Advances in Mathematics: Scientific Journal 9 (2020), no.4, 2203-2207
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.9.4.82 Spec. Issue on NCFCTA-2020

$\mathcal{N}_{\text {NC }} \beta$-OPEN SETS

A. VADIVEL ${ }^{1}$ AND C. JOHN SUNDAR

Abstract. In this article, we study a new types of β-open sets and β-closed sets in $\mathcal{N}_{n c} t s$ and their properties are evaluated with different forms of near sets.

1. Introduction

The concepts of neutrosophy and neutrosophic set was first presented by Smarandache [6, 7]. In 2014, the concept of neutrosophic crisp topological space presented by Salama, Smarandache and Kroumov [5]. Al-Omeri [2] also investigated neutrosophic crisp sets in the build of neutrosophic crisp topological Spaces. Lellis Thivagar et al. [8] introduced the concept of N_{n}-open (closed) sets in N-neutrosophic topological spaces. Al-Hamido [4] explore the possibilities in idea of neutrosophic crisp topological spaces into $N_{n c}$-topological spaces. In 1983, Abd EL Monsef et al. [1] presented β - open sets in topology. Also, the equivalent notion of semi-pre open sets was independently developed by Andrijevic [3] in 1986.

2. Preliminaries

Throughout this article, the preliminaries are as mentioned in the paper [9] and other undefined symbols and definitions are also from [9].

[^0]Throughout the sections $3 \& 4$, let $\left(Y, \mathcal{N}_{n c} \Gamma\right)$ be any $\mathcal{N}_{n c} t s$. Let K and M be an $\mathcal{N}_{n c}$'s in $\left(Y, \mathcal{N}_{n c} \Gamma\right)$.

Definition 3.1. A set K is said to be a $\mathcal{N}_{n c}-\beta$-open (briefly, $\mathcal{N}_{n c} \beta o$) set if $K \subseteq$ $\mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(K)\right)\right)$. The $\mathcal{N}_{n c}-\beta$-closed set (briefly, $\mathcal{N}_{n c} \beta c$) set is the complement of an $\mathcal{N}_{n c} \beta$ o set in Y. The family of all $\mathcal{N}_{n c} \beta o$ (resp. $\mathcal{N}_{n c} \beta c$) set of Y is denoted by $\mathcal{N}_{n c} \beta O S(Y)\left(\right.$ resp. $\mathcal{N}_{n c} \beta C S(Y)$).

Definition 3.2. The $N_{n c} \beta$ interior of K (briefly, $\left.N_{n c} \beta i n t(K)\right)$ and $N_{n c} \beta$ closure of K (briefly, $N_{n c} \beta c l(K)$) are defined as
(i) $\mathcal{N}_{n c} \beta \operatorname{int}(K)=\cup\left\{A: A \subseteq K \& A\right.$ is a $\mathcal{N}_{n c} \beta o$ set in $\left.Y\right\}$.
(ii) $\mathcal{N}_{n c} \beta c l(K)=\cap\left\{C: K \subseteq C \& C\right.$ is a $\mathcal{N}_{n c} \beta c$ set in $\left.Y\right\}$.

Proposition 3.1. The $\mathcal{N}_{n c} \beta$-closure and $\mathcal{N}_{n c} \beta$-interior operator satisfies
(i) $K \subseteq \mathcal{N}_{n c} \beta c l(K)$.
(ii) $\mathcal{N}_{n c} \beta \operatorname{int}(K) \subseteq K$.
(iii) $K \subseteq M \Rightarrow \mathcal{N}_{n c} \beta c l(K) \subseteq \mathcal{N}_{n c} \beta c l(M)$.
(iv) $K \subseteq M \Rightarrow \mathcal{N}_{n c} \beta \operatorname{int}(K) \subseteq \mathcal{N}_{n c} \beta \operatorname{int}(M)$.
(v) $\mathcal{N}_{n c} \beta c l(K \cup M)=\mathcal{N}_{n c} \beta c l(K) \cup \mathcal{N}_{n c} \beta c l(M)$.
(vi) $\mathcal{N}_{n c} \beta \operatorname{int}(K \cap M)=\mathcal{N}_{n c} \beta \operatorname{int}(K) \cap \mathcal{N}_{n c} \beta \operatorname{int}(M)$.
(vii) $\left(\mathcal{N}_{n c} \beta c l(K)\right)^{c}=\mathcal{N}_{n c} \beta \operatorname{int}\left(K^{c}\right)$.
(viii) $\left(\mathcal{N}_{n c} \beta i n t(K)\right)^{c}=\mathcal{N}_{n c} \beta c l\left(K^{c}\right)$.
(ix) $\mathcal{N}_{n c} \beta c l(K)=K$ iff K is an $\mathcal{N}_{n c} \beta c$ set.
(x) $\mathcal{N}_{n c} \beta \operatorname{int}(K)=K$ iff K is an $\mathcal{N}_{n c} \beta$ o set.
(xi) $\mathcal{N}_{n c} \beta c l(K)$ is the smallest $\mathcal{N}_{n c} \beta c$ set containing K.
(xii) $\mathcal{N}_{n c} \beta \operatorname{int}(K)$ is the largest $\mathcal{N}_{n c} \beta$ o set containing K.

Proposition 3.2. The union (resp. intersection) of any family of $\mathcal{N}_{n c} \beta O S(Y)$ (resp. $\mathcal{N}_{n c} \beta C S(Y)$) is a $\mathcal{N}_{n c} \beta O S(Y)\left(r e s p . \mathcal{N}_{n c} \beta C S(Y)\right.$).

Remark 3.1. The intersection of two $\mathcal{N}_{n c} \beta$ os's need not be $\mathcal{N}_{n c} \beta$ os.
Example 1. Let $Y=\left\{l_{1}, m_{1}, n_{1}, o_{1}\right\},{ }_{n c} \Gamma_{1}=\left\{\phi_{N}, X_{N}, L, M, N\right\},{ }_{n c} \Gamma_{2}=\left\{\phi_{N}, X_{N}\right\}$. $L=\left\langle\left\{l_{1}\right\},\{\phi\},\left\{m_{1}, n_{1}, o_{1}\right\}\right\rangle, M=\left\langle\left\{m_{1}, o_{1}\right\},\{\phi\},\left\{l_{1}, n_{1}\right\}\right\rangle, N=\left\langle\left\{l_{1}, m_{1}, o_{1}\right\},\{\phi\}\right.$, $\left.\left\{n_{1}\right\}\right\rangle$, then we have $2_{n c} \Gamma=\left\{\phi_{N}, X_{N}, L, M, N\right\}$. The sets $\left\langle\left\{m_{1}, n_{1}\right\},\{\phi\},\left\{l_{1}, o_{1}\right\}\right\rangle$ $\&\left\langle\left\{n_{1}, o_{1}\right\},\{\phi\},\left\{l_{1}, m_{1}\right\}\right\rangle$ are $\mathcal{N}_{n c} \beta$ os but the intersection $\left\langle\left\{n_{1}\right\},\{\phi\},\left\{l_{1}, m_{1}, o_{1}\right\}\right\rangle$ is not $\mathcal{N}_{n c} \beta$ os.

Proposition 3.3. The statements are hold but the equality does not true.
(i) Every $\mathcal{N}_{n c}$ ros (resp. $\mathcal{N}_{n c} r c s$) is a $\mathcal{N}_{n c} \beta$ os (resp. $\mathcal{N}_{n c} \beta c s$).
(ii) Every $\mathcal{N}_{n c}$ os (resp. $\mathcal{N}_{n c} c s$) is a $\mathcal{N}_{n c} \beta o s$ (resp. $\mathcal{N}_{n c} \beta c s$).
(iii) Every $\mathcal{N}_{n c} \alpha o s\left(r e s p . \mathcal{N}_{n c} \alpha c s\right)$ is a $\mathcal{N}_{n c} \beta$ os (resp. $\mathcal{N}_{n c} \beta c s$).
(iv) Every $\mathcal{N}_{n c} \mathcal{S o s}\left(\right.$ resp. $\left.\mathcal{N}_{n c} \mathcal{S} c s\right)$ is a $\mathcal{N}_{n c} \beta$ os (resp. $\mathcal{N}_{n c} \beta c s$).
(v) Every $\mathcal{N}_{n c} \mathcal{P}$ os (resp. $\mathcal{N}_{n c} \mathcal{P} c s$) is a $\mathcal{N}_{n c} \beta$ os (resp. $\mathcal{N}_{n c} \beta c s$).
(vi) Every $\mathcal{N}_{n c} \gamma$ os (resp. $\mathcal{N}_{n c} \gamma c s$) is a $\mathcal{N}_{n c} \beta$ os (resp. $\mathcal{N}_{n c} \beta c s$).

Proof. (i) K is a $\mathcal{N}_{n c} \operatorname{ros}$, then $K=\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(K)\right) \subseteq \mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(K)\right)\right)$. K is a $\mathcal{N}_{n c} \beta o s$.
(ii) K is a $\mathcal{N}_{n c} o s$, then $K=\mathcal{N}_{n c} \operatorname{int}(K)$ and so $K \subseteq \mathcal{N}_{n c} c l(K)$. Then $K \subseteq$ $\mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}(K)\right) \subseteq \mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(K)\right)\right) . K$ is a $\mathcal{N}_{n c} \beta o s$.
(iii) Since $\mathcal{N}_{n c} \operatorname{int}(K) \subseteq K, \mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}(K)\right) \subseteq \mathcal{N}_{n c} c l(K)$. Then $\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l\right.$ $\left.\left(\mathcal{N}_{n c} \operatorname{int}(K)\right)\right) \subseteq \mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(K)\right) \subseteq \mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(K)\right)\right) . K$ is a $\mathcal{N}_{n c} \beta o s$.
(iv) Suppose that K is a $\mathcal{N}_{n c} \mathcal{S}$ os, then $K \subseteq \mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}(K)\right) \subseteq \mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} i n t\right.$ $\left.\left(\mathcal{N}_{n c} c l(K)\right)\right) . K$ is a $\mathcal{N}_{n c} \beta o s$.
(v) Suppose that K is a $\mathcal{N}_{n c} \mathcal{P} o s$, then $K \subseteq \mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(K)\right) \subseteq \mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} i n t\right.$ $\left.\left(\mathcal{N}_{n c} c l(K)\right)\right) . K$ is a $\mathcal{N}_{n c} \beta o s$.
(vi) Suppose that K is a $\mathcal{N}_{n c}$ $\gamma o s$ then by Proposition 3.2, (iv) \& (v), $K \subseteq$ $\mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(K)\right)\right) . K$ is a $\mathcal{N}_{n c} \beta o s$.

It is also true for their respective closed sets.
Example 2. In Example 1, the set $\left\langle\left\{m_{1}, n_{1}\right\},\{\phi\},\left\{l_{1}, o_{1}\right\}\right\rangle$ is a $\mathcal{N}_{n c} \beta$ os but not a $\mathcal{N}_{n c}$ ros, $\mathcal{N}_{n c} o s, \mathcal{N}_{n c} \alpha o s, \mathcal{N}_{n c} \mathcal{P}$ os, $\mathcal{N}_{n c}$ Sos, $\mathcal{N}_{n c}$ रos.

Remark 3.2. The diagram shows $\mathcal{N}_{n c} \beta$ os's in $\mathcal{N}_{n c} t$ s.

Figure 1

4. Properties of $\mathcal{N}_{n c} \beta o s$

Proposition 4.1. If K is a $\mathcal{N}_{n c}$ os and M is a $\mathcal{N}_{n c} \beta o s$, then $K \cap M$ is a $\mathcal{N}_{n c} \beta o s$.
Proof. $K \cap M \subseteq K \cap \mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(K)\right)\right) \subseteq \mathcal{N}_{n c} c l\left(K \cap \mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(K)\right)\right)$ $\subseteq \mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(K \cap M)\right)\right)$. Therefore, $K \cap M$ is a $\mathcal{N}_{n c} \beta$ os .

Proposition 4.2. M is a $\mathcal{N}_{n c}$ subset of Y and K is a $\mathcal{N}_{n c} \mathcal{P}$ os on Y such that $K \subseteq M \subseteq \mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}(K)\right)$. Then M is a $\mathcal{N}_{n c} \beta$ os.

Proof. Since K is a $\mathcal{N}_{n c} \mathcal{P} o s, K \subseteq \mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(K)\right)$. Now $M \subseteq \mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} i n t\right.$ $(K)) \subseteq \mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(K)\right)\right)\right)=\mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(M)\right)\right)$. Hence $M \subseteq \mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(M)\right)\right)$. Therefore, M is a $\mathcal{N}_{n c} \beta o s$.

Proposition 4.3. If each K is a $\mathcal{N}_{n c} \beta$ os which is a $\mathcal{N}_{n c} \mathcal{S}$ cs is also a $\mathcal{N}_{n c} \mathcal{S}$ os.
Proof. Let K be a $\mathcal{N}_{n c} \beta$ os and $\mathcal{N}_{n c} \mathcal{S} c s$. Then, $K \subseteq \mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(K)\right)\right)$ and $\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(K)\right) \subseteq K$. Therefore, $\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(K)\right) \subseteq \mathcal{N}_{n c}(K)$ and so, $\mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(K)\right)\right) \subseteq \mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}(K)\right)$. Hence, $K \subseteq \mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c}\right.\right.$ $c l(K))) \subseteq \mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}(K)\right)$. Therefore, K is a $\mathcal{N}_{n c} \mathcal{S} o s$.

Proposition 4.4. If K is a $\mathcal{N}_{n c} \beta c s$ and $\mathcal{N}_{n c} \mathcal{S}$ os, then it is a $\mathcal{N}_{n c} \mathcal{S} c s$.
Proof. Since K is a $\mathcal{N}_{n c} \beta c s$ and $\mathcal{N}_{n c} \mathcal{S}$ os. Then, $Y \backslash K$ is $\mathcal{N}_{n c} \beta o s$ and $\mathcal{N}_{n c} \mathcal{S} c s$ and so by Proposition 4.3, $Y \backslash K$ is a $\mathcal{N}_{n c} \mathcal{S}$ os. Therefore, K is a $\mathcal{N}_{n c} \mathcal{S} c s$.

Proposition 4.5. If K is a $\mathcal{N}_{n c} \beta c s$ iff $\mathcal{N}_{n c} c l\left(Y \backslash \mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}(K)\right)\right) \backslash\left(Y \backslash \mathcal{N}_{n c} c l\right.$ $(K)) \supset \mathcal{N}_{n c} c l(K) \backslash K$.

Proof. $\mathcal{N}_{n c} c l\left(Y \backslash \mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}(K)\right)\right) \backslash\left(Y \backslash \mathcal{N}_{n c} c l(K)\right) \supset \mathcal{N}_{n c} c l(K) \backslash K$ iff $\left(Y \backslash \mathcal{N}_{n c} i n t\right.$ $\left.\left(\mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}(K)\right)\right)\right) \backslash\left(Y \backslash \mathcal{N}_{n c} c l(K)\right) \supset \mathcal{N}_{n c} c l(K) \backslash K$ iff $\left(Y \backslash \mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}\right.\right.\right.$ $(K)))) \cap \mathcal{N}_{n c} c l(K) \supset \mathcal{N}_{n c} c l(K) \backslash K \operatorname{iff}\left(Y \cap \mathcal{N}_{n c} c l(K) \backslash\left(\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}(K)\right)\right) \cap\right.\right.$ $\left.\mathcal{N}_{n c} c l(K)\right) \supset \mathcal{N}_{n c} c l(K) \backslash K$ iff $\mathcal{N}_{n c} c l(K) \backslash\left(\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}(K)\right)\right)\right) \supset \mathcal{N}_{n c} c l(K)$ $\backslash K$ iff $K \supset \mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} i n t(K)\right)\right)$ iff K is a $\mathcal{N}_{n c} \beta c s$.

Proposition 4.6. If each K is a $\mathcal{N}_{n c} \beta$ os which is a $\mathcal{N}_{n c} \alpha c s$ is also a $\mathcal{N}_{n c} c s$.
Proof. Let K be a $\mathcal{N}_{n c} \beta$ os and $\mathcal{N}_{n c} \alpha c s$. Then, $K \subseteq \mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(K)\right)\right)$ and $\mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(K)\right)\right) \subseteq K$. Therefore, $\mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(K)\right)\right) \subseteq K \subseteq$ $\mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(K)\right)\right)$. So, $K=\mathcal{N}_{n c} c l\left(\mathcal{N}_{n c} \operatorname{int}\left(\mathcal{N}_{n c} c l(K)\right)\right)$. Therefore, K is a $\mathcal{N}_{n c} c s$.

Corollary 4.1. If each K is a $\mathcal{N}_{n c} \beta$ cs which is $\mathcal{N}_{n c} \alpha$ os is also a $\mathcal{N}_{n c} o s$.

References

[1] M. E. Abd El-Monsef, S. N. El-Deep, R. A. Mahmound: β-open sets and β continuous mappings, Bull. Fac. Sci., Assiut Univ., 12 (1983), 77-90.
[2] W. Al-Omeri: Neutrosophic crisp sets via neutrosophic crisp topological Spaces NCTS, Neutrosophic Sets and Systems, 13 (2016), 96-104.
[3] D. Andrijevic: Semi-pre open sets, Matematicki Vesnik, 38(1) (1986), 24-32.
[4] R. K. Al-Hamido, T. Gharibah , S. Jafari, F. Smarandache: On neutrosophic crisp topology via \mathcal{N}-topology, Neutrosophic Sets and Systems, 23 (2018), 96-109.
[5] A. A. Salama: F. Smarandache and V. Kroumov, Neutrosophic crisp sets and neutrosophic crisp topological spaces, Neutrosophic Sets and Systems, 2 (2014), 25-30.
[6] F. Smarandache: A Unifying field in logics: neutrosophic logic. neutrosophy, neutrosophic set, neutrosophic probability, American Research Press, Rehoboth, NM, 1999.
[7] F. Smarandache: Neutrosophy and neutrosophic logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics, University of New Mexico, Gallup, NM 87301, USA 2002.
[8] M. Lellis Thivagar, S. Jafari, V. Antonysamy, V.Sutha Devi: The ingenuity of neutrosophic topology via \mathcal{N}-topology, Neutrosophic Sets and Systems, 19 (2018), 91-100.
[9] A. Vadivel, C. John Sundar: γ-open sets in $N_{n c}$-topological spaces, Submitted in AMSJ.

PG and Research Department of Mathematics
Government Arts College (Autonomous), Karur - 639 005, India
Department of Mathematics
Annamalai University, Annamalai Nagar - 608 002, India
E-mail address: avmaths@gmail.com
Department of Mathematics
Annamalai University
AnNAMALAI NAGAR - 608 002, IndiA
E-mail address: johnphdau@hotmail.com

[^0]: ${ }^{1}$ corresponding author
 2010 Mathematics Subject Classification. 54A05, 54A10.
 Key words and phrases. $\mathcal{N}_{n c} \beta$-open sets, $\mathcal{N}_{n c} \beta$-closed sets, $\mathcal{N}_{n c} \beta i n t(K), \mathcal{N}_{n c} \beta c l(K)$.

