N_β-Closed Sets In Neutrosophic Topological Spaces

M.Avila Princy^{#1}, Dr.A.Francina Shalini^{*2},

[#]*M.phil Research Scholar, Department of Mathematics, Nirmala College for Women, Coimbatore-18.*

*Assistant Professor, Department of Mathematics, Nirmala College for Women, Coimbatore-18.

¹avilaprincy20@gmail.com ²francshalu@gmail.com

Abstract-----The aim of this paper to introduced the new concept of β -closed sets in Neutrosophic topological spaces. We also analyze the properties and characterize the Neutrosophic β -closed sets.

Keywords—Neutrosophic Closed Sets, Neutrosophic Topological Spaces, Neutrosophic β-closed sets, N-semi open, N-preopen.

I. INTRODUCTION

In 1965, Zadeh[9] introduced fuzzy set theory which deals with uncertainties where each element has a degree of membership. In 1983, Atanassov[1] introduced the Intuitionistic fuzzy set where each element has a degree of membership and degree of non-membership values. In 2005, Florentin Smarandache[7] introduced the Neutrosophic set and explained that the generalization of intuitionistic fuzzy set is the Neutrosophic set. In 2012, A.A.Salama and S.A.Alblowi[6] introduced the concept of Neutrosophic topological spaces besides the degree of membership, degree of indeterminacy and the degree of non-membership for each element. In 2014 A.A.Salama, Smarandache and Veleri[5] introduced the concept of Neutrosophic closed sets and continuous functions. In this paper, we introduce the concept N_{β} closed set and characterized some of its properties in Neutrosophic topological spaces.

II. PRELIMINARIES

In this paper the Neutrosophic topological space is denoted by (X,τ) . Alsoneutrosophic interior of A is denoted by NInt(A) and neutrosophic closure of A is denoted by NCl(A). The complement of neutrosophic A is denoted by A^c.

Definition 2.1:

Let X be a nonempty fixed set A is an object having the form $A = \{(x, \mu_A(x), \sigma_A(x), \nu_A(x)): x \in X\}$ where $\mu_A(x), \sigma_A(x), \nu_A(x)$ represents the degree of membership, degree of indeterminacy and the degree of non-membership respectively of each element $x \in X$ to the set A.

Definition 2.2:

Let A={ $\langle x, \mu_A(x), \sigma_A(x), \nu_A(x) \rangle$: x \in X} and B={ $\langle x, \mu_B(x), \sigma_B(x), \nu_B(x) \rangle$: x \in X} are the two neutrosophic sets on X, then the complements become,

 $C(A) = \{ \langle \mathbf{x}, 1 - \mu_A(\mathbf{x}), 1 - \sigma_A(\mathbf{x}), 1 - \nu_A(\mathbf{x}) \rangle : \mathbf{x} \in \mathbf{X} \}$ $C(A) = \{ \langle \mathbf{x}, \nu_A(\mathbf{x}), \sigma_A(\mathbf{x}), \mu_A(\mathbf{x}) \rangle : \mathbf{x} \in \mathbf{X} \}$ $C(A) = \{ \langle \mathbf{x}, \nu_A(\mathbf{x}), 1 - \sigma_A(\mathbf{x}), \mu_A(\mathbf{x}) \rangle : \mathbf{x} \in \mathbf{X} \}$ $C(A \cup B) = C(A) \cap C(B)$ $C(A \cap B) = C(A) \cup C(B).$

Definition 2.3:

Let $A=\{\langle x, \mu_A(x), \sigma_A(x), \nu_A(x) \rangle: x \in X\}$ and $B=\{\langle x, \mu_B(x), \sigma_B(x), \nu_B(x) \rangle: x \in X\}$ are the two neutrosophic sets on X, then $A \subseteq B \Leftrightarrow \mu_A(x) \leq \mu_B(x), \sigma_A(x) \leq \sigma_B(x)$ and $\nu_A(x) \geq \nu_B(x)$ $A=B \Leftrightarrow A \subseteq B$ and $B \subseteq A$ $A \cup B=\langle x, \mu_A(x) \lor \mu_B(x), \sigma_A(x) \lor \sigma_B(x), \nu_A(x) \land \nu_B(x) \rangle$ $A \cap B=\langle x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \nu_A(x) \lor \nu_B(x) \rangle$ *Definition 2.4*

A neutrosophic topological space on a nonempty set X is a family τ of neutrosophic subsets in X satisfies the following axioms:

i) $0_N, 1_N \in \tau$,

ii) $G_1 \cap G_2 \in \tau$, for every G_1 and $G_2 \in \tau$,

iii) $\cup G_i \in \tau$ for every $G_i: I \in J \subseteq \tau$

The pair (X,τ) is a neutrosophic topological space (NTS) and the element τ is called neutrosophic open sets(NOS) in X.A neutrosophic set A is called the neutrosophic closed set A if and only if its complement C(A) is a neutrosophic open set in X.

The empty set (0_N) and the whole set (1_N) may be defined as follows:

$$(0_1) \ 0_N = \{ \langle x, 0, 0, 1 \rangle : x \in X \}$$

- (0₂) $0_{\rm N} = \{ \langle x, 0, 1, 1 \rangle : x \in X \}$
- (0₃) $0_{\rm N} = \{ \langle x, 0, 1, 0 \rangle : x \in X \}$
- (0₄) $0_{\rm N} = \{ \langle x, 0, 0, 0 \rangle : x \in X \}$
- (1₁) $1_{\rm N} = \{ \langle x, 1, 0, 0 \rangle : x \in {\rm X} \}$

(1₂)
$$1_{\rm N} = \{ \langle x, 1, 0, 1 \rangle : x \in {\rm X} \}$$

- (1₃) $1_{N} = \{ \langle x, 1, 1, 0 \rangle : x \in X \}$
- (1₄) $1_{\rm N} = \{ \langle x, 1, 1, 1 \rangle : x \in {\rm X} \}$

Definition 2.5: Let (X,τ) be the neutrosophic topological spaces and $A = \{\langle x, \mu_A(x), \sigma_A(x), \nu_A(x) \rangle: x \in X\}$ be the neutrosophic set in X. Then the neutrosophic interior and closure becomes, NInt(A) = \cup {G:G is an NOS in X and G \subseteq A}NCl(A) = \cap {K:K is an NCS in X and A \subseteq K}

Definition 2.6:

A neutrosophic set of a neutrosophic topological space X is said to be i) A neutrosophic pre-open set(NPOS) if $A \subseteq NInt(NCl(A))ii$) A neutrosophic semi-open set (NSOS) if $A \subseteq NCl(NInt(A))ii$) A

ISSN NO: 1021-9056

By the

 $NInt(NCl(NInt(A))) \subseteq NInt(A).$

neutrosophic α -open set (N α -OS) if A \subseteq NInt(NCl(NInt(A)))iv) A neutrosophic regular open set (NR-OS) if A= NInt(NCl(A)) *Definition 2.7:* A neutrosophic set of a neutrosophic topological space X is said to be i) A neutrosohic pre-closed set(NPCS) if NCl(NInt(A)) \subseteq Aii) A neutrosophic semi-closed set(NSCS) if NInt(NCl(A)) \subseteq Aiii) A neutrosophic α -closed set(N α -CS)if NCl(NInt(NCl(A))) \subseteq A

iv) A neutrosophic regular closed set(NRCS) if A=NCl(NInt(A))

III. NEUTROSOPHIC β-CLOSED SETS

Definition 3.1:

Let (X,τ) be an neutrosophic topological space. Then A is said to be an neutrosophic β closed set $(N_{\beta}-CS)$ if N_{β} cl(A) \subseteq U whenever A \subseteq U and U is neutrosophic pre-open set in X(NPOS). The complement C(A) of a $N_{\beta}CS$ A is a $N_{\beta}OS$ in X.

Theorem 3.2: Every Neutrophic closed set A is N_{β} closed set.*Proof:* Let A \subseteq U where U is preopen set in X. Let NInt(A) \subseteq A. Then

 $NCl(NInt(A)) \subseteq NCl(A).$

definition of NCS, $NCl(NInt(A)) \subseteq A$.

Which implies $NInt(NCl(NInt(A))) \subseteq A$.

Therefore A is N_{β} closed set in X.

Remark 3.3: The converse of the above theorem need not be true which can be shown by the following example.

Example 3.4:

Let X={a,b,c} and τ ={0_N,1_N,G₁,G₂,G₃,G₄} where G₁=(x, (0.5,0.6), (0.4,0.7), (0.3,0.7))

 $G_2 = \langle x, (0.7, 0.5), (0.6, 0.5), (0.7, 0.4) \rangle$ $G_3 = \langle x, (0.7, 0.5), (0.6, 0.7), (0.7, 0.7) \rangle$

 $G_4 = \langle x, (0.5, 0.5), (0.4, 0.5), (0.3, 0.4) \rangle$ Let M= $\langle x, (0.7, 0.6), (0.3, 0.2), (0.8, 0.9) \rangle$ Then the set M is N_{β} closed set but M is not Neutrosophic closed set.

Theorem 3.5:

Every Neutrosophic pre-closed set is N_{β} closed set in (X, τ_N) .

Let $A \subseteq U$ where U is preopen set in X.

Given, Let A be neutrosophic pre-closed set.

 $NCl(NInt(A)) \subseteq A$. Then $NInt(NCl(NInt(A))) \subseteq NInt(A)$.

Which implies $NInt(NCl(NInt(A))) \subseteq A$.

Therefore A is N_{β} closed set in X.

Proof:

Let

Remark 3.6: The converse of the above theorem need not be true which can be shown by the following			
example.			
Example 3.7:			
Let $X = \{a,b,c\}$ and $\tau = \{0_N, 1_N, G_1, G_2\}$ where			
$G_1 = \langle x, (0.7, 0.6), (0.5, 0.5), (0.5, 0.7) \rangle$ $G_2 = \langle x, (0.3, 0.4), (0.5, 0.3), (0.6, 0.8) \rangle$ Let			
$M = \langle x, (0.4, 0.5), (0.5, 0.5), (0.5, 0.8) \rangle$ Then the set M is N _{β} closed set but M is not Neutrosophic pre-closed			
set.			
Theorem 3.8:	Every Neutrosophic semi-		
$\label{eq:closed} \text{closed set is } N_\beta \text{ closed set in } (X, \tau_N). \qquad \qquad \textit{Proof:}$			
Let $A \subseteq U$ where U is preopen set in X.			
Given, Let A be neutrosophic semi-closed set.			
That is $NInt(NCl(A)) \subseteq A$.			
Consider NInt(A)⊆A,	Then		
NCl(NInt(A)))⊆NCl(A) implies NInt(NCl(NInt(A)))⊆NInt(NCl(A))			
which implies $NInt(NCl(NInt(A))) \subseteq A$.			
Therefore A is N_{β} closed set in X.			
Remark 3.9: The converse of the above theorem need not be true which can be shown by the following			
example.			
Example 3.10:			
Let $X = \{a,b,c\}$ and $\tau = \{0_N, 1_N, G_1, G_2\}$ where	$G_1 = \langle x, (0.2, 0.3), (0.4, 0.3), (0.5, 0.6) \rangle$		
$G_2 = \langle x, (0.6, 0.8), (0.5, 0.4), (0.4, 0.2) \rangle$ Let M= $\langle x, (0.6, 0.5), (0.4, 0.4), (0.7, 0.8) \rangle$ Then the set M is N _{β} closed			
set but M is not Neutrosophic semi-closed set.			
Theorem 3.11:			
Every Neutrosophic $\alpha\text{-closed}$ set is N_β closed set in $(X,\!\tau_N).$	Proof:		
Let $A \subseteq U$ where U is preopen set in X.			
Given, Let A be neutrosophic a-closed set.	That is		
$NCl(NInt(NCl(A))) \subseteq A.$	Consider		
$A\subseteq NCl(A)$. Then $NInt(A)\subseteq NInt(NCl(A))$.	Then		
$NCl(NInt(A)) \subseteq NCl(NInt(NCl(A))) \subseteq A.$	Which		
implies NCl(NInt(A))⊆A	Then		
$NInt(NCl(NInt(A))) \subseteq NInt(A) \subseteq A.$	Hence		

 $NInt(Ncl(NInt(A))) \subseteq A.$ Therefore A is N_b closed set in X. *Remark 3.12*: The converse of the above theorem need not be true which can be shown by the following example. Example 3.13: $G_1 = \langle x, (0.4, 0.3), (0.5, 0.8), (0.4, 0.3) \rangle$ Let X={a,b,c} and τ ={0_N,1_N,G₁,G₂,G₃,G₄} where $G_2 = \langle x, (0.2, 0.5), (0.6, 0.3), (0.5, 0.7) \rangle$ $G_3 = (x, (0.4, 0.5), (0.6, 0.8), (0.4, 0.3))G_4 = (x, (0.2, 0.3), (0.5, 0.3), (0.5, 0.7))Let$ M= $\langle x, (0.2, 0.4), (0.6, 0.8), (0.6, 0.7) \rangle$ Then the set M is N_{β} closed set but M is not Neutrosophic α -closed set. Theorem 3.14: Every Neutrosophic regular closed set is N_{β} closed set in (X, τ_N) . Proof: Let $A \subseteq U$ where U is preopen set in X. Given, Let A be neutrosophic regular closed set. That is NCl(NInt(A)) = A. which implies $NInt(NCl(NInt(A))) \subseteq NInt(A) \subseteq A$. Which implies $NInt(NCl(NInt(A))) \subseteq A$. Therefore A is N_{β} closed set in X. Remark 3.15: The converse of the above theorem need not be true which can be shown by the following example. Example 3.16: Let X= $\{a,b,c\}$ and $\tau = \{0_N, 1_N, G_1, G_2\}$ where $G_1 = \langle x, (0.2, 0.3), (0.4, 0.3), (0.6, 0.7) \rangle$ $G_2 = (x, (0.6, 0.5), (0.5, 0.5), (0.4, 0.3))$ Let M=(x, (0.4, 0.4), (0.5, 0.4), (0.5, 0.5))Then the set M is N_b closed set but M is not Neutrosophic regular closed set. Theorem 3.17: The Union of two N_{β} closed set in (X, τ_N) is a N_{β} closed set in (X, τ_N) . *Proof*: Let A and B are N_{β} closed sets in (X,τ_N) . From the definition of N_{β} closed set, N_{β} cl(A) \subseteq U whenever A \subseteq U and U is Preopen in (X, τ_N). Similarly, $N_{\beta}cl(B)$ \subseteq U whenever B \subseteq U and U is Preopen in (X, τ_N). Since A and B are the subsets of U then AUB also the subsets of U and U is the neutrosophic Preopen set, which implies $N_{\beta}cl$ $(A \cup B) = N_{\beta} cl(A) \cup N_{\beta} cl(B).$ Therefore $N_{\beta}cl(A \cup B) \subseteq U$.

Therefore $A \cup B$ is N_{β} closed set in (X, τ_N) .

Theorem 3.18:		Suppose A	
and B are N_β closed set in (X,τ_N) then $N_\beta cl(A\cap B)\subseteq N_\beta cl(A\cap B)$	$\mathfrak{cl}(A)\cap N_{\beta}\mathfrak{l}(B).$	Proof:	
Let A be N_{β} closed set in (X, τ_N) , Then N_{β} cl(A) \subseteq U whenever A \subseteq U and U is neutrosophic preopen in			
(X,τ_N) . Moreover, Since A and B are subsets of U, then A \cap B is a subset of U where U is a neutrosophic			
preopen set . From the result, If $A{\subseteq}B,$ then $N_\beta cl(A) \subseteq N$	V_{β} cl(B),		
which implies $N_{\beta} \operatorname{cl}(A \cap B) \subseteq N_{\beta} \operatorname{cl}(A)$ and $N_{\beta} \operatorname{cl}(A \cap B)$	$\subseteq N_{\beta} cl(B).$	Therefore	
$N_{\beta} \operatorname{cl}(A \cap B) \subseteq N_{\beta}(A) \cap N_{\beta}\operatorname{cl}(B).$			
Example 3.19:	The intersection of two N	$_{\beta}$ closed sets are need not	
be N_{β} closed set.			
Let X={a,b,c} and τ ={0 _N ,1 _N ,G ₁ ,G ₂ ,G ₃ ,G ₄ } where	G ₁ ={ <i>x</i> , (0.8,0	.6), (0.5,0.4), (0.5,0.7))	
$G_2 = \langle x, (0.7, 0.3), (0.7, 0.1), (0.4, 0.9) \rangle$ $G_3 = \langle x, (0.8, 0.4) \rangle$	6), (0.7,0.4), (0.4,0.7))		
$G_4 = \langle x, (0.7, 0.3), (0.5, 0.1), (0.5, 0.9) \rangle$ Let M= $\langle x, (0.7, 0.9) \rangle$	ə), (0.6,0.3), (0.5,0.5)) ar	ıd	
$N = \langle x, (0.7, 0.6), (0.7, 0.4), (0.4, 0.9) \rangle .$	Then M and N are N_β c	losed set,	
And the union MUN= $\langle x, (0.7, 0.9), (0.7, 0.4), (0.4, 0.5) \rangle$	is also an N_{β} closed set.	But the	
intersection M \cap N=(x, (0.7,0.6), (0.6,0.3), (0.5,0.9)) is	not an N_{β} closed set.		
Theorem 3.20:			
Suppose M is N_β closed set in (X,τ_N) and $M\subseteq N\subseteq N_\beta$ a	$\mathfrak{cl}(A)$,then N is also N _{β} clo	osed set in (X, τ_N) .	
Proof:		Let N ⊆	
U and U is neutrosophic preopen in (X, τ_N). Then M \subseteq N	Which implies $M \subseteq U$,	Since	
M is N _{β} closed set, N _{β} cl(M) \subseteq U also M \subseteq N _{β} cl(N) \subseteq	U and $N_{\beta} \operatorname{cl}(N) \subseteq N_{\beta} \operatorname{cl}(M)$	I). Which	
implies $M \subseteq N_{\beta} \operatorname{cl}(N) \subseteq N_{\beta} \operatorname{cl}(M) \subseteq U$.		Therefore N_{β}	
$cl(N) \subseteq U$. and so N is also N_{β} closed set in (X, τ_N) .			
Theorem 3.21:		If M	
be a N_{β} closed subset of (X,τ) , then N_{β} cl (M) -M does not	ot contain any nonempty N	J_{β} closed set.	
Proof:			
Assume that M is N_{β} closed set.			
Let F be a nonempty N_{β} closed set, such that $F \subseteq N_{\beta}$ cl(M)-M = N _{β} cl(M) $\cap \overline{M}$.		
That is, $F \subseteq N_{\beta} \operatorname{cl}(M)$ and $F \subseteq \overline{M}$.		Therefore	
$M \subseteq \overline{F}.$		Since \overline{F} is N_{β}	
open set, $N_{\beta} \operatorname{cl}(M) \subseteq \overline{F} \Rightarrow F \subseteq ((N_{\beta} \operatorname{cl}(M) - M) \cap (\overline{N_{\beta} \operatorname{cl}(M)}))$	$\subseteq \mathbf{N}_{\beta} \operatorname{cl}(\mathbf{M}) \cap (\overline{N_{\beta} \operatorname{cl}(\mathbf{M})}).$		

If M is

Proof:

That is $F \subseteq \phi \Rightarrow F$ is empty.

Therefore N_{β} cl(M)-M does not contain any nonempty N_{β} closed set.

Theorem 3.22:

neutrosophic open also N_B closed set, then M is neutrosophic closed set.

Since M is both neutrosophic open and N_{β} closed set in (X, τ_N).

Then $N_{\beta}cl(M) \subseteq M$ and $M \subseteq N_{\beta}cl(M)$

 \Rightarrow N_{β} cl(M) = M.

Therefore M is neutrosophic closed set in (X,τ_N) .

Theorem 3.23:

If A is both N_{β} closed set and neutrosophic closed set if and only if N cl(A)-A is neutrosophic closed. *Proof:*

From the hypothesis, Let A be N_{β} closed set.

If A is neutrosophic closed set then N cl(A)=A.

 \Rightarrow N cl(A)-A = ϕ .

Therefore N cl(A)-A is neutrosophic closed set.

Conversely,

Assume that N cl(A)-A is neutrosophic closed,

But A is N_{β} closed set and N cl(A)-A \subseteq neutrosophic closed.

 \Rightarrow N cl(A)-A = ϕ . which implies N cl(A)=A.

A is Neutrosophic set.

REFERENCES

- [1] K.Atanassov, "Intuitionisticfuzzy set", Fuzzy sets and systems, (1986), 87-96.
- [2] C.L.Chang, "Fuzzy topological spaces", Journal of Mathematical Analysis and applications, vol.24 (1968), pp.182-190.
- [3] [4] [5] Coker.D., "An introduction to intuitionistic fuzzy topological spaces", Fuzzy sets and systems, Vol.88 (1997), pp. 81-89.
- D.Jayanthi, "a-Generalised closed sets in neutrosophic topological spaces", (2018) pp.88-91. A.A.Salalma, F.Smarandache and K.Valeri, "Neutrosophic closed sets and Neutrosophic continuous functions", Neutrosophic sets and Systems, vol.4 (2014), pp. 4-8.
- [6] A.A.Salama and S.A.Alblowi, "Neutrosophic sets and Neutrosophic Topological spaces", IOSR-JM, vol.3(2012), pp. 31-35.
- [7] F.Smarandache,"Neutrosophic Set-A generalization of the intuitionistic fuzzy set"Journal of Defence Resources Management, vol.1(2010), pp.107-116.
- P.Sundaram and M.Sheik John,"On @-closed sets in Topology", Acta Ciencia India, vol.4(2000), pp.389-392. [8] [9]
- L.A.Zadeh,"Fuzzy set", Inform and Control,vol.8(1965),pp.338-353.

Therefore