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Abstract: A single-valued neutrosophic set has king power to express uncertainty characterized by 

indeterminacy, inconsistency and incompleteness. Most of the existing single-valued neutrosophic 

cross entropy bears an asymmetrical behavior and produces an undefined phenomenon in some 

situations. In order to deal with these disadvantages, we propose a new cross entropy measure 

under a single-valued neutrosophic set (SVNS) environment, namely NS-cross entropy, and prove 

its basic properties. Also we define weighted NS-cross entropy measure and investigate its basic 

properties. We develop a novel multi-attribute group decision-making (MAGDM) strategy that is 

free from the drawback of asymmetrical behavior and undefined phenomena. It is capable of 

dealing with an unknown weight of attributes and an unknown weight of decision-makers. Finally, 

a numerical example of multi-attribute group decision-making problem of investment potential is 

solved to show the feasibility, validity and efficiency of the proposed decision-making strategy. 

Keywords: neutrosophic set; single-valued neutrosophic set; NS-cross entropy measure; 

multi-attribute group decision-making 

 

1. Introduction 

To tackle the uncertainty and modeling of real and scientific problems, Zadeh [1] first 

introduced the fuzzy set by defining membership measure in 1965. Bellman and Zadeh [2] 

contributed important research on fuzzy decision-making using max and min operators. Atanassov 

[3] established the intuitionistic fuzzy set (IFS) in 1986 by adding non-membership measure as an 

independent component to the fuzzy set. Theoretical and practical applications of IFSs in 

multi-criteria decision-making (MCDM) have been reported in the literature [4–12]. Zadeh [13] 

introduced entropy measure in the fuzzy environment. Burillo and Bustince [14] proposed distance 

measure between IFSs and offered an axiomatic definition of entropy measure. In the IFS 

environment, Szmidt and Kacprzyk [15] proposed a new entropy measure based on geometric 

interpretation of IFS. Wei et al. [16] developed an entropy measure for interval-valued intuitionistic 

fuzzy set (IVIFS) and presented its applications in pattern recognition and MCDM. Li [17] presented 

a new multi-attribute decision-making (MADM) strategy combining entropy and Technique for 

Order Preference by Similarity to Ideal Solution (TOPSIS) in an IVIFS environment. Shang and Jiang 

[18] introduced the cross entropy in the fuzzy environment. Vlachos and Sergiadis [19] presented 

intuitionistic fuzzy cross entropy by extending fuzzy cross entropy [18]. Ye [20] defined a new cross 
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entropy under an IVIFS environment and presented an optimal decision-making strategy. Xia and 

Xu [21] put forward a new entropy and a cross entropy and employed them for multi-attribute 

criteria group decision-making (MAGDM) strategy under an IFS environment. Tong and Yu [22] 

defined cross entropy under an IVIFS environment and applied it to MADM problems. 

The study of uncertainty took a new direction after the publication of the neutrosophic set (NS) 

[23] and single-valued neutrosophic set (SVNS) [24]. SVNS appeals more to researchers for its 

applicability in decision-making [25–54], conflict resolution [55], educational problems [56,57], 

image processing [58–60], cluster analysis [61,62], social problems [63,64], etc. The research on SVNS 

gained momentum after the inception of the international journal “Neutrosophic Sets and Systems”. 

Combining with the neutrosophic set, a number of hybrid neutrosophic sets such as the 

neutrosophic soft set [65–72], the neutrosophic soft expert set [73–75], the neutrosophic complex set 

[76], the rough neutrosophic set [77–86], the rough neutrosophic tri complex set [87], the 

neutrosophic rough hyper complex set [88], the neutrosophic hesitant fuzzy sets/multi-valued 

neutrosophic set [89–97], the bipolar neutrosophic set [98–103], the rough bipolar neutrosophic set 

[104], the neutrosophic cubic set [105–113], and the neutrosophic cubic soft set [114,115] has been 

reported in the literature. Wang et al. [116] defined the interval neutrosophic set (INS). Different 

interval neutrosophic hybrid sets and their theoretical development and applications have been 

reported in the literature, such as the interval-valued neutrosophic soft set [117], the interval 

neutrosophic complex set [118], the interval neutrosophic rough set [119–121], and the interval 

neutrosophic hesitant fuzzy set [122]. Other extensions of neutrosophic sets, such as trapezoidal 

neutrosophic sets [123,124], normal neutrosophic sets [125], single-valued neutrosophic linguistic 

sets [126], interval neutrosophic linguistic sets [127,128], simplified neutrosophic linguistic sets [129], 

single-valued neutrosophic trapezoid linguistic sets [130], interval neutrosophic uncertain linguistic 

sets [131–133], neutrosophic refined sets [134–139], linguistic refined neutrosophic sets [140] bipolar 

neutrosophic refined sets [141], and dynamic single-valued neutrosophic multi-sets [142] have been 

proposed to enrich the study of neutrosophics. So the field of neutrosophic study has been steadily 

developing. 

Majumdar and Samanta [143] defined an entropy measure and presented an MCDM strategy 

under SVNS environment. Ye [144] proposed cross entropy measure under the single-valued 

neutrosophic set environment, which is not symmetric straight forward and bears undefined 

phenomena. To overcome the asymmetrical behavior of the cross entropy measure, Ye [144] used a 

symmetric discrimination information measure for single-valued neutrosophic sets. Ye [145] defined 

cross entropy measures for SVNSs to overcome the drawback of undefined phenomena of the cross 

entropy measure [144] and proposed a MCDM strategy. 

The aforementioned applications of cross entropy [144,145] can be effective in dealing with 

neutrosophic MADM problems. However, they also bear some limitations, which are outlined 

below: 

i. The strategies [144,145] are capable of solving neutrosophic MADM problems that require the 

criterion weights to be completely known. However, it can be difficult and subjective to offer 

exact criterion weight information due to neutrosophic nature of decision-making situations. 

ii. The strategies [144,145] have a single decision-making structure, and not enough attention is 

paid to improving robustness when processing the assessment information. 

iii. The strategies [144,145] cannot deal with the unknown weight of the decision-makers. 

Research gap: 

MAGDM strategy based on cross entropy measure with unknown weight of attributes and 

unknown weight of decision-makers. 

This study answers the following research questions: 

i. Is it possible to define a new cross entropy measure that is free from asymmetrical phenomena 

and undefined behavior? 

ii. Is it possible to define a new weighted cross entropy measure that is free from the asymmetrical 

phenomena and undefined behavior? 
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iii. Is it possible to develop a new MAGDM strategy based on the proposed cross entropy measure 

in single-valued neutrosophic set environment, which is free from the asymmetrical 

phenomena and undefined behavior? 

iv. Is it possible to develop a new MAGDM strategy based on the proposed weighted cross 

entropy measure in the single-valued neutrosophic set environment that is free from the 

asymmetrical phenomena and undefined behavior? 

v. How do we assign unknown weight of attributes?  

vi. How do we assign unknown weight of decision-makers? 

Motivation: 

The above-mentioned analysis describes the motivation behind proposing a comprehensive 

NS-cross entropy-based strategy for tackling MAGDM under the neutrosophic environment. This 

study develops a novel NS-cross entropy-based MAGDM strategy that can deal with multiple 

decision-makers and unknown weight of attributes and unknown weight of decision-makers and 

free from the drawbacks that exist in [144,145]. 

The objectives of the paper are: 

1. To define a new cross entropy measure and prove its basic properties, which are free from 

asymmetrical phenomena and undefined behavior. 

2. To define a new weighted cross measure and prove its basic properties, which are free from 

asymmetrical phenomena and undefined behavior. 

3. To develop a new MAGDM strategy based on weighted cross entropy measure under 

single-valued neutrosophic set environment. 

4. To develop a technique to incorporate unknown weight of attributes and unknown weight of 

decision-makers in the proposed NS-cross entropy-based MAGDM under single-valued 

neutrosophic environment. 

To fill the research gap, we propose NS-cross entropy-based MAGDM, which is capable of 

dealing with multiple decision-makers with unknown weight of the decision-makers and unknown 

weight of the attributes. 

The main contributions of this paper are summarized below: 

1. We define a new NS-cross entropy measure and prove its basic properties. It is straightforward 

symmetric and it has no undefined behavior. 

2. We define a new weighted NS-cross entropy measure in the single-valued neutrosophic set 

environment and prove its basic properties. It is straightforward symmetric and it has no 

undefined behavior. 

3. In this paper, we develop a new MAGDM strategy based on weighted NS cross entropy to solve 

MAGDM problems with unknown weight of the attributes and unknown weight of 

decision-makers. 

4. Techniques to determine unknown weight of attributes and unknown weight of decisions 

makers are proposed in the study. 

The rest of the paper is presented as follows: Section 2 describes some concepts of SVNS. In 

Section 3 we propose a new cross entropy measure between two SVNS and investigate its properties. 

In Section 4, we develop a novel MAGDM strategy based on the proposed NS-cross entropy with 

SVNS information. In Section 5 an illustrative example is solved to demonstrate the applicability and 

efficiency of the developed MAGDM strategy under SVNS environment. In Section 6 we present 

comparative study and discussion. Section 7 offers conclusions and the future scope of research. 

2. Preliminaries 

This section presents a short list of mostly known definitions pertaining to this paper. 

Definition 1 [23] NS. Let U be a space of points (objects) with a generic element in U denoted by u, i.e., u 

U. A neutrosophic set A in U is characterized by truth-membership measure ( )
A

uT , indeterminacy- 
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membership measure ( )
A

uI  and falsity-membership measure ( )
A

uF , where ( )
A

uT , ( )
A

uI , ( )
A

uF  are the 

measures from U to ]  0, 1  [ i.e., ( )
A

uT , ( )
A

uI , ( )
A

uF :U  ]  0, 1  [ NS can be expressed as A = {<u; ( ( )
A

uT
, ( )

A
uI , ( )

A
uF )>:  uU}. Since ( )

A
uT , ( )

A
uI , ( )

A
uF  are the subsets of ]  0, 1  [ there the sum ( ( )

A
uT +

( )
A

uI + ( )
A

uF ) lies between  0 and 3  . 

Example 1. Suppose that U = {
1 2 3
, , ,...u u u } be the universal set. Let 

1
R  be any neutrosophic set in U. Then 

1
R

expressed as 
1

R = {<
1

u ; (0.6, 0.3, 0.4)>: 
1

u    U}. 

Definition 2 [24] SVNS. Assume that U be a space of points (objects) with generic elements u ∈ U. A SVNS 

H in U is characterized by a truth-membership measure TH(u), an indeterminacy-membership measure IH(u), 

and a falsity-membership measure FH(u), where TH(u), IH(u), FH(u) ∈ [0, 1] for each point u in U. Therefore, a 

SVNS A can be expressed as H = {u, (TH (u), I H (u), FH (u)) |  u∈ U}, whereas, the sum of TH(u), IH(u) and 

FH(u) satisfy the condition 0 ≤ TH(u) + IH(u) + FH(u) ≤ 3 and H(u) = <(TH (u), IH (u), FH (u)> call a single-valued 

neutrosophic number (SVNN). 

Example 2. Suppose that U = {
1 2 3
, , ,...u u u } be the universal set. A SVNS H in U can be expressed as: H = {

1
u , 

(0.7, 0.3, 0.5)| 
1

u ∈ U} and SVNN presented H = <0.7, 0.3, 0.5>. 

Definition 3 [24] Inclusion of SVNSs. The inclusion of any two SVNS sets H1 and H2 in U is denoted by 

H1 ⊆ H2 and defined as follows: 

1 2 1 2 1 2
1 2 ( ) ( ), ( ) (,  ), ( ) ( )  .

H H H H H H
u u u u uH H iff for au ll u UT T I I F F     

Example 3. Let H1 and H2 be any two SVNNs in U presented as follows: H1 = <(0.7, 0.3, 0.5)> and H2 = <(0.8, 

0.2, 0.4)> for all u ∈ U. Using the property of inclusion of two SVNNs, we conclude that H1 ⊆ H2. 

Definition 4 [24] Equality of two SVNSs. The equality of any two SVNS H1 and H2 in U denoted by H1 = 

H2 and defined as follows: 

1 2 1 2 1 2

( ) ( ), ( ) ( ) ( ) ( .)  
H H H H H H

u u u u a for all u Und u uT T I I F F     

Definition 5 Complement of any SVNSs. The complement of any SVNS H in U denoted by cH  and 

defined as follows: 

{ ,1 ,1 ,1 | }c

H H H
H u T I F u U     .  

Example 4. Let H be any SVNN in U presented as follows: H = < (0.7, 0.3, 0.5) >. Then compliment of H is 

obtained as cH  = <(0.3, 0.7, 0.5)>. 

Definition 6 [24] Union. The union of two single-valued neutrosophic sets H1 and H2 is a neutrosophic set H3 

(say) written as 

H3 = H1  H2. 

3

( )
H

uT  = max {
1

( )
H

uT , 
2

( )
H

uT }, 
3

( )
HJ

uI  = min {
1

( )
H

uI , 
2

( )
H

uI }, 
3HF (u) = min {

1

( )
H

uF , 
2

( )
H

uF },  u   U. 

Example 5. Let H1 and H2 be two SVNSs in U presented as follows: 

H1 = <(0.6, 0.3, 0.4)> and H2 = <(0.7, 0.3, 0.6)>. Then union of them is presented as:  

1 2
 H H  = <(0.7, 0.3, 0.4)>.  
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Definition 7 [24] Intersection. The intersection of two single-valued neutrosophic sets H1 and H2 denoted by 

H4 and defined as 

H4 = H1  H2  

4HT (u) = min {
1

( )
H

uT , 
2

( )
H

uT }, 
4

( )
H

uI = max{
1

( )
H

uI , 
2

( )
H

uI } 

4

( )
H

uF  = max {
1

( )
H

uF , 
2

( )
H

uF },  u   U. 

Example 6. Let H1 and H2 be two SVNSs in U presented as follows: 

H1 = <(0.6, 0.3, 0.4)> and H2 = <(0.7, 0.3, 0.6)>. 

Then intersection of H1 and H2 is presented as follows: 

H1  H2 = <(0.6, 0.3, 0.6)>  

3. NS-Cross Entropy Measure 

In this section, we define a new single-valued neutrosophic cross-entropy measure for 

measuring the deviation of single-valued neutrosophic variables from an a priori one. 

Definition 8 NS-cross entropy measure. Let H1 and H2 be any two SVNSs in U = {
1 2 3
, , ,..., }

n
u u u u . Then, the 

single-valued cross-entropy of H1 and H2 is denoted by CENS (H1, H2) and defined as follows: 

2
1 2 1

1 2
21

2
1 2 1

1 2

NS 1 2 2 2 2 2
1

2 2

2 ( )) (1 ( ))2 ( ) ( )1
CE  (H , H ) = 

2
1 ( ) 1 ( ) 1 ( )) 1 ( ))

2 ( )) (1 ( ))2 ( ) ( )

1 ( ) 1 ( ) 1

(1

(1 (1

(1

n Hi iH H Hi i

i

H Hi i i iHH

Hi iH H Hi i

H Hi
H

u

T u uTu uT T

u uT T T Tu u

I u uIu uI I

uI I



  
     

   
          

 


   




 



21

2
1 2 1

1 2
21

2 2

2 2 2 2

( )) 1 ( ))

2 ( )) (1 ( ))2 ( ) ( )

1 ( ) 1 ( ) 1 ( )) 1 ( ))

(1 (1

(1

(1 (1

i iH

Hi iH H Hi i

H Hi i i iHH

I Iu u

F u uFu uF F

u uF F F Fu u

 
 
 

 
  
  

 
    

  
          

 



 

 
(1) 

Example 7. Let H1 and H2 be two SVNSs in U, which are given by H1 = {u, (0.7, 0.3, 0.4)| u ∈ U} and H2 = 

{u, (0.6, 0.4, 0.2)| u ∈  U}. Using Equation (1), the cross entropy value of H1 and H2 is obtained as 

NS 1 2
CE  (H , H )  = 0.707. 

Theorem 1. Single-valued neutrosophic cross entropy 
NS 1 2

CE  (H , H ) for any two SVNSs 
1 2

H , H  , satisfies the 

following properties: 

i. 
NS 1 2

CE  (H , H ) 0 . 

ii. 
NS 1 2

CE  (H , H ) 0  if and only if 
1 2

( ) ( )
H Hi iu uT T , 

1 2

( ) ( )
H Hi iu uI I , 

1 2

( ) ( )
H Hi iu uF F , .

i
u U   

iii. c c

NS 1 2 NS 1 2
CE  (H , H ) CE  (H , H )  

iv. NS 1 2 NS 2 1
CE  (H , H ) CE  (H , H )  

Proof. (i) For all values of i
u U , 

1

( ) 0
H iuT  , 

2

( ) 0
H iuT  , 

1 2

( ) ( ) 0
H Hi iu uT T  , 

1

2

1 ( ) 0
H iuT  , 

2

2

1 ( ) 0
H iuT  , 

1

( )) 0(1 iH
T u  , 

2

(1 ( )) 0
H iuT  , 

21

( )) (1 ( )) 0(1 Hi iH
T u uT   , 

1

2

1 ( )) 0(1 iH
T u  , 

2

2

1 ( )) 0(1 iH
T u  . 
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Then, 
2

1 2 1

1 2
21

2 2 2 2

2 ( )) (1 ( ))2 ( ) ( )
0

1 ( ) 1 ( ) 1 ( )) 1 ( ))

(1

(1 (1

Hi iH H Hi i

H Hi i i iHH

T u uTu uT T

u uT T T Tu u

 
  
 

  
      
  



 

. 

Similarly, 
2

1 2 1

1 2
21

2 2 2 2

2 ( )) (1 ( ))2 ( ) ( )
0

1 ( ) 1 ( ) 1 ( )) 1 ( ))

(1

(1 (1

Hi iH H Hi i

H Hi i iHH

u

I u uIu uI I

uI I I Iu u

 
  
 

  
      
  



 

, and 

2
1 2 1

1 2
21

2 2 2 2

2 ( )) (1 ( ))2 ( ) ( )
0

1 ( ) 1 ( ) 1 ( )) 1 ( ))

(1

(1 (1

Hi iH H Hi i

H Hi i i iHH

F u uFu uF F

u uF F F Fu u

 
  
 

  
      
  



 

. 

Therefore, 
NS 1 2

CE  (H , H ) 0 . 

Hence complete the proof. 

(ii) 
2

1 2 1

1 2
21

2 2 2 2

2 ( )) (1 ( ))2 ( ) ( )
0,

1 ( ) 1 ( ) 1 ( )) 1 ( ))

(1

(1 (1

Hi iH H Hi i

H Hi i i iHH

T u uTu uT T

u uT T T Tu u

 
  
 

  
      
  



 

 
1 2

( ) ( )
H Hi iu uT T  , 

2
1 2 1

1 2
21

2 2 2 2

2 ( )) (1 ( ))2 ( ) ( )
0

1 ( ) 1 ( ) 1 ( )) 1 ( ))

(1

(1 (1

Hi iH H Hi i

H Hi i iHH

u

I u uIu uI I

uI I I Iu u

 
  
 

  
      
  



 

 
1 2

( ) ( )
H Hi iu uI I  , and, 

2
1 2 1

1 2
21

2 2 2 2

2 ( )) (1 ( ))2 ( ) ( )
0,

1 ( ) 1 ( ) 1 ( )) 1 ( ))

(1

(1 (1

Hi iH H Hi i

H Hi i i iHH

F u uFu uF F

u uF F F Fu u

 
  
 

  
      
  



 

 
21

( ) ( )
HH i iF u uF  

Therefore, 
NS 1 2

CE  (H , H ) 0 , iff 
1 2

( ) ( )
H Hi iu uT T , 

1 2

( ) ( )
H Hi iu uI I , 

1 2

( ) ( )
H Hi iu uF F , .

i
u U   

Hence complete the proof. 

(iii) Using Definition 5, we obtain the following expression 



  
      

   
         

 



  




 



 

2
1 1 2

1 2
21

2
1 1

21

c c

NS 1 2 2 2 22
1

2 2

2 ( )) (1 ( )) 2 ( ) ( )1
CE  (H , H ) = 

2
1 ( ) 1 ( )1 ( )) 1 ( ))

2 ( )) (1 ( )) 2 ( )

1 ( )) 1 ( ))

(1

(1 (1

(1

(1 (1

n Hi iH H Hi i

i

H Hi ii iHH

Hi iH H i

i iHH

T u uT u uT T

u uT T TTu u

I u uI uI

I Iu u

 
 
 

 
   
  

 
     

  
         




  



 

2

1 2

2
1 1 2

1 2
21

1 2 1

1 2

2 2

2 2 22

2 2

( )

1 ( ) 1 ( )

2 ( )) (1 ( )) 2 ( ) ( )

1 ( ) 1 ( )1 ( )) 1 ( ))

22 ( ) ( )1
= 

2
1 ( ) 1 ( )

(1

(1 (1

H i

H Hi

Hi iH H Hi i

H Hi ii iHH

H H Hi i

H Hi i

u

uI

uI I

F u uF u uF F

u uF F FFu u

u uT T

u uT T


  
   
  

  
       

 
  
 

  
      
  






 



 

2

21

2
1 2 1

1 2
21

1 2

2 2
1

2 2 2 2

( )) (1 ( ))

1 ( )) 1 ( ))

2 ( )) (1 ( ))2 ( ) ( )

1 ( ) 1 ( ) 1 ( )) 1 ( ))

 

2 ( ) ( )

1

(1

(1 (1

(1

(1 (1

n Hi i

i

i iHH

Hi iH H Hi i

H Hi i iHH

H Hi i

u

T u uT

T Tu u

I u uIu uI I

uI I I Iu u

u uF F
 
  
 

  
          



 

2
1

1 2
21

SN 1 22 2 2 2

2 ( )) (1 ( ))

CE  (H , H )

( ) 1 ( ) 1 ( )) 1 ( ))

(1

(1 (1

Hi iH

H Hi i i iHH

F u uF

u uF F F Fu u
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Therefore, c c

NS 1 2 NS 1 2
CE  (H , H ) CE  (H , H ) . 

Hence complete the proof. 

(iv) Since, 
1 2 2 1

( ) ( ) ( ) ( )
H H H Hi i i iu u u uT T T T   , 

1 2 2 1

( ) ( ) ( ) ( )
H H H Hi i i iu u u uI I I I   , 

1 2 2 1

( ) ( ) ( ) ( )
H H H Hi i i iu u u uF F F F   , 

2 2 1
1

( )) (1 ( )) (1 ( )) (1 ( ))(1 H H Hi i i iH
T u u u uT T T      , 

1 2 2 1

(1 ( )) (1 ( )) (1 ( )) (1 ( ))
H H H Hi i i iu u u uI I I I       , 

2 2 1
1

( )) (1 ( )) (1 ( )) (1 ( ))(1 H H Hi i i iH
F u u u uF F F      , then, 

1 2 2 1

2 2 2 2

1 ( ) 1 ( ) 1 ( ) 1 ( )
H H H Hi i i iu u u uT T T T       , 

1 2 2 1

2 2 2 2

1 ( ) 1 ( ) 1 ( ) 1 ( )
H H H Hi i i iu u u uI I I I       , 

1 2 2 1

2 2 2 2

1 ( ) 1 ( ) 1 ( ) 1 ( )
H H H Hi i i iu u u uF F F F       , 

2 2 11

2 2 2 2

1 ( )) 1 (1 ( )) 1 ( ( )) 1 (1 ( ))(1 H H Hi i i iH
T u u u uT T T          , 

1 2 2 1

2 2 2 2

1 (1 ( )) 1 (1 ( )) 1 (1 ( )) 1 (1 ( ))
H H H Hi i i iu u u uI I I I           , 

2 2 11

2 2 2 2

1 ( )) 1 (1 ( )) 1 (1 ( )) 1 (1 ( ))(1 H H Hi i i iH
F u u u uF F F          , .

i
u U   

Therefore, 
NS 1 2 NS 2 1

CE  (H , H ) CE  (H , H ) . 

Hence complete the proof. ☐ 

Definition 9 Weighted NS-cross entropy measure. We consider the weight wi (i = 1, 2, ..., n) for the 

element ui (i = 1, 2, .., n) with the conditions 


 i
1

w [0,1] 1.
n

i
i

and w  

Then the weighted cross entropy between SVNSs H1 and H2 can be defined as follows: 

2
1 2 1

1 2
21

2
1 2 1

1 2

w

NS 1 2
2 2 2 2

1

2 2

2 ( )) (1 ( ))2 ( ) ( )1
CE  (H , H ) = 

2
1 ( ) 1 ( ) 1 ( )) 1 ( ))

2 ( )) (1 ( ))2 ( ) ( )

1 ( ) 1 ( )

(1

(1 (1

(1

n Hi iH H Hi i

i
i

H Hi i i iHH

Hi iH H Hi i

H Hi

w

u

T u uTu uT T

u u TT T Tu u

I u uIu uI I

uI I



 
   

  
       
 

 


  




 


2

1 2 1

1 2
2 21 1

2 2 2 22 2

2 ( )) (1 ( ))2 ( ) ( )

1 ( ) 1 ( )1 ( )) 1 ( )) 1 ( )) 1 ( ))

(1

(1 (1(1 (1

Hi iH H Hi i
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 (2) 

Theorem 2. Single-valued neutrosophic weighted NS-cross-entropy (defined in Equation (2)) satisfies the 

following properties: 

i. w

NS 1 2
CE  (H , H ) 0.  

ii. w

NS 1 2
CE  (H , H ) 0 , if and only if 

1 2

( ) ( )
H Hi iu uT T

1 2

( ) ( )
H Hi iu uI I , 

1 2

( ) ( )
H Hi iu uF F , .

i
u U   

iii. 
c cw w

NS 1 2 NS 1 2
CE  (H , H ) CE  ( , )H H  

iv. w w

NS 1 2 NS 2 1
CE  (H , H )  CE  ( H , H )  

Proof. (i). For all values of 
i

u U , 
1

( ) 0
H iuT 

2

( ) 0
H iuT  , 

1 2

( ) ( ) 0
H Hi iu uT T  , 

1

2

1 ( ) 0
H iuT  , 

2

2

1 ( ) 0
H iuT  , 

1

( )) 0(1 iH
T u  , 

2

(1 ( )) 0
H iuT  , 

21

( )) (1 ( )) 0(1 Hi iH
T u uT   , 

1

2

1 ( )) 0(1 iH
T u  , 

2

2

1 ( )) 0(1 iH
T u  , then, 

2
1 2 1

1 2
21

2 2 2 2

2 ( )) (1 ( ))2 ( ) ( )
0

1 ( ) 1 ( ) 1 ( )) 1 ( ))

(1

(1 (1

Hi iH H Hi i

H Hi i i iHH

T u uTu uT T

u uT T T Tu u

 
  
 

  
      
  



 

. 
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Similarly, 
2

1 2 1

1 2
21

2 2 2 2

2 ( )) (1 ( ))2 ( ) ( )
0

1 ( ) 1 ( ) 1 ( )) 1 ( ))

(1

(1 (1

Hi iH H Hi i

H Hi i iHH

u

I u uIu uI I

uI I I Iu u

 
  
 

  
      
  



 

, and 

2
1 2 1

1 2
21

2 2 2 2

2 ( )) (1 ( ))2 ( ) ( )
0

1 ( ) 1 ( ) 1 ( )) 1 ( ))

(1

(1 (1

Hi iH H Hi i

H Hi i i iHH

F u uFu uF F

u uF F F Fu u

 
  
 

  
      
  



 

. 

Since 
i

1

w [0,1] 1
n

i
i

and w


  , therefore, w

NS 1 2
CE  (H , H ) 0 .  

Hence complete the proof. 

(ii) Since, 
2

1 2 1

1 2
21

2 2 2 2

2 ( )) (1 ( ))2 ( ) ( )
0,

1 ( ) 1 ( ) 1 ( )) 1 ( ))

(1

(1 (1

Hi iH H Hi i

H Hi i i iHH

T u uTu uT T

u uT T T Tu u

 
  
 

  
      
  



 
1 2

( ) ( )
H Hi iu uT T  , 

2
1 2 1

1 2
21

2 2 2 2

2 ( )) (1 ( ))2 ( ) ( )
0

1 ( ) 1 ( ) 1 ( )) 1 ( ))

(1

(1 (1

Hi iH H Hi i

H Hi i iHH

u

I u uIu uI I

uI I I Iu u

 
  
 

  
      
  



 

, 
1 2

( ) ( )
H Hi iu uI I  , 

2
1 2 1

1 2
21

2 2 2 2

2 ( )) (1 ( ))2 ( ) ( )
0,

1 ( ) 1 ( ) 1 ( )) 1 ( ))

(1

(1 (1

Hi iH H Hi i

H Hi i i iHH

F u uFu uF F

u uF F F Fu u

 
  
 

  
      
  



 

 
21

( ) ( )
HH i iF u uF  and 

i
1

w [0,1], 1
n

i
i

w


  , 
i

w 0 . Therefore, w

NS 1 2
CE  (H , H ) 0  iff 

1 2

( ) ( )
H Hi iu uT T , 

1 2

( ) ( )
H Hi iu uI I , 

1 2

( ) ( )
H Hi iu uF F , .

i
u U   

Hence complete the proof. 

(iii) Using Definition 5, we obtain the following expression 
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Therefore, 
c cw w

NS 1 2 NS 1 2
CE  (H , H ) CE  ( , )H H . 

Hence complete the proof. 

(iv) Since
1 2 2 1

( ) ( ) ( ) ( )
H H H Hi i i iu u u uT T T T   ,

1 2 2 1

( ) ( ) ( ) ( )
H H H Hi i i iu u u uI I I I   , 

1 2 2 1

( ) ( ) ( ) ( )
H H H Hi i i iu u u uF F F F   , 

2 2 1
1

( )) (1 ( )) (1 ( )) (1 ( ))(1 H H Hi i i iH
T u u u uT T T      , 

1 2 2 1

(1 ( )) (1 ( )) (1 ( )) (1 ( ))
H H H Hi i i iu u u uI I I I       , 

2 2 1
1

( )) (1 ( )) (1 ( )) (1 ( ))(1 H H Hi i i iH
F u u u uF F F      , 

we obtain 
1 2 2 1

2 2 2 2

1 ( ) 1 ( ) 1 ( ) 1 ( )
H H H Hi i i iu u u uT T T T       , 

1 2 2 1

2 2 2 2

1 ( ) 1 ( ) 1 ( ) 1 ( )
H H H Hi i i iu u u uI I I I       , 

1 2 2 1

2 2 2 2

1 ( ) 1 ( ) 1 ( ) 1 ( )
H H H Hi i i iu u u uF F F F       , 

2 2 11

2 2 2 2

1 ( )) 1 (1 ( )) 1 ( ( )) 1 (1 ( ))(1 H H Hi i i iH
T u u u uT T T          , 

1 2 2 1

2 2 2 2

1 (1 ( )) 1 (1 ( )) 1 (1 ( )) 1 (1 ( ))
H H H Hi i i iu u u uI I I I           , 

2 2 11

2 2 2 2

1 ( )) 1 (1 ( )) 1 (1 ( )) 1 (1 ( ))(1 H H Hi i i iH
F u u u uF F F          ,  

i
u U  and 

i
1

w [0,1], 1
n

i
i

w


  . 

Therefore, w w

NS 1 2 NS 2 1
CE  (H , H )  CE  ( H , H ) . 

Hence complete the proof. ☐ 

4. MAGDM Strategy Using Proposed Ns-Cross Entropy Measure under SVNS Environment 

In this section, we develop a new MAGDM strategy using the proposed NS-cross entropy 

measure. 

Description of the MAGDM Problem 

Assume that 
1 2 3

{ , , ,..., }
m

A A A A A  and 
1 2 3

{ , , ,..., }
n

G G G G G  be the discrete set of alternatives and 

attributes respectively and 
1 2 3

{ , , ,..., }
n

W w w w w  be the weight vector of attributes j
G (j = 1, 2, 3, …, n), 

where 0
j

w   and 
1

1
n

j
j

w


 . Assume that 
1 2 3

{ , , ,..., }
ρ

E E E E E  be the set of decision-makers who are 

employed to evaluate the alternatives. The weight vector of the decision-makers ( 1,2,3,..., )
k

E k ρ  is 

1 2 3
{ , , ,..., }

ρ
λ λ λ λ λ  (where, 

1

0 and 1
ρ

k k
k

λ λ


  ), which can be determined according to the 

decision-makers’ expertise, judgment quality and domain knowledge. 

Now, we describe the steps of the proposed MAGDM strategy (see Figure 1) using NS-cross 

entropy measure. 
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Figure 1. Decision-making procedure of the proposed MAGDM strategy. 

MAGDM Strategy Using Ns-Cross Entropy Measure 

Step 1. Formulate the decision matrices 

For MAGDM with SVNSs information, the rating values of the alternatives ( 1,2,3,..., )
i

A i m  

based on the attribute ( 1,2,3,..., )
j

G j n  provided by the k-th decision-maker can be expressed in terms 

of SVNN as , ,
k k k k

ij ij ijij
T I Fa     (i = 1, 2, 3, …, m; j = 1, 2, 3, …, n; k = 1, 2, 3, …, ). We present these rating 

values of alternatives provided by the decision-makers in matrix form as follows: 
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1 2

k k k

1 11 12 1n

k k k

2 21 22 2n

k k k

m m1 m2 mn

     ... .

... 

. . ... .

...

a a a

a a a

a a a

n

k

G G G

A

M A

A

 
 
 
 
 
 
 
 
 
 

 (3) 

Step 2. Formulate priori/ideal decision matrix 

In the MAGDM, the a priori decision matrix has been used to select the best alternatives among 

the set of collected feasible alternatives. In the decision-making situation, we use the following 

decision matrix as a priori decision matrix. 

1 2

* * *

1 11 12 1n

* * *

2 21 22 2n

* * *

m m1 m2 mn

     ... .

... 

. . ... .

...

a a a

a a a

a a a

n
G G G

A

P A

A

 
 
 
 
 
 
 
 
 
 

 (4) 

where, 
*

ij
max( ),min( ),min( )a

k k k

ij ij iji ii
T I F   ) corresponding to benefit attributes and 

*

ij
min( ),max( ),max( )a

k k k

ij ij iji i i
T I F    corresponding to cost attributes, and (i = 1, 2, 3, …, m; j = 1, 2, 3, …, n; k 

= 1, 2, 3, …, ). 

Step 3. Determinate the weights of decision-makers 

To find the decision-makers’ weights we introduce a model based on the NS-cross entropy 

measure. The collective NS-cross entropy measure between kM and P (Ideal matrix) is defined as 

follows: 

 
1

1
( , ) ( ( ), ( )

m
c k k

i iNS NS
i

P P
mCE M CE M A A



   (5) 

where,  
1

( ( ), ( ) ( ( ( )), ( )))(
n

k k

NSi i iNS j ji
j

P CE P ACE M M G GA A A


 . 

Thus, we can introduce the following weight model of the decision-makers: 

 

 
1

1 ( , )

1 ( , )

c k

NS

K ρ
c k

NS
k

P
λ

P

CE M

CE M






 (6) 

where, 0 1
K
λ   and 

1

1
ρ

K
k

λ


  for k = 1, 2, 3, …, . 

Step 4. Formulate the weighted aggregated decision matrix 

For obtaining one group decision, we aggregate all the individual decision matrices ( kM ) to an 

aggregated decision matrix (M) using single valued neutrosophic weighted averaging (SVNWA) 

operator ([51]) as follows:  

1 2 3 1 2 3

ij 1 2 3ij ij ij ij

1 1 1

a ( , , ,..., ) ( ... )=

1 (1 ) , ( ) , ( )

a a a a

k k k

ij ij ij ij

k k k

ij ij ij

k k k

SVNSWA a a a a

T I F

 

 

  

  

      

       
 (7) 

Therefore, the aggregated decision matrix is defined as follows: 
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1 2

1 11 12 1n

2 21 22 2

m m1 m2

     ... .

a a ... a

. . ... .

a a ...

n

n

mn

G G G

A

M A a a a

A a

 
 
 
 
 
 
 
 

 (8) 

where,  ijijijij F,I,Ta , (i = 1, 2, 3, …, m; j = 1, 2, 3, …, n; k = 1, 2, 3, …, ). 

Step 5. Determinate the weight of attributes 

To find the attributes weight we introduce a model based on the NS-cross entropy measure. 

The collective NS-cross entropy measure between M (Weighted aggregated decision matrix) and P 

(Ideal matrix) for each attribute is defined by 

 
1

1
( , ) ( ( ( )), ( ( ))

m
j

j ji iNS NS
i

M P M G P G
mCE CE A A



   (9) 

where, i = 1, 2, 3, …, m; j = 1, 2, 3, …, n. 

Thus, we defined a weight model for attributes as follows: 

 

 
1

1 ( , )

1 ( , )

j

NS

j n
j

NS
J

M P
w

M P

CE

CE






 (10) 

where, 0 1
j

w   and 
1

1
n

j
j

w


  for j = 1, 2, 3, …, n. 

Step 6. Calculate the weighted NS-cross entropy measure 

Using Equation (2), we calculate weighted cross entropy value between weighted aggregated 

matrix and priori matrix. The cross entropy values can be presented in matrix form as follows: 

w

NS 1

w

NS 2

w

NS m

 CE  ( )

CE  ( )

...............

.................

CE  ( )

NS w

CE

A

A

M

A

 
 
 
 
 
 
 
 
 

 (11) 

Step 7. Rank the priority 

Smaller value of the cross entropy reflects that an alternative is closer to the ideal alternative. 

Therefore, the preference priority order of all the alternatives can be determined according to the 

increasing order of the cross entropy values w

NS i
CE  (A )  (i = 1, 2, 3, …, m). Smallest cross entropy value 

indicates the best alternative and greatest cross entropy value indicates the worst alternative. 

Step 8. Select the best alternative 

From the preference rank order (from step 7), we select the best alternative. 

5. Illustrative Example 

In this section, we solve an illustrative example adapted from [12] of MAGDM problems to 

reflect the feasibility, applicability and efficiency of the proposed strategy under the SVNS 

environment. 

Now, we use the example [12] for cultivation and analysis. A venture capital firm intends to 

make evaluation and selection of five enterprises with the investment potential: 

(1) Automobile company (A1) 

(2) Military manufacturing enterprise (A2) 

(3) TV media company (A3) 



Information 2018, 9, 37 13 of 22 

 

(4) Food enterprises (A4) 

(5) Computer software company (A5) 

On the basis of four attributes namely: 

(1) Social and political factor (G1) 

(2) The environmental factor (G2)  

(3) Investment risk factor (G3) 

(4) The enterprise growth factor (G4). 

The investment firm makes a panel of three decision-makers. 

The steps of decision-making strategy (4.1.1.) to rank alternatives are presented as follows: 

Step: 1. Formulate the decision matrices 

We represent the rating values of alternatives 
i

A  (i = 1, 2, 3, 4, 5) with respects to the attributes 

j
G  (j = 1, 2, 3, 4) provided by the decision-makers 

k
E  (k = 1, 2, 3) in matrix form as follows: 

Decision matrix for 
1

E  decision-maker 

1 2 3 4

1

1 2

3

4

     

(0.9,0.5,0.4) (0.7,0.4,0.4) (0.7,0.3,0.4) (0.5,0.4,0.9)

(0.7,0.2,0.3) (0.8,0.4,0.3) (0.9,0.6,0.5) (0.9,0.1,0.3)

(0.8,0.4,0.4) (0.7,0.4,0.2) (0.9,0.7,0.6) (0.7,0.3,0.3)

(0.5,0.8,0.7) (0.6,0.

G G G G

A

A
M

A

A



5

3,0.4) (0.7,0.2,0.5) (0.5,0.4,0.7)

(0.8,0.4,0.3) (0.5,0.4,0.5) (0.6,0.4,0.4) (0.9,0.7,0.5)A

 
 
 
 
 
 
 
 
 
 

 (12) 

Decision matrix for 
2

E  decision-maker 

1 2 3 4

1

2 2

3

4

     

(0.7,0.2,0.3) (0.5,0.4,0.5) (0.9,0.4,0.5) (0.6,0.5,0.3)

(0.7,0.4,0.4) (0.7,0.3,0.4) (0.7,0.3,0.4) (0.6,0.4,0.3)

(0.6,0.4,0.4) (0.5,0.3,0.5) (0.9,0.5,0.4) (0.6,0.5,0.6)

(0.7,0.5,0.3) (0.6,0.

G G G G

A

A
M

A

A



5

3,0.6) (0.7,0.4,0.4) (0.8,0.5,0.4)

(0.9,0.4,0.3) (0.6,0.4,0.5) (0.8,0.5,0.6) (0.5,0.4,0.5)A

 
 
 
 
 
 
 
 
 
 

 (83) 

Decision matrix for 
3

E  decision-maker 

1 2 3 4

1

3 2

3

4

     

(0.7,0.2,0.5) (0.6,0.4,0.4) (0.7,0.4,0.5) (0.9,0.4,0.3)

(0.6,0.5,0.5) (0.9,0.3,0.4) (0.7,0.4,0.3) (0.8,0.4,0.5)

(0.8,0.3,0.5) (0.9,0.3,0.4) (0.8,0.3,0.4) (0.7,0.3,0.4)

(0.9,0.3,0.4) (0.6,0.

G G G G

A

A
M

A

A



5

3,0.4) (0.5,0.2,0.4) (0.7,0.3,0.5)

(0.8,0.3,0.3) (0.6,0.4,0.3) (0.6,0.3,0.4) (0.7,0.3,0.5)A

 
 
 
 
 
 
 
 
 
 

 (14) 

Step: 2. Formulate priori/ideal decision matrix 

A priori/ideal decision matrix Please provide a sharper picture 

1 2 3 4

1

2

3

4

     

(0.9,0.2,0.3) (0.7,0.4,0.4) (0.9,0.3,0.4) (0.9,0.4,0.3)

(0.7,0.2,0.3) (0.9,0.3,0.3) (0.9,0.3,0.3) (0.9,0.1,0.3)

(0.8,0.3,0.4) (0.9,0.3,0.2) (0.9,0.3,0.4) (0.7,0.3,0.3)

(0.9,0.3,0.3) (0.6,0.3

G G G G

A

A
P

A

A



5

,0.4) (0.7,0.2,0.4) (0.7,0.3,0.4)

(0.9,0.3,0.3) (0.6,0.4,0.3) (0.8,0.3,0.4) (0.9,0.3,0.5)A

 
 
 
 
 
 
 
 
 
 

 (95) 

Step: 3. Determine the weight of decision-makers 

By using Equations (5) and (6), we determine the weights of the three decision-makers as 

follows: 
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     ，

1 2 1

(1 0.9) (1 1.2) (1 .07)
0.33, 0.25 0.42

3.37 3.37 3.37
λ λ λ .  

Step: 4. Formulate the weighted aggregated decision matrix 

Using Equation (7) the weighted aggregated decision matrix is presented as follows: 

Weighted Aggregated decision matrix 

1 2 3 4

1

2

3

4

     

(0.8,0.3,0.4) (0.6,0.4,0.4) (0.8,0.4,0.4) (0.7,0.4,0.5)

(0.7,0.3,0.4) (0.8,0.3,0.4) (0.8,0.4,0.4) (0.8,0.2,0.3)

(0.8,0.4,0.4) (0.8,0.3,0.3) (0.9,0.5,0.5) (0.7,0.3,0.4)

(0.7,0.5,0.5) (0.6,0.3

G G G G

A

A
M

A

A



5

,0.4) (0.6,0.2,0.4) (0.7,0.4,0.5)

(0.8,0.4,0.4)(0.6,0.4,0.4) (0.7,0.4,0.4) (0.8,0.5,0.5)A

 
 
 
 
 
 
 
 
 
 

 (10) 

Step: 5. Determinate the weight of the attributes 

By using Equations (9) and (10), we determine the weights of the four attribute as follows: 

          
       

1 2 3 4

1 0.26 1 0.11 1 0.20 1 0.15
0.16, 0.37, 0.20, 0.27

25 25 25 25
w w w w .  

Step: 6. Calculate the weighted SVNS cross entropy matrix 

Using Equation (2) and weights of attributes, we calculate the weighted NS-cross entropy 

values between ideal matrix and weighted aggregated decision matrix. 

0.195

0.198

0.168

0.151

0.184

NS w

CE
M

 
 
 
 
 
 
 
 

 (11) 

Step: 7. Rank the priority 

The cross entropy values of alternatives are arranged in increasing order as follows: 

0.151 < 0.168 < 0.184 < 0.195 < 0.198.  

Alternatives are then preference ranked as follows: 

A4 > A3 > A5 > A1 > A2.  

Step: 8. Select the best alternative 

From step 7, we identify A4 is the best alternative. Hence, Food enterprises (A4) is the best 

alternative for investment. 

In Figure 2, we draw a bar diagram to represent the cross entropy values of alternatives which 

shows that A4 is the best alternative according our proposed strategy. 

In Figure 3, we represent the relation between cross entropy values and acceptance values of 

alternatives. The range of acceptance level for five alternatives is taken by five points. The high 

acceptance level of alternatives indicates the best alternative for acceptance and low acceptance level 

of alternative indicates the poor acceptance alternative. 

We see from Figure 3 that alternative A4 has the smallest cross entropy value and the highest 

acceptance level. Therefore A4 is the best alternative for acceptance. Figure 3 indicates that 

alternative A2 has highest cross entropy value and lowest acceptance value that means A2 is the 

worst alternative. Finally, we conclude that the relation between cross entropy values and 

acceptance value of alternatives is opposite in nature. 
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Figure 2. Bar diagram of alternatives versus weighted NS-cross entropy values of alternatives. 

 

Figure 3. Relation between weighted NS-cross entropy values and acceptance level line of 

alternatives. 

6. Comparative Study and Discussion 

In literature only two MADM strategies [144,145] have been proposed. No MADGM strategy is 

available. So the proposed MAGDM is novel and non-comparable with the existing cross entropy 

under SVNS for numerical example. 

i. The MADM strategies [144,145] are not applicable for MAGDM problems. The proposed 

MAGDM strategy is free from such drawbacks. 

ii. Ye [144] proposed cross entropy that does not satisfy the symmetrical property straightforward 

and is undefined for some situations but the proposed strategy satisfies symmetric property 

and is free from undefined phenomenon. 

iii. The strategies [144,145] cannot deal with the unknown weight of the attributes whereas the 

proposed MADGM strategy can deal with the unknown weight of the attributes 

iv. The strategies [144,145] are not suitable for dealing with the unknown weight of 

decision-makers, whereas the essence of the proposed NS-cross entropy-based MAGDM is that 

it is capable of dealing with the unknown weight of the decision-makers. 
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7. Conclusions 

In this paper, we have defined a novel cross entropy measure in SVNS environment. The 

proposed cross entropy measure in SVNS environment is free from the drawbacks of asymmetrical 

behavior and undefined phenomena. It is capable of dealing with the unknown weight of attributes 

and the unknown weight of decision-makers. We have proved the basic properties of the NS-cross 

entropy measure. We also defined weighted NS-cross entropy measure and proved its basic 

properties. Based on the weighted NS-cross entropy measure, we have developed a novel MAGDM 

strategy to solve neutrosophic multi-attribute group decision-making problems. We have at first 

proposed a novel MAGDM strategy based on NS-cross entropy measure with technique to 

determine the unknown weight of attributes and the unknown weight of decision-makers. Other 

existing cross entropy measures [144,145] can deal only with the MADM problem with single 

decision-maker and known weight of the attributes. So in general, our proposed NS-cross 

entropy-based MAGDM strategy is not comparable with the existing cross-entropy-based MADM 

strategies [144,145] under the single-valued neutrosophic environment. Finally, we solve a MAGDM 

problem to show the feasibility, applicability and efficiency of the proposed MAGDM strategy. The 

proposed NS-cross entropy-based MAGDM can be applied in teacher selection, pattern recognition, 

weaver selection, medical treatment selection options, and other practical problems. In future study, 

the proposed NS-cross entropy-based MAGDM strategy can be also extended to the interval 

neutrosophic set environment. 
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