

https://doi.org/10.26637/MJM0804/0082

Neutrosophic α -generalized semi homeomorphisms

V. Banu Priya¹, S. Chandrasekar^{2*} and M. Suresh³

Abstract

In this paper, the concepts of Neutrosophic α -generalized semi homeomorphism and Neutrosophic $i\alpha$ - generalized semi homeomorphism are introduced and also discussed the properties.

Keywords

Neutrosophic α -generalized semi homeomorphisms, Neutrosophic $i\alpha$ -generalized semi homeomorphisms.

AMS Subject Classification 34B24, 34B27.

¹ Department of Mathematics, R.M.K. College of Engineering and Technology, Tiruvallur-601206, Tamil Nadu, India. ² PG and Research Department of Mathematics, Arignar Anna Government Arts College, Namakkal-637002, Tamil Nadu, India. ³ Department of Mathematics, R.M.D. Engineering College, Tiruvallur-601206, Tamil Nadu, India. ***Corresponding author:** ¹ spriya.maths@gmail.com; ² chandrumat@gmail.com; ³ sureshmaths2209@gmail.com

Article History: Received 24 September 2020; Accepted 30 October 2020

©2020 MJM.

Contents

1Introduction18242Preliminaries18243Main Results18254Conclusion1828References1828

1. Introduction

A.A. Salama [21] introduced Neutrosophic topological spaces by using Smarandache's Neutrosophic sets [9]. V. Banu Priya et al., [5, 6] introduced Neutrosophic αgs closed sets and its continuity. Md. Hanif Page et al., [10] introduced Neutrosophic Generalized Homeomorphism, M. Parimala et al., [13] introduced Neutrosophic $\alpha \psi$ Homeomorphism in Neutrosophic Topological Spaces. In this paper, we introduce the concepts of Neutrosophic α homeomorphism, Neutrosophic α generalized homeomorphism and followed by Neutrosophic α -generalized semi homeomorphism. We discussed their properties and relationships.

2. Preliminaries

In this section, we recall some definitions and operations of Neutrosophic sets and its fundamental results.

Definition 2.1 ([9]). Let N^X be a non empty fixed set. A

Neutrosophic set $V_{A_1^*}$ *in* N^X *is an object having the form*

$$V_{A_1^*} = \left\{ \left\langle x, \mu_{V_{A_1^*}}(x), \sigma_{V_{A_1^*}}(x), v_{V_{A_1^*}}(x) \right\rangle \mid x \in N^X \right\},\$$

where $\mu_{V_{A_1^*}}(x)$ represents the degree of membership function, $\sigma_{V_{A_1^*}}(x)$ represents the degree of indeterminacy and $v_{V_{A_1^*}}(x)$ represents the degree of non-membership function. $NS(N^X)$ denote the set of all Neutrosophic sets N^X .

Definition 2.2 ([9]). If the Neutrosophic set

$$V_{A_{1}^{*}} = \left\{ \left\langle x, \mu_{V_{A_{1}^{*}}}(x), \sigma_{V_{A_{1}^{*}}}(x), v_{V_{A_{1}^{*}}}(x) \right\rangle \mid x \in N^{X} \right\}$$

on N^X then its compliment is

$$V_{A_{1}^{*}}^{c} = \left\{ \left\langle , \mathbf{v}_{V_{A_{1}^{*}}}(x), 1 - \boldsymbol{\sigma}_{V_{A_{1}^{*}}}(x), \boldsymbol{\mu}_{V_{A_{1}^{*}}}(x) \right\rangle \mid x \in N^{X} \right\}.$$

Definition 2.3 ([9]). Let $V_{A_1^*}$ and $V_{B_1^*}$ be two Neutrosophic sets, $\forall x \in N^X$,

$$V_{A_1^*} = \left\{ \left\langle x, \mu_{V_{A_1^*}}(x), \sigma_{V_{A_1^*}}(x), v_{V_{A_1^*}}(x) \right\rangle \mid x \in N^X \right\}$$

and

$$V_{B_{1}^{*}} = \left\{ \left\langle x, \mu_{V_{B_{1}^{*}}}(x), \sigma_{V_{B_{1}^{*}}}(x), v_{V_{B_{1}^{*}}}(x) \right\rangle \mid x \in N^{X} \right\}$$

then $V_{A_1^*} \subseteq V_{B_1^*}$ if and only if $\mu_{V_{A_1^*}}(x) \le \mu_{V_{B_1^*}}(x), \sigma_{V_{A_1^*}}(x) \le \sigma_{V_{B_1^*}}(x)$ and $v_{V_{A_1^*}}(x) \ge v_{V_{B_1^*}}(x)$.

$$\begin{aligned} & \text{Definition 2.4. Let } V_{A_1^*} \text{ and } V_{B_1^*} \text{ be two Neutrosophic sets,} \\ & \forall x \in N^X, V_{A_1^*} = \left\{ \left\langle x, \mu_{V_{A_1^*}}(x), \sigma_{V_{A_1^*}}(x), v_{V_{A_1^*}}(x) \right\rangle \mid x \in N^X \right\} \text{ and} \\ & V_{B_1^*} = \left\{ \left\langle x, \mu_{V_{B_1^*}}(x), \sigma_{V_{B_1^*}}(x), v_{V_{B_1^*}}(x) \right\rangle \mid x \in N^X \right\} \text{ then} \\ & 1. \ V_{A_1^*} \cap V_{B_1^*} = \left\{ \left\langle x, \mu_{V_{A_1^*}}(x) \wedge \mu_{V_{B_1^*}}(x), \sigma_{V_{A_1^*}}(x) \wedge \sigma_{V_{B_1^*}}(x), v_{V_{A_1^*}}(x) \vee v_{V_{B_1^*}}(x) \right\rangle \mid x \in N^X \right\}. \\ & 2. \ V_{A_1^*} \cup V_{B_1^*} = \left\{ \left\langle x, \mu_{V_{A_1^*}}(x) \vee \mu_{V_{B_1^*}}(x), \sigma_{V_{A_1^*}}(x) \vee \sigma_{V_{B_1^*}}(x), v_{V_{A_1^*}}(x) \wedge v_{V_{B_1^*}}(x) \right\rangle \mid x \in N^X \right\}. \end{aligned}$$

Definition 2.5 ([20, 21]). Let N^X be a non-empty set and N^{τ} be the collection of Neutrosophic subsets of N^X satisfying the following properties:

- 1. $0_N, 1_N \in N^{\tau}$.
- 2. $\lambda_1 \cap \lambda_2 \in N^{\tau}$ for any $\lambda_1, \lambda_2 \in N^{\tau}$.
- 3. $\cup \lambda_i \in N^{\tau}$ for every $\{\lambda_i \mid i \in I\} \subseteq N^{\tau}$.

The space (N^X, N^τ) is called a Neutrosophic topological space (NTS). The elements of N^τ are called Neutrosophic open set (NOS) and its complement is called Neutrosophic closed set (NCS).

Definition 2.6 ([2, 5, 7, 11, 12, 22]). Let (N^X, N^τ) be a Neutrosophic topological space. Neutrosophic set $V_{A_1^*}$ is said to be

- 1. Neutrosophic α -closed set (N. α CS) if N.cl(N.int(N.cl(V_{A1}^{*}))) \subseteq V_{A1}^{*}
- 2. Neutrosophic semi closed set (N.SCS) if $N.int(N.cl(V_{A_1^*})) \subseteq V_{A_1^*}$
- 3. Neutrosophic generalized closed set (N.GCS) if $N.cl(V_{A_1^*}) \subseteq H$ whenever $V_{A_1^*} \subseteq H$ and H is a N.OS
- 4. Neutrosophic α generalized closed set (N. αGCS) if N. $\alpha cl(V_{A_1^*}) \subseteq H$ whenever $V_{A_1^*} \subseteq H$ and H is a N.OS
- 5. Neutrosophic generalized semi closed set (N.GSCS) if $N.Scl(V_{A_1^*}) \subseteq H$ whenever $V_{A_1^*} \subseteq H$ and H is a N.OS
- 6. Neutrosophic α generalized semi closed set (N. α GSCS) if N. α cl($V_{A_1^*}$) \subseteq H whenever $V_{A_1^*} \subseteq$ H and H is a N.SOS.

3. Main Results

Definition 3.1. Let N^{f_*} be a bijection from a NTS (N^X, N^{τ}) into a NTS (N^Y, N^{σ}) . Then N^{f_*} is said to be

- 1. Neutrosophic homeomorphism if N^{f_*} and $N^{f_*^{-1}}$ are Neutrosophic continuous (N-CTS) maps
- Neutrosophic α homeomorphism if N^{f*} and N^{f*-1} are Neutrosophic α CTS maps

3. Neutrosophic α generalized homeomorphism (briefly $N\alpha G$ homeomorphism) if N^{f_*} and $N^{f_*^{-1}}$ are NG CTS maps.

Definition 3.2. A bijective map $N^{f_*}: (N^X, N^{\tau}) \to (N^Y, N^{\sigma})$ is called a Neutrosophic α generalized semi homeomorphism (briefly N α GS homeomorphism) if N^{f_*} and $N^{f_*^{-1}}$ are N α GS CTS maps.

Example 3.3. Let $N^X = \{a, b\}, N^Y = \{u, v\},\$

$$G_1^* = \left\langle x, \left(\frac{1}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{2}{10}, \frac{5}{10}, \frac{3}{10}\right) \right\rangle$$

and

$$G_2^* = \left\langle y, \left(\frac{3}{10}, \frac{5}{10}, \frac{4}{10}\right), \left(\frac{4}{10}, \frac{5}{10}, \frac{5}{10}\right) \right\rangle$$

Then $N^{\tau} = \{0_N, G_1^*, 1_N\}$ and $N^{\sigma} = \{0_N, G_2^*, 1_N\}$ are NTs on N^X and N^Y respectively. Define a bijective map N^{f_*} : $(N^X, N^{\tau}) \rightarrow (N^Y, N^{\sigma})$ by $N^{f_*}(a) = u$ and $N^{f_*}(b) = v$. Then N^{f_*} is a N\alphaGS CTS and $N^{f_*^{-1}}$ is also a N\alphaGS CTS map. Therefore, the bijective map N^{f_*} is a N α GS homeomorphism.

Theorem 3.4. Let $N^{f_*}: (N^X, N^\tau) \to (N^Y, N^\sigma)$ be a bijective map from a NTS N^X into a NTS N^Y . Then the following conditions are equivalent:

- 1. N^{f_*} is a Neutrosophic homeomorphism
- 2. N^{f_*} is a N-CTS map and N^{f_*} is a Neutrosophic open map
- 3. N^{f_*} and $N^{f_*^{-1}}$ are N-CTS maps.

Proof. (1) ⇒ (2): It is obviously true. (2) ⇒ (3): Let N^{f_*} is a Neutrosophic open map. That is $N^{f_*}(V_{A_1^*})$ is *NOS* in N^Y for each *NOS* $V_{A_1^*}$ in N^X . Now define a map $N^{f_*^{-1}} : (N^Y, N^\sigma) \to (N^X, N^\tau)$. By hypothesis, for every *NOS* $V_{A_1^*}$ in N^X , we have $N^{f_*^{-1}}(V_{A_1^*})$ is a *NOS* in N^Y . Hence $N^{f_*^{-1}}$ is a N-CTS map. That is N^{f_*} and $N^{f_*^{-1}}$ are N-CTS maps. (3) ⇒ (1): Let N^{f_*} and $N^{f_*^{-1}}$ be N-CTS map. Since $N^{f_*^{-1}}$: $(N^Y, N^\sigma) \to (N^X, N^\tau)$ is a N-CTS map, $N^{f_*} : (N^X, N^\tau) \to (N^Y, N^\sigma)$ is a Neutrosophic open map. Hence N^{f_*} is a Neutrosophic homeomorphism. \square

Theorem 3.5. Every Neutrosophic homeomorphism is a $N\alpha GS$ homeomorphism but not conversely.

Proof. Let $N^{f_*}: (N^X, N^\tau) \to (N^Y, N^\sigma)$ be a Neutrosophic homeomorphism. Then N^{f_*} and $N^{f_*^{-1}}$ are N-CTS maps. Since every N-CTS map is a $N\alpha GS$ CTS map, N^{f_*} and $N^{f_*^{-1}}$ are $N\alpha GS$ CTS maps. Therefore N^{f_*} is a $N\alpha GS$ homeomorphism.

Example 3.6. Let $N^X = \{a, b\}, N^Y = \{u, v\},$

$$G_1^* = \left\langle x, \left(\frac{3}{10}, \frac{5}{10}, \frac{4}{10}\right), \left(\frac{1}{10}, \frac{5}{10}, \frac{2}{10}\right) \right\rangle$$

and

$$G_2^* = \left\langle y, \left(\frac{1}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{2}{10}, \frac{5}{10}, \frac{4}{10}\right) \right\rangle$$

Then $N^{\tau} = \{0_N, G_1^*, 1_N\}$ and $N^{\sigma} = \{0_N, G_2^*, 1_N\}$ are NTs on N^X and N^Y respectively. Define a bijective $N^{f*} : (N^X, N^{\tau}) \rightarrow (N^Y, N^{\sigma})$ by $N^{f_*}(a) = u$ and $N^{f_*}(b) = v$. Since the inverse image of every NCS in (N^Y, N^{σ}) is a N α GSCS in (N^X, N^{τ}) , N^{f_*} is a N α GS CTS map and the inverse image of every NCS in (N^X, N^{σ}) , $N^{f_{*}^{-1}}$ is a N α GS CTS map. Hence N^{f_*} is a N α GS chomeomorphism. But N^{f_*} is not a Neutrosophic homeomorphism since N^{f_*} and $N^{f_{*}^{-1}}$ are not *N*-CTS maps.

Theorem 3.7. Every Neutrosophic α homeomorphism is a N α GS homeomorphism but not conversely.

Proof. Let $N^{f_*}: (N^X, N^\tau) \to (N^Y, N^\sigma)$ be a Neutrosophic α homeomorphism. Then N^{f_*} and $N^{f_*^{-1}}$ are Neutrosophic α CTS maps. Since every Neutrosophic α CTS is a $N\alpha GS$ CTS map, N^{f_*} and $N^{f_*^{-1}}$ are $N\alpha GS$ CTS maps. Therefore N^{f_*} is a $N\alpha GS$ homeomorphism.

Example 3.8. Let $N^X = \{a, b\}, N^Y = \{u, v\},$

$$G_1^* = \left\langle x, \left(\frac{3}{10}, \frac{5}{10}, \frac{4}{10}\right), \left(\frac{4}{10}, \frac{5}{10}, \frac{5}{10}\right) \right\rangle$$

and

$$G_2^* = \left\langle y, \left(\frac{4}{10}, \frac{5}{10}, \frac{5}{10}\right), \left(\frac{2}{10}, \frac{5}{10}, \frac{3}{10}\right) \right\rangle$$

Then $N^{\tau} = \{0_N, G_1^*, 1_N\}$ and $N^{\sigma} = \{0_N, G_2^*, 1_N\}$ are NTs on N^X and N^Y respectively. Define a bijective $N^{f_*} : (N^X, N^{\tau}) \rightarrow (N^Y, N^{\sigma})$ by $N^{f_*}(a) = u$ and $N^{f_*}(b) = v$. Consider, NCS

$$G_2^{*'} = \left\langle y, \left(\frac{5}{10}, \frac{5}{10}, \frac{4}{10}\right), \left(\frac{3}{10}, \frac{5}{10}, \frac{2}{10}\right) \right\rangle$$

in N^Y . Then

$$N^{f_*^{-1}}(G_2^{*'}) = \left\langle x, \left(\frac{5}{10}, \frac{5}{10}, \frac{4}{10}\right), \left(\frac{3}{10}, \frac{5}{10}, \frac{2}{10}\right) \right\rangle$$

is not a N α CS in N^X. This implies N^{f*} is not a Neutrosophic α CTS map. Hence N^{f*} is not a Neutrosophic α homeomorphism.

Theorem 3.9. Let $N^{f_*}: (N^X, N^\tau) \to (N^Y, N^\sigma)$ be a N α GS homeomorphism. Then N^{f_*} is a Neutrosophic homeomorphism if N^X and N^Y are N α ga $T_{\frac{1}{2}}$ spaces.

Proof. Let $V_{B_1^*}$ be a *NCS* in N^Y . By hypothesis, $N^{f_*^{-1}}(V_{B_1^*})$ is a *N* α *GSCS* in N^X . Since N^X is a *N* α *gaT*₁ space, $N^{f_*^{-1}}(V_{B_1^*})$ is a *NCS* in N^X . Hence N^{f_*} is a N-CTS map. By hypothesis $N^{f_*^{-1}}: (N^Y, N^\sigma) \to (N^X, N^\tau)$ is a *N* α *GS* CTS map. Let $V_{A_1^*}$ be a *NCS* in N^X . Then $(N^{f_*^{-1}})^{-1}(V_{A_1^*}) = N^{f_*}(V_{A_1^*})$ is a *N* α *GSCS* in N^Y . Since N^Y is a *N* α *gaT* $_{\frac{1}{2}}$ space, $N^{f_*}(V_{A_1^*})$ is a *NCS* in N^Y . Hence $N^{f_*^{-1}}$ is a N-CTS map. Therefore N^{f_*} is a Neutrosophic homeomorphism.

Theorem 3.10. Let $N^{f_*}: (N^X, N^\tau) \to (N^Y, N^\sigma)$ be a N α GS homeomorphism. Then N^{f_*} is a Neutrosophic Generalised homeomorphism if N^X and N^Y are N α ga $T_{\frac{1}{3}}$ spaces.

Proof. Let $V_{B_1^*}$ be a *NCS* in N^Y . By hypothesis, $N^{f_*^{-1}}(V_{B_1^*})$ is a *N* α *GSCS* in N^X . Since N^X is a *N* α *gaT*¹/₂ space, $N^{f_*^{-1}}(V_{B_1^*})$ is a *NGCS* in N^X . Hence N^{f_*} is a Neutrosophic Generalised CTS map. By hypothesis $N^{f_*^{-1}} : (N^Y, N^\sigma) \to (N^X, N^\tau)$ is a *N* α *GS* CTS map. Let $V_{A_1^*}$ be a *NCS* in N^X . Then $(N^{f_*^{-1}})^{-1}(V_{A_1^*}) = N^{f_*}(V_{A_1^*})$ is a *N* α *GSCS* in N^Y . Since N^Y is a *N* α *gaT*¹/₂ space, $N^{f_*}(V_{A_1^*})$ is a *NGCS* in N^X . Hence $N^{f_*^{-1}}$ is a Neutrosophic Generalised CTS map. Therefore N^{f_*} is a Neutrosophic Generalised homeomorphism.

Theorem 3.11. Let $N^{f_*}: (N^X, N^\tau) \to (N^Y, N^\sigma)$ be a bijective map. Neutrosophic N^{f_*} is a N α GS CTS map, then the following are equivalent:

- 1. N^{f_*} is a N α GS closed map
- 2. N^{f_*} is a N α GS open map
- 3. N^{f_*} is a N α GS homeomorphism.

Proof. (1) \Rightarrow (2): Let $N^{f_*}: (N^X, N^\tau) \to (N^Y, N^\sigma)$ be a bijective map and let N^{f_*} be a *N* α *GS* closed map. This implies $N^{f_*^{-1}}: (N^Y, N^\sigma) \to (N^X, N^\tau)$ is a *N* α *GS* CTS map. Assume that $V_{A_1^*}$ is a *NOS* in N^X . Then by hypothesis, $(N^{f_*^{-1}})^{-1}(V_{A_1^*})$ is a *N* α *GSOS* in N^Y . Hence N^{f_*} is a *N* α *GS* open map.

(2) \Rightarrow (3): Let N^{f_*} : $(N^X, N^\tau) \rightarrow (N^Y, N^\sigma)$ be a bijective map and let N^{f_*} is a $N\alpha GS$ open map. This implies $N^{f_*^{-1}}$: $(N^Y, N^\sigma) \rightarrow (N^X, N^\tau)$ is a $N\alpha GS$ CTS map. Hence N^{f_*} and $N^{f_*^{-1}}$ are $N\alpha GS$ CTS maps. Therefore, N^{f_*} is a $N\alpha GS$ homeomorphism.

 $(3) \Rightarrow (1)$: Let N^{f_*} be a $N\alpha GS$ homeomorphism. That is N^{f_*} and $N^{f_*^{-1}}$ are $N\alpha GS$ CTS maps. Assume that $V_{A_1^*}$ is a *NCS* in N^X . Then by hypothesis, $V_{A_1^*}$ is a *N* $\alpha GSCS$ in N^Y . Hence N^{f_*} is a *N* αGS closed map.

Remark 3.12. The composition of two N α GS homeomorphisms need not be a N α GS homeomorphism in general.

Example 3.13. Let $N^X = \{a, b\}$, $N^Y = \{c, d\}$ and $N^Z =$

 $\{u,v\}$. Let

$$G_1^* = \left\langle x, \left(\frac{2}{10}, \frac{5}{10}, \frac{4}{10}\right), \left(\frac{3}{10}, \frac{5}{10}, \frac{3}{10}\right) \right\rangle$$

$$G_2^* = \left\langle y, \left(\frac{4}{10}, \frac{5}{10}, \frac{5}{10}\right), \left(\frac{5}{10}, \frac{5}{10}, \frac{5}{10}\right) \right\rangle$$

$$G_3^* = \left\langle z, \left(\frac{1}{10}, \frac{5}{10}, \frac{4}{10}\right), \left(\frac{2}{10}, \frac{5}{10}, \frac{4}{10}\right) \right\rangle.$$

Then $N^{\tau} = \{0_N, G_1^*, 1_N\}$, $N^{\sigma} = \{0_N, G_2^*, 1_N\}$ and $N^{\nu} = \{0_N, G_3^*, 1_N\}$ are NTs on N^X, N^Y and N^Z respectively. Define a bijective map $N^{f_*} : (N^X, N^{\tau}) \to (N^Y, N^{\sigma})$ by $N^{f_*}(a) = c$ and $N^{f_*}(b) = d$ and $N^{g_*} : (N^Y, N^{\sigma}) \to (N^Z, N^{\nu})$ by $N^{g_*}(c) = u$ and $N^{g_*}(d) = v$. Then N^{f_*} and $N^{f_*^{-1}}$ are N α GS CTS maps. Also N^{g_*} and $N^{g_*^{-1}}$ are N α GS CTS maps. Hence N^{f_*} and N^{g_*} are N α GS homeomorphisms. But the composition $N^{g_*} \circ N^{f_*}$ is not a N α GS CTS map.

Definition 3.14. A bijective map $N^{f_*}: (N^X, N^{\tau}) \to (N^Y, N^{\sigma})$ is called a Neutrosophic i α -generalized semi homeomorphism (briefly Ni α GS homeomorphism) if N^{f_*} and $N^{f_*^{-1}}$ are N α GS irresolute maps.

Theorem 3.15. Every Ni α GS homeomorphism is a N α GS homeomorphism but not conversely.

Proof. Let $N^{f_*}: (N^X, N^\tau) \to (N^Y, N^\sigma)$ be a *NiaGS* homeomorphism. Let $V_{B_1^*}$ be *NCS* in N^Y . Since every *NCS* is a *NaGSCS*, $V_{B_1^*}$ is a *NaGSCS* in N^Y . By hypothesis, $N^{f_*^{-1}}(V_{B_1^*})$ is a *NaGSCS* in N^X . Hence N^{f_*} is a *NaGS* CTS map. Similarly we can prove $N^{f_*^{-1}}$ is a *NaGS* CTS map. Hence N^{f_*} and $N^{f_*^{-1}}$ are *NaGS* CTS maps. Therefore, the map N^{f_*} is a *NaGS* homeomorphism.

Example 3.16. Let
$$N^X = \{a, b\}, N^Y = \{u, v\},$$

 $G_1^* = \left\langle x, \left(\frac{3}{10}, \frac{5}{10}, \frac{4}{10}\right), \left(\frac{1}{10}, \frac{5}{10}, \frac{2}{10}\right) \right\rangle$
 $G_2^* = \left\langle y, \left(\frac{1}{10}, \frac{5}{10}, \frac{2}{10}\right), \left(\frac{2}{10}, \frac{5}{10}, \frac{4}{10}\right) \right\rangle.$

Then $N^{\tau} = \{0_N, G_1^*, 1_N\}$ and $N^{\sigma} = \{0_N, G_2^*, 1_N\}$ are NTs on N^X and N^Y respectively. Define a bijective map N^{f_*} : $(N^X, N^{\tau}) \rightarrow (N^Y, N^{\sigma})$ by $N^{f_*}(a) = u$ and $N^{f_*}(b) = v$. Then N^{f_*} is N αGS homeomorphism. Let us consider a NS

$$V_{A_1^*} = \left\langle x, \left(\frac{2}{10}, \frac{5}{10}, \frac{1}{10}\right), \left(\frac{3}{10}, \frac{5}{10}, \frac{3}{10}\right) \right\rangle$$

in N^X . Clearly $V_{A_1^*}$ is a N α GSCS in N^X . But $f(V_{A_1^*})$ is not a N α GSCS in N^Y . That is $N^{f_*^{-1}}$ is not a N α GS irresolute map. Hence N^{f_*} is not a Ni α GS homeomorphism.

Theorem 3.17. Let $N^{f_*}: (N^X, N^\tau) \to (N^Y, N^\sigma)$ be a Ni α GS homeomorphism. Then N^{f_*} is a Neutrosophic homeomorphism if N^X and N^Y are $N\alpha gaT_{\frac{1}{2}}$ spaces.

Proof. Let $V_{B_1^*}$ be a *NCS* in N^Y . Since every *NCS* is a *N* α *GSCS*, $V_{B_1^*}$ is a *N* α *GSCS* in N^Y . Since N^{f_*} is a *N* α *GS* irresolute map, $N^{f_*^{-1}}(V_{B_1^*})$ is a *N* α *GSCS* in N^X . Since N^X is a *N* α *gaT* $_{\frac{1}{2}}$ space, $N^{f_*^{-1}}(V_{B_1^*})$ is a *NCS* in N^X . Hence N^{f_*} is a *N*-CTS map. By hypothesis, $N^{f_*^{-1}}: (N^Y, N^\sigma) \to (N^X, N^\tau)$ is a *N* α *GS* irresolute map. Let $V_{A_1^*}$ be a *NCS* in N^X . Since every *NCS* is a *N* α *GSCS*, $V_{A_1^*}$ is a *N* α *GSCS* in N^X . Then $(N^{f_*^{-1}})^{-1}(V_{A_1^*}) = f(V_{A_1^*})$ is a *N* α *GSCS* in N^Y . Since N^Y is a *N* α *gaT* $_{\frac{1}{2}}$ space, $N^{f_*}(V_{A_1^*})$ is a *NCS* in N^Y . Hence $N^{f_*^{-1}}$ is a *N*-CTS map. Therefore N^{f_*} is a Neutrosophic homeomorphism.

Theorem 3.18. If $N^{f_*}: (N^X, N^\tau) \to (N^Y, N^\sigma)$ is a Ni α GS homeomorphism, then $N\alpha gscl(N^{f_*^{-1}}(V_{B_1^*})) \subseteq N^{f_*^{-1}}(N\alpha cl(V_{B_1^*}))$ for every NS $V_{B_1^*}$ in N^Y .

Proof. Let $V_{B_1^*}$ be a NS in N^Y . Then $N\alpha cl(V_{B_1^*})$ is a $N\alpha CS$ in N^Y . This implies $N\alpha cl(V_{B_1^*})$ is a $N\alpha GSCS$ in N^Y . Since N^{f_*} is a $N\alpha GS$ irresolute map, $N^{f_*^{-1}}(N\alpha cl(V_{B_1^*}))$ is a $N\alpha GSCS$ in N^X . This implies $N\alpha gscl(N^{f_*^{-1}}(N\alpha cl(V_{B_1^*}))) = N^{f_*^{-1}}(N\alpha cl(V_{B_1^*}))$. i.e. $N\alpha gscl(N^{f_*^{-1}}(V_{B_1^*})) \subseteq N\alpha gscl(N\alpha gscl(N^{f_*^{-1}}(N\alpha cl(V_{B_1^*}))) = N^{f_*^{-1}}(N\alpha cl(V_{B_1^*}))$. Hence, $N\alpha gscl(N^{f_*^{-1}}(V_{B_1^*})) \subseteq N^{f_*^{-1}}(N\alpha cl(V_{B_1^*}))$ for every $NS V_{B_1^*}$ in N^Y .

Theorem 3.19. If $N^{f_*}: (N^X, N^\tau) \to (N^Y, N^\sigma)$ is a Ni α GS homeomorphism, then $N \alpha gscl(N^{f_*^{-1}}(V_{B_1^*})) = N^{f_*^{-1}}(N \alpha gscl(V_{B_1^*}))$ for every NS $V_{B_1^*}$ in N^Y .

Proof. Since N^{f_*} is a $Ni\alpha GS$ homeomorphism, N^{f_*} is a $N\alpha GS$ irresolute map. Consider a $NS V_{B_1^*}$ in N^Y . Clearly $N\alpha gscl(V_{B_1^*})$ is a $N\alpha GSCS$ in N^Y . By hypothesis, $N^{f_*^{-1}}(N\alpha gscl(V_{B_1^*}))$ is a $N\alpha GSCS$ in N^X . Since

$$N^{f_*^{-1}}(V_{B_1^*}) \subseteq N^{f_*^{-1}}(N\alpha gscl(V_{B_1^*})),$$

$$N\alpha gscl(N^{f_*^{-1}}(V_{B_1^*})) \subseteq N\alpha gscl(N^{f_*^{-1}}(N\alpha gscl(V_{B_1^*})))$$

$$= N^{f_*^{-1}}(N\alpha gscl(V_{B_1^*})).$$

This implies $N \alpha gscl(N^{f_*^{-1}}(V_{B_1^*})) \subset N^{f_*^{-1}}(N \alpha gscl(V_{B_1^*}))$. Since N^{f_*} is a $Ni \alpha GS$ homeomorphism, $N^{f_*^{-1}}: N^Y \to N^X$ is a $N \alpha GS$ irresolute map. Consider a $NS N^{f_*^{-1}}(V_{B_1^*})$ in N^X . Clearly $N \alpha gscl(N^{f_*^{-1}}(V_{B_1^*}))$ is a $N \alpha GSCS$ in N^X .

This implies $(N^{f_*^{-1}})^{-1}(N\alpha gscl(N^{f_*^{-1}}(V_{B_1^*}))) = N^{f_*}(N\alpha gscl(N^{f_*^{-1}}(V_{B_1^*})))$ is a $N\alpha GSCS$ in N^Y . Hence

$$\begin{split} V_{B_1^*} = & (N^{f_*^{-1}})^{-1} (N^{f_*^{-1}} \\ & (V_{B_1^*})) \subseteq & (N^{f_*^{-1}})^{-1} (N \alpha gscl(N^{f_*^{-1}}(V_{B_1^*}))) \\ & = & N^{f_*} (N \alpha gscl(N^{f_*^{-1}} \\ & (V_{B_1^*}))). \end{split}$$

Therefore,

$$N\alpha gscl(V_{B_1^*}) \subseteq N\alpha gscl(N^{f_*}(N\alpha gscl(N^{f_*^{-1}}(V_{B_1^*}))))$$
$$= N^{f_*}(N\alpha gscl(N^{f_*^{-1}}(V_{B_1^*}))).$$

Since $N_{f_*}^{f_*}$ is a *N* α *GS* irresolute map. Hence,

$$N^{f_*^{-1}}(N\alpha gscl(V_{B_1^*})) \subseteq N^{f_*^{-1}}(N^{f_*}(N\alpha gscl(N^{f_*^{-1}}(V_{B_1^*})))$$
$$= N\alpha gscl(N^{f_*^{-1}}(V_{B_1^*})).$$

That is $N^{f_*^{-1}}(N\alpha gscl(V_{B_1^*})) \subseteq N\alpha gscl(N^{f_*^{-1}}(V_{B_1^*}))$. Hence, $N\alpha gscl(N^{f_*^{-1}}(V_{B_1^*})) = N^{f_*^{-1}}(N\alpha gscl(V_{B_1^*}))$.

Theorem 3.20. If $N^{f_*}: (N^X, N^\tau) \to (N^Y, N^\sigma)$ is a Ni α GS homeomorphism, then $N \alpha gscl(N^{f_*}(V_{B_1^*})) = N^{f_*}(N \alpha gscl(V_{B_1^*}))$ for every NS $V_{B_1^*}$ in N^X .

Proof. Since N^{f_*} is a $Ni\alpha GS$ homeomorphism, $N^{f_*^{-1}}$ is a $Ni\alpha GS$ homeomorphism. Let us consider a $NS V_{B_1^*}$ in N^X . By the Theorem (3.18), $N\alpha gscl((N^{f_*^{-1}})^{-1}(V_{B_1^*})) = (N^{f_*^{-1}})^{-1}(N\alpha gscl(V_{B_1^*}))$. Hence $N\alpha gscl(N^{f_*}(V_{B_1^*})) = N^{f_*}(N\alpha gscl(V_{B_1^*}))$ for every $NS V_{B_1^*}$ in N^X .

Proposition 3.21. The composition of two Ni α GS homeomorphisms is a Ni α GS homeomorphism in general.

Proof. Let $N^{f_*}: (N^X, N^\tau) \to (N^Y, N^\sigma)$ and $N^{g_*}: (N^Y, N^\sigma) \to (N^Z, N^\eta)$ be two *NiαGS* homeomorphisms. Let $V_{A_1^*}$ be a *NαGSCS* in N^Z . Then by hypothesis, $N^{g_*^{-1}}(V_{A_1^*})$ is a *NαGSCS* in N^X . Hence, $N^{f_*^{-1}}(N^{g_*^{-1}}(V_{A_1^*}))$ is a *NαGSCS* in N^X . Hence $(N^{g_*} \circ N^{f_*})^{-1}$ is a *NαGS* irresolute map. Let $V_{B_1^*}$ be a *NαGSCS* in N^X . Then by hypothesis, $N^{f_*}(V_{B_1^*})$ is a *NαGSCS* in N^Y . Then by hypothesis $N^{g_*}(N^{f_*}(V_{B_1^*}))$ is a *NαGSCS* in N^Z . This implies $N^{g_*} \circ N^{f_*}$ is a *NαGS* irresolute map. Hence $N^{g_*} \circ N^{f_*}$ is a *NαGS* homeomorphism. Therefore the composition of two *NiαGS* homeomorphisms is a *NiαGS* homeomorphism in general. We denote the family of all *NiαGS* homeomorphisms of a *NTS* (N^X, N^τ) onto itself by *NiαGS-h* (N^X, N^τ) .

Theorem 3.22. The set $Ni\alpha GS$ - $h(N^X, N^{\tau})$ is a group under the composition of maps.

Proof. Define a binary operation *: *Ni*α*GS*-*h*(*N^X*, *N^τ*) × *Ni*α *GS*-*h*(*N^X*, *N^τ*) → *Ni*α*GS*-*h*(*N^X*, *N^τ*) by *N^f****N^g** = *N^g** ◦ *N^f** for all *N^f**, *N^g** ∈ *Ni*α*GS*-*h*(*N^X*, *N^τ*) and ◦ is the usual operation of composition of maps. Then by Theorem (3.20), *N^g** ◦ *N^f** ∈ *Ni*α*GS*-*h*(*N^X*, *N^τ*). We know that, the composition of maps is associative and the identity map *I* : (*N^X*, *N^τ*) → (*N^X*, *N^τ*) belonging to *Ni*α*GS*-*h*(*N^X*, *N^τ*) serves as the identity element. If *N^f** ∈ *Ni*α*GS*-*h*(*N^X*, *N^τ*), then *N^f**⁻¹ ∈ *Ni*α*GSh*(*N^X*, *N^τ*) such that *N^f** ◦ *N^f**⁻¹ = *N^f**⁻¹ ◦ *N^f** = *I* and so inverse exists for each element of *Ni*α*GS*-*h*(*N^X*, *N^τ*). Therefore, (*Ni*α*GS*-*h*(*N^X*, *N^τ*), ◦) is a group under the operation of composition of maps. □

4. Conclusion

In this paper, we discussed Neutrosophic α -generalized semi homeomorphism and Neutrosophic i α -generalized semi homeomorphism. Also we have studied some of its basic properties. The results are illustrated with well-analyzed examples.

References

- K.Atanassov, Intuitionistic fuzzy sets, *Fuzzy Sets and Systems*, 20(1986), 87–95.
- ^[2] Arokiarani, R. Dhavaseelan, S. Jafari, M. Parimala, On Some New Notions and Functions in Neutrosophic Topological Spaces, *Neutrosophic Sets and Systems*, 16(2017), 16–19.
- [3] A. Atkinswestley and S. Chandrasekar, Neutrosophic g*-Closed Sets and its Maps, *Neutrosophic Sets and Systems*, 36(2020), 96–107.
- [4] A. Atkinswestley S. Chandrasekar, Neutrosophic Weakly G* closed sets, Advances in Mathematics: Scientific Journal, 09(2020), 2853–2861.
- ^[5] V. Banu Priya S. Chandrasekar, Neutrosophic αgs Continuity and Neutrosophic αgs Irresolute Maps, *Neutrosophic Sets and Systems*, 28(2019), 162–170.
- [6] V. Banu Priya, S. Chandrasekar and M. Suresh, Neutrosophic Strongly α-Generalized Semi Closed Sets, *Advances in Mathematics: Scientific Journal*, 09(2020), 8605–8613.
- [7] R. Dhavaseelan and S. Jafari, Generalized Neutrosophic closed sets, *New trends in Neutrosophic Theory and Applications*, 02(2018), 261–273.
- [8] R. Dhavaseelan, S.Jafari, and Md. Hanif page, Neutrosophic generalized α-contra-continuity, *Creat. Math. Inform*, 27(2), (2018), 133–139.
- [9] Florentin Smarandache, Neutrosophic and Neutrosophic Logic, First International conference On Neutrosophic, Neutrosophic Logic, Set, Probability, and Statistics, University of New Mexico, 2008.
- [10] Md. Hanif Page and Qays Hatem Imran, Neutrosophic Generalized Homeomorphism, *Neutrosophic Sets and Systems*, 35(2020), 340–346.
- [11] P. Ishwarya, and K. Bageerathi, On Neutrosophic semiopen sets in NTSs, *International Jour. of Math.Trends* and Tech., 37(3)(2016), 214–223.
- [12] D. Jayanthi, α Generalized Closed Sets in Neutrosophic Topological Spaces, *International Journal of Mathematics Trends and Technology, Special Issue-ICRMIT*, (2018), 88–91.
- ^[13] M. Parimala, R. Jeevitha, F. Smarandache, S. Jafari and R. Udhayakumar, Neutrosophic $\alpha \psi$ Homeomorphism in Neutrosophic Topological Spaces, *Information*, 09(187)(2018), 01–10.
- [14] C. Maheswari, M. Sathyabama, S. Chandrasekar, Neutrosophic generalized b-closed Sets in Neutrosophic Topo-

logical Spaces, *Journal of Physics: Conference Series*, 1139(2018).

- [15] C. Maheswari, S. Chandrasekar, Neutrosophic gb-closed Sets and Neutrosophic gb-Continuity, *Neutrosophic Sets* and Systems, 29(2019), 89–100.
- [16] C. Maheswari and S. Chandrasekar, Neutrosophic bgclosed Sets and its Continuity, *Neutrosophic Sets and Systems*, 36(2020), 108–120.
- [17] T. Rajesh kannan, S. Chandrasekar, Neutrosophic ωαclosed sets in Neutrosophic topological space, Journal Of Computer And Mathematical Sciences, 9(10)(2018), 1400–1408.
- [18] T. Rajesh kannan, S. Chandrasekar, Neutosophic αcontinuous multifunction in Neutrosophic topological space, *The International Journal of Analytical and Experimental Modal Analysis*, 11(2019), 1360–1367.
- [19] T. RajeshKannan and S. Chandrasekar, Neutrosophic α-Irresolute Multifunction In Neutrosophic Topological Spaces, *Neutrosophic Sets and Systems*, 32(1)(2020), 390– 400.
- [20] A.A. Salama, S.A. Alblowi, Neutrosophic Set and Neutrosophic Topological Spaces, *IOSR Journal of Mathematics*, 3(4)(2012), 31–35.
- [21] A.A. Salama, S.A. Alblowi, Generalized Neutrosophic Set and Generalized Neutrosophic Topological Spaces, *Computer Science and Engineering*, 2(7)(2012), 129– 132.
- [22] V.K. Shanthi, S.Chandrasekar, K.Safina Begam, Neutrosophic Generalized Semi Closed Sets In Neutrosophic Topological Spaces, *International Journal of Research in Advent Technology*, 6(7)(2018), 1739–1743.
- [23] L. A. Zadeh, Fuzzy sets, Information and Control, 8(3)(1965), 338–353.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

