Multiplicative Interpretation of Neutrosophic Cubic Set on B-Algebra

Article • February 2020
DOI: 10.5281/zenodo. 3679517

ciations

0

4 authors, including:

READ
1

Some of the authors of this publication are also working on these related projects:

[^0]

Multiplicative Interpretation of Neutrosophic Cubic Set on B-Algebra

Mohsin Khalid, Neha Andaleeb Khalid*, Hasan Khalid*, Said Broumi*
Dept. of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan
Dept. of Mathematics, Lahore Collage For Women University, Lahore, Pakistan
Dep.t of Mathematics,National College of Business Administration Economics, Lahore, 54000, Pakistan
Laboratory of Information Processing, Faculty of Science Ben M'Sik, University Hassan II, Casablanca, Morocco
mk4605107@gmail.com
nehakhalid97@gmail.com
hasaikhan31@gmail.com
s.broumi@flbenmsik.ma

Abstract

Purpose of this paper is to interpret the multiplication of neutrosophic cubic set. Here we define the notation of γ multiplication of neutrosophic cubic set and study it with the help of neutrosophic cubic M-subalgebra, neutrosophic cubic normal ideal and neutrosophic cubic closed normal ideal. We also study r-multiplication under homomorphism and cartesian product through significant characteristics.

Keywords: B-algebra, Neutrosophic cubic set, γ-Multiplication, Cartesian product, Homomorphism.

1.Introduction

Theory of existing and non-existing value was first introduced by Zadeh [1,2]. Cubic set was defined by Jun et al. [3] in 2012, which was the modern form of interval-valued fuzzy set. Cubic set with the help of subalgebras, ideals and closed ideals of B-algebra was studied by Senapati et al. [4]. After the defing of $B C K$-algebra and $B C I$-algebra by Imai et al. [5] and Iseki [6], cubic set through subalgebras and q-ideals in $\mathrm{BCK} / \mathrm{BCI}$-algebra was investigated by Jun et al. [7, 8]. Notion of M-subalgebra on G-algebra is introduced and analyzed by Khalid et al. [9]. Intervalvalued fuzzy set on B-algebra was studied by Senapati et al. [10,11]. Intuitionistic fuzzy translation and multiplication of G-algebra were deeply studied by by Khalid et al. [19]. Neutrosophic cubic set is the extended form of interval valued intuitionistic fuzzy theory with indeterminacy was introduced by Smarandache [12]. Neutrosophic logics and neutrosophic probability gave the new idea of research were interpret by Smarandache [13]. Neutrosophic cubic was introduced by Jun et al. [14]. Neutrosophic cubic point, (α, β)-fuzzy ideals and neutrosophic cubic (α, β)-ideals were analyzed by Gulistan et al. [15]. A new idea of normal ideal and closed normal ideal under neutrosophic cubic set was given and investigated by Khalid et al. [16]. Neutrosophic cubic set was investigated by Jun et al. [17]. PS fuzzy ideals were studied by Priya et al. [18]. Rosenfeld's fuzzy subgroup was studied by Biswas [20]. B-homomorphism was deeply studied by Neggers et al. [21]. Neutrosophic soft cubic subalgebra was extensively studied by Khalid et al. [22]. A B-algebra is an important logical class of algebra was defined by Neggers et al. [23]. T-Neutrosophic Cubic Set was defined and deeply investigated by Khalid et al. [24].

In this paper, we define γ-multiplication of neutrosophic cubic set and investigate the neutrosophic cubic Msubalgebra, neutrosophic cubic normal ideal (NCNID) and neutrosophic cubic closed normal ideal (NCCNID) under γ-multiplication with the help of P-intersection, P-union etc. We also study the cartesian product and
homomorphism of γ-multiplication of neutrosophic cubic normal ideal (γ MNCNID) and γ-multiplication of neutrosophic cubic closed normal ideal (γ MNCCNID) with important results.

2. Preliminaries

Definition 2.1 [19] A nonempty set X with a constant 0 and $*$ is said to be B -algebra if it fulfills these conditions:
$1: t ̦ * t ̧=0$,
$2: t ̦ * 0=0$, for all $t ̦ \in X$.
3: $(\mathrm{t} * \mathrm{t}) * \mathrm{t}=\mathrm{t} *(\mathrm{t} *(0 * \mathrm{t}) \forall \mathrm{t}, \mathrm{t}, \mathrm{t} \in \mathrm{X}$.
Definition 2.2 [21] A nonempty subset K of B-algebra X is called a subalgebra of Y if $t \rightarrow * \in K \forall t, t \in K$, a mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ of B-algebra is called B-homomorphism if $\mathrm{f}\left(\mathrm{t} * \mathrm{t}_{\mathrm{t}}\right)=\mathrm{f}(\mathrm{t}) * \mathrm{f}(\mathrm{t}) \forall \mathrm{t}, \mathrm{t} \in \mathrm{X}$.

Definition 2.3 [1] Let X be a collection of elements like $t ̧$. Then a FS J in X is defined as $\left.J=\left\{<t, v_{J}(t)\right\rangle \mid t \in X\right\}$, where $\mu_{\mathrm{J}}(\mathrm{t})$ is called the existenceship value of t, in J and $v_{\mathrm{J}}(\mathrm{t}) \in[0,1]$.

For a family $\mathrm{J}_{\mathrm{i}}=\left\{\left\langle\mathrm{t}, \mathrm{v}_{\mathrm{J}_{\mathrm{i}}}(\mathrm{t})>\right| \mathrm{t} \in \mathrm{X}\right\}$ of FSs in X , where $\mathrm{i} \in \mathrm{k}$ and k is index set, Then join (V) and meet (Λ) are as follows:

$$
\underset{\mathrm{i} \in \mathrm{k}}{\mathrm{~V}_{\mathrm{i}}}=\left(\mathrm{V}_{\mathrm{i} \in \mathrm{k}} v_{\mathrm{J}_{\mathrm{i}}}\right)(\mathrm{t})=\sup \left\{\mathrm{v}_{\mathrm{J}_{\mathrm{i}}} \mid \mathrm{i} \in \mathrm{k}\right\}
$$

and

$$
\hat{i}_{\mathrm{i} k} \mathrm{~J}_{\mathrm{i}}=\left(\hat{i} \in \mathrm{k}_{\wedge}^{v_{\mathrm{ij}}}\right)(\mathrm{t})=\inf \left\{v_{\mathrm{J}_{\mathrm{i}}} \mid \mathrm{i} \in \mathrm{k}\right\},
$$

respectively, $\forall t \in \mathbb{X}$.

Definition 2.4 [2] An IVFS B is of the form $B=\left\{<t, \tilde{v}_{B}(t)>\mid t \in X\right\}$, where $\tilde{v}_{B} \mid X \rightarrow D[0,1]$, here $D[0,1]$ is the collection of all subintervals of $[0,1]$. The intervals $\tilde{v}_{B}(t)=\left[v_{B}^{-}(t), v_{B}^{+}(t)\right] \forall t, \in X$ denote the degree of existence of $t ̧$ to the set B, also $\widetilde{v}_{B}^{c}=\left[1-v_{B}^{-}(t), 1-v_{B}^{+}(t)\right]$ shows the complement of \tilde{v}_{B}.

For a family $B_{i}=\left\{<t, \tilde{v}_{B}(t)>\mid t \in X\right\}$ of IVFSs in X where k is an index set and $i \in k$, the union $G=$ $\bigcup_{\mathrm{i} \in \mathrm{k}} \tilde{\mathrm{k}}_{\mathrm{B}_{\mathrm{i}}}(\mathrm{t})$ and the intersection $\mathrm{F}=\bigcap_{\mathrm{i} \in \mathrm{k}} \tilde{\mathrm{k}}_{\mathrm{B}_{\mathrm{i}}}(\mathrm{t})$ are defined below:

$$
\mathrm{G}(\mathrm{t})=\operatorname{rsup}\left\{\tilde{v}_{\mathrm{B}_{\mathrm{i}}}(\mathrm{t}) \mathrm{i} \in \mathrm{k}\right\}
$$

and

$$
\mathrm{F}(\mathrm{t})=\operatorname{rinf}\left\{\tilde{v}_{\mathrm{B}_{\mathrm{i}}}(\mathrm{t}) \mid \mathrm{i} \in \mathrm{k}\right\}
$$

respectively, $\forall t \in X$.
Definition 2.5 [20] Consider two elements $D_{1}, D_{2} \in D[0,1]$. If $D_{1}=\left[t_{1}^{-}, t_{1}^{+}\right]$and $D_{2}=\left[t_{2}^{-}, \zeta_{2}^{+}\right]$, then $r m a x\left(D_{1}, D_{2}\right)=$ $\left[\max \left(\mathrm{t}_{1}^{-}, \mathrm{t}_{2}^{-}\right), \max \left(\mathrm{t}_{1}^{+}, \mathrm{t}_{2}^{+}\right)\right]$which is denoted by $\mathrm{D}_{1} \mathrm{~V}^{\mathrm{r}} \mathrm{D}_{2}$ and $\operatorname{rmin}\left(\mathrm{D}_{1}, \mathrm{D}_{2}\right)=\left[\min \left(\mathrm{t}_{1}^{-}, \mathrm{t}_{2}^{-}\right), \min \left(\mathrm{t}_{1}^{+}, \mathrm{t}_{2}^{+}\right)\right]$which is denoted by $D_{1} \wedge^{r} D_{2}$. Thus, if $D_{i}=\left[t_{1}^{-}, t_{2}^{+}\right] \in D[0,1]$ for $i=1,2,3, \ldots$, then we define $\operatorname{rsup}_{i}\left(D_{i}\right)=$ $\left[\sup _{i}\left(t_{i}^{-}\right), \sup _{i}\left(t_{i}^{+}\right)\right]$, i.e., $V_{i}^{r} D_{i}=\left[V_{i} t_{i}^{-}, V_{i} t_{i}^{+}\right]$. Similarly we define $\operatorname{rinf}_{i}\left(D_{i}\right)=\left[\inf _{i}\left(t_{i}^{-}\right), \inf _{i}\left(t_{i}^{+}\right)\right]$, i.e., $\Lambda_{i}^{r} D_{i}=$ $\left[\Lambda_{i} t_{i}^{-}, \Lambda_{i} t_{i}^{+}\right]$. Now we call $D_{1} \geq D_{2} \Leftarrow t_{1}^{-} \geq t_{2}^{-}$and $t_{1}^{+} \geq t_{2}^{+}$. Similarly the relations $D_{1} \leq D_{2}$ and $D_{1}=D_{2}$ are defined.

Definition 2.6 [19] A fuzzy set $B=\left\{<t, v_{B}(t)>\mid t \in X\right\}$ is called a fuzzy subalgebra of X if $v_{B}(t, t) \geq$ $\min \left\{v_{\mathrm{B}}(\mathrm{t}), \mathrm{v}_{\mathrm{B}}(\mathrm{t})\right\} \forall \mathrm{t}, \mathrm{t} \in \mathrm{X}$.

Definition 2.7 [14] Let X be a nonempty set. A NCS is $P_{k}=(B, \Lambda)$, where $B=\left\{\left\langle t ; B_{T}(t), B_{I}(t), B_{F}(t)\right\rangle \mid t \in X\right\}$ is an interval neutrosophic set in X and $\Lambda=\left\{\left\langle t ; \lambda_{T}(t), \lambda_{\mathrm{I}}(\mathrm{t}), \lambda_{\mathrm{F}}(\mathrm{t})\right\rangle \mid \mathrm{t} \in \mathrm{X}\right\}$ is a neutrosophic set in X .

Definition 2.8 [3] Let U be a universe and cubic set in U, we mean a structure $\left\{t, \bar{v}_{A}(t), \lambda_{A}(t) \mid t \in U\right\}$ in which \bar{v}_{A} is an IVF set in U and λ_{A} is a fuzzy set in U. A cubic set $A=\left\{t, \bar{v}_{A}(t), \lambda_{A}(t) \mid t, \in U\right\}$ is simply denoted by $C(U)$, which is the set of all cubic sets in U.

Definition $2.9[3]$ Let $C=\{\langle t, C(t), \lambda(t)\rangle\}$ be a cubic set, where $C(t)$ is an IVFS in $Y, \lambda(t)$ is a fuzzy set in Y. Then A is cubic subalgebra under $*$ if it fulfills these axioms:

$$
\begin{aligned}
& \mathrm{C} 1: \mathrm{C}(\mathrm{t} * \mathrm{t}) \geq \operatorname{rmin}\{\mathrm{C}(\mathrm{t}), \mathrm{C}(\mathrm{t})\}, \\
& \mathrm{C} 2: \lambda(\mathrm{t}, \mathrm{t}) \leq \max \{\lambda(\mathrm{t}), \lambda(\mathrm{t})\} \forall \mathrm{t}, \mathrm{t} \in \mathrm{X} .
\end{aligned}
$$

Definition 2.10 [18] A fuzzy set $B=\left\{<t, v_{B}(t)>\mid t \in X\right\}$ is called a fuzzy ideal of X if
(i) $v_{B}(0) \geq v_{B}(t)$,
(ii) $v_{\mathrm{B}}(\mathrm{t}) \geq \min \left\{\mathrm{v}_{\mathrm{B}}\left(\mathrm{t} * \mathrm{t}_{\mathrm{t}}\right), v_{\mathrm{B}}(\mathrm{t})\right\} \forall \mathrm{t}, \mathrm{t} \in \mathrm{X}$.

Definition $2.11[14]$ For any $C_{i}=\left(A_{I}, F_{I}\right)$, where $A_{i}=\left\{\left\langle t_{1} ; A_{i T}(t), A_{i I}(t), A_{i F}(t)\right\rangle \mid t, t \in Y\right\}, F_{i}=\left\{\left\langle t_{1} ; F_{i T}(t), F_{i I}(t)\right.\right.$, $\left.\left.\mathrm{F}_{\mathrm{iF}}(\mathrm{t})\right\rangle \mid t \in \mathrm{Y}\right\}$ for $\mathrm{i} \in \mathrm{k}$, then

P-intersection: $\bigcap_{\mathrm{i} \in \mathrm{k}} \mathrm{C}_{\mathrm{i}}=\left(\bigcap_{\mathrm{i} \in \mathrm{k}} \mathrm{A}_{\mathrm{i}}, \bigwedge_{\mathrm{i} \in \mathrm{k}} \mathrm{F}_{\mathrm{i}}\right)$,
R-union: $\underset{i \in k}{\bigcup_{\mathrm{R}}} \mathrm{C}_{\mathrm{i}}=\left(\mathrm{U}_{\mathrm{i} \in \mathrm{k}} \mathrm{A}_{\mathrm{I}}, \bigwedge_{\mathrm{i} \in \mathrm{k}} \mathrm{F}_{\mathrm{i}}\right)$,
R-intersection: $\bigcap_{\mathrm{i} \in \mathrm{k}} \mathrm{C}_{\mathrm{i}}=\left(\bigcap_{\mathrm{i} \in \mathrm{k}} A_{\mathrm{i}}, \mathrm{V}_{\mathrm{i} \in \mathrm{k}} \mathrm{F}_{\mathrm{i}}\right)$.
Definition 2.12 [16] A NCS $\mathrm{R}=\left(\mathrm{R}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)$ of X is called a NCNID of X if it fulfills following axioms:
N3. $\mathrm{R}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(0) \geq \mathrm{R}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha)$ and $\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(0) \leq \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha)$,
N4. $\mathrm{R}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha) \geq \operatorname{rmin}\left\{\mathrm{R}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)), \mathrm{R}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta)\right\}$,
N5. $\left.\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha) \leq \max \left\{\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha) *(\mathrm{t} * \beta)\right), \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta)\right\}, \forall \mathrm{t}, \mathrm{t} \mathrm{X}$ and $\alpha, \beta \in[0,1]$.
Let $\mathrm{R}=\left\{\mathrm{R}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right\}$ be a NCS X then it is called NCCNID of X if it fulfills N 4 , N5 and N6: $\mathrm{R}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(0 *$ $(\mathrm{t} * \alpha)) \geq \mathrm{R}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha)$ and $\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(0 *(\mathrm{t} * \alpha)) \leq \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha), \forall \mathrm{t} \in \mathrm{X}$ and $\alpha \in[0,1]$.

Definition 2.13 [16] Let $\mathrm{R}=\left(\mathrm{R}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)$ and $\mathcal{B}=\left(\mathrm{B}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \mathrm{U}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)$ are two NCSs of X and Y respectively. The Cartesian product $\mathrm{R} \times \mathcal{B}=\left(\mathrm{X} \times \mathrm{Y}, \mathrm{R}_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times \mathrm{B}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times \mathrm{U}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)$ is defined by $\left(\mathrm{R}_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times \mathrm{B}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)(\mathrm{t}, * \alpha, \mathrm{t} * \beta)=$ $\operatorname{rmin}\left\{\mathrm{R}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha), \mathrm{B}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta)\right\}$ and $\left.\left(\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times \mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)(\mathrm{t} * \alpha, \mathrm{t} * \beta)=\max \left\{\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha), \mathrm{u}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta)\right)\right\}$, where $\mathrm{R}_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times$ $\mathrm{B}_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \mid \mathrm{X} \times \mathrm{Y} \rightarrow \mathrm{D}[0,1]$ and $\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times \mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \mid \mathrm{X} \times \mathrm{Y} \rightarrow[0,1] \forall(\mathrm{t}, \mathrm{t}) \in \mathrm{X} \times \mathrm{Y}$ and $\alpha, \beta \in[0,1]$.

Definition 2.14 [16] A neutrosophic cubic subset $\mathrm{R} \times \mathrm{F}=\left(\mathrm{X} \times \mathrm{Y}, \mathrm{R}_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times \mathrm{F}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times \mu_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)$ is called a NCNID if satisfies these conditions:

1. $\left(\mathrm{R}_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times \mathrm{F}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)(0,0) \geq\left(\mathrm{R}_{\mathrm{T}, \mathrm{l}, \mathrm{F}} \times \mathrm{F}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)((\mathrm{t} * \alpha),(\mathrm{t} * \beta))$ and $\left(\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times \mu_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)(0,0) \leq\left(\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times \mu_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)((\mathrm{t} * \alpha),(\mathrm{t} *$ β)) $\forall(t, t) \in X \times Y$ and $\alpha, \beta \in[0,1]$.
2. $\quad\left(\mathrm{R}_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times \mathrm{F}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)\left(\mathrm{t}_{1} * \alpha, \mathrm{t}_{1} * \beta\right) \geq \operatorname{rmin}\left\{\left(\mathrm{R}_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times \mathrm{F}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)\left(\left(\mathrm{t}_{1} * \alpha, \mathrm{t}_{1} * \beta\right) *\left(\mathrm{t}_{2} * \alpha, \mathrm{t}_{2} * \beta\right)\right),\left(\mathrm{R}_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times \mathrm{F}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)\left(\mathrm{t}_{2} *\right.\right.$ $\left.\left.\alpha, t_{2} * \beta\right)\right\}$.
3. $\left(\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times \mu_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)\left(\mathrm{t}_{1} * \alpha, \mathrm{t}_{1} * \beta\right) \leq \max \left\{\left(\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times \mu_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)\left(\left(\mathrm{t}_{1} * \alpha, \mathrm{t}_{1} * \beta\right)\left(\mathrm{t}_{2} * \alpha, \mathrm{t}_{2} * \beta\right)\right),\left(\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times \mu_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)\left(\mathrm{t}_{2} * \alpha, \mathrm{t}_{2} *\right.\right.$ $\beta)\}$ and $\mathrm{R} \times \mathrm{F}$ is closed normal ideal if it satisfies 2, 3, and 4. $\left(\mathrm{R}_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times \mathrm{F}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)\left((0,0) *\left(\mathrm{t}_{1} * \alpha, \mathrm{t}_{1} * \beta\right)\right) \geq$ $\left(\mathrm{R}_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times \mathrm{F}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)(\mathrm{t} * \alpha, \mathrm{t} * \beta)$ and $\left(\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times \mu_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)((0,0) *(\mathrm{t} * \alpha, \mathrm{t} * \beta)) \leq\left(\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times \mu_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)(\mathrm{t} * \alpha, \mathrm{t} * \beta) \quad \forall\left(\mathrm{t}_{1}, \mathrm{t}_{1}\right)$ and $\left(\mathrm{t}_{2}, \mathrm{t}_{2}\right) \in \mathrm{X} \times \mathrm{Y}$ and $\alpha, \beta \in[0,1]$.

Definition 2.15 [9] Let $\tilde{\mathcal{F}}_{\mathrm{k}}=\left(\mathrm{A}_{\mathrm{e}_{\mathrm{i}}}, \Lambda_{\mathrm{e}_{\mathrm{i}}}\right)$ be a neutrosophic soft cubic set, where Y is subalgebra. Then $\tilde{\mathcal{F}}_{\mathrm{k}}$ is NSCMSU under binary operation $*$ where $\mathrm{t}_{1}, \mathrm{t}_{2} \in \mathrm{Y}$ and $\alpha, \beta \in[0,1]$ if it fulfills these conditions:
$A_{\mathrm{e}_{\mathrm{i}}}^{\varrho}\left(\left(\mathrm{t}_{1} * \alpha\right) *\left(\mathrm{t}_{2} * \beta\right)\right) \geq \operatorname{rmin}\left\{A_{\mathrm{e}_{\mathrm{i}}}^{\varrho}\left(\mathrm{t}_{1} * \alpha\right), \mathrm{A}_{\mathrm{e}_{\mathrm{i}}}^{\varrho}\left(\mathrm{t}_{2} * \beta\right)\right\}$ and $\lambda_{\mathrm{e}_{\mathrm{i}}}^{\varrho}\left(\left(\mathrm{t}_{1} * \alpha\right) *\left(\mathrm{t}_{2} * \beta\right)\right) \leq \max \left\{\lambda_{\mathrm{e}_{\mathrm{i}}}^{\varrho}\left(\mathrm{t}_{1} * \alpha\right), \lambda_{\mathrm{e}_{\mathrm{i}}}^{\varrho}\left(\mathrm{t}_{2} *\right.\right.$ $\beta)\}$.

3. r-Multiplication of Neutrosophic Cubic Normal Ideal and Closed Normal Ideal

Definition 3.1. Let $H=\left(H_{T, I, F}, \lambda_{T, I, F}\right)$ be a NCS of X and $\gamma \in[0,1]$. An object of the form $H_{\gamma}^{M}=\left({ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{\mathrm{H}},{ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{\mathrm{H}}\right)$ is called neutrosophic cubic γ multiplication of $\mathrm{H} X$ if it fulfills following axioms:

$$
\begin{array}{ll}
{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}}^{\mathrm{H}}(\mathrm{x})=\gamma \cdot H_{T}^{\mathrm{H}}(\mathrm{x}), & { }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}}^{\mathrm{H}}(\mathrm{x})=\gamma \cdot \lambda_{\mathrm{T}}^{\mathrm{H}}(\mathrm{x}), \\
{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{I}}^{\mathrm{H}}(\mathrm{x})=\gamma \cdot H_{\mathrm{I}}^{\mathrm{H}}(\mathrm{x}), & { }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{I}}^{\mathrm{H}}(\mathrm{x})=\gamma \cdot \lambda_{\mathrm{I}}^{\mathrm{H}}(\mathrm{x}), \\
{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{F}}^{\mathrm{H}}(\mathrm{x})=\gamma \cdot H_{\mathrm{F}}^{\mathrm{H}}(\mathrm{x}), & { }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{F}}^{\mathrm{H}}(\mathrm{x})=\gamma \cdot \lambda_{\mathrm{F}}^{\mathrm{H}}(\mathrm{x}) .
\end{array}
$$

For convinience we use ${ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{\mathrm{H}}=\gamma \cdot \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{\mathrm{H}}(\mathrm{x})$ and ${ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{\mathrm{H}}=\gamma \cdot \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{\mathrm{H}}(\mathrm{x})$.
Theorem 3.1 A γ-multilplication of NCCNID of B-algebra X is also a γ-multilplication of NCMSU of X.
Proof. Suppose $H=\left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right\}$ be a NCCNID of X, then for any $t \in \mathbb{X}$, we have ${ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(0 *(t, t * \alpha))=$ $\gamma \cdot \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(0 *(\mathrm{t} * \alpha)) \geq \gamma \cdot \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha)$ and ${ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(0 *(\mathrm{t} * \alpha))=\gamma \cdot \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(0 *(\mathrm{t} * \alpha)) \leq \gamma \cdot \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha)$. Now by N4, N6, and through proposition 3.3 of article M subalgebra, we know that ${ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}((\mathrm{t} * *) *(\mathrm{t} * \beta))=\gamma . \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}((\mathrm{t}, * \alpha) *$ $(\mathrm{t} * \beta)) \geq \gamma \cdot \operatorname{rmin}\left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)) *(0 *(\mathrm{t} * \beta))), \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(0 *(\mathrm{t} * \beta))\right\}=\gamma \cdot \operatorname{rmin}\left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha), \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(0 *\right.$ $(\mathrm{t} * \beta))\} \geq \gamma \cdot \operatorname{rmin}\left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha), \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta)\right\}=\operatorname{rmin}\left\{\gamma \cdot \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha), \gamma \cdot \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta)\right\}=\operatorname{rmin}\left\{{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} *\right.$ $\left.\alpha),{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta)\right\} \quad$ and $\quad{ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}((\mathrm{t}, \alpha) *(\mathrm{t} * \beta))=\gamma \cdot \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)) \leq \gamma \cdot \max \left\{\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)) *\right.$ $\left.(0 *(\mathrm{t} * \beta))), \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(0 *(\mathrm{t} * \beta))\right\}=\gamma \cdot \max \left\{\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha), \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(0 *(\mathrm{t} * \beta))\right\} \quad \leq \gamma \cdot \max \left\{\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha), \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} *\right.$ $\beta)\}=\max \left\{\gamma \cdot \lambda_{T, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha), \gamma \cdot \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta)\right\}=\max \left\{{ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha),{ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta)\right\}$. Hence, $\gamma \mathrm{MNCCNID}$ is $\gamma \mathrm{MNCMSU}$ of X.

Proposition 3.1 Every γ-multiplication of NCCNID is a γ-multiplication NCNID but the converse is not true in general.

Theorem 3.2 The R-intersection of any set of γ MNCNIDs of X is also a rMNCNID of X.
Proof. Let $\mathrm{H}_{\mathrm{i}}=\left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{\mathrm{i}}, \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{\mathrm{i}}\right\}$, where $\mathrm{i} \in \mathrm{k}$, be a γ MNCNID of X and $\mathrm{t}, \mathrm{t} \in \mathrm{X}$. Then

$$
\begin{aligned}
& \left(\cap{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}\right)(0)=\operatorname{rinf}{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}(0)=\operatorname{rinf} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}(0) \cdot \gamma \\
& \geq \operatorname{rinf}_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}(\mathrm{t} * \alpha) \cdot \gamma=\operatorname{rinf}{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}(\mathrm{t} * \alpha) \\
& =\left(\cap{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}\right)(\mathrm{t} * \alpha) \\
& \Rightarrow\left(\cap{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}\right)(0) \geq\left(\cap{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}\right)(\mathrm{t} * \alpha)
\end{aligned}
$$

and
now

$$
\operatorname{rmin}\left\{\left(\cap{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}\right)((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)),\left(\cap{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{l}, \mathrm{~F}}^{\mathrm{i}}\right)(\mathrm{t} * \beta)\right\}
$$

and

$$
\begin{aligned}
& \left.\left(V_{\gamma}^{M} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}\right)(\mathrm{t} * \alpha)=\sup _{\gamma}^{M_{\gamma} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{I}}(\mathrm{t},} * \alpha\right)=\sup \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}((\mathrm{t}, * \alpha) \cdot \gamma \\
& \left.\leq \sup \left\{\max \left\{\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}(\mathrm{t}, * \alpha) *(\mathrm{t} * \beta)\right), \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}(\mathrm{t} * \beta)\right\}\right\} \cdot \gamma \\
& =\max \left\{\sup \lambda_{\mathrm{T}, \mathrm{l}, \mathrm{~F}}^{\mathrm{i}}((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)) \cdot \gamma, \sup \lambda_{\mathrm{T}, \mathrm{l}, \mathrm{~F}}^{\mathrm{i}}(\mathrm{t} * \beta) \cdot \gamma\right\} \\
& =\max \left\{\sup _{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)), \sup _{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{l}, \mathrm{~F}}^{\mathrm{i}}(\mathrm{t} * \beta)\right\} \\
& =\max \left\{\left(V_{\gamma}^{M} \lambda_{\mathrm{T}, \mathrm{IF}}^{\mathrm{i}}\right)((\mathrm{t} * \alpha) *(t * \beta)),\left(V_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{IF}}^{\mathrm{i}}\right)(\mathrm{t} * \beta)\right\} \\
& \Rightarrow\left(V_{\gamma}^{M} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{i}\right)(\mathrm{t} * \alpha) \leq \max \left\{\left(\mathrm{V}_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}\right)((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)),\left(\mathrm{V}_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}\right)(\mathrm{t} * \beta)\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \left(\cap{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{IF}}^{\mathrm{i}}\right)(\mathrm{t} * \alpha)=\operatorname{rinf}_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{IF}}^{\mathrm{i}}(\mathrm{t} * \alpha)=\operatorname{rinf} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}(\mathrm{t} * \alpha) \cdot \gamma \\
& \geq \operatorname{rinf}\left\{\operatorname{rmin}\left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)), \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}(\mathrm{t} * \beta)\right\}\right\} \cdot \gamma \\
& =\operatorname{rmin}\left\{\operatorname{rinfH}_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)) \cdot \gamma, \operatorname{rinfH}_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}(\mathrm{t} * \beta) \cdot \gamma\right\} \\
& \left.=\operatorname{rmin}\left\{\operatorname{rinf}_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}(\mathrm{t} * \alpha) *(\mathrm{t} * \beta)\right), \operatorname{rinf}_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{l}, \mathrm{~F}}^{\mathrm{i}}(\mathrm{t} * \beta)\right\} \\
& =\operatorname{rmin}\left\{\left(\cap{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}\right)((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)),\left(\cap{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}\right)((\mathrm{t} * \beta))\right\} \Rightarrow\left(\cap{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}\right)(\mathrm{t} * \alpha) \geq
\end{aligned}
$$

$$
\begin{aligned}
& \left(V_{\gamma}^{M} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{i}\right)(0)=\sup { }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{~F}, \mathrm{~F}}^{i}(0)=\sup \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{i}(0) \cdot \gamma \\
& \leq \sup \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}(\mathrm{t} * \alpha) \cdot \gamma=\sup { }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{l}, \mathrm{~F}}^{\mathrm{i}}(\mathrm{t} * \alpha) \\
& =\left(V_{\gamma}^{M} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}\right)(\mathrm{t} * \alpha) \\
& \Rightarrow\left(V_{\gamma}^{M} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}\right)(0) \leq\left(\mathrm{V}_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{~F}}^{\mathrm{i}}\right)(\mathrm{t} * \alpha) \text {, }
\end{aligned}
$$

which show that R -intersection is a $\gamma \mathrm{MNCNID}$ of X .

Theorem 3.3. The R-intersection of any set of γ MNCCNIDs of X is also a γ-multiplication of NCCNID of X.
Proof. We can prove this theorem as Theorem 3.2.
Theorem 3.4. Let $\mathrm{H}=\left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right\}$ be a NCS of X . Then γ MNCNID of H is a NCNID of X iff ${ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-},{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{+}$and ${ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}$ are fuzzy ideals of X .

Proof. Suppose that $t, t, t \in X$. Since ${ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-}(0)=\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-}(0) . \gamma \geq \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-}(\mathrm{t} * \alpha) . \gamma={ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-}(t, \alpha), \quad{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{+}(0)=$ $\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{+}(0) \cdot \gamma \geq \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{+}(\mathrm{t} * \alpha) \cdot \gamma={ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-}(\mathrm{t} * * \alpha)$, therefore, $\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(0) \geq \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha)$, also ${ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(0)=\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(0) \cdot \gamma \leq$ $\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t}, * \alpha) \cdot \gamma={ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha)$. Suppose that ${ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-},{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{+}$and ${ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}$ are γ-multiplication of fuzzy ideals of X. Then ${ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha)=\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha) \cdot \gamma=\left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-}(\mathrm{t} * \alpha), \mathrm{H}_{\mathrm{T}, \mathrm{l}, \mathrm{F}}^{+}(\mathrm{t} * \alpha)\right\} . \gamma \geq\left[\min \left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-}((\mathrm{t}, \alpha \alpha) *(\mathrm{t} * \beta)), \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-}((\mathrm{t} *\right.\right.$ $\beta))\}, \min \left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{+}((\mathrm{t}, * \alpha) *(\mathrm{t} * \beta)), \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{+}(\mathrm{t} * \beta)\right\} \cdot \gamma \quad=\operatorname{rmin}\left\{\left[\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-}((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)), \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{+}((\mathrm{t}, \alpha) *(\mathrm{t} *\right.\right.$ $\left.\beta))],\left[\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-}((\mathrm{t} * \beta)), \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{+}(\mathrm{t} * \beta)\right]\right\} \cdot \gamma=\operatorname{rmin}\left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)), \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta)\right\} \cdot \gamma=\operatorname{rmin}\left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}((t, \alpha) *\right.$ $\left.(\mathrm{t} * \beta)) \cdot \gamma, \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta) \cdot \gamma\right\}=\operatorname{rmin}\left\{{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)),{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta)\right\}$ and ${ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha) \leq \max \left\{{ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}((\mathrm{t} *\right.$ $\left.\alpha) *(\mathrm{t} * \beta)),{ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta)\right\}$. Therefore γ MNCNID of H is a NCNID of X .

Conversely, assume that γ MNCNID H is a NCNID of X. For any $t, t \in X$, we have $\left\{{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-}(t, \alpha),{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{+}(\mathrm{t} * \alpha)\right\}=$ $\left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-}(\mathrm{t} * \alpha) \cdot \gamma, \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{+}(\mathrm{t} * \alpha) \cdot \gamma\right\}=\left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-}(\mathrm{t} * \alpha), \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{+}(\mathrm{t} * \alpha)\right\} \cdot \gamma=\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha) \cdot \gamma={ }_{\gamma} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha)=\mathrm{rmin}$
$\left\{{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)),{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta)\right\}=\operatorname{rmin}\left\{\left[{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-}((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)),{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{+}((\mathrm{t} * \alpha) *(\mathrm{t} * \beta))\right],\left[{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-}(\mathrm{t} *\right.\right.$ $\left.\left.\beta),{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{+}(\mathrm{t} * \beta)\right]\right\}=\left[\min \left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-}(\mathrm{t}, ~ * \alpha) *(\mathrm{t} * \beta)\right) \cdot \gamma, \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-}(\mathrm{t} * \beta) \cdot \gamma\right\}, \min \left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{+}((\mathrm{t}, \alpha) *(\mathrm{t} * \beta)) . \gamma, \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{+}(\mathrm{t} *\right.$ $\left.\beta) . \gamma\}=\left[\min \left\{{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-}((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)),{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-}(\mathrm{t} * \beta)\right\}, \min \left\{{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{+}(\mathrm{t} * \alpha) *(\mathrm{t} * \beta)\right),{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{+}(\mathrm{t} * \beta)\right\}\right]$. Thus, ${ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-}(\mathrm{t} * \alpha) \geq \quad \min \left\{{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-}((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)),{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-}(\mathrm{t} * \beta)\right\},{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{+}(\mathrm{t} * \alpha) \geq \quad \min \left\{{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{+}((\mathrm{t}, * \alpha) *(\mathrm{t} *\right.$ $\beta)$), $\left.{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{+}(\mathrm{t} * \beta)\right\}$ and ${ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha) \leq \max \left\{{ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)),{ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta)\right\}$. Hence, ${ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}^{-},{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{l}, \mathrm{F}}^{+}$and ${ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}$ are fuzzy ideals of X .

Theorem 3.5. For a NCNID $\mathrm{H}=\left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right\}$ of X , the following statements are valid:

1. If $(t, \alpha) *(t * \beta) \leq z * \gamma$, then $\left.{ }_{\gamma}^{M} H_{T, I, F}(t) * \alpha\right) \geq \operatorname{rmin}\left\{{ }_{\gamma}^{M} H_{T, I, F}(t * \beta),{ }_{\gamma}^{M} H_{T, I, F}(z * \gamma)\right\} \quad$ and $\left.\quad{ }_{\gamma}^{M} \lambda_{T, I, F}(t) * \alpha\right) \leq$ $\max \left\{{ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta),{ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{z} * \gamma)\right\}$,
2. If $(\mathrm{t} * \alpha) \leq(\mathrm{t} * \beta)$, then ${ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha) \geq{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta)$ and $\quad{ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha) \leq{ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta) \quad \forall \quad \mathrm{t}, \mathrm{t}, \mathrm{z} \in$ X and $\alpha, \beta, \gamma \in[0,1]$.

Proof. 1. Assume that $\mathrm{t}, \mathrm{t}, \mathrm{z} \in \mathrm{X}$ such that $(\mathrm{t} * \alpha) *(\mathrm{t} * \beta) \leq(\mathrm{z} * \gamma)$. Then $((\mathrm{t}, * \alpha) *(\mathrm{t} * \beta)) *(\mathrm{z} * \gamma)=0$ and thus ${ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha)=\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha) \cdot \gamma \geq \operatorname{rmin}\left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)), \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta)\right\} \cdot \gamma \geq \operatorname{rmin}\left\{\operatorname{rmin}\left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(((\mathrm{t}, * \alpha) *\right.\right.$ $\left.\left.(\mathrm{t} * \beta)) *(\mathrm{z} * \gamma)), \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{z} * \gamma)\right\}, \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta)\right\} \cdot \gamma=\operatorname{rmin} \quad\left\{\operatorname{rmin}\left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(0), \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{z} * \gamma)\right\}, \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta)\right\} \cdot \gamma=$ $\operatorname{rmin}\left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta) \cdot \gamma, \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{z} * \gamma) \cdot \gamma\right\}=\operatorname{rmin}\left\{{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta),{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{z} * \gamma)\right\} \quad$ and ${ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha)=\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha) \cdot \gamma \leq$ $\max \left\{\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}((\mathrm{t}, \alpha) *(\mathrm{t} * \beta)), \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta)\right\} . \gamma \leq \max \left\{\max \left\{\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)) *(\mathrm{z} * \gamma)), \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{z} * \gamma)\right\}, \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} *\right.$ $\beta)\} \cdot \gamma=\max \left\{\max \left\{\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(0), \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{z} * \gamma)\right\}, \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta)\right\} \cdot \gamma=\max \left\{\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta) \cdot \gamma, \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{z} * \gamma) \cdot \gamma\right\}=\max \left\{{ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} *\right.$乃), $\left.{ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{Z} * \gamma)\right\}$.
2. Again, take $\mathrm{t}, \mathrm{t} \in X$ and $\alpha, \beta \in[0,1]$, such that $(\mathrm{t} * \alpha) \leq(\mathrm{t} * \beta)$. Then $(\mathrm{t} * \alpha) *(\mathrm{t} * \beta)=0$ and thus ${ }_{\gamma}^{M} H_{T, I, F}(\mathrm{t} * *$ $\alpha)=H_{T, I, F}(\mathrm{t} * \alpha) \cdot \gamma \geq \operatorname{rmin}\left\{H_{T, I, F}((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)), H_{T, I, F}(\mathrm{t} * \beta)\right\} \cdot \gamma=\operatorname{rmin}\left\{H_{T, I, F}(0), H_{T, I, F}(\mathrm{t} * \beta)\right\} . \gamma=$ $H_{T, I, F}(\mathrm{t} * \beta) \cdot \gamma=\quad{ }_{\gamma}^{M} H_{T, I, F}(\mathrm{t} * \beta)$, so ${ }_{\gamma}^{M} H_{T, I, F}(\mathrm{t}, \alpha) \geq{ }_{\gamma}^{M} H_{T, I, F}(\mathrm{t} * \beta) \quad$ and $\quad{ }_{\gamma}^{M} \lambda_{T, I, F}(\mathrm{t} * \alpha)=\lambda_{T, I, F}(\mathrm{t} * \alpha) . \gamma \leq$
$\max \left\{\lambda_{T, l, F}((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)), \lambda_{T, l, F}(\mathrm{t} * \beta)\right\} \cdot \gamma=\max \left\{\lambda_{T, l, F}(0), \lambda_{T, l, F}(\mathrm{t} * \beta)\right\} \cdot \gamma=\lambda_{T, l, F}(\mathrm{t} * \beta) \cdot \gamma={ }_{\gamma}^{M} \lambda_{T, l, F}(\mathrm{t} *$ $\beta)$, so ${ }_{\gamma}^{M} \lambda_{T, I, F}(\mathrm{t} * \alpha) \leq{ }_{\gamma}^{M} \lambda_{T, l, F}(\mathrm{t} * \beta)$.

Theorem 3.6. Let ${ }_{\gamma}^{M} \mathrm{H}$ of $\mathrm{H}=\left\{H_{T, I, F}, \lambda_{T, I, F}\right\}$ is a NCNID of $X . \forall t, t \in X$ and $\alpha, \beta \in[0,1]$, then H is a NCMSU of X.

Proof. Assume that ${ }_{\gamma}^{M} \mathrm{H}$ is a NCNID of $X, \forall \mathrm{t}, \mathrm{t} \in X$ and $\alpha, \beta \in[0,1]$. Then $\gamma \cdot H_{T, I, F}((\mathrm{t} * \alpha) *(\mathrm{t} * \beta))=$ $\left.{ }_{\gamma}^{M} H_{T, I, F}(\mathrm{t} * \alpha) *(\mathrm{t} * \beta)\right) \geq \operatorname{rmin}\left\{{ }_{\gamma}^{M} H_{T, I, F}((\mathrm{t} * \beta) *((\mathrm{t} * \alpha) *(\mathrm{t} * \beta))),{ }_{\gamma}^{M} H_{T, I, F}(\mathrm{t} * \beta)\right\}=$ $\operatorname{rmin}\left\{{ }_{\gamma}^{M} H_{T, l, F}(0),{ }_{\gamma}^{M} H_{T, I, F}(\mathrm{t} * \beta)\right\} \geq \operatorname{rmin}\left\{{ }_{\gamma}^{M} H_{T, I, F}(\mathrm{t} * \alpha),{ }_{\gamma}^{M} H_{T, I, F}(\mathrm{t} * \beta)\right\}=r \min \left\{H_{T, l, F}(\mathrm{t} * \alpha) \cdot \gamma, H_{T, l, F}(\mathrm{t} *\right.$ $\left.\beta) \cdot \gamma\}=r \min \left\{H_{T, l, F}(\mathrm{t} * \alpha), H_{T, l, F}(\mathrm{t} * \beta)\right\} \cdot \gamma \Rightarrow H_{T, L, F}(\mathrm{t} * \alpha) *(\mathrm{t} * \beta)\right) \geq r \min \left\{H_{T, l, F}(\mathrm{t} * \alpha), H_{T, L, F}(\mathrm{t} *\right.$
$\beta)\}$ and $\gamma \cdot \lambda_{T, L, F}((\mathrm{t} * \alpha) *(\mathrm{t} * \beta))={ }_{\gamma}^{M} \lambda_{T, L, F}((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)) \leq \max \left\{{ }_{\gamma}^{M} \lambda_{\mathrm{T},, \mathrm{F}}((\mathrm{t} * \beta) *((\mathrm{t} * \alpha) *(\mathrm{t} *\right.$ $\left.\beta)),{ }_{\gamma}^{M} \lambda_{T, l, F}(\mathrm{t} * \beta)\right\}=\max \left\{{ }_{\gamma}^{M} \lambda_{T, L, F}(0),{ }_{\gamma}^{M} \lambda_{T, L, F}(\mathrm{t} * \beta)\right\} \leq \max \left\{{ }_{\gamma}^{M} \lambda_{T, l, F}(\mathrm{t} * \alpha),{ }_{\gamma}^{M} \lambda_{T, I, F}(\mathrm{t} * \beta)\right\}=\max \left\{\lambda_{T, L, F}(\mathrm{t} *\right.$ $\left.\alpha) \cdot \gamma, \lambda_{T, I, F}(\hbar * \beta) \cdot \gamma\right\}=\max \left\{\lambda_{T, I, F}(\mathrm{t} * \alpha), \lambda_{T, I, F}(\mathrm{t} * \beta)\right\} \cdot \gamma \Rightarrow \lambda_{T, l, F}((\mathrm{t} * \alpha) *(\hbar * \beta)) \leq \max \left\{\lambda_{T, I, F}(\mathrm{t} *\right.$ $\left.\alpha), \lambda_{T, I, F}((\mathrm{t} * \beta))\right\}$. Hence, $\mathrm{H}\left\{H_{T, L, F}, \lambda_{T, l, F}\right\}$ is a NCMSU of X.

4. r-Multiplication under Homomorphism

Theorem 4.1. Suppose that $\Gamma \mid X \rightarrow Y$ is a homomorphic mapping of $P S$-algebra. If ${ }_{\gamma}^{M} \mathrm{H}$ of $\mathrm{H}=\left(H_{T, l, F}, \lambda_{T, I, F}\right)$ is a NCNID of Y, then pre-image $\Gamma^{-1}\left({ }_{\gamma}^{M} \mathrm{H}\right)=\left(\Gamma^{-1}\left({ }_{\gamma}^{M} H_{T, L, F}\right), \Gamma^{-1}\left({ }_{\gamma}^{M} \lambda_{T, L, F}\right)\right)$ of ${ }_{\gamma}^{M} \mathrm{H}$ under Γ of X is a NCNID of X.

Proof. For all $\mathrm{t} \in X$ and $\alpha \in[0,1], \Gamma^{-1}\left({ }_{\gamma}^{M} H_{T, L, F}\right)(\mathrm{t} * \alpha)={ }_{\gamma}^{M} H_{T, l, F}(\Gamma(\mathrm{t} * \alpha))=H_{T, L, F}(\Gamma(\mathrm{t} * \alpha)) \cdot \gamma \leq H_{T, l, F}(\Gamma(0)) \cdot \gamma$ $={ }_{\gamma}^{M} H_{T, l, F}(\Gamma(0)) \quad=\Gamma^{-1}\left({ }_{\gamma}^{M} H_{T, L, F}\right)(0) \quad$ and $\left.\quad \Gamma^{-1}\left({ }_{\gamma}^{M} \lambda_{T, l, F}\right)(\mathrm{t} * \alpha)={ }_{\gamma}^{M} \lambda_{T, L, F} \Gamma(\mathrm{t} * \alpha)\right)=\lambda_{T, L, F}(\Gamma(\mathrm{t} * \alpha)) \cdot \gamma \geq$ $\lambda_{T, l, F}(\Gamma(0)) \cdot \gamma={ }_{\gamma}^{M} \lambda_{T, L, F}(\Gamma(0))=\Gamma^{-1}\left({ }_{\gamma}^{M} \lambda_{T, L, F}\right)(0)$.

Let $\quad \mathrm{t}, \mathrm{t} \in X, \quad \Gamma^{-1}\left({ }_{\gamma}^{M} H_{T, L, F}\right)(\mathrm{t} * \alpha)={ }_{\gamma}^{M} H_{T, l, F}(\Gamma(\mathrm{t} * \alpha))=H_{T, I, F}(\Gamma(\mathrm{t} * \alpha)) . \gamma \quad \geq r \min \left\{H_{T, l, F}(\Gamma(\mathrm{t} * \alpha) * \Gamma(\mathrm{t} *\right.$ $\left.\beta)), H_{T, L, F}(\Gamma(\mathrm{t} * \beta))\right\} \cdot \gamma=\operatorname{rmin}\left\{H_{T, I, F}(\Gamma((\mathrm{t} * \alpha) *(\mathrm{t} * \beta))), H_{T, I, F}(\Gamma(\mathrm{t} * \beta))\right\} \cdot \gamma \quad=r \min \left\{\Gamma^{-1}\left(H_{T, l, F}((t, \alpha) *\right.\right.$ $\left.\left.(\mathrm{t} * \beta)) \cdot \gamma), \Gamma^{-1}\left(H_{T, L, F}(\mathrm{t} * \beta) \cdot \gamma\right)\right\}=\operatorname{rmin}\left\{\Gamma^{-1}\left({ }_{\gamma}^{M} H_{T, l, F}((\mathrm{t}) * \alpha) *(\mathrm{t} * \beta)\right)\right), \Gamma^{-1}\left({ }_{\gamma}^{M} H_{T, L, F}(\mathrm{t} * \beta)\right)\right\} \quad$ and $\Gamma^{-1}\left({ }_{\gamma}^{M} \lambda_{T, l, F}\right)(\mathrm{t} * \alpha)={ }_{\gamma}^{M} \lambda_{T, l, F}(\Gamma(\mathrm{t} * \alpha))=\lambda_{T, l, F}(\Gamma(\mathrm{t} * \alpha)) . \gamma \leq \max \left\{\lambda_{T, I, F}(\Gamma(\mathrm{t} * \alpha) * \Gamma(\mathrm{t} * \beta)), \lambda_{T, I, F}(\Gamma(\mathrm{t} *\right.$ $\beta))\} \cdot \gamma=\max \left\{\lambda_{T, l, F}(\Gamma((\mathrm{t} * \alpha) *(\mathrm{t} * \beta))), \lambda_{T, I, F}(\Gamma(\mathrm{t} * \beta))\right\} \cdot \gamma=\max \left\{\Gamma^{-1}\left(\lambda_{T, I, F}(\mathrm{t} * \alpha) *(\mathrm{t} *\right.\right.$ $\beta)$) $\left.\gamma), \Gamma^{-1}\left(\lambda_{T, L, F}(\mathrm{t} * \beta) \cdot \gamma\right)\right\}=\max \left\{\Gamma^{-1}\left({ }_{\gamma}^{M} \lambda_{T, I, F}((\mathrm{t} * \alpha) *(\mathrm{t} * \beta)), \Gamma^{-1}\left({ }_{\gamma}^{M} \lambda_{T, l, F}(\mathrm{t} * \beta)\right)\right\}\right.$. Hence, $\Gamma^{-1}\left({ }_{\gamma}^{M} \mathrm{H}\right)=$ ($\left.\Gamma^{-1}\left({ }_{\gamma}^{M} H_{T, L, F}\right), \Gamma^{-1}\left({ }_{\gamma}^{M} \lambda_{T, I, F}\right)\right)$ is a NCNID of X.

Theorem 4.2. Let $\Gamma \mid X \rightarrow Y$ be a homomorphic mapping of B-algebra. If ${ }_{\gamma}^{M} \mathrm{H}_{i}$ of $\mathrm{H}_{i}=\left(H_{T, I, F}^{i}, \lambda_{T, I, F}^{i}\right)$ is a NCNID of Y where $i \in k$, then the pre-image $\Gamma^{-1}\left(\bigcap_{i \in k}{ }_{\gamma}^{M} H_{T, I, F}^{i}\right)=\left(\Gamma^{-1}\left(\bigcap_{i \in k}{ }_{\gamma}^{M} H_{T, L, F}^{i}\right), \Gamma^{-1}\left(\bigcap_{i \in k}{ }_{\gamma}^{M} \lambda_{T, L, F}^{i}\right)\right)$ is a NCNID of X.

Proof. We can prove this theorem through Theorem 3.2 and Theorem 4.1.
Theorem 4.3. Let $\Gamma \mid X \rightarrow Y$ is an epimorphic mapping of B-algebra.Then ${ }_{\gamma}^{M} \mathrm{H}=\left({ }_{\gamma}^{M} H_{T, I, F},{ }_{\gamma}^{M} \lambda_{T, I, F}\right)$ is a NCNID of Y, if pre-image $\Gamma^{-1}\left({ }_{\gamma}^{M} \mathrm{H}\right)=\left(\Gamma^{-1}\left({ }_{\gamma}^{M} H_{T, I, F}\right), \Gamma^{-1}\left({ }_{\gamma}^{M} \lambda_{T, L, F}\right)\right)$ of ${ }_{\gamma}^{M} \mathrm{H}$ under Γ of X is a NCNID of X

Proof. For any $\mathrm{t} \in Y, \mathrm{t} \in X$ and $\alpha, \beta \in[0,1]$ such that $(\mathrm{t} * \beta)=\Gamma(\mathrm{t} * \alpha)$. Then ${ }_{\gamma}^{M} H_{T, L, F}(\mathrm{t} * \beta)={ }_{\gamma}^{M} H_{T, I, F}(\Gamma(\mathrm{t} * \alpha))$ $=\Gamma^{-1}\left({ }_{\gamma}^{M} H_{T, L, F}\right)(\mathrm{t} * \alpha)=\Gamma^{-1}\left(H_{T, l, F}\right)(\mathfrak{t} * \alpha) \cdot \gamma \geq \Gamma^{-1}\left(H_{T, I, F}\right)(0) \cdot \gamma=H_{T, I, F}(\Gamma(0)) \cdot \gamma=H_{T, l, F}(0) \cdot \gamma={ }_{\gamma}^{M} H_{T, I, F}(0)$ and ${ }_{\gamma}^{M} \lambda_{T, l, F}(\mathrm{t} * \beta)={ }_{\gamma}^{M} \lambda_{T, I, F}(\Gamma(\mathrm{t} * \alpha)) \quad=\Gamma^{-1}\left({ }_{\gamma}^{M} \lambda_{T, l, F}\right)(\mathrm{t} * \alpha)=\Gamma^{-1}\left(\lambda_{T, l, F}\right)(\mathrm{t} * \alpha) \cdot \gamma \leq \Gamma^{-1}\left(\lambda_{T, l, F}\right)(0) \cdot \gamma=$ $\lambda_{T, l, F}(\Gamma(0)) \cdot \gamma=\lambda_{T, I, F}(0) \cdot \gamma={ }_{\gamma}^{M} \lambda_{T, l, F}(0)$.

Assume $\mathrm{t}_{1}, \mathrm{t}_{2} \in Y$. Then $\Gamma\left(\mathrm{t}_{1} * \alpha\right)=\mathrm{t}_{1} * \beta$ and $\Gamma\left(\mathrm{t}_{2} * \alpha\right)=\mathrm{t}_{2} * \beta$ for some $\mathrm{t}_{1}, \mathrm{t}_{2} \in X$ and $\alpha, \beta \in[0,1]$. Thus ${ }_{\gamma}^{M} H_{T, L, F}\left(\mathrm{t}_{1} * \beta\right)={ }_{\gamma}^{M} H_{T, l, F}\left(\Gamma\left(\mathrm{t}_{1} * \alpha\right)\right)=\Gamma^{-1}\left({ }_{\gamma}^{M} H_{T, l, F}\right)\left(\mathrm{t}_{1} * \alpha\right)=\Gamma^{-1}\left(H_{T, L, F}\right)\left(\mathrm{t}_{1} * \alpha\right) . \gamma \geq r \min \left\{\Gamma^{-1}\left({ }_{\gamma}^{M} H_{T, L, F}\right)\left(\left(\mathrm{t}_{1} *\right.\right.\right.$
$\left.\left.\alpha) *\left(\mathrm{t}_{2} * \alpha\right)\right), \Gamma^{-1}\left({ }_{\gamma}^{M} H_{T, I, F}\right)\left(\mathrm{t}_{2} * \alpha\right)\right\} . \gamma=\operatorname{rmin}\left\{{ }_{\gamma}^{M} H_{T, l, F}\left(\Gamma\left(\left(\mathrm{t}_{1} * \alpha\right) *\left(\mathrm{t}_{2} * \alpha\right)\right)\right), H_{T, I, F}\left(\Gamma\left(\mathrm{t}_{2} * \alpha\right)\right)\right\} . \gamma=$ $r \min \left\{H_{T, l, F}\left(\Gamma\left(\mathrm{t}_{1} * \alpha\right) * \Gamma\left(\mathrm{t}_{2} * \alpha\right)\right), H_{T, l, F}\left(\Gamma\left(\mathrm{t}_{2} * \alpha\right)\right)\right\}=\operatorname{rmin}\left\{H_{T, l, F}\left(\left(\mathrm{t}_{1} * \beta\right) *\left(\mathrm{t}_{2} * \beta\right)\right), H_{T, l, F}\left(\mathrm{t}_{2} * \beta\right)\right\} . \gamma=$ $\left.\operatorname{rmin}\left\{H_{T, I, F}\left(\mathrm{t}_{1} * \beta\right) *\left(\mathrm{t}_{2} * \beta\right)\right) \cdot \gamma, H_{T, l, F}\left(\mathrm{t}_{2} * \beta\right) . \gamma\right\}=\operatorname{rmin}\left\{{ }_{\gamma}^{M} H_{T, l, F}\left(\left(\mathrm{t}_{1} * \beta\right) *\left(\mathrm{t}_{2} * \beta\right)\right),{ }_{\gamma}^{M} H_{T, I, F}\left(\mathrm{t}_{2} * \beta\right)\right\} \quad$ and ${ }_{\gamma}^{M} \lambda_{T, L, F}\left(\mathrm{t}_{1} * \beta\right)={ }_{\gamma}^{M} \lambda_{T, I, F}\left(\Gamma\left(\mathrm{t}_{1} * \alpha\right)\right)=\Gamma^{-1}\left({ }_{\gamma}^{M} \lambda_{T, l, F}\right)\left(\mathrm{t}_{1} * \alpha\right)=\Gamma^{-1}\left(\lambda_{T, l, F}\right)\left(\mathrm{t}_{1} * \alpha\right) \cdot \gamma \leq \max \left\{\Gamma^{-1}\left({ }_{\gamma}^{M} \lambda_{T, l, F}\right)\left(\left(\mathrm{t}_{1} *\right.\right.\right.$ $\left.\left.\alpha) *\left(\mathrm{t}_{2} * \alpha\right)\right), \Gamma^{-1}\left({ }_{\gamma}^{M} \lambda_{T, I, F}\right)\left(\mathrm{t}_{2} * \alpha\right)\right\} \cdot \gamma=\max \left\{{ }_{\gamma}^{M} \lambda_{T, I, F}\left(\Gamma\left(\left(\mathrm{t}_{1} * \alpha\right) *\left(\mathrm{t}_{2} * \alpha\right)\right)\right), \lambda_{T, I, F}\left(\Gamma\left(\mathrm{t}_{2} * \alpha\right)\right)\right\} \cdot \gamma=$ $\left.\max \left\{\lambda_{T, l, F}\left(\Gamma\left(\mathrm{t}_{1} * \alpha\right) * \Gamma\left(\mathrm{t}_{2} * \alpha\right)\right), \lambda_{T, I, F}\left(\Gamma\left(\mathrm{t}_{2} * \alpha\right)\right)\right\}=\max \left\{\lambda_{T, I, F}\left(\mathrm{t}_{1} * \beta\right) *\left(\mathrm{t}_{2} * \beta\right)\right), \lambda_{T, I, F}\left(\mathrm{t}_{2} * \beta\right)\right\} \cdot \gamma=$ $\left.\max \left\{\lambda_{T, I, F}\left(\mathrm{t}_{1} * \beta\right) *\left(\mathrm{t}_{2} * \beta\right)\right) \cdot \gamma, \lambda_{T, I, F}\left(\mathrm{t}_{2} * \beta\right) \cdot \gamma\right\}=\max \left\{{ }_{\gamma}^{M} \lambda_{T, l, F}\left(\left(\mathrm{t}_{1} * \beta\right) *\left(\mathrm{t}_{2} * \beta\right)\right),{ }_{\gamma}^{M} \lambda_{T, I, F}\left(\mathrm{t}_{2} * \beta\right)\right\}$. Hence, ${ }_{\gamma}^{M} \mathrm{H}=\left({ }_{\gamma}^{M} H_{T, I, F},{ }_{\gamma}^{M} \lambda_{T, I, F}\right)$ is a NCNID of Y.

5. r-Multiplication of Cartesian Product

Theorem 5.1. Let ${ }_{\gamma}^{M} \mathrm{H}=\left({ }_{\gamma}^{M} H_{T, I, F},{ }_{\gamma}^{M} \lambda_{T, I, F}\right)$ and ${ }_{\gamma}^{M} \mathrm{~F}=\left({ }_{\gamma}^{M} F_{T, I, F},{ }_{\gamma}^{M} \mu_{T, I, F}\right)$ are NCNIDs of X and Y respectively. Then ${ }_{\gamma}^{M} \mathrm{H} \times{ }_{\gamma}^{M} \mathrm{~F}$ is a neutrosophic cubic normal ideal of $X \times Y$.

Proof. For any $(\mathrm{t}, \mathrm{t}) \in X \times Y$ and $\alpha, \beta \in[0,1]$. We have $\left({ }_{\gamma}^{M} H_{T, L, F} \times{ }_{\gamma}^{M} F_{T, L, F}\right)(0,0)=\gamma .\left(H_{T, L, F} \times F_{T, L, F}\right)(0,0)=$ $\gamma \cdot \operatorname{rmin}\left\{H_{T, l, F}(0), F_{T, l, F}(0)\right\} \geq \gamma \cdot \operatorname{rmin}\left\{H_{T, l, F}(\mathrm{t} * \alpha), F_{T, I, F}(\mathrm{t} * \beta)\right\}=\operatorname{rmin}\left\{H_{T, L, F}(\mathrm{t} * \alpha) \cdot \gamma, F_{T, I, F}(\mathrm{t} * \beta) \cdot \gamma\right\}=$ $\operatorname{rmin}\left\{{ }_{\gamma}^{M} H_{T, l, F}(\mathrm{t} * \alpha),{ }_{\gamma}^{M} F_{T, l, F}(\mathrm{t} * \beta)\right\}=\quad\left({ }_{\gamma}^{M} H_{T, l, F} \times{ }_{\gamma}^{M} F_{T, l, F}\right)(\mathrm{t} * \alpha, \mathrm{t} * \beta)$ and $\quad\left({ }_{\gamma}^{M} \lambda_{T, l, F} \times{ }_{\gamma} \mu_{T, l, F}\right)(0,0)=$ $\gamma .\left(\lambda_{T, l, F} \times \mu_{T, I, F}\right)(0,0)=\gamma \cdot \max \left\{\lambda_{T, l, F}(0), \mu_{T, l, F}(0)\right\} \leq \gamma \cdot \max \left\{\lambda_{T, l, F}(\mathrm{t} * \alpha), \mu_{T, l, F}(\mathrm{t} * \beta)\right\}=\max \left\{\lambda_{T, l, F}(\mathrm{t} *\right.$ $\left.\alpha) . \gamma, \mu_{T, l, F}(\mathrm{t} * \beta) . \gamma\right\}=\max \left\{{ }_{\gamma}^{M} \lambda_{T, l, F}(\mathrm{t} * \alpha),{ }_{\gamma}^{M} \mu_{T, I, F}(\mathrm{t} * \beta)\right\}=\left({ }_{\gamma}^{M} \lambda_{T, l, F} \times{ }_{\gamma} \mu_{T, L, F}\right)(\mathrm{t} * \alpha, \mathrm{t} * \beta)$.

Let $\left(\mathrm{t}_{1}, \mathrm{t}_{1}\right),\left(\mathrm{t}_{2}, \mathrm{t}_{2}\right) \in X \times Y$ and $\alpha, \beta \in[0,1]$. Then $\left({ }_{\gamma}^{M} H_{T, l, F} \times{ }_{\gamma}^{M} F_{T, I, F}\right)\left(\mathrm{t}_{1} * \alpha, \mathrm{t}_{1} * \beta\right)=\gamma .\left(H_{T, L, F} \times F_{T, I, F}\right)\left(\mathrm{t}_{1} *\right.$ $\left.\alpha, t_{1} * \beta\right)=\gamma \cdot r \min \left\{H_{T, l, F}\left(t_{1} * \alpha\right), F_{T, I, F}\left(t_{1} * \beta\right)\right\} \geq \gamma \cdot r m i n\left\{r m i n\left\{H_{T, I, F}\left(\left(t_{1} * \alpha\right) *\left(t_{2} * \alpha\right)\right), H_{T, I, F}\left(t_{2} *\right.\right.\right.$ $\left.\alpha)\}, \operatorname{rmin}\left\{F_{T, I, F}\left(\left(\mathrm{t}_{1} * \beta\right) *\left(\mathrm{t}_{2} * \beta\right)\right), F_{T, I, F}\left(\mathrm{t}_{2} * \beta\right)\right\}\right\}=\quad \gamma \cdot \operatorname{rmin}\left\{r \min \left\{H_{T, l, F}\left(\left(\mathrm{t}_{1} * \alpha\right) *\left(\mathrm{t}_{2} * \alpha\right)\right), F_{T, l, F}\left(\left(\mathrm{t}_{1} * \beta\right) *\right.\right.\right.$ $\left.\left.\left.\left(\mathrm{t}_{2} * \beta\right)\right)\right\}, r \min \left\{H_{T, I, F}\left(\mathrm{t}_{2} * \alpha\right), F_{T, I, F}\left(\mathrm{t}_{2} * \beta\right)\right\}\right\} \quad=\gamma \cdot r \min \left\{\left(H_{T, I, F} \times F_{T, I, F}\right)\left(\left(\mathrm{t}_{1} * \alpha\right) *\left(\mathrm{t}_{2} * \alpha\right),\left(\mathrm{t}_{1} * \beta\right) *\left(\mathrm{t}_{2} *\right.\right.\right.$ $\left.\beta)),\left(H_{T, l, F} \times F_{T, L, F}\right)\left(\left(\mathrm{t}_{2} * \alpha\right),\left(\mathrm{t}_{2} * \beta\right)\right)\right\}=\operatorname{rmin}\left\{\left(H_{T, l, F} \times F_{T, l, F}\right)\left(\left(\mathrm{t}_{1} * \alpha, \mathrm{t}_{1} * \beta\right) *\left(\mathrm{t}_{2} * \alpha, \mathrm{t}_{2} * \beta\right)\right) . \gamma,\left(H_{T, l, F} \times\right.\right.$ $\left.\left.F_{T, l, F}\right)\left(\mathrm{t}_{2} * \alpha, \mathrm{t}_{2} * \beta\right) . \gamma\right\}=r \min \left\{\left({ }_{\gamma}^{M} R_{T, I, F} \times{ }_{\gamma}^{M} F_{T, L, F}\right)\left(\left(\mathrm{t}_{1} * \alpha, \mathrm{t}_{1} * \beta\right) *\left(\mathrm{t}_{2} * \alpha, \mathrm{t}_{2} * \beta\right)\right),\left({ }_{\gamma}^{M} R_{T, L, F} \times{ }_{\gamma}^{M} F_{T, L, F}\right)\left(\mathrm{t}_{2} *\right.\right.$ $\left.\left.\alpha, t_{2} * \beta\right)\right\} \quad$ and $\quad\left({ }_{\gamma}^{M} \lambda_{T, l, F} \times{ }_{\gamma}^{M} \mu_{T, l, F}\right)\left(t_{1} * \alpha, t_{1} * \beta\right)=\gamma .\left(\lambda_{T, l, F} \times \mu_{T, I, F}\right)\left(t_{1} * \alpha, t_{1} * \beta\right)=\gamma \cdot \max \left\{\lambda_{T, l, F}\left(t_{1} *\right.\right.$ $\left.\alpha), \mu_{T, I, F}\left(\mathrm{t}_{1} * \beta\right)\right\} \leq \gamma . \max \left\{\max \left\{\lambda_{T, l, F}\left(\left(\mathrm{t}_{1} * \alpha\right) *\left(\mathrm{t}_{2} * \alpha\right)\right), \lambda_{T, l, F}\left(\mathrm{t}_{2} * \alpha\right)\right\}, \max \left\{\mu_{T, I, F}\left(\left(\mathrm{t}_{1} * \beta\right) *\left(\mathrm{t}_{2} *\right.\right.\right.\right.$
$\left.\left.\beta)), F_{T, I, F}\left(\mathrm{t}_{2} * \beta\right)\right\}\right\} \quad=\gamma \cdot \max \left\{\max \left\{\lambda_{T, I, F}\left(\left(\mathrm{t}_{1} * \alpha\right) *\left(\mathrm{t}_{2} * \alpha\right)\right), \mu_{T, l, F}\left(\left(\mathrm{t}_{1} * \beta\right) *\left(\mathrm{t}_{2} * \beta\right)\right)\right\}, \max \left\{\lambda_{T, I, F}\left(\mathrm{t}_{2} *\right.\right.\right.$ $\left.\left.\alpha), \mu_{T, l, F}\left(\mathrm{t}_{2} * \beta\right)\right\}\right\} \quad=\gamma \cdot \max \left\{\left(\lambda_{T, l, F} \times \mu_{T, l, F}\right)\left(\left(\mathrm{t}_{1} * \alpha\right) *\left(\mathrm{t}_{2} * \alpha\right),\left(\mathrm{t}_{1} * \beta\right) *\left(\mathrm{t}_{2} * \beta\right)\right),\left(\lambda_{T, l, F} \times \mu_{T, l, F}\right)\left(\left(\mathrm{t}_{2} *\right.\right.\right.$ $\left.\left.\alpha),\left(\mathrm{t}_{2} * \beta\right)\right)\right\}=\max \left\{\left(\lambda_{T, l, F} \times \mu_{T, l, F}\right)\left(\left(\mathrm{t}_{1} * \alpha, \mathrm{t}_{1} * \beta\right) *\left(\mathrm{t}_{2} * \alpha, \mathrm{t}_{2} * \beta\right)\right) \cdot \gamma,\left(\lambda_{T, I, F} \times \mu_{T, I, F}\right)\left(\mathrm{t}_{2} * \alpha, \mathrm{t}_{2} * \beta\right) \cdot \gamma\right\}=$ $\max \left\{\left({ }_{\gamma}^{M} \lambda_{T, I, F} \times{ }_{\gamma}^{M} \mu_{T, I, F}\right)\left(\left(\mathrm{t}_{1} * \alpha, \mathrm{t}_{1} * \beta\right) *\left(\mathrm{t}_{2} * \alpha, \mathrm{t}_{2} * \beta\right)\right),\left({ }_{\gamma}^{M} \lambda_{T, l, F} \times{ }_{\gamma}^{M} \mu_{T, I, F}\right)\left(\mathrm{t}_{2} * \alpha, \mathrm{t}_{2} * \beta\right)\right\}$. Hence, ${ }_{\gamma}^{M} \mathrm{H} \times{ }_{\gamma}^{M} \mathrm{~F}$ is a neutrosophic cubic normal ideal of $X \times Y$.

Theorem 5.2. Let ${ }_{\gamma}^{M} \mathrm{H}=\left({ }_{\gamma}^{M} H_{T, I, F},{ }_{\gamma}^{M} \lambda_{T, I, F}\right)$ and ${ }_{\gamma}^{M} \mathrm{~F}=\left({ }_{\gamma}^{M} F_{T, L, F},{ }_{\gamma}^{M} \mu_{T, L, F}\right)$ are two γ-multiplications of neutrosophic cubic closed normal ideals of X and Y respectively. Then ${ }_{\gamma}^{M} \mathrm{H} \times{ }_{\gamma}^{M} \mathrm{~F}$ is a NCCNID of $X \times Y$.

Proof. By Proposition 3.1 and Theorem 5.1, ${ }_{\gamma}^{M} \mathrm{H} \times{ }_{\gamma}^{M} \mathrm{~F}$ is NCNID. Now, $\left({ }_{\gamma}^{M} H_{T, L, F} \times{ }_{\gamma}^{M} F_{T, I, F}\right)((0,0) *(\mathrm{t} * \alpha, \mathrm{t} * \beta))=$ $\left(H_{T, l, F} \times F_{T, I, F}\right)((0,0) *(\mathrm{t} * \alpha, \mathrm{t} * \beta)) \cdot \gamma=\left(H_{T, l, F} \times F_{T, \mathrm{I}, F}\right)(0 *(\mathrm{t} * \alpha), 0 *(\mathrm{t} * \beta)) \cdot \gamma=\gamma \cdot \operatorname{rmin}\left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(0 *(\mathrm{t} *\right.$ $\left.\alpha)), \mathrm{F}_{\mathrm{T}, \mathrm{I},}(0 *(\mathrm{t} * \beta))\right\} \geq \gamma \cdot \operatorname{rmin}\left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha), \mathrm{F}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta)\right\}=\operatorname{rmin}\left\{\mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha) . \gamma, \mathrm{F}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta) \cdot \gamma\right\}=$ $\left.\operatorname{rmin}\left\{{ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \alpha),{ }_{\gamma}^{\mathrm{M}} \mathrm{F}_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \mathrm{t} * \beta\right)\right\}=\left({ }_{\gamma}^{\mathrm{M}} \mathrm{H}_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times{ }_{\gamma}^{\mathrm{M}} \mathrm{F}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)(\mathrm{t} * \alpha, \mathrm{t} * \beta) \quad$ and $\quad\left({ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times{ }_{\gamma}^{\mathrm{M}} \mu_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)((0,0) *(\mathrm{t} * \alpha, \mathrm{t} *$ $\beta))=\left(\lambda_{\mathrm{T}, \mathrm{I} \mathrm{F}} \times \mu_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)((0,0) *(\mathrm{t} * \alpha, \mathrm{t} * \beta)) \cdot \gamma=\left(\lambda_{\mathrm{T}, \mathrm{I} \mathrm{F}} \times \mu_{\mathrm{T}, \mathrm{I} \mathrm{F}}\right)(0 *(\mathrm{t} * \alpha), 0 *(\mathrm{t} * \beta)) \cdot \gamma=\gamma \cdot \max \left\{\lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(0 *(\mathrm{t} *\right.$ $\alpha)$), $\left.\mu_{\mathrm{T}, \mathrm{IF}}(0 *(\mathrm{t} * \beta))\right\} \leq \gamma \cdot \max \left\{\lambda_{\mathrm{T}, \mathrm{IF}}(\mathrm{t} * \alpha), \mu_{\mathrm{T}, \mathrm{IF}}(\mathrm{t} * \beta)\right\}=\max \left\{\lambda_{\mathrm{T}, \mathrm{IF}}(\mathrm{t} * \alpha) . \gamma, \mu_{\mathrm{T}, \mathrm{IF}}(\mathrm{t} * \beta) \cdot \gamma\right\}=\max \left\{{ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} *\right.$ $\left.\alpha),{ }_{\gamma}^{\mathrm{M}} \mu_{\mathrm{T}, \mathrm{I}, \mathrm{F}}(\mathrm{t} * \beta)\right\}=\left({ }_{\gamma}^{\mathrm{M}} \lambda_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \times{ }_{\gamma}^{\mathrm{M}} \mu_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)(\mathrm{f} * \alpha, \mathrm{t} * \beta)$. Hence, ${ }_{\gamma}^{\mathrm{M}} \mathrm{H} \times{ }_{\gamma}^{\mathrm{M}} \mathrm{F}$ is a neutrosophic cubic closed normal ideal of $\mathrm{X} \times \mathrm{Y}$.

6. Conclusion

In this paper, the notion of γ-multiplication of neutrosophic cubic set was introduced and γ-multiplication was studies by several useful results. This study will provide the base for further work like t-neutrosophic soft cubic and intuitionistic soft cubic set etc

REFERENCES

[1] Zadeh, L. A. (1965). Fuzzy sets, Information and control, 8, 338-353. [2] Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning, Information science, 8, 199-249.
[3] Jun, Y. B. Kim, C. S. and Yang, K. O. (2012). Cubic sets, Annuals of Fuzzy Mathematics and Informatics, 4, 8398.
[4] Senapati, T. Kim, C. H. Bhowmik, M., and Pal, M. (2015). Cubic subalgebras and cubic closed ideals of Balgebras, Fuzzy Information and Engineering, 7, 209-220.
[5] Imai, Y. and Iseki, K. (1966). On Axiom systems of Propositional calculi XIV, Proc. Japan Academy, 42, 19-22.
[6] Iseki, K. (1966). An algebra related with a propositional calculus, Proc. Japan Academy, 42, 26-29.
[7] Jun, Y. B. Kim, C. S. and Kang, M. S. (2010). Cubic subalgebras and ideals of BCK = BCI-algebra, Far East Journal of Mathematical Sciences, 44, 239-250.
[8] Jun, Y. B. Kim, C. S. and Kang, J. G. (2011). Cubic q-Ideal of BCI-algebras, Annals of Fuzzy Mathematics and Informatics, 1, 25-34.
[9] Khalid, M. Khalid, H. and Khalid, N. A., Neutrosophic cubic normal ideal and neutrosophic cubic closed normal ideal of PS-algebra.(submitted)
[10] Senapati, T. Bhowmik, M. and Pal, M. (2011). Fuzzy closed ideals of B-algebras, International Journal of Computer Science, Engineering and Tech- nology, 1, 669-673.
[11] Senapati, T. Bhowmik, M. and Pal, M. (2013). Fuzzy closed ideals of B-alg-ebras, with interval-valued membership function, International Journal of Fuzzy Mathematical Archive, 1, 79-91. [12] Smarandache, F. (2005). Neutrosophic set a generalization of the intuitionistic fuzzy set, International Journal of Pure and Applied Mathematics, 24 (3), 287-297.
[13] Smarandache, F. (1999). A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set and Neutrosophic Probability, (American Heserch Press, Rehoboth, NM). [14] Jun, Y. B. Smarandache, F. and Kim, C. S. (2015). Neutrosophic cubic sets, New Mathematics and Natural Computation, 8-41.
[15] Gulistan, M. Khan, M, Jun, Y. B. Smarandache, F. and Yaqoob, N. (2015). Neutrosophic cubic ideals in semigroups,
[16] Khalid, M. Khalid, N. A. and Khalid, H. Neutrosophic soft cubic M Subalgebras of B-algebras. (submitted)
[17] Jun, Y. B. Smarandache, F. and Kim, C. S. (2016). R-union and R-intersection of neutrosophic cubic sets, IEEE International Conference Fuzzy Systems (FUZZ).
[18] Priya, T. and Ramachandran, T.(2014). A note on fuzzy PS-ideals in PS-algebra and its level subsets, International Journal of Advanced Mathematical Sciences, Vol. 2, No. 2, 101-106.
[19] Khalid, M. Iqbal, R., Zafar, S. and Khalid, H. (2019). Intuitionistic Fuzzy Translation and Multiplication of Galgebra, The Journal of Fuzzy Mathematics, Vol. 27, No. 3, 543-559.
[20] Biwas, R. (1994). Rosenfeld's fuzzy subgroup with interval valued membership function, Fuzzy Sets and Systems, 63, 87-90.
[21] Neggers, J. and Kim, H. S. (2002). A fundamental theorem of B-homomo rphism for B-algebras, Int. Math. J., 2 (3), 207-214.
[22] Khalid, M. Iqbal, R. and B, Said. (2019). Neutrosophic soft cubic Subalgebras of G-algebras. 28. 259-272. 10.5281/zenodo. 3382552.
[23] Neggers, J. and Kim, H. S. (2002). On B-algebras, Matematichki Vesnik 54, 21-29.
[24] Khalid, M. Khalid, N. A. and Broumi, S. T-Neutrosophic Cubic Set on BF-Algebra, Neutrosophic Sets and Systems, vol. 31, (2020), pp. 127-147. DOI: 10.5281/zenodo. 3639470.

[^0]: Project
 Neutrosophic soft cubic Subalgebras of G-algebras View project

