f

s s s TLNPHM− − −
− −Ξ − ∆ Ψ − ∆ ϒ < − Γ Γ Γ  

Else ( ) ( ) ( ) ( )( )1 1, , ,
t i f

SR SR s s s− − −
− −Γ = Ξ − ∆ Ψ − ∆ ϒ ,  

then we have the score function 

(2) 
( ) ( ) ( ){ } ( ) ( ){ }

( ) ( ) ( )( )
1 1 1 1

1 1

, , , ,

, , , .

t f t f

t i f

AC s s s s

AC s s s

− +

− − −

− − − − − +

− −

Γ = ∆ ∆ Ξ − ∆ ϒ ≥ ∆ ∆ Ξ − ∆ ϒ

= Ξ − ∆ Ψ − ∆ ϒ
 

 If ( ) ( ) ( ) ( )( )1 1, , ,
t i f

AC AC s s s− − −
− −Γ > Ξ − ∆ Ψ − ∆ ϒ ,  

then 
( ) ( ) ( ) ( )1 1 ,

1 2, , , 2 , ,..., ,x y
pt i f

s s s TLNPHM− − −
− −Ξ − ∆ Ψ − ∆ ϒ < − Γ Γ Γ  

Else  
( ) ( ) ( ) ( )( )

( )

1 1

,
1 2

, , ,

2 , ,...,

t i f

x y
p

AC AC s s s

TLNPHM

− − −
− −Γ = Ξ − ∆ Ψ − ∆ ϒ

= − Γ Γ Γ
, 

So, we have 
( ),

1 22 , ,..., .x y
pm TLNPHM

−
≤ − Γ Γ Γ  

In a similar way, we can show that 
( ),

1 22 , ,...,x y
pTLNPHM m

+
− Γ Γ Γ ≤ . 

Hence we have 

( ),
1 22 , ,...,x y

pm TLNPHM m
− +
≤ − Γ Γ Γ ≤ . 

In the following, we shall discuss some special cases with 
respect to the parameter parameters .x and y  

(1) When 0, 0,y → ℑ>  we can have 

( )

( )( )
( )( )

( )( )
( )( )

( )
( )( )
( )( )

,0
1 2

1

2
1

1 1

1

2
1

1

2 , ,...,

1 12

1 1

12 1 .
1

x
p

x y x y

p p
g q

g qp p
g q g

r r
r r

x x

p
g

gp
g

r
r

TLNDPHM

p T p T

p p T T

p T
p g

p p T

+

= =

= =

=

=

− Γ Γ Γ

        + Γ + Γ    = Γ ⊗ Γ +    + Γ + Γ         

      + Γ   = + − Γ  +  + Γ        

∑∑
∑ ∑

∑
∑

 

That is, the 2-TLDPHM operator degenerates into the 2-
tuple linguistic neutrosophic descending Dombi power 
average operator.  

(2) When 0, 0,x → ℑ>  we can have 

( )

( )( )
( )( )

( )( )
( )( )

( )
( )( )
( )( )

,
1 2

1

2
1

1 1

1

2
1

1

2 , ,...,

1 12

1 1

12 .
1

o y
p

x y x y

p p
g q

g qp p
g q g

r r
r r

y y

p
g

gp
g

r
r

TLNDPHM

p T p T

p p T T

p T
g

p p T

+

= =

= =

=

=

− Γ Γ Γ

        + Γ + Γ    = Γ ⊗ Γ +    + Γ + Γ         

      + Γ   = Γ  +  + Γ        

∑∑
∑ ∑

∑
∑

 
That is, the 2-TLDPHM operator degenerates into 
the 2-tuple linguistic neutrosophic ascending 
Dombi power average operator. 
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(3) When 0, 0,y → ℑ> and ( ) [ ]( ), 0,1g qSup β βΓ Γ = ∈  for 

all ,g q≠  then, we can have 

( )

( )( )
( )( )

( )( )
( )( )

( )( )( )

,0
1 2

1

2
1

1 1

1

2
1

2 , ,...,

1 12

1 1

2 1 .

x
p

x y x y

p p
g q

g qp p
g q g

r r
r r

p xx

g
g

TLNDPHM

p T p T

p p T T

p g
p p

+

= =

= =

=

− Γ Γ Γ

        + Γ + Γ    = Γ ⊗ Γ +    + Γ + Γ         

 
= + − Γ 

+ 

∑∑
∑ ∑

∑

 
That is, the 2-TLDPHM operator degenerates into 
the 2-tuple linguistic neutrosophic linear 
descending Dombi weighted average operator. 
Certainly, the weight vector of x

gΓ  is ( ), 1,....,1 .p p −   

(4) When 0, 0,x → ℑ> and ( ) [ ]( ), 0,1g qSup β βΓ Γ = ∈  for 

all ,g q≠  then, we can have 

( )

( )( )
( )( )

( )( )
( )( )

( )( )( )

0,
1 2

1

2
1

1 1

1

2
1

2 , ,...,

1 12

1 1

2 .

y
p

x y x y

p p
g q

g qp p
g q g

r r
r r

p yy

g
g

TLNDPHM

p T p T

p p T T

g
p p

+

= =

= =

=

− Γ Γ Γ

        + Γ + Γ    = Γ ⊗ Γ +    + Γ + Γ         

 
= Γ 

+ 

∑∑
∑ ∑

∑

 
That is, the 2-TLDPHM operator degenerates into 
the 2-tuple linguistic neutrosophic linear 
descending Dombi weighted average operator.  
 

(5) When 1, 0,x y= = ℑ > and ( ) [ ]( ), 0,1g qSup β βΓ Γ = ∈  for 

all ,g q≠  then, we can have 

( ) ( ) ( )( )
1
2

0,
1 2 2

1

22 , ,..., .
p p

y
p g q

g q g
TLNDPHM

p p = =

 
− Γ Γ Γ = Γ ⊗ Γ 

+ 
∑∑

 
That is, the 2-TLDPHM operator degenerates into the 2-
tuple linguistic neutrosophic linear Dombi Heronian mean 
operator.  
In the above developed 2-TLNDPHM operator, only power 
weight vector and the correlation between input arguments 
are taken under consideration and are not to consider the 
weight vector of the input arguments. Therefore, to remove 
this deficiency, we will propose it weighted form, that is 2-
TPLNDWPHM operator. 
 
Definition 11. Let ( )1,2,...,g g pΓ =  be a group of 2-TLNNs, 

( )1 2, 0, , ,....,
T

px y W w w w≥ = be the weight vector such that 

[ ]0,1gw ∈  and 
1

1.
p

g
g

w
=

=∑   Then, the 2-TLNNDWPHM 

operator is described as follows: 
( )

( )( )
( )( )

( )( )
( )( )

,
1 2

1

2
1

1 1

2 , ,...,

1 12 .
1 1

x y
p

x y x y

p p g qg q
g qp p

g q g
t tr r

r r

TLNDWPHM

pw T pw T

p p w T w T

+

= =

= =

− Γ Γ Γ

        + Γ + Γ    = Γ ⊗ Γ    + + Γ + Γ         

∑∑
∑ ∑

 (21) 

Where ( ) ( ) ( ) ( )
1,

, , , 1 ,
p

g g q g q g q
q g q

T Sup Sup D
= ≠

Γ = Γ Γ Γ Γ = − Γ Γ∑  is the 

support degree for gΓ  from ,qΓ which satisfy the following 
conditions: (1) ( ) [ ], 0,1g qSup Γ Γ ∈ ; (2) 

( ) ( ), , ;g q g qSup SuppΓ Γ = Γ Γ (3) ( ) ( ), ,g q r sSup SupΓ Γ ≥ Γ Γ , if 

( ) ( ), ,g q r sD DΓ Γ < Γ Γ , in which ( ),g qD Γ Γ is the distance 
measure between 2-TLNNs gΓ  and qΓ  defined in 
Definition (5). 
In order, to represent Equation (21) in a simple form, we 
assume that 

( )( )
( )( )

1

1

1

g g
g p

r r
r

w T

w T
=

+ Γ
Θ =

+ Γ∑
                                              (22) 

Therefore, Equation (21) takes the form 
( )

( ) ( )

,
1 2

1

2
1

2 , ,...,

2 .

x y
p

p p x yx y

g g q q
g q g

TLNDWPHM

p
p p

+

= =

− Γ Γ Γ

 
= Θ Γ ⊗ Θ Γ 

+ 
∑∑

                      (23) 

Theorem 4. Let , 0,x y ≥  and ,x y  do not take the value 0  at 
the same time, ( 1,2,..., )g g pΓ =  be a group of 2-TLNNs and 

let ( ) ( ) ( )1 1 1, , ,
, ,g g gt g i g f g

g g g

s s s
t i f

h h h

− − −∆ Ξ ∆ Ψ ∆ ϒ
= = = . Then, the 

aggregated value utilizing Equation (21), is still a 2-TLNN, 
and 

( )1 2

1

2

1,

2 , ,...,

1 1 1 1 ,
2( )

1 1

p

p

g g qq q
g q

g q

TLNDWPHM

p p x yh
x y t tp p

t t

ℑ

ℑ ℑ
=
=

− Γ Γ Γ

   
      
      
      +      = ∆ + × +
   +                Θ Θ         − −            

∑

1

2

1

2

1 1 1 1 1 ,
2( ) 1 1

1 1 1 1 1
2( )

p

g g qq g
g q

g q

p p x yh
x y i ip p

i i

p p xh
x y

p

ℑ

ℑ ℑ
=
=

   
      
      
      +      ∆ − + × +
   +       − −         Θ Θ                     

+
∆ − + ×

+

∑

1

1
.

1 1

p

g
q g g q

g q

g q

y

f f
p

f f

ℑ

ℑ ℑ
=
=

   
      
      
      
      +          − −         Θ Θ                          

∑

                                                                                   (24) 
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Proof. Same is Theorem 1. 
It is worthy to note that the 2-TLNDWPHM operator has 
only the property of boundedness and does not have the 
properties of idempotency and monotonicity. 
 
B. The 2-TLNDPGHM Operator and 2-TLNDWPGHM 
operator 
 
Definition 12. Let ( )1,2,...,g g pΓ =  be a group of 2-TLNNs, 

, 0.x y ≥  Then, the 2-TLNNDPGHM operator is described as 
follows: 

( )

( )

( )( )
( )( )

( )

( )( )
( )( )

21 1

1 1
1 1

,
1 2

2

1

2 , ,...,

1 .

p T p Tg q
p p

T Tr r
r r

x y
p

p p

p p

g q
g q g

TLNDPGHM

x y
x y

+ Γ + Γ

+ Γ + Γ∑ ∑
= =

+

= =

− Γ Γ Γ

  
  
  = Γ ⊕ Γ  +
     

∏∏
                (25) 

Where ( ) ( ) ( ) ( )
1,

, , , 1 ,
p

g g q g q g q
q g q

T Sup Sup D
= ≠

Γ = Γ Γ Γ Γ = − Γ Γ∑  is the 

support degree for gΓ  from ,qΓ which satisfy the following 
conditions: (1) ( ) [ ], 0,1g qSup Γ Γ ∈ ; (2) 

( ) ( ), , ;g q g qSup SuppΓ Γ = Γ Γ (3) ( ) ( ), ,g q r sSup SupΓ Γ ≥ Γ Γ , if 

( ) ( ), ,g q r sD DΓ Γ < Γ Γ , in which ( ),g qD Γ Γ is the distance 
measure between 2-TLNNs gΓ  and qΓ  defined in 
Definition (5). 
In order, to represent Equation (25) in a simple form, we 
assume that 

( )( )
( )( )

1

1

1

g
g p

r
r

T

T
=

+ Γ
ℵ =

+ Γ∑
                                                     (26) 

Therefore, Equation (25) takes the form 
( )

( ) ( )( )
2

,
1 2

2

1

2 , ,...,

1 .g q

x y
p

p p p pp p

g q
g q g

TLNDPGHM

x y
x y

+ℵ ℵ

= =

− Γ Γ Γ

 
= Γ ⊕ Γ  +  

∏∏
                     (27) 

Theorem 5. Let , 0,x y ≥  and ,x y  do not take the value 0  at 
the same time, ( 1,2,..., )g g pΓ =  be a group of 2-TLNNs and 

let ( ) ( ) ( )1 1 1, , ,
, ,g g gt g i g f g

g g g

s s s
t i f

h h h

− − −∆ Ξ ∆ Ψ ∆ ϒ
= = = . Then, the 

aggregated value utilizing Equation (25), is still a 2-TLNN, 
and 

( )1 2

1

2

1

2 , ,...,

1 1 1 1 1
2( ) 1 1

p

p

g g qq g
g q

g q

TLNDWPGHM

p p x yh
x y t tp p

t t

ℑ

ℑ ℑ
=
=

− Γ Γ Γ

   
      
      
      +      = ∆ − + × +
   +       − −         ℵ ℵ                     

∑

1

2

1,

2

,

1 1 1 1 ,
2( )

1 1

1 1 1 1
2( )

p

g g qq q
g q

g q

p p x yh
x y i ip p

i i

p p xh
x y

p

ℑ

ℑ ℑ
=
=



   
      
      
      +      ∆ + × +
   +                ℵ ℵ         − −            

+
∆ + ×

+
ℵ

∑

1

1,
.

1 1

p

g
q q g q

g q

g q

y

f f
p

f f

ℑ

ℑ ℑ
=
=

   
      
      
      
      +                  ℵ            − −              

∑

                                                                           (28) 
Proof.  According to operational laws, we have 

1

11

11 1 ,

1 1 1 , 1 1 1 ,
1 1

g gp
g g

g

g g
g g

g g

th p
t

fih p h p
i f

ℑ ℑ
ℵ

ℑℑ ℑℑ

  
    −    Γ = ∆ + ℵ           

                        ∆ − + ℵ ∆ − + ℵ         − −                

  

and 
1

11

11 1 ,

1 1 1 , 1 1 1 ,
1 1

q qp
q q

q

q q
q q

q q

th p
t

fih p h p
i f

ℑ ℑ
ℵ

ℑℑ ℑℑ

  
    −    Γ = ∆ + ℵ           

                        ∆ − + ℵ ∆ − + ℵ         − −                

 

Let 
1 1, , , , , .

1 1 1 1
g q g q g q

g q g q g q
g q g q g q

f ft t i ia a b b c c
t t i i f f
− −

= = = = = =
− − − −

 

Then, we can obtain 

 
( )

( ) ( )

1

1 1

1 1 ,

1 1 1 , 1 1 1 ,

gp
gg g

g gg g

h p a

h p b h p c

ℵ ℑ

ℑ ℑ

  
Γ = ∆ + ℵ     

      
∆ − + ℵ ∆ − + ℵ               

 

( )

( ) ( )

1

1 1

1 1 ,

1 1 1 , 1 1 1 ,

qp
qq q

q qq q

h p a

h p b h p c

ℵ ℑ

ℑ ℑ

  
Γ = ∆ + ℵ     

      
∆ − + ℵ ∆ − + ℵ               

 

and  

( )

( ) ( )

1 1

1 11 1

1 1 1 ,

1 1 , 1 1 ,

gp
gg g

g gg g

x h x p a

h x p b h x p c

ℵ ℑ ℑ

ℑ ℑℑ ℑ

  
Γ = ∆ − + ℵ      

      
∆ + ℵ ∆ + ℵ                  
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( )

( ) ( )

1 1

1 11 1

1 1 1 ,

1 1 , 1 1 ,

qp
qq q

q qq q

y h y p a

h y p b h y p c

ℵ ℑ ℑ

ℑ ℑℑ ℑ

  
Γ = ∆ − + ℵ     

      
∆ + ℵ ∆ + ℵ               

 

Furthermore, we can have 
1

1

1

1 1 1 ,

1 1 ,

1 1 ,

g qp p
g D q

g qg q

g qg q

g qg q

yxx x h
p a p a

yxh
p b p b

yxh
p c p c

ℑ
ℵ ℵ

ℑ ℑ

ℑ

ℑ ℑ

ℑ

ℑ ℑ

  
   
 Γ ⊕ Γ = ∆ − + +  
  ℵ ℵ      

  
   
 ∆ + +  
  ℵ ℵ      

  
   
 ∆ + +  
  ℵ ℵ      

 

and  

1,

g q
p

p p
g D q

g
q g

x yℵ ℵ

=
=

Γ ⊕ Γ∏  

1

1 1
1,

1 11 1 1 1 1

1 1

p

g
q g

g q g qg q g q

h

y yx x
p a p a p a p a

ℑ ℑ

= ℑ ℑ=

ℑ ℑ ℑ ℑ

  
                                   = ∆ + − + −                      + + + +                ℵ ℵ ℵ ℵ           

  

∑

1

1 1
1,

,

1 11 1 1 1

1 1

p

g
q g

g q g qg q g q

h

y yx x
p b p b p b p b

ℑ ℑ

= ℑ ℑ=

ℑ ℑ ℑ ℑ

 
 
 
 
 
 
 
 
 
 
  
 


                           ∆ − + −                 + + + +            ℵ ℵ ℵ ℵ         



∑

1 1
1,

,

1 11 1 1 1

1 1

p

g
q g

g q g qg q g q

h

y yx x
p c p c p c p c

ℑ

= ℑ ℑ=

ℑ ℑ ℑ ℑ

 
 
 
  
  
  
  
  
  
  
  

 

                         ∆ − + −                 + + + +            ℵ ℵ ℵ ℵ         

∑

1

,

ℑ
  
  
  
  
  
  
  
  
  

    
  

 
1

1,

1

1,

1 1 1 ,

1 1 1 1 ,

1 1 1 1

p

g g qg qq g

p

g g qg qq g

g qg q

x yh
p a p a

x yh
p b p b

x yh
p c p c

ℑ

ℑ ℑ
=
=

ℑ

ℑ ℑ
=
=

ℑ ℑ

   
     
     = ∆ + +      ℵ ℵ     

   

   
     
     ∆ − + +      ℵ ℵ     

   

∆ − + +
ℵ ℵ

∑

∑

1

1,
.

p

g
q g

ℑ

=
=

   
     
     
           

   

∑

  

So, we can have 

2
2

1,

g q

p p
p

p p
g D q

g
q g

x y
+

ℵ ℵ

=
=

 
 Γ ⊕ Γ  
 
∏  

1

1 1

2
1, 1,

21 1 1 1 1 1 1 1 1
p p

g gg q g qg q g qq g q g

x y x yh
p p p a p a p a p a

ℑ ℑ

ℑ ℑ

ℑ ℑ ℑ ℑ
= =
= =

 
                                 = ∆ + − + + + +             +        ℵ ℵ ℵ ℵ                       

 

∑ ∑

1 1

2
1, 1,

,

21 1 1 1 1 1 1 1 1 1 1 1
p p

g gg q g qg q g qq g q g

x y x yh
p p p b p b p b p b

ℑ ℑ

ℑ ℑ ℑ ℑ
= =
= =

  
  
  
  
  
  
  

    

    
           
          ∆ − + − + + − + + +          +       ℵ ℵ ℵ ℵ                

∑ ∑

1

1

2
1,

,

21 1 1 1 1 1 1 1 1 1 1 1
p

g g q g qg q g qq g

x y x yh
p p p c p c p c p c

ℑ ℑ

ℑ

ℑ ℑ ℑ ℑ
=
=

   
        
    
    
               

  
      
      ∆ − + − + + − + + +     +    ℵ ℵ ℵ ℵ         

∑

1

1

1,
,

p

g
q g

ℑ ℑ

ℑ

=
=

   
                                                 

∑

1

2
1,

1

2
1,

2

21 1 1 ,

21 1 1 1 ,

21 1 1 1

p

g g qg qq g

p

g g qg qq g

x yh
p p p a p a

x yh
p p p b p b

h
p p

ℑ

ℑ ℑ
=
=

ℑ

ℑ ℑ
=
=

   
     
     = ∆ + +    +  ℵ ℵ     

   

   
     
     ∆ − + +    +  ℵ ℵ     

   

∆ − +
+

∑

∑

1

1,
.

p

g g qg qq g

x y

p c p c

ℑ

ℑ ℑ
=
=

   
     
     +      ℵ ℵ     

   

∑

  

 Then  
2
2

1,

1 g q

p p
p

p p
g D q

g
q g

x y
x y

+

ℵ ℵ

=
=

 
 Γ ⊕ Γ +  
 
∏  

( )

( )

1

2

1,

1

2

1,

2

1 1 1 1 ,
2

1 1 1 ,
2

1 1

p

g g qg qq g

p

g g qg qq g

p p x yh
x y p a p a

p p x yh
x y p b p b

ph

ℑ

ℑ ℑ
=
=

ℑ

ℑ ℑ
=
=

   
     +     = ∆ − + +    +  ℵ ℵ     

   

   
     +     ∆ + +    +  ℵ ℵ     

   

∆ +

∑

∑

( )

1

1,
1 .

2

p

g g qg qq g

p x y
x y p c p c

ℑ

ℑ ℑ
=
=

   
     +     +    +  ℵ ℵ     

   

∑

(29) 

Now put 
1 1, , , , ,

1 1 1 1
g q g q g q

g q g q g q
g q g q g q

f ft t i ia a b b c c
t t i i f f
− −

= = = = = =
− − − −

 

in Equation (29), we can have 
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( )

( )

1

2

1,

2

1 1 1 1 ,
2 1 1

1 1 1
2

1 1

p

g g qq g
g q

g q

g q
g q

g

p p x yh
x y t tp p

t t

p p x yh
x y i ip p

i

ℑ

ℑ ℑ
=
=

ℑ

   
     
     
     +  = ∆ − + +   +        − − ℵ ℵ                         

+
∆ + +

+  
ℵ ℵ  − − 

∑

( )

1

1,

2

1,

,

1 1 1
2

1 1

p

g
q g

q

p

g
g qq g

g q
g q

i

p p x yh
x y f f

p p
f f

ℑ

ℑ
=
=

ℑ ℑ
=
=

   
     
     
     
     
      
                    

  
  
  

+  ∆ + +  +         ℵ ℵ      − −    

∑

∑

1

.

ℑ
   

   
   
   
   
   
   
   
      

This completes the proof of Theorem. 
 
Theorem 6 (Idempotency). Let ( 1,2,..., )g g pΓ =  be a group 
of 2-TLNNs, if all ( 1,2,..., )g g pΓ = are same, that is 

( ) ( ) ( ) ( ), , , , , 1, 2,...,g t i fs s s g pΓ = Γ = Ξ Ψ ϒ = . Assume that 

( ) ( ) ( )1 1 1, , ,
, ,g g gt g i g f g

g g g

s s s
t i f

h h h

− − −∆ Ξ ∆ Ψ ∆ ϒ
= = = , 

then 
( )1 22 , ,..., .pTLNPGHM− Γ Γ Γ = Γ                                     (30) 

Theorem 7 (Boundedness). Let ( 1,2,..., )g g pΓ =  be a group 

of 2-TLNNs. If ( ) ( ) ( )min , , max , , max ,
g g gg t g g i g g f gm s s s

−
= Ξ Ψ ϒ

and ( ) ( ) ( )max , , min , , min ,
g g gg t g g i g g f gm s s s

+
= Ξ Ψ ϒ , then 

 ( ),
1 22 , ,..., .x y

pm TLNPHM m
− +
≤ − Γ Γ Γ ≤                             (31) 

By specifying different values to the parameters x  and y , 
some particular cases of the 2-TLNDPGHM operator are 
described below: 

(1) If 0, 0y → ℑ> , then we can have 

( )

( )

( )( )
( )( )

( )

( )( )
( )( )

( )

( )( )
( )( )

( )

21 1

1 1
1 1

2
1

1
1

,0
1 2

2

1

2
1

1

2 , ,...,

1

1 .

p T p Tg q
p p

T Tr r
r r

p T g
p

T r
r

x
p

p p

p p

g q
g q g

p g p p

p

g
g

TLNDPGHM

x y
x y

x
x

+ Γ + Γ

+ Γ + Γ∑ ∑
= =

+ Γ

+ Γ∑
=

+

= =

+ − +

=

− Γ Γ Γ

  
  
  = Γ ⊕ Γ  +
     

    
  = Γ  
     

∏∏

∏

 

That is, the 2-TLNDPGHM operator degenerates into the 2-
tuple linguistic neutrosophic Dombi descending power 
geometric average operator. 

(2) If 0, 0x → ℑ> , then we can have 

( )

( )

( )( )
( )( )

( )

( )( )
( )( )

( )

( )( )
( )( )

( )

21 1

1 1
1 1

2
1

1
1

0,
1 2

2

1

2

1

2 , ,...,

1

1 .

p T p Tg q
p p

T Tr r
r r

p T g
p

T r
r

y
p

p p

p p

g q
g q g

g p p

p

g
g

TLNDPGHM

x y
x y

y
y

+ Γ + Γ

+ Γ + Γ∑ ∑
= =

+ Γ

+ Γ∑
=

+

= =

+

=

− Γ Γ Γ

  
  
  = Γ ⊕ Γ  +
     

    
  = Γ  
     

∏∏

∏

 

That is, the 2-TLNDPGHM operator degenerates into the 2-
tuple linguistic neutrosophic Dombi descending power 
geometric average operator. 

(3) If 0, 0,y → ℑ>  and ( ) [ ]( ), 0,1g qSup β βΓ Γ = ∈  for all 

.g q≠  Then, we can have 

( )

( )

( )( )
( )( )

( )

( )( )
( )( )

( )( )

21 1

1 1
1 1

2

,0
1 2

2

1

2

1

1

2 , ,...,

1

1 .

p T p Tg q
p p

T Tr r
r r

x
p

p p

p p

g q
g q g

p p pp g

g
g

TLNDPGHM

x y
x y

x
x

+ Γ + Γ

+ Γ + Γ∑ ∑
= =

+

= =

++ −

=

− Γ Γ Γ

  
  
  = Γ ⊕ Γ  +
     

 
= Γ  

 

∏∏

∏

 

That is, the 2-TLNDPGHM operator degenerates into 2-
tuple linguistic neutrosophic Dombi descending geometric 
average operator. 

(4) If 0, 0,x → ℑ>  and ( ) [ ]( ), 0,1g qSup β βΓ Γ = ∈  for all 

.g q≠  Then, we can have 
( )

( )

( )( )
( )( )

( )

( )( )
( )( )

( )( )

21 1

1 1
1 1

2

,0
1 2

2

1

2

1

2 , ,...,

1

1 .

p T p Tg q
p p

T Tr r
r r

x
p

p p

p p

g q
g q g

p p pg

g
g

TLNDPGHM

x y
x y

y
y

+ Γ + Γ

+ Γ + Γ∑ ∑
= =

+

= =

+

=

− Γ Γ Γ

  
  
  = Γ ⊕ Γ  +
     

 
= Γ  

 

∏∏

∏

 

 

That is, the 2-TLNDPGHM operator degenerates into 2-
tuple linguistic neutrosophic Dombi ascending geometric 
average operator. 
 
Similar to 2-TLNDPHM operator, the 2-TLNDPGHM 
operator have only power weight vector and the correlation 
between input arguments are taken under consideration and 
are not to consider the weight vector of the input arguments. 
Therefore, to remove this deficiency, we will propose its 
weighted form, that is 2-TPLNDWPGHM operator.  
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Definition 13. Let ( )1,2,...,g g pΓ =  be a group of 2-TLNNs, 
, 0.x y ≥  Then, the 2-TLNNDWPGHM operator is described 

as follows: 
( )

( )

( )( )
( )( )

( )

( )( )
( )( )

21 1

1 1
1 1

,
1 2

2

1

2 , ,...,

1 .

p w T p w Tg gg q
p p

w T w Tr rr r
r r

x y
p

p p

p p

g q
g q g

TLNDWPGHM

x y
x y

+ Γ + Γ

+ Γ + Γ∑ ∑
= =

+

= =

− Γ Γ Γ

  
  
  = Γ ⊕ Γ  +
      

∏∏
                (32) 

Where ( ) ( ) ( ) ( )
1,

, , , 1 ,
p

g g q g q g q
q g q

T Sup Sup D
= ≠

Γ = Γ Γ Γ Γ = − Γ Γ∑  is the 

support degree for gΓ  from ,qΓ which satisfy the following 
conditions: (1) ( ) [ ], 0,1g qSup Γ Γ ∈ ; (2) 

( ) ( ), , ;g q g qSup SuppΓ Γ = Γ Γ (3) ( ) ( ), ,g q r sSup SupΓ Γ ≥ Γ Γ , if 

( ) ( ), ,g q r sD DΓ Γ < Γ Γ , in which ( ),g qD Γ Γ is the distance 
measure between 2-TLNNs gΓ  and qΓ  defined in 
Definition (5). 
In order, to represent Equation (32) in a simple form, we 
assume that 

 ( )( )
( )( )

1

1

1

g g
g p

r r
r

w T

w T
=

+ Γ
Θ =

+ Γ∑
                                                (33) 

Therefore, Equation (32) takes the form 
( )

( ) ( )( )
2

,
1 2

2

1

2 , ,...,

1 .g q

x y
p

p p p pp p

g q
g q g

TLNDWPGHM

x y
x y

+Θ Θ

= =

− Γ Γ Γ

 
= Γ ⊕ Γ  +  

∏∏
                         (34) 

 
Theorem 8. Let , 0,x y ≥  and ,x y  do not take the value 0  at 
the same time, ( 1,2,..., )g g pΓ =  be a group of 2-TLNNs and 

let ( ) ( ) ( )1 1 1, , ,
, ,g g gt g i g f g

g g g

s s s
t i f

h h h

− − −∆ Ξ ∆ Ψ ∆ ϒ
= = = . Then, the 

aggregated value utilizing Equation (32), is still a 2-TLNN, 
and 

( )1 2

1

2

1

2 , ,...,

1 1 1 1 1
2( ) 1 1

p

p

g g qq g
g q

g q

TLNDWPGHM

p p x yh
x y t tp p

t t

ℑ

ℑ ℑ
=
=

− Γ Γ Γ =

   
      
      
      +      ∆ − + × +
   +       − −         Θ Θ                     

∑

1

2

1,

2

,

1 1 1 1 ,
2( )

1 1

1 1 1 1
2( )

p

g g qq q
g q

g q

p p x yh
x y i ip p

i i

p p xh
x y

p

ℑ

ℑ ℑ
=
=



   
      
      
      +      ∆ + × +
   +                Θ Θ         − −            

+
∆ + ×

+
Θ

∑

1

1,
.

1 1

p

g
q q g q

g q

g q

y

f f
p

f f

ℑ

ℑ ℑ
=
=

   
      
      
      
      +                  Θ            − −              

∑

                                                                               (35) 

Similar to 2-TLNDWPHM, the 2-TLNDWPGHM operator 
has only the property of boundedness and does not have the 
properties of idempotency and monotonicity. 
 

V. An application of 2-TLNDWPHM and 2-TLNDWPGHM 
operator to group decision making 
In this section, we pertains the afore-presented Dombi 
power Heronian aggregation operators to establish 
constructive approach for MAGDM under 2-TLNN 
environments. Let { }1 2, ,..., mAT AT AT AT=  be the set of 

discrete alternatives, the set of attributes is expressed by 

{ }1 2, ,..., nCT CT CT CT= , the weight vector of the attributes 

is represented by ( )1 2, ,...,
T

nW w w w=  such that 

[ ]
1

0,1 , 1,
n

e e
e

w w
=

∈ =∑ and ( )1 2, ,..., aDE de de de=  denote the set 

of a  decision makers, with weight vector expressed by 

( )1 2, ,..., T
aϖ ϖ ϖ ϖ=  such that [ ]

1
0,1 , 1.

a

b b
b

ϖ ϖ
=

∈ =∑ Assume 

that ( )
b

b
ce m n

DT
×

= Γ  is the decision matrix, where 

( ) ( ) ( ), , , , ,b b b
ce ce ce

b b b b
ce ce ce cet i f

s s sΓ = Ξ Ψ ϒ  takes the form of 2-

TLNN, given by decision maker bde  for alternative cAT  
with respect to the attribute eCT . 
Then, depending on real decision situations where the 
weight vector of both attributes and decision makers are 
completely known in advance. Therefore, in the following 
we present a MAGDM approach based on the developed 2-
TLNDWPHM and 2-TLNDWPGHM operators. To do so, 
just follow the step below: 
Step 1. Calculate the support degrees by the following 
formula: 

( ) ( ) ( ), 1 , , , 1,2,..., ; 1,2,..., ; 1,2,..., .b l b l
Hce ce ce ceSup D b l a c m e nΓ Γ = − Γ Γ = = =

                                                                (36) 
Which satisfy the axioms for support functions, ( ),b l

H ce ceD Γ Γ

is the distance measure given in Definition (5). 
Step 2. Determine the support degree ( )b

ceT Γ  that IFN b
ceΓ

receives from other 2-TLNNs ( )1,2,..., ; ,l
ce l a l bΓ = ≠ where 

( ) ( )
1,

sup , .
a

b b l
ce ce ce

l l b
T

= ≠

Γ = Γ Γ∑                                 (37) 

Step 3. Utilize weights ( )1,2,....,b b aϖ =  for decision 

makers bde  to determine weights b
ceℵ  associated with the 2-

TLNN ,b
ceΓ   

( )( )
( )( )

1

1
,( 1,2,..., ).

1

b
b ceb

ce a
b

b ce
b

T
b a

T

ϖ

ϖ
=

+ Γ
ℵ = =

+ Γ∑
                     (38) 
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Where 0b
ceℵ ≥ and 

1
1.

a
b
ce

b=
ℵ =∑   

Step 4. Aggregate all the individual decision matrices 

( ) ( 1,2,..., )
b

b
ce m n

DT b a
×

= Γ = into group decision matrix 
 ( )ce m n
DT

×
= Γ  by utilizing 2-TLNDWPHM or 2-

TLNDWPGHM operators, where 
  ( )1 22 , ,...,b a

ce ce ce ceTLNDWPHMΓ = − Γ Γ Γ                          (39) 
Or 

( )1 22 , ,...,b a
ce ce ce ceTLNDWPGHMΓ = − Γ Γ Γ                                (40) 

Step 5. Determine support degrees ( ),ce cxSup Γ Γ by the 
following formula; 

( ) ( ), 1 , ;
( 1,2,..., , 1,2,..., , )

Hce cx ce cxSup D
c m e n e x

Γ Γ = − Γ Γ

= = ≠
                            (41) 

where ( ),H ce cxD Γ Γ is distance measure given in 
Definition(5). 
Step 6. Determine the support degree ( )ceT Γ that 2-TLNNs 

ceΓ collects from other 2-TLNNs ( 1,2,..., ; )cx x n e xΓ = ≠ , 
where   

 ( ) ( )
1,

, .
n

xce ce cx
x x e

T w Sup
= ≠

Γ = Γ Γ∑                              (42) 

Step 7. Determine weighting vector 
( 1,2,...., , 1,2,..., )ce c m e nΦ = = associated with ceΓ  , 

 
( )( )
( )( )

1

1
.

1

e ce
ce n

e ce
e

w T

w T
=

+ Γ
Φ =

+ Γ∑
                                 (43) 

Step 8. Utilize 2-TLNDWPHM or 2-TLNNDWPGHM 
operators to aggregate all assessment values 

( 1,2,...., , 1,2,..., )ce c m e nΓ = = into overall assessment value 
( 1,2,...., )c c mΓ = corresponding to the alternatives 

( 1,2,..., ) :cAL c m=    
( )1 22 , ,...,c c c cnTLNDWPHMΓ = − Γ Γ Γ                         (44) 

Or 
( )1 22 , ,...,c c c cnTLNDWPGHMΓ = − Γ Γ Γ                       (45) 

Step 9. Determine the scores ( )dSC if  for the overall IFN 

of the alternatives ( 1,2,..., )dAL d g=  by utilizing Definition 
(3). 
Step 10. Rank all alternatives ( 1,2,..., )dAL d g= and select 
the optimal one (s) with the ranking order ( 1,2,..., )d d gΓ = . 
 
A. Numerical Examples and Comparative analysis 
The following example is adapted from [38], to show the 
validity and practicality of the developed aggregation 
operators. 
Example 1. Let us assume that there are five potential 
construction engineering projects (alternatives) 

( )1,2,...,5bAL b =  to be assess. These five potential 
alternatives are assessed by decision makers with respect to 

the following four attributes (1) the construction work 
environment denoted by 1CT  ;  
(2) the construction site safety protection measure denoted 
by 2;CT (3) The safety management ability of the 

engineering projects management denoted by 3CT and (4) 
the safety production responsibility system denoted by 4CT , 
with weight vector ( )0.5,0.3,0.1,0.1 T  and expert weight 

vector is ( )0.2,0.5,0.3 T  . The experts provide information in 
the form of 2-TLNNs, which are listed in Tables 1-3.  

Table.1 The 2-TLN decision matrix 
1

DT  
 

1CT  2CT  3CT  4CT  

1AL
 

( ) ( )
( )

4 3

2

,0 , ,0

, ,0

s s

s

  

( ) ( )
( )

5 3

1

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

4 1

2

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

2 3

2

,0 , ,0

, ,0

s s

s

 

2AL
 

( ) ( )
( )

3 2

4

,0 , ,0

, ,0

s s

s
 ( ) ( )

( )
4 2

2

,0 , ,0

, ,0

s s

s
 ( ) ( )

( )
3 2

2

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

4 3

3

,0 , ,0

, ,0

s s

s
 

3AL
 

( ) ( )
( )

5 4

3

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

4 4

3

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

2 1

2

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

4 2

2

,0 , ,0

, ,0

s s

s

 

4AL
 

( ) ( )
( )

2 1

2

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

5 1

2

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

4 3

5

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

3 1

1

,0 , ,0

, ,0

s s

s

 

5AL
 

( ) ( )
( )

4 3

1

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

5 2

2

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

3 2

1

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

3 2

2

,0 , ,0

, ,0

s s

s

 
 

Table.2 The 2-TLN decision matrix 
2

DT  
 

1CT  2CT  3CT  4CT  

1AL
 

( ) ( )
( )

3 2

3

,0 , ,0 ,

,0

s s

s

 

( ) ( )
( )

3 3

2

,0 , ,0 ,

,0

s s

s

 

( ) ( )
( )

3 1

2

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

4 1

3

,0 , ,0

, ,0

s s

s

 

2AL
 

( ) ( )
( )

2 3

4

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

3 3

3

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

3 4

3

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

2 4

4

,0 , ,0

, ,0

s s

s

 
3AL

 
( ) ( )
( )

2 3

3

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

3 2

2

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

2 3

1

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

3 2

4

,0 , ,0

, ,0

s s

s

 
4AL

 
( ) ( )
( )

3 2

2

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

2 2

3

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

3 4

2

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

3 1

2

,0 , ,0

, ,0

s s

s

 
5AL

 
( ) ( )
( )

3 2

1

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

3 4

3

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

4 1

1

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

2 3

2

,0 , ,0

, ,0

s s

s

 
 

 Table.3 The 2-TLN decision matrix 
3

DT  
 

1CT  2CT  3CT  4CT  
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1AL
 

( ) ( )
( )

3 3

1

,0 , ,0

, ,0

s s

s

  

( ) ( )
( )

4 2

1

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

4 4

3

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

4 1

3

,0 , ,0

, ,0

s s

s

 
2AL

 
( ) ( )
( )

2 3

3

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

4 4

4

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

2 4

3

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

2 3

4

,0 , ,0

, ,0

s s

s

 
3AL

 
( ) ( )
( )

2 1

2

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

3 2

2

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

3 4

5

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

2 4

4

,0 , ,0

, ,0

s s

s

 
4AL

 
( ) ( )
( )

3 1

2

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

2 3

2

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

3 4

5

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

5 3

2

,0 , ,0

, ,0

s s

s

 
5AL

 
( ) ( )
( )

3 3

2

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

3 2

2

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

3 2

3

,0 , ,0

, ,0

s s

s

 

( ) ( )
( )

5 3

4

,0 , ,0

, ,0

s s

s

 
  
Step 1. Calculate the support degrees by utilizing formula 
(36). For simplicity we shall denote  

( ) ( ), , , 1,2,3; 1,...,5; 1,...,4 .b l bl
ce ce ceSup S b l c eΓ Γ = = = =  

12 21 13 31 23 23
11 11 11 11 11 11
12 21 13 31 23 32
12 12 12 12 12 12
12 21 13 31 23 32
13 13 13 13 13 13
12 21 13 3
14 14 14 14

0.8333, 0.8889, 0.8333,

0.8333, 0.8889, 0.8333;

0.9444, 0.7778, 0.7222,

0.7222,

S S S S S S
S S S S S S
S S S S S S

S S S S

= = = = = =

= = = = = =

= = = = = =

= = = 1 23 32
14 14

12 21 13 31 23 32
21 21 21 21 21 21
12 21 13 31 23 32
22 22 22 22 22 22
12 21 13 31 23 32
23 23 23 23 23 23

2

0.7222, 1.000;

0.8889, 0.8333, 0.9444,

0.8333, 0.7778, 0.8333;

0.8333, 0.7778, 0.9444,

S S
S S S S S S
S S S S S S
S S S S S S

S

= = =

= = = = = =

= = = = = =

= = = = = =
12 21 13 31 23 32
4 24 24 24 24 24

12 21 13 31 23 23
31 31 31 31 31 31
12 21 13 31 23 32
32 32 32 32 32 32
12 21 13
33 33 33 33

0.7778, 0.8333, 0.9444;

0.777778, 0.6111, 0.8333,

0.7778, 0.7778, .000;

0.833333,

1

S S S S S
S S S S S S

S S S S S S

S S S S

= = = = = =

= = = = = =

= = = = = =

= = = 31 23 32
33 33

12 21 13 31 23 32
34 34 34 34 34 34
12 21 13 31 23 32
41 41 41 41 41 41
12 21 13 31 23 32
42 42 42 42 42 42

0.6111, 0.6667,

0.8333, 0.6667, 0.8333;

0.8889, 0.9444, 0.9444,

0.722222, 0.7222, 0.888

S S

S S S S S S

S S S S S S
S S S S S S

= = =

= = = = = =

= = = = = =

= = = = = =
12 21 13 31 23 32
43 43 43 43 43 43
12 21 13 31 23 32
44 44 44 44 44 44
12 21 13 31 23 32
51 51 51 51 51 51
12 21 13
52 52 52

9;

0.7222, 0.8889, 0.8333,

0.9444, 0.7222, 0.7778;

0.8889, 0.8889, 0.8889,

0.722222,

S S S S S S

S S S S S S
S S S S S S

S S S

= = = = = =

= = = = = =

= = = = = =

= = = 31 23 32
52 52 52

12 21 13 31 23 32
53 53 53 53 53 53
12 21 13 31 23 32
54 54 54 54 54 54

0.8889, 0.8333;

0.8889, 0.8889, 0.7778,

0.8889, 0.7222, 0.7222;

S S S

S S S S S S

S S S S S S

= = =

= = = = = =

= = = = = =

 

Step 2. Determine the support degree ( )b
ceT Γ by utilizing 

formula (37). For simplicity, we shall denote ( )b
ceT Γ by 

( )1,2,3; 1,...,5; 1,...,4b
ceT b c e= = = . 

1 2 3 1 2 3
11 11 11 12 12 12
1 2 3 1 2 3

13 13 13 14 14 14

1 2 3 1 2
21 21 21 22 22

1.7222, 1.6667, 1.7222, 1.7222, 1.6667, 1.7222;

1.7222, 1.6667, 1.5000, 1.4444, 1.7222, 1.7222;

1.7222, 1.8333, 1.7778, 1.6111, 1.6

T T T T T T
T T T T T T

T T T T T

= = = = = =

= = = = = =

= = = = = 3
22

1 2 3 1 2 3
23 23 23 24 24 24

1 2 3 1 2 3
31 31 31 32 32 32

1 2 3
33 33 33 3

667, 1.6111;

1.6111, 1.7778, 1.7222, 1.6111, 1.7222, 1.7222;

1.3889, 1.6111, 1.4444, 1.5556, 1.7778, 1.7778;

1.444444, 1.5000, 1.2778,

T
T T T T T T

T T T T T T

T T T T

=

= = = = = =

= = = = = =

= = = 1 2 3
4 34 34

1 2 3 1 2 3
41 41 41 42 42 42
1 2 3 1 2 3

43 43 43 44 44 44

1 2
51 51

1.5000, 1.6667, 1.6667;

1.8333, 1.8333, 1.8889, 1.4444, 1.6111, 1.6111;

1.6111, 1.5556, 1.7222, 1.6667, 1.7222, 1.7222;

1.7778, 1.777

T T

T T T T T T
T T T T T T

T T

= = =

= = = = = =

= = = = = =

= = 3 1 2 3
51 52 52 52

1 2 3 1 2 3
53 53 53 54 54 54

8, 1.7778, 1.6111, 1.5556, 1.7222;

1.7778, 1.6667, 1.6667, 1.6111, 1.6111, 1.6111;

T T T T

T T T T T T

= = = =

= = = = = =

 

Step 3. Utilize weights ( )1,2,....,b b aϖ =  for decision 

makers bde  to determine weights b
ceℵ utilizing formula (38), 

we have 
1 2 3 1
11 11 11 12
2 3 1 2
12 12 13 13
3 1 2 3
13 14 14 14
1 2 3 1
21 21 21 22
2
22

0.2021, 0.4949, 0.3031, 0.2021,

0.4949, 0.3031; 0.2072, 0.5074,

0.2854, 0.1833, 0.5104, 0.3063;

0.1948, 0.5070, 0.2982, 0.1979,

0.5

= = = =

= = = =

= =

ℵ ℵ ℵ ℵ

ℵ ℵ ℵ ℵ

ℵ ℵ = =ℵ ℵ

ℵ ℵ ℵ ℵ= = =

=ℵ

=
3 1 2
22 23 23

3 1 2 3
23 24 24 24
1 2 3 1
31 31 31 32
2 3 1 2
32 32 33 33
3 1
33 34

053, 0.2968; 0.1915, 0.5092,

0.2994, 0.1934, 0.5041, 0.3025;

0.1898, 0.5188, 0.2914, 0.1870,

0.5081, 0.3049; 0.2018, 0.5161,

0.2821,

ℵ ℵ ℵ

ℵ ℵ ℵ ℵ

ℵ ℵ

= = =

= = = =

= = = =

= = = =

=

ℵ ℵ

ℵ ℵ ℵ ℵ

ℵ ℵ 2 3
34 34

1 2 3 1
41 41 41 42
2 3 1 2
42 42 43 43
3 1 2 3
43 44 44 44
1 2
51 51

0.1899, 0.5063, 0.3038;

0.1988, 0.4971, 0.3041, 0.1897,

0.5065, 0.3039; 0.1996, 0.4883,

0.3121, 0.1967, 0.5020, 0.3012;

0.2000, 0.5000,

ℵ ℵ

ℵ ℵ ℵ ℵ

ℵ

= = =

= = = =

= ℵ ℵ ℵ

ℵ ℵ

= = =

= ℵ ℵ= =

ℵ

=

ℵ= = 3 1
51 52

2 3 1 2
52 52 53 53
3 1 2 3
53 54 54 54

0.3000, 0.1996,

0.4883, 0.3121; 0.2066, 0.4959,

0.2975, .2000, .5000, .3000.0 0 0

ℵ ℵ

ℵ ℵ ℵ ℵ

ℵ

= =

= = = =

= = =ℵ =ℵ ℵ

 

Step 4. Aggregate all the individual decision matrices 

( ) ( 1,2,3; 1,...,5; 1,2....,4)
b

b
ce m n

DT b c e
×

= Γ = = = into group 

decision matrix  ( )ce m n
DT

×
= Γ  by utilizing formula (39) or 

(40), we have (assume 1, 2x y= = ℑ =  ) 
 
Table 4. Overall decision matrix utilizing 2-TLNDWPHM 
operator 
 

1CT  2CT  

1AL  ( ) ( )
( )

3 3

2

,0.3121 , , 0.4416

, , 0.2546

s s

s

−

−
  ( ) ( )

( )
4 3

1

,0.1659 , , 0.3613 ,

,0.2902

s s

s

−  

2AL  ( ) ( )
( )

2 3

4

,0.2801 , , 0.3045 ,

, 0.3296

s s

s

−

−
 ( ) ( )

( )
4 3

3

, 0.3597 , , 0.0893 ,

, 0.0893

s s

s

− −

−
 

3AL  ( ) ( )
( )

4 2

3

, 0.2651 , , 0.0778 ,

, 0.3501

s s

s

− −

−
 ( ) ( )

( )
3 2

2

,0.2982 , ,0.3239 ,

,0.2406

s s

s
 

4AL  ( ) ( )
( )

2 1

2

, 0.2647 , ,0.3901 ,

,0.0337

s s

s

−  ( ) ( )
( )

4 2

2

, 0.2654 , , 0.2069 ,

,0.3631

s s

s

− −  

5AL  ( ) ( )
( )

3 3

1

,0.3096 , , 0.4428 ,

,0.2318

s s

s

−  ( ) ( )
( )

4 3

2

, 0.0301 , , 0.4330 ,

,0.3512

s s

s

− −  
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Table 4. Overall decision matrix utilizing 2-TLNDWPHM 
operator 
 

3CT  4CT  

1AL  ( ) ( )
( )

4 1

2

, 0.3581 , ,0.3112 ,

,0.2905

s s

s

−  ( ) ( )
( )

4 1

3

, 0.3215 , ,0.2170 ,

, 0.2948

s s

s

−

−
 

2AL  ( ) ( )
( )

3 2

3

, 0.3265 , ,0.2579 ,

, 0.3015

s s

s

−

−
 ( ) ( )

( )
3 3

4

, 0.2540 , ,0.3221 ,

, 0.3122

s s

s

−

−
 

3AL  ( ) ( )
( )

2 2

2

,0.3217 , ,0.1066 ,

, 0.4061

s s

s −
 ( ) ( )

( )
3 2

3

,0.0781 , ,0.4413 ,

,0.2604

s s

s
 

4AL  ( ) ( )
( )

3 4

3

,0.3115 , , 0.2868 ,

, 0.0090

s s

s

−

−
 ( ) ( )

( )
4 1

2

,0.1354 , ,0.3029 ,

, 0.3720

s s

s −
 

5AL  ( ) ( )
( )

3 1

3

,0.4424 , ,0.4666 ,

,0.2970

s s

s
 ( ) ( )

( )
4 3

2

,0.0490 , , 0.3096 ,

,0.4329

s s

s

−  

 
Table 5. Overall decision matrix utilizing 2-
TLNDWPGHM operator 
 

1CT  2CT  

1AL  ( ) ( )
( )

3 3

2

,0.2654 , , 0.3807 ,

,0.2226

s s

s

−   ( ) ( )
( )

3 3

1

,0.3613 , , 0.3211 ,

,0.4161

s s

s

−  

2AL  ( ) ( )
( )

2 3

4

,0.2434 , , 0.2657 ,

, 0.2991

s s

s

−

−
 ( ) ( )

( )
4 3

3

, 0.4152 , ,0.2068 ,

,0.2068

s s

s

−  

3AL  ( ) ( )
( )

2 3

3

,0.3580 , , 0.0182 ,

, 0.3261

s s

s

−

−
 ( ) ( )

( )
3 3

2

,0.2628 , , 0.2657 ,

,0.2741

s s

s

−  

4AL  ( ) ( )
( )

3 1

2

, 0.2587 , ,0.4168 ,

, 0.0334

s s

s

−

−
 ( ) ( )

( )
2 2

2

,0.3539 , ,0.1742 ,

,0.4146

s s

s
 

5AL  ( ) ( )
( )

3 3

1

,0.2659 , , 0.3839 ,

,0.3244

s s

s

−  ( ) ( )
( )

3 3

2

,0.3685 , ,0.1333 ,

,0.4107

s s

s
 

 
Table 5. Overall decision matrix utilizing 2-TLNDWPHM 
operator 
 

3CT  4CT  

1AL  ( ) ( )
( )

4 3

2

, 0.4167 , , 0.3578 ,

,0.3254

s s

s

− −  ( ) ( )
( )

3 1

3

,0.2725 , ,0.6568 ,

, 0.2619

s s

s −
 

2AL  ( ) ( )
( )

3 4

3

, 0.3557 , , 0.3280 ,

, 0.2649

s s

s

− −

−
 ( ) ( )

( )
2 3

4

, 0.3282 , ,0.4432 ,

, 0.2421

s s

s

−

−
 

3AL  ( ) ( )
( )

2 3

4

,0.2928 , ,0.1344 ,

, 0.0620

s s

s −
 ( ) ( )

( )
3 3

4

, 0.2141 , ,0.0877 ,

, 0.3258

s s

s

−

−
 

4AL  ( ) ( )
( )

3 4

5

,0.2627 , , 0.2405 ,

, 0.4560

s s

s

−

−
 ( ) ( )

( )
3 2

2

,0.4863 , ,0.1564 ,

, 0.2633

s s

s −
 

5AL  ( ) ( )
( )

3 2

2

,0.3799 , , 0.3948 ,

, 0.1612

s s

s

−

−
 ( ) ( )

( )
3 3

3

, 0.2028 , , 0.2659 ,

,0.0921

s s

s

− −  

 
Step 5. Calculate the support degrees of Table4, by 
utilizing formula (41). For simplicity we shall denote  

( ) ( ), , 1,...,5; 1,...,4 .ce
ce ce cSup S c eΓ Γ = = =  

12 21 13 31 14 41
1 1 1 1 1 1
23 32 24 42 34 43

1 1 1 1 1 1
12 21 13 31 14 41
2 2 2 2 2 2
23 32 24 42 34 43
2 2 2 2 2 2

0.9228, 0.8821, 0.8518,

0.8416, 0.8153, 0.9697;

0.8703, 0.8929, 0.9383,

0.9152, 0.8843, 0.9

S S S S S S
S S S S S S
S S S S S S
S S S S S S

= = = = = =

= = = = = =

= = = = = =

= = = = = = 374;

 

12 21 13 31 14 41
3 3 3 3 3 3
23 32 24 42 34 43
3 3 3 3 3 3
12 21 13 31 14 41
4 4 4 4 4 4
23 32 24 42 34 43
4 4 4 4 4 4

0.9307, 0.8526, 0.9008,

0.8977, 0.9246, 0.8468;

0.9038, 0.7857, 0.8948,

0.8349, 0.9097, 0.7

S S S S S S

S S S S S S

S S S S S S
S S S S S S

= = = = = =

= = = = = =

= = = = = =

= = = = = =
12 21 13 31 14 41
5 5 5 5 5 5
23 32 24 42 34 43
5 5 5 5 5 5

446;

0.9006, 0.9284, 0.8848,

0.8510, 0.9842, 0.8352;

S S S S S S

S S S S S S

= = = = = =

= = = = = =

  

or 
Calculate the support degrees of Table 5, by utilizing 
formula (41). For simplicity we shall denote  

12 21 13 31 14 41
1 1 1 1 1 1
23 32 24 42 34 43

1 1 1 1 1 1
12 21 13 31 14 41
2 2 2 2 2 2
23 32 24 42 34 43
2 2 2 2 2 2

0.9261, 0.9754, 0.9175,

0.9393, 0.8444, 0.9051;

0.8718, 0.8720, 0.9527,

0.8957, 0.8864, 0.9

S S S S S S
S S S S S S
S S S S S S
S S S S S S

= = = = = =

= = = = = =

= = = = = =

= = = = = =
12 21 13 31 14 41
3 3 3 3 3 3
23 32 24 42 34 43
3 3 3 3 3 3
12 21 13 31 14 41
4 4 4 4 4 4
23 32 24 42 34 43
4 4 4 4 4 4

129;

0.9138, 0.9177, 0.9168,

0.8314, 0.8858, 0.9456;

0.9115, 0.6977, 0.9221,

0.7431, 0.8811,

S S S S S S

S S S S S S

S S S S S S
S S S S S S

= = = = = =

= = = = = =

= = = = = =

= = = = =
12 21 13 31 14 41
5 5 5 5 5 5
23 32 24 42 34 43
5 5 5 5 5 5

0.7252;

0.9052, 0.9089, 0.8794,

0.8827, 0.9185, 0.8455;

S S S S S S

S S S S S S

=

= = = = = =

= = = = = =

 

Step 6. Determine the support degree ( )ceT Γ by utilizing 
formula (42) 

11 12 13 14 21

22 23 24 31 32

33 34 41 42 43

44 51 52 5

2.6567, 2.5797, 2.6934, 2.6368, 2.7015,
2.6698, 2.7456, 2.7601; 2.6840, 2.7530,
2.5971, 2.6721, 2.5844, 2.6484, 2.3653,
2.5491; 2.7138, 2.7358,

T T T T T
T T T T T
T T T T T
T T T T

= = = = =
= = = = =
= = = = =
= = = 3 542.6146, 2.7042.T= =

  

Or 
Determine the support degree ( )ceT Γ by utilizing formula 
(42) 

11 12 13 14 21

22 23 24 31 32

33 34 41 42 43

44 51 52 5

2.8189, 2.7097, 2.8197, 2.6669, 2.6965,
2.6539, 2.6806, 2.7521; 2.7482, 2.6311,
2.6947, 2.7482, 2.5313, 2.5357, 2.1660,
2.5284; 2.6936, 2.7064,

T T T T T
T T T T T
T T T T T
T T T T

= = = = =
= = = = =
= = = = =
= = = 3 542.6372, 2.6434.T= =

 

Step 7. Determine weighting vector ceΦ by utilizing 
formula (43), 

11 12 13 14 21

22 23 24 31 32

33 34 41 42 43

44 51 52 5

0.5029, 0.2954, 0.1016, 0.1000, 0.4999,
0.2974, 0.1012, 0.1016; 0.4985, 0.3047,
0.0974, 0.0994, 0.5009, 0.3059, 0.0941,
0.0992; 0.5006, 0.3021,

Φ = Φ = Φ = Φ = Φ =
Φ = Φ = Φ = Φ = Φ =
Φ = Φ = Φ = Φ = Φ =
Φ = Φ = Φ = Φ 3 540.0974, 0.0999.= Φ =

 

Or  
Determine weighting vector ceΦ by utilizing formula (43), 

11 12 13 14 21

22 23 24 31 32

33 34 41 42 43

44 51 52 5

0.5063, 0.2951, 0.1013, 0.0972, 0.5012,
0.2973, 0.0998, 0.1017; 0.5055, 0.2938,
0.0996, 0.1011, 0.1430, 0.3034, 0.0906,
0.1009; 0.5009, 0.3016,

Φ = Φ = Φ = Φ = Φ =
Φ = Φ = Φ = Φ = Φ =
Φ = Φ = Φ = Φ = Φ =

Φ = Φ = Φ = Φ 3 540.0987, 0.0988.= Φ =

 

Step 8. Utilize 2-TLNDWPHM or 2-TLNNDWPGHM 
operators given in formula (44) or formula (45) to 
aggregate all assessment values (assume 1, 2x y= = ℑ =  ) 

( ) ( ) ( )1 4 2 2, 0.3978 , ,0.0053 , , 0.1452 ;AL s s s= − −  

( ) ( ) ( )2 3 3 3, 0.2250 , ,0.0835 , ,0.3512 ;AL s s s= −  
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( ) ( ) ( )3 3 2 2,0.1907 , ,0.2747 , ,0.4501 ;AL s s s=

( ) ( ) ( )4 3 2 2,0.3506 , , 0.2546 , ,0.2681 ;AL s s s= −  

( ) ( ) ( )5 4 2 2, 0.4224 , ,0.4077 , , 0.2722 .AL s s s= − −  
or 

( ) ( ) ( )1 4 2 2, 0.4206 , ,0.3839 , ,0.0258 ;AL s s s= −  

( ) ( ) ( )2 3 3 3, 0.2382 , ,0.0972 , ,0.3152 ;AL s s s= −  

( ) ( ) ( )3 3 3 3, 0.2307 , , 0.1970 , , 0.0111 ;AL s s s= − − −

( ) ( ) ( )4 3 2 3,0.2394 , ,0.0406 , , 0.3743 ;AL s s s= −  

( ) ( ) ( )5 3 3 2,0.3430 , , 0.4474 , , 0.0295 .AL s s s= − −  
Step 9. Calculate the score values utilizing Definition (3), 
we have 

( ) ( ) ( )
( ) ( )

1 2 3

4 5

0.6523, 0.4634 0.5814, ,

, .0.6298 0.6357

SR AL SR AL SR AL

SR AL SR AL

= = =

= =
 

Calculate the score values utilizing Definition (3), we have  
( ) ( ) ( )
( ) ( )

1 2 3

4 5

0.6205, 0.4639 0.4987, ,

, .0.5874 0.6011

SR AL SR AL SR AL

SR AL SR AL

= = =

= =
  

Step 10. Rank all the alternatives and select the best one 
according to their score values. 

1 5 4 3 3.AL AL AL AL AL> > > >  
or 

1 5 4 3 3.AL AL AL AL AL> > > >  

1AL  is the best one while the worst one is 3.AL  
 

VI. Discussion 
In the following, we will further analyze the effect of the 
parameters ,x y and ℑ  on the final ranking result of 
Example 1. Then we can adopt the different values of x  
and y  in step 4 and step 8, while the value ℑ  is fix. The 
results are given in Table 6 and Table 7. Moreover, the 
effect of general parameter ℑ , is shown in Table 8 and 
Table 9, while the parameters ,x y  are fix. 
From Table 6 and Table 7, we can notice that the ranking 
orders are different for different values of the parameters

,x y . However, the best alternative 1AL  or 5.AL  From Table 
6 and Table 7, we can also notice that, when the values of 
the parameter x  or y  increases, the score values increases 
utilizing 2-TLNDWPHM operator, while the score values 
decreases utilizing2-TLNDWPGHM operator. Generally, 
for computational simplicity one may select 

11,
2

x y or x y= = = =  according to the actual need of 

decision making problems. 
 
Table 6. Effect of parameter x  and y  on ranking result utilizing 
2-TLNDWPHM operator  

Parameter 
values 

Score values Ranking 
orders 

1, 2,
2

x y= =
ℑ =

  ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6537, 0.4574

0.5764

,

, ,

.

0.6273

0.6325

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
1 5 4

3 2.

AL AL AL

AL AL

> >

> >

 

3, 5,
2

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6530, 0.4585

0.5772

,

, ,

.

0.6275

0.6328

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

  
1 5 4

3 2.

AL AL AL

AL AL

> >

> >

 

2, 7,
2

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6570, 0.4560

0.5757

,

, ,

.

0.6284

0.6332

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

 

6, 19,
2

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6563, 0.4561

0.5756

,

, ,

.

0.6280

0.6329

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

 

14, 30,
2

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6540, 0.4571

0.5761

,

, ,

.

0.6273

0.6324

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
1 5 4

3 2.

AL AL AL

AL AL

> >

> >

 

2, 100,
2

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6754, 0.4631

0.5926

,

, ,

.

0.6476

0.6526

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

 

50, 2,
2

x y= =
ℑ =
 

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6897, 0.5290

0.6451

,

, ,

.

0.6745

0.6976

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
5 1 4

3 2.

AL AL AL

AL AL

> >

> >

 

35, 6,
2

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6685, 0.4998

0.6142

,

, ,

.

0.6526

0.6669

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

  

5 1 4

3 2.

AL AL AL

AL AL

> >

> >

 

80,
4,
2

x
y
=
=

ℑ =
 

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6869, 0.5256

0.6409

,

, ,

.

0.6713

0.6937

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
5 1 4

3 2.

AL AL AL

AL AL

> >

> >

 

Table 7. Effect of parameter x  and y  on decision result 
utilizing 2-TLNDWPGHM operator 
Parameter 
values 

Score values Ranking 
orders 

1, 2,
2

x y= =
ℑ =

  ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6252, 0.4663

0.5037

,

, ,

.

0.5810

0.5998

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
1 5 4

3 2.

AL AL AL

AL AL

> >

> >
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3, 5,
2

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6245, 0.4662

0.5029

,

, ,

.

0.5832

0.6006

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
1 5 4

3 2.

AL AL AL

AL AL

> >

> >

 

2, 7,
2

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6251, 0.4643

0.5042

,

, ,

.

0.5718

0.5951

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

 

6, 19,
2

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6254, 0.4649

0.5043

,

, ,

.

0.5737

0.5961

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
1 5 4

3 2.

AL AL AL

AL AL

> >

> >

 

14, 30,
2

x y= =
ℑ =
 

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6253, 0.4662

0.5039

,

, ,

.

0.5800

0.5994

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

 

2, 100,
2

x y= =
ℑ =
 

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6082, 0.4388

0.4828

,

, ,

.

0.5177

0.5575

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

 

50, 2,
2

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.5583, 0.4136

0.4440

,

, ,

.

0.5533

0.5620

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

  

5 1 4

3 2.

AL AL AL

AL AL

> >

> >

 

35, 6,
2

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.5868, 0.4367

0.4683

,

, ,

.

0.5771

0.5835

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
1 5 4

3 2.

AL AL AL

AL AL

> >

> >

 

80, 4,
2

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.5618, 0.4163

0.4470

,

, ,

.

0.5569

0.5650

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 

5 1 4

3 2.

AL AL AL

AL AL

> >

> >

 

 
Table 8. Effect of parameter ℑ  on decision result 2-
TLNDWPHM operator  
Parameter 
values 

Score values Ranking 
orders 

1, 2,
3

x y= =
ℑ =

  ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6855, 0.4851

0.6316

,

, ,

.

0.6667

0.6713

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
1 5 4

3 2.

AL AL AL

AL AL

> >

> >
 

1, 2,
5

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.7326, 0.5291

0.7017

,

, ,

.

0.7181

0.7226

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
1 5 4

3 2.

AL AL AL

AL AL

> >

> >
 

1, 2,
9

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.7795, 0.5840

0.7632

,

, ,

.

0.7668

0.7734

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
1 5 4

3 2.

AL AL AL

AL AL

> >

> >
 

1, 2,
15

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.8025, 0.6176

0.7934

,

, ,

.

0.7954

0.7991

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
1 5 4

3 2.

AL AL AL

AL AL

> >

> >
 

1, 2,
30

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.8184, 0.6425

0.8142

,

, ,

.

0.8152

0.8169

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
1 5 4

3 2.

AL AL AL

AL AL

> >

> >
 

1, 2,
100

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.8290, 0.6595

0.8278

,

, ,

.

0.8281

0.8285

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
1 5 4

3 2.

AL AL AL

AL AL

> >

> >
 

1, 2,
200

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.8312, 0.6631

0.8306

,

, ,

.

0.8307

0.8310

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

  
 

5 1 4

3 2.

AL AL AL

AL AL

> >

> >
 

 
Table 9. Effect of parameter ℑ  on decision result 2-
TLNDWPGHM operator  
Parameter 
values 

Score values Ranking 
orders 

1, 2,
3

x y= =
ℑ =

  ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.5940, 0.4411

0.4610

,

, ,

.

0.5084

0.5644

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
 

1 5 4

3 2.

AL AL AL

AL AL

> >

> >
 

1, 2,
5

x y= =
ℑ =

 ( ) ( )
( )
( ) ( )

1 2

3

4 5

0.5531, 0.4105

0.4008

,

,

, .0.4233 0.5123

SR AL SR AL

SR AL

SR AL SR AL

= =

=

= =

 
 

1 5 4

2 3.

AL AL AL

AL AL

> >

> >
 

1, 2,
9

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.5146, 0.3794

0.3443

,

, ,

.

0.3570

0.4478

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
 

1 5 2

4 3.

AL AL AL

AL AL

> >

> >
 

1, 2,
15

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.4875, 0.3609

0.3163

,

, ,

.

0.3240

0.4019

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
1 5 2

4 3.

AL AL AL

AL AL

> >

> >
 

1, 2,
30

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.4656, 0.3470

0.2964

,

, ,

.

0.3003

0.3670

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
1 5 2

4 3.

AL AL AL

AL AL

> >

> >
 

1, 2,
100

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.4507, 0.3374

0.2833

,

, ,

.

0.2844

0.3433

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
1 5 2

4 3.

AL AL AL

AL AL

> >

> >
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1, 2,
200

x y= =
ℑ =

 ( ) ( )
( ) ( )
( )

1 2

3 4

5

0.4476, 0.3354

0.2805

,

, ,

.

0.2811

0.3383

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

  
1 5 2

4 3.

AL AL AL

AL AL

> >

> >
 

 
From Table 8 and Table 9, we can notice that the ranking 
orders are different for different values of the parametersℑ . 
However, the best alternative 1AL  or 5.AL  From Table 8 and 
Table 9, we can also notice that, when the values of the 
parameter ℑ  increases, the score values increases utilizing 
2-TLNDWPHM operator, while the score values decreases 
utilizing2-TLNDWPGHM operator. So, one may select the 
parameter value according to the actual need of decision 
making problem. 
A. Compare with existing methods 
In order to confirm the efficacy of the developed approach 
and describe its advantages, we can compare our developed 
method with some existing methods.  
B. Validity of the developed method 
In order to confirm the validity of the developed approach, 
we can utilize some existing methods to solve the same 
example. Since the developed approach is based on the 
combination of PA, HM operators and Dombi operations. 
So, we can utilize the methods in which the 
interrelationships between two input arguments are 
considered. Therefore, the reference methods of 
comparison are 2-TLNNWBM, 2-TLNNWGBM operators 
and 2-TLNHM, 2-TLNDHM operators. The score values 
and ranking orders of the above example by solving these 
two methods and the developed method as given in Table 
10. From Table 10, we can notice that the ranking order 
obtained by the existing methods is the same as that 
obtained from the proposed approach. This shows the 
developed approach is valid.  
Table 10. The score values and ranking orders obtained 
from different methods 
Approach Score values Ranking order 
2-TLNNWBM 
[34] ( 1p q= = ) 

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6298, 0.4648

0.5642

,

, ,

.

0.6145

0.6243

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
1 5 4

3 2.

AL AL AL

AL AL

> >

> >
 

2-TLNNWGBM 
[34] ( 1p q= = ) 

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6259, 0.4606

0.5622

,

, ,

.

0.6080

0.6198

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
1 5 4

3 2.

AL AL AL

AL AL

> >

> >
 

2-TLNWHM[42]  
( 2k = ) 

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.9013, 0.8395

0.8751

,

, ,

.

0.8895

0.8962

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
1 5 4

3 2.

AL AL AL

AL AL

> >

> >
 

2-
TLNWDHM[42] 
( 2k = ) 

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.2062, 0.1327

0.1718

,

, ,

.

0.1946

0.2005

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
1 5 4

3 2.

AL AL AL

AL AL

> >

> >
 

Proposed 2-
TLNDWPHM 
operator 

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6523, 0.4634

0.5814

,

, ,

.

0.6298

0.6357

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
1 5 4

3 2.

AL AL AL

AL AL

> >

> >
 

Proposed 2-
TLNDW 
PGHM 

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6205, 0.4639

0.4987

,

, ,

.

0.5874

0.6011

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 
1 5 4

3 2.

AL AL AL

AL AL

> >

> >
 

 
From Table 10, we can see that the ranking order obtained 
from the proposed method based on developed aggregation 
operator and the methods developed Wang et al. [34], Wu 
et al. [38] are same. This shows the validity of the proposed 
method. Yet, it cannot manifest the advantages of the 
developed method due to same ranking results. 
Further, in the following we will show the advantages of 
the developed method.  
C. The advantages of the developed method 
(1) The developed method is based on the 2-TLNDWPHM 
operator and the method presented by Wei [34] is based on 
2-TLNNWBM operator. Both the methods have the 
characteristics of considering interrelationship among two 
input arguments and the only difference between them is 
that the developed aggregation operators also remove the 
effect of awkward data which may be too low or too high. 
In order to show this advantage, we give the following 
example. 
Example 2. We can only change some data in the Example 
1. We slightly change the value of alternative 1AL  with 
respect to the attribute 4CT . That is the value 
( ) ( ) ( )4 1 3,0 , ,0 , ,0s s s  is changed to ( ) ( ) ( )3 2 4,0 , ,0 , ,0s s s and 

the score values and ranking order are given in Table 11. 
Table 11. The score values and ranking orders obtained 
from different methods 
Approach Score values Ranking 

order 
2-LNNWBM 
[34] 

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6215, 0.4648

0.5642

,

, ,

.

0.6145

0.6243

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 

5 4 4

3 2.

AL AL AL

AL AL

> >

> >
 

2-
TLNNWGBM 
[34] 

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6178, 0.4606

0.5622

,

, ,

.

0.6080

0.6198

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 

5 1 4

3 2.

AL AL AL

AL AL

> >

> >
 

Proposed 
Method 2-
TLNDWPHM 
operator  

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6392, 0.4629

0.5814

,

, ,

.

0.6298

0.6357

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 

1 5 4

3 2.

AL AL AL

AL AL

> >

> >
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Proposed 
Method 
2-
TLNDWPGH
M 

( ) ( )
( ) ( )
( )

1 2

3 4

5

0.6056, 0.4639

0.4987

,

, ,

.

0.5874

0.6011

SR AL SR AL

SR AL SR AL

SR AL

= =

= =

=

 

1 5 4

3 2.

AL AL AL

AL AL

> >

> >

 

 
From Table 11, we can notice that when we slightly change 
the value of the alternative  1AL  with respect to the attribute

4CT  in Table 2, then the ranking order obtained from the 
proposed method remain the same, while that acquired from 
the method developed by Wang et al.[34] is totally different. 
The best alternative remains the same in the proposed 
approach while utilizing the Wang et el. [34] approach 
based on 2-TLNNWBM and 2-TLNNWGBM, the best 
alternative is 5AL .  The main reason behind these different 
ranking orders is that, the aggregation operators developed 
by Wang et al. [34] just only consider the interrelationship 
among input arguments and does not have the capacity of 
removing the bad impact of awkward data on final ranking 
result. While, the proposed approach is based on the 
proposed aggregation operators have the property of 
removing the effect of awkward data and consider the 
interrelationship among input arguments. The proposed 
aggregation operators are based on Dombi operational laws 
which have a general parameter, that makes the decision 
process more flexible. So the developed aggregation 
operator in this article is more general and practical to be 
used in solving MAGDM problems. 
(2) Compare with the approach based on 
Hamy mean operator 
To compare the developed approach with that of Hamy 
mean operator proposed by Wu et al. [38], we take another 
Example adapted from [12]. The Hamy mean operator 
proposed by Wu et al. [38] can also consider the 
interrelationship among input arguments. 
Example 3. Let there is an investment company who 
wants to invest some money in the available four 
companies as a group of alternatives ( )1,2,...,4bAL b = . 
These four companies are respectively, a car company 
denoted by 1AL , a food company denoted by 2,AL , a 

computer company denoted by 3AL and an arm company 
denoted by 4.AL  These four potential alternatives are 
assessed by decision makers with respect to the following 
three attributes (1) the risk denoted by 1CT ; (2) the growth 
denoted by 2;CT and (3) The environmental impact denoted 

by 3CT  with weight vector ( )0.4,0.2,0.4 T . The assessment 
information is provided in the form of 2-TLNNs and is 
given in Table 12. 
Table.12. The 2-TLN decision matrix  
 1CT  2CT  3CT  

1AL  ( ) ( )
( )

2 4

4

,0 , ,0 ,

,0

s s

s
  ( ) ( )

( )
4 1

3

,0 , ,0 ,

,0

s s

s
 ( ) ( )

( )
2 4

4

,0 , ,0 ,

,0

s s

s
 

2AL  ( ) ( )
( )

4 3

3

,0 , ,0 ,

,0

s s

s
 ( ) ( )

( )
2 3

2

,0 , ,0 ,

,0

s s

s
 ( ) ( )

( )
4 1

2

,0 , ,0 ,

,0

s s

s
 

3AL  ( ) ( )
( )

5 1

3

,0 , ,0 ,

,0

s s

s
 ( ) ( )

( )
3 2

2

,0 , ,0 ,

,0

s s

s
 ( ) ( )

( )
2 4

2

,0 , ,0 ,

,0

s s

s
 

4AL  ( ) ( )
( )

3 5

1

,0 , ,0 ,

,0

s s

s
 ( ) ( )

( )
3 1

2

,0 , ,0 ,

,0

s s

s
 ( ) ( )

( )
3 1

2

,0 , ,0 ,

,0

s s

s
 

 
The score values and ranking results obtained by the 
proposed aggregation operators and the 2-TLNWHM 
operator, 2-TLNWDHM operator are given in Table 13. 
From Table 13, one can notice that the ranking order 
obtained from the developed aggregation operators and that 
of obtained by 2-TLNWHM operator, and 2-TLNWDHM 
operator are totally different. From the proposed 
aggregation operator the best alternative is 3AL , while the 
worst one is 1,AL and from the 2-TLNWHM operator or 2-
TLNWDHM operator proposed in Wu et al. [38], the best 
alternative is 4AL , while the worst one remain the same. 
The main reason behind different ranking order is that the 
both the aggregation operators can consider the 
interrelationship between input arguments, but the 
developed aggregation operator have two more 
characteristics. It can remove the effect of awkward data 
and proposed aggregation operators are based on Dombi 
operational laws, which have a general parameter that 
makes the information aggregation process more flexible.  
Therefore the developed aggregation operators are more 
flexible and general to be used in solving MAGDM 
problems. 
Table 13. The score values and ranking orders obtained 
from different methods 
Approach Score values Ranking 

order 
2-LNNWHM 
[38] 

( ) ( )
( ) ( )

1 2

3 4

0.7337, 0.7917

0.8367 0.840

,

, 6.

SR AL SR AL

SR AL SR AL

= =

= =
 

4 3

2 1.

AL AL

AL AL

> >

>
 

2-TLNNWDHM 
[38] 

( ) ( )
( ) ( )

1 2

3 4

0.1691, 0.2082

0.2695 0.286

,

, 8.

SR AL SR AL

SR AL SR AL

= =

= =
 

4 3

2 1.

AL AL

AL AL

> >

>
 

Proposed 
Method 2-
TLNDWPHM 
operator 

( ) ( )
( ) ( )

1 2

3 4

0.5228, 0.5246

0.7052 0.690

,

, 2.

SR AL SR AL

SR AL SR AL

= =

= =
 3 4

2 1.

AL AL

AL AL

> >

>
 

Proposed 
Method 
2-
TLNDWPGHM 

( ) ( )
( ) ( )

1 2

3 4

0.3678, 0.4755

0.4998 0.492

,

, 1.

SR AL SR AL

SR AL SR AL

= =

= =
 

3 4

2 1.

AL AL

AL AL

> >

>
 

 

VII CONCLUSION 
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In this article firstly, we proposed some new operational 
laws for 2-TLNNs based on Dombi T-norm and Dombi T-
conorm. Secondly, we proposed some new aggregation 
operators on these operational laws such as 2-tuple 
linguistic neutrosophic Dombi power Heronian mean 
operator, 2-tuple linguistic neutrosophic Dombi weighted 
power Heronian mean operator, 2-tuple linguistic 
neutrosophic Dombi power geometric Heronian mean 
operator and 2-tuple linguistic neutrosophic Dombi 
weighted power geometric Heronian mean operator. We 
also discussed it properties and few special cases with 
respect to parameters. Furthermore, we developed an 
algorithm for solving MAGDM problems under 2-tuple 
linguistic neutrosophic environment. We also show the 
advantages of the developed MAGDM approaches by 
comparing with some existing MAGDM approaches. The 
main advantages of the developed aggregation operators are 
The developed aggregation operators are based on Dombi 
operational laws, which consists of general parameter, that 
makes the information aggregation process more flexible. 
The developed aggregation operators have two 
characteristics at a time, firstly, it can vanish the effect of 
awkward data by taking the advantage of PA operator, 
Secondly, it can consider the interrelationship among the 
input arguments by taking the advantages of HM operator. 
For these reasons the developed MAGDM method based on 
these developed aggregation operator is more general and 
reasonable. 
In future research, we will extend power Heronian mean 
operators to some new extension such as 2-tuple linguistic 
cubic neutrosophic, 2-tuple linguistic Double valued 
neutrosophic and so on. At the same time, we also research 
on some applications in energy and supply chain 
management. 
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