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Abstract. Many real time problems are based on uncertainity and chaotic environment. To demonstrate this ambiguous suitua-

tion more precisely we intend to amalgamate the ideas of chaos theory and neutrosophy. Neutrosophy is a flourishing arena 

which conceptualizes the notions of true, falsity and indeterminacy attributes of an event. Chaos theory is another branch 

which brings out the concepts of periodic point, orbit and sensitive of a set. Hence in this paper we focus on the introducing the 

idea of chaotic periodic points, orbit sets, sensitive functions under neutrosophic settings. We start with defining a neutrosoph-

ic chaotic space and enlist its properties, As a futher extension we coin neutrosophic chaotic continuous functions and discuss 

its charaterizations and their interrelationships. We have also illustrated the above said concepts with suitable examples. 

 

Keywords: Neutrosophic periodic points, neutrosophic orbit sets, neutrosophic chaotic sets, neutrosophic sensitive functions, 

neutrosophic orbit extremally disconnected spaces. 

 

1 Introduction 

The introduction of the idea of fuzzy set was introduced in the year 1965 by Zadeh[16]. He proposed that each 
element in a fuzzy set has a degree of membership. Following this concept K.Atanassov[1,2,3] in 1983 

introduced the idea of intuitionistic fuzzy set on a universe X as a generalization of fuzzy set. Here besides the 

degree of membership a degree of non-membership for each element is also defined. Smarandache[11,12] 
originally gave the definition of a neutrosophic set and neutrosophic logic. The neutrosophic logic is a formal 

frame trying to measure the truth, indeterminacy and falsehood. The significance of neutrosophy is that it finds 
and indispensible place in decision making. Several authors[7, 8, 9, 10] have done remarkable achievements in 

this area. One of the prime discoveries of the 20
th

 century which has been widely investigated with significant 
progress and achievements is the theory of  Chaos and fractals.It has become an exciting emerging 

interdisciplinary area in which a broad spectrum of technologies and methodologies have emerged to deal with 

large-scale, complex and dynamical systems and problems. In 1989, R.L. Deveney[4] defined chaotic function in 
general metric space. A breakthrough in the conventional general topology was intiated by T. Thrivikraman and 

P.B. Vinod Kumar[15] by defining Chaos and fractals in general topological spaces. M. Kousalyaparasakthi, E. 
Roja, M.K. Uma[6] introduced the above said idea to  intuitionistic chaotic continuous functions. Tethering 

around this concept we introduce neutrosophic periodic points, neutrosophic orbit sets, neutrosophic sensitive 

functions, neutrosophic clopen chaotic sets and neutrossophic chaos spaces. The concepts of neutrosophic 
chaotic continuous functions, neutrosophic chaotic

*
 continuous functions, neutrosophic chaotic

**
 continuous 

functions, neutrosophic chaotic
***

 continuous functions are introduced and studied. Some interrelation are 
discussed with suitable examples. Also the concept of neutrosophic orbit extremally disconnected spaces, 

neutrosophic chaotic extremally disconnected spaces, neutrosophic orbit irresolute function are discussed. 

2 Preliminaries 

2.1 Definition [12] 

Let X be a non empty set. A neutrosophic set (NS for short) V is an object having the form V = <x, V
1
, V

2
, 

V
3
> where V

1
, V

2
, V

3
 represent the degree of membership, the degree of indeterminacy and the degree of non-

membership respectively of each element x ∈ X to the set V. 

2.2 Definition [12] 

Let X be a non empty set, U = <x, U
1
, U

2
, U

3
> and V = <x, V

1
, V

2
, V

3
> be neutrosophic sets on X, and let {Vi: i 

∈ J} be an arbitrary family of neutrosophic sets in X, where V
i
 = <x, V

1
, V

2
, V

3
>   

(i) U ⊆ V   U
1
 ⊆ V

1
, U

2
 ⊇ V

2
 and U

3
 ⊇ V

3
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(ii) U = V   U ⊆ V and V ⊆ U.  

(iii) V = <x, V
3
, V

2
, V

1
>   

(iv)U∩V=<x, U
1
∩V

1
, U

2∪V
2
, U

3∪V
3
>

  

(v) U∪V=<x, U
1∪V

1
, U

2
∩V

2
, U

3
∩V

3
>  

(vi) ∪Vi = <x, ∪Vi
1
, ∩Vi

2
, ∩Vi

3
>  

(vii) ∩Vi = <x, ∩Vi
1
, ∪Vi

2
, ∪Vi

3
>   

(viii)U − V = U ∩ V .  

(ix) φN = <x, φ, X, X>; XN = <x, X, φ, φ >. 

 

2.3 Definition [14] 

A neutrosophic topology (NT for short) on a nonempty set X is a family τ of neutrosophic set in X satisfying the 

following axioms:  

(i) φN, XN ∈ τ.  

(ii) T1∩ T2 ∈ τ for any T1, T2 ∈ τ.  

(iii) ∪Ti ∈ τ for any arbitrary family {Ti : i∈J} ⊆ τ. 

In this case the pair (X, τ) is called a neutrosophic topological space (NTS for short) and any neutrosophic set in 

τ is called a neutrosophic open set (NOS for short) in X. The complement V of a neutrosophic open set V is 

called a neutrosophic closed set (NCS for short) in X. 

2.4 Definition [14] 

Let (X, τ) be a neutrosophic topological space and V = <X, V1, V2, V3> be a set in X. Then the closure and inte-

rior of V are defined by  

Ncl(V) = ∩{M : M is a neutrosophic closed set in X and V ⊆ M},  

Nint(V) = ∪{N : N is a neutrosophic open set in X and N ⊆ V}. 

It can be also shown that Ncl(V) is a neutrosophic closed set and Nint(V) is a neutrosophic open set in X, and V 

is a neutrosophic closed set in X iff Ncl(V) = V; and V is a neutrosophic open set in X iff Nint(V) = V. 

Where Ncl - neutrosophic closure and Nint – neutrosophic interior 

2.5 Definition [5] 

(a) If V = <y,V
1
,V

2
,V

3
> is a neutrosophic set in Y , then the preimage of V under f, denoted by f

−1
(V), is the neu-

trosophic set in X defined by f
−1

(V) = <x,f
−1

(V
1
),f

−1
(V

2
),f

−1
(V

3
)>.  

(b) If U = <x,U
1
,U

2
,U

3
> is a neutrosophic set in X, then the image of U under f, denoted by f(U), is the neutro-

sophic set in Y defined by f(U) = <y,f(U
1
),f(U

2
),Y-f(X-U

3
)> where  

f(U
1
)=






 





otherwise

yfifU
yfx

0

)(sup
11

)(
1 

  

f(U
2
)=






 





otherwise

yfifU
yfx

0

)(sup
12

)(
1 

  

Y-f(X-U
3
)= 






 





otherwise

yfifU
yfx

1

)(inf
13

)(
1 

  

2.6 Definition [13]  
Let (X, τ) and (Y,σ) be any two neutrosophic topological spaces and let f : X → Y be a function. Then f is said to 

be continuous if and only if the preimage of each neutrosophic set in σ is a neutrosophic set in τ. 

2.7 Definition [13]  
Let (X, τ) and (Y,σ) be two neutrosophic topological spaces and let f : (X, τ) → (Y,σ) be a function. Then f is 

said to be open iff the image of each neutrosophic set in τ is a neutrosophic set in σ. 

2.8 Definition [4]  
Orbit of a point x in X under the mapping f is Of(x)={x, f(x), f 

2
(x),...} 

2.9 Definition [4]  
x in X is called a periodic point of f if f

n
(x) =x, for some n ∈ Z

+
. Smallest of these n is called period of x. 

2.10 Definition [4]  
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f is sensitive if for each  >0   (a)   (b) y  and (c) n  Z+  d(x,y)<   and d(f
n
(x),f

n
(y))>  . 

2.11 Definition [4]  
f is chaotic on (X,d) if (i) Periodic points of f are dense in X (ii) Orbit of x is dense in X for some x in X and       

(iii) f is sensitive.  

2.12 Definition [15]  
Let (X, τ) be a topological space and f : (X, τ) → (X, τ) be continuous map. Then f is sensitive at x ∈ X if given 

any open set U containing x   (i) y ∈ U (ii) n ∈ Z
+ 

and (iii) an open set V   f
n
(x) ∈ V , f

n
(y) cl(V ). We say 

that f is sensitive on a F if f|F is sensitive at every point of F. 

2.13 Definition [15]  
Let (X, τ) be a topological space and F ∈ K(X). Let f : F → F be a continuous. Then f is chaotic on F if  

(i) cl(Of(x)) = F for some x ∈ F.  

(ii) periodic points of f are dense in F.  

(iii) f ∈ S(F). 

2.14 Definition [15] 

(i) C(F) = {f : F → F | f is chaotic on F} and (ii) CH(X) = {F ∈ NK(X) | C(F)  φ}. 

2.15 Definition [15] 

A topological space (X, τ) is called a chaos space if CH(X)  φ. The members of CH(X) are called chaotic sets. 

3 Characterizations of neutrosophic chaotic continuous functions  

3.1 Definition  
Let (X, τ) be a neutrosophic topological space and V =<X,V

1
,V

2
,V

3
> be a neutrosophic set of X. 

(i) Ncl(V) denotes neutrosophic closure of V.  

(ii) Nint(V) denotes neutrosophic interior of V.   

(iii) NK(X) denotes the collection of all non empty neutrosophic compact sets of X.  

(iv) clopen denotes closed and open 

3.2 Definition  
Let (X, τ) be a neutrosophic topological space. An orbit of a point x in X under the function f : (X, τ) → (X, τ) is 

denoted and defined as Of(x) = {x,f
1
(x),f

2
(x),...f

n
(x)} for x ∈ X and n ∈ Z

+
.  

3.3 Example  
Let X = {p,q,r}. Let f : X → X be a function defined by f(p) = q, f(q) = r, and f(r) = p. If n = 1, then the orbit 

points Of(p) = {p,q}, Of(q) = {q,r} and Of(r) = {p,r}. If n = 2, then the orbit points Of(p) = X, Of(q) = X and Of(r) 

= X. 

3.4 Definition  
Let (X, τ) be a neutrosophic topological space. A neutrosophic orbit set in X under the function f : (X, τ) → (X, 

τ) is denoted and defined as NOf(x) = <x,OfT(x),OfI(x),OfF(x)> for x ∈ X. 

3.5 Example  
Let X = {p,q,r,s}. Let f : X → X be a function defined by f(p) = <q,s,q>, f(q) = <s,p.r>, f(r) = <p,q,s> and f(s) = 

<r,r,p>. If n = 1, then the neutrosophic orbit sets NOf(p) = <x,{p,q},{p,s},{p,q}>, NOf(q) = 

<x,{q,s},{q,p},{q,r}>, NOf(r) = <x,{p,r},{q,r},{r,s}> and NOf(s) = <x,{r,s},{r,s},{p,s}>. If n = 2, then the neu-

trosophic orbit sets NOf(p) = <x,{p,q,s},{p,r,s},{p,q,r}>, NOf(q) = <x,{q,r,s},{p,q,s},{q,r,s}>, NOf(r) = 

<x,{p,q,r},{p,q,r},{p,r,s}> and NOf(s) =<x,{p,r,s},{q,r,s},{p,q,s}>. If n = 3, then the neutrosophic orbit sets 

NOf(a) = <x,X,X,X>, NOf(b) =<x,X,X,X>, NOf(c) = <x,X,X,X>and NOf(d) =<x,X,X,X>. 

3.6 Definition  
Let (X, τ) be a neutrosophic topological space and f : (X, τ) → (X, τ) be a neutrosophic continuous function. 

Then f is said to be neutrosophic sensitive at x ∈ X if given any neutrosophic open set U = <x,U
1
,U

2
,U

3
> con-

taining x   a neutrosophic open set V = <x,V
1
,V

2
,V

3
>   f

n
(x) ∈ V , f

n
(y) Ncl(V ) and y ∈ U, n ∈ Z

+
. We say 

that f is neutrosophic sensitive on a neutrosophic compact set F = <x,F
1
,F

2
.F

3
> if f|F is neutrosophic sensitive at 

every point of F. 

3.7 Example  
Let X = {p,q,r,s}. Then the neutrosophic sets P, Q, R and S are defined by P = <x,{p,r,s},{p,q,r},{p,r,s}>, Q = 

<x,{r,s},{p,r},{p,s}>, R = <x,{r,s},{p,q,r},{p,r,s}> and S = <x,{p,r,s},{p,r},{p,s}>. Then the family τ = 

{XN,φN,P,Q,R,S} is neutrosophic topology on X. Clearly, (X, τ) is an neutrosophic topological space. Let f : (X, 
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τ) → (X, τ) be a function defined by f(p) = <r,q,s> f(q) = <s,s,r>, f(r) =< q,p,p> and f(s) = <p,r,q>. Let x = p and 

y = r. If n = 1,3,5, then the neutrosophic open set P = <x,{p,r,s},{p,q,r},{p,r,s}> containing x there exists an 

neutrosophic open set R = <x,{r,s},{p,q,r},{p,r,s}> such that f
n
(x) ∈ R,f

n
(y) Ncl(R) and y ∈ P. Hence the 

function f is called neutrosophic sensitive. 

3.8 Notation  
Let (X, τ) be a neutrosophic topological space. Let F = <x,F

1
,F

2
,F

3
> ⊆ XN then S(F) = <x,S(F)

1
,S(F)

2
,S(F)

3
> 

where S(F)
1
 = {f | f is neutrosophic sensitive on F}, S(F)

2
 = {f | f is indeterminacy neutrosophic sensitive on F} 

and S(F)
3
 = {f | f is not neutrosophic sensitive on F}. 

3.9 Definition  
Let (X, τ) be a two neutrosophic topological space. Let f : (X, τ) → (X, τ) be a function. A neutrosophic periodic 

set is denoted and defined as NPf(x) = <x,{x ∈ X | f
n
T(x) = x},{x ∈ X | f

n
I(x) = x},{x ∈ X | f

n
F(x) = x}> 

3.10 Example  
Let X = {p,q,r}. Let f : X → X be a function defined by f(p) = <p,q,r>, f(q) = <r,p,q> and f(r) = <q,r,p>. If n = 1, 

then the neutrosophic periodic set NPf(p) = <x,{p},{q},{r}>, NPf(q) = <x,{r},{p},{q}>and NPf(q) = 

<x,{q},{r},{p}>. If n = 2, then the neutrosophic periodic sets NPf(p) = <x,{p},{p},{p}>,  NPf(q) = 

<x,{q},{q},{q}> and NPf(r) = <x,{r},{r},{r}>. 

3.11 Definition  
Let (X, τ) be a neutrosophic topological space. A neutrosophic set V = <X,V

1
,V

2
,V

3
> of X is said to be a 

neutrosophic dense in X, if Ncl(V) = X. 

3.12 Definition  
Let (X, τ) be a neutrosophic topological space and F = <x,F

1
,F

2
,F

3
> ∈ NK(X). Let f : F → F be a neutrosophic 

continuous function. Then f is said to be neutrosophic chaotic on F if  

(i) Ncl(NOf(x)) = F for some x ∈ F.  

(ii) neutrosophic periodic points of f are neutrosophic dense in F. That is, Ncl(NPf(x)) = F.  

(iii) f ∈ S(F). 

3.13 Notation  
Let (X, τ) be a neutrosophic topological space then C(F) = <x,C(F)

1
,C(F)

2
,C(F)

3
> where C(F)

1
 = {f : F → F | f is 

neutrosophic chaotic on F}, C(F)
2
 = {f : F → F | f is indeterminacy neutrosophic chaotic on F},and C(F)

3
 = {f : F 

→ F | f is not neutrosophic chaotic on F}. 

3.14 Notation  
Let (X, τ) be a neutrosophic topological space then CH(X) = {F = <x,F

1
,F

2
,F

3
> ∈ NK(X) | C(F)  φ}. 

3.15 Definition  
A neutrosophic topological space (X, τ) is called a neutrosophic chaos space if CH(X)  φ. The members of 

CH(X) are called neutrosophic chaotic sets. 

3.16 Definition  
Let (X, τ) be a neutrosophic topological space. A neutrosophic set V = <x,V

1
,V

2
,V

3
> is neutrosophic clopen if it 

is both neutrosophic open and neutrosophic closed. 

3.17 Definition  
Let (X, τ) be a neutrosophic topological space.  

(i)        A neutrosophic open orbit set is a neutrosophic set which is both neutrosophic open and neutro-

sophic orbit.  

(ii)        A neutrosophic closed orbit set is a neutrosophic set which is both neutrosophic closed and neutro-

sophic orbit.  

(iii)        A neutrosophic clopen orbit set is a neutrosophic set which is both neutrosophic clopen and neutro-

sophic orbit. 

3.18 Definition  
Let (X, τ) be a neutrosophic topological space.  

(i)        A neutrosophic open chaotic set is a neutrosophic set which is both neutrosophic open and neutro-

sophic chaotic.  

(ii)        A neutrosophic closed chaotic set is a neutrosophic set which is both neutrosophic closed and neu-

trosophic chaotic.  

(iii)        A neutrosophic clopen chaotic set is a neutrosophic set which is both neutrosophic clopen and neu-

trosophic chaotic. 

3.19 Definition  
Let (X, τ) and (X,σ) be any two neutrosophic chaos spaces. A function f : (X, τ) → (X,σ) is said to be neutro-
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sophic chaotic continuous if for each periodic point x ∈ X and each neutrosophic clopen chaotic set F = 

<x,F
1
,F

2
,F

3
> of f(x)   a neutrosophic open orbit set NOf(x) of the periodic point x   f(NOf(x)) ⊆ F. 

3.20 Example  
Let X={p,q,r,s}. Then the neutrosophic sets M,N,O,P,Q and R are defined by M=<x,{q,r},{r},{p,r}>, 

N=<x,{p},{p,q},{p,s}>, O=<x,{p,q,r},φ,{p}>, P=<x,φ,{p,q,r},{p,r,s}>, Q=<x,{p,q,r},{r},{p}>, 

R=<x,{p},{r},{p,q,r}>. Let τ={XN,φN,M,N,O,P} and σ = {XN,φN,Q,R} be a neutrosophic topologies on X. 

Clearly (X, τ) and (X,σ) be any two neutrosophic chaos spaces. The function f : (X, τ) → (X, σ) is defined by 

f(p) = <p,q,s> f(q) = <r,s,r>, f(r) =< q,r,p> and f(s) = <s,p,q>. Now the function f is called neutrosophic chaotic 

continuous.       

3.21 Theorem  
Let (X, τ) and (X,σ) be any two neutrosophic chaos spaces. Let f : (X, τ) → (X,σ) be a function. Then the 

following statements are equivalent: 

(i)        f is neutrosophic chaotic continuous.  

(ii)        Inverse image of every neutrosophic clopen chaotic set of (X,σ) is a neutrosophic open orbit set of 

(X, τ).  

(iii)        Inverse image of every neutrosophic clopen chaotic set of (X,σ) is a neutrosophic clopen orbit set of 

(X, τ). 

Proof  

(i)⇒ (ii) Let F = <x,F
1
,F

2
,F

3
>  be a neutrosophic clopen chaotic set of (X, σ) and the periodic point x ∈ f

−1
(F). 

Then f(x) ∈ F. Since f is neutrosophic chaotic continuous,   a neutrosophic open orbit set NOf(x) of (X, τ)   x 

∈ NOf(x), f(NOf(x)) ⊆ F. That is,  x ∈ NOf(x) ⊆ f
−1

(F). Now, f
−1

(F) = ∪{NOf(x) : x ∈ f
−1

(F)}. Since f
−1

(F) is 

union of neutrosophic open orbit sets. Therefore, f
−1

(F) is an neutrosophic open orbit set.  

(ii) ⇒ (iii) Let F be a neutrosophic clopen chaotic set of (X, σ). Then X − F is also a neutrosophic clopen chaotic 

set, By (ii) f
−1

(X − F) is neutrosophic open orbit in (X, τ). So X − f
−1

(F) is a neutrosophic open orbit set in (X, τ). 

Hence, f
−1

(F) is neutrosophic closed orbit in (X, τ). By (ii), f
−1

(F) is a neutrosophic open orbit set of (X, τ). 

Therefore, f
−1

(F) is both neutrosophic open orbit and neutrosophic closed orbit in (X, τ). Hence, f
−1

(F) is a 

neutrosophic clopen orbit set of (X, τ).  

(iii) ⇒ (i) Let x be a periodic point, x ∈ X and F be a neutrosophic clopen chaotic set containing f(x) then f
−1

(F) 

is a neutrosophic open orbit set of (X, τ) containing x and f(f
−1

(F)) ⊆ F. Hence, f is neutrosophic chaotic 

continuous. 

3.22 Definition  
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. A function f : (X, τ) → (X, σ) is said to be 

neutrosophic chaotic* continuous if for each periodic point x ∈ X and each neutrosophic closed chaotic set F 

containing f(x),   neutrosophic open orbit set NOf(x) containing x   f(Ncl(NOf(x))) ⊆ F. 

3.23 Theorem 
A neutrosophic chaotic continuous function is a neutrosophic chaotic* continuous function.  

Proof Since f is a neutrosophic chaotic continuous function, F is a neutrosophic clopen chaotic set containing 

f(x),   a neutrosophic open orbit set NOf(x) containing x   f(NOf(x)) ⊆ F. Then f
−1

(F) is a neutrosophic clopen 

chaotic set of (X, σ). By (iii) of Theorem 3.21., f
−1

(F) is a neutrosophic clopen orbit set in (X, τ). Therefore, F is 

a neutrosophic closed chaotic set containing f(x) and f
−1

(F) is a neutrosophic open orbit set   f(f
−1

(F)) ⊆ F. 

Since f
−1

(F) is neutrosophic closed orbit set, Ncl(f
−1

(F)) = f
−1

(F). This implies that, f(Ncl(f
−1

(F))) ⊆ F. Hence, f is 

a neutrosophic chaotic* continuous function. 

3.24 Remark 
The converse of Theorem 3.23. need not be true as shown in Example 3.25. 

3.25 Example 
Let X={p,q,r,s}. Then the neutrosophic sets M,N,O,P,Q,R,S and T are defined by M=<x,{p,r},{q,r},{r}>, 

N=<x,{r},{q},{p,q,r}>, O=<x,{r},{q,r},{p,q,r}>, P=<x,{p,r},{q},{r}>, Q=<x,{p,q,s},{q,s},{p,r}>, 

R=<x,{q,s},{p,q},{q,r}>, S=<x,{q,s},{p,q,s},{p,q,r}>  and T=<x,{p,q,s},{q},{r}>. Let τ={XN,φN,M,N,O,P} and  

σ = {XN,φN,Q,R,S,T} be a neutrosophic topologies on X. Clearly (X, τ) and (X,σ) be any two neutrosophic chaos 

spaces. The function f : (X, τ) → (X, σ) is defined by f(p) = <q,p,s> f(q) = <s,r,p>, f(r) =< p,q,r> and f(s) = 

<r,s,q>. Now the function f is neutrosophic chaotic* continuous but not neutrosophic chaotic continuous. Hence, 

neutrosophic chaotic* continuous function need not be neutrosophic chaotic continuous function.     

3.26 Definition  
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. A function f : (X, τ) → (X, σ) is said to be 

neutrosophic chaotic** continuous if for each periodic point x ∈ X and each neutrosophic closed chaotic set F of 

f(x),   a neutrosophic open orbit set NOf(x) of the periodic point x   f(NOf(x)) ⊆ Nint(F). 
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3.27 Theorem 
A neutrosophic chaotic continuous function is a neutrosophic chaotic** continuous function.  

Proof Since f is a neutrosophic chaotic continuous function, F is a neutrosophic clopen chaotic set containing 

f(x),   a neutrosophic open orbit set NOf(x) containing x   f(NOf(x)) ⊆ F. Since F is a neutrosophic open orbit 

set in (X, σ), F = Nint(F). This implies that, f(NOf(x)) ⊆ Nint(F). Hence, f is an neutrosophic chaotic** 

continuous function. 

3.28 Remark  
The converse of Theorem 3.27 need not be true as shown in the Example 3.29. 

3.29 Example 
Let X={p,q,r,s}. Then the neutrosophic sets M,N,O,P,Q,R,S and T are defined by M=<x,{q,r},{r},{p,r}>, 

N=<x,{p,s},{p,q},{p,q}>,O=<x,φ,{p,q,r},{p,q,r}>,P=<x,X,φ,{p}>,Q=<x,{p,q,r},{r},{p,s}>,R=<x,{q},{q,r},{p,r

}>, S=<x,{p,q,r},{r},{p}>  and T=<x,{q},{r},{p,r,s}>. Let τ={XN,φN,M,N,O,P} and  σ = {XN,φN,Q,R,S,T} be a 

neutrosophic topologies on X. Clearly (X, τ) and (X,σ) be any two neutrosophic chaos spaces. The function                 

f : (X, τ) → (X, σ) is defined by f(p) = <p,q,s> f(q) = <r,s,r>, f(r) =< q,r,p> and f(s) = <s,p,q>. Now the function 

f is neutrosophic chaotic** continuous but not neutrosophic chaotic continuous. Hence, neutrosophic chaotic** 

continuous function need not be neutrosophic chaotic continuous function.   

3.30 Definition 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. A function f : (X, τ) → (X, σ) is said to be a 

neutrosophic chaotic*** continuous if for each periodic point x ∈ X and each neutrosophic closed chaotic set F 

of f(x)   a neutrosophic clopen orbit set NOf(x) of the periodic point x   f(Nint(NOf(x))) ⊆ F.  

3.31 Theorem 
A neutrosophic chaotic continuous function is a neutrosophic chaotic*** continuous function.  

Proof Since f is a neutrosophic chaotic continuous function, F is a neutrosophic clopen chaotic set containing 

f(x),   a neutrosophic open orbit set NOf(x) containing x   f(NOf(x)) ⊆ F. This implies that, NOf(x) ⊆ f
−1

(F). 

Then, f
−1

(F) is a neutrosophic clopen chaotic set of (X, σ). By (iii) of Theorem 3.21, f
−1

(F) is a neutrosophic 

clopen orbit set in (X, τ). Therefore, F is a neutrosophic closed chaotic set containing f(x) and f
−1

(F) is a 

neutrosophic open orbit set   f(f
−1

(F)) ⊆ F. Since f
−1

(F) is neutrosophic open orbit set, Nint(f
−1

(F)) = f
−1

(F). This 

implies that, f(Nint(f
−1

(F))) ⊆ F. Hence, f is a neutrosophic chaotic*** continuous function. 

3.32 Remark 
The converse of Theorem 3.31 need not be true as shown in the Example 3.33. 

3.33 Example 
Let X={p,q,r,s}. Then the neutrosophic sets M,N,O,P,Q,R,S and T are defined by M=<x,{q,r},{r},{p,r}>, 

N=<x,{p,r},{r},{q,r}>, O=<x,{p,q,r},{r},{r}>, P=<x,{r},{r},{p,q,r}>, Q=<x,{p,q,r},{q,r},{p,s}>, 

R=<x,{q,r},{p,q},{r,s}>, S=<x,    {p,q,r},{r},{p}> and T=<x,{q},{r},{p,r,s}>. Let τ={XN,φN,M,N,O,P} and  σ = 

{XN,φN,Q,R,S,T} be a neutrosophic topologies on X. Clearly (X, τ) and (X,σ) be any two neutrosophic chaos 

spaces. The function f : (X, τ) → (X, σ) is defined by f(p) = <p,q,s> f(q) = <r,s,r>, f(r) =< q,r,p> and f(s) = 

<s,p,q>. Now the function f is neutrosophic chaotic*** continuous but not neutrosophic chaotic continuous. 

Hence, neutrosophic chaotic*** continuous function need not be neutrosophic chaotic continuous function.   

3.34 Remark 
The interrelation among the functions introduced are given clearly in the following diagram. 

  

Figure 1:  

 

 

 
 

 
 

 

 
 

 
 

 

4 Properties of neutrosophic chaotic continuous functions 
4.1 Definition 
A neutrosophic chaos space (X, τ) is said to be a neutrosophic orbit extremally disconnected space if the 

Neutrosophic chaotic*** continuous 

Neutrosophic chaotic                

continuous 

Neutrosophic chaotic* continuous Neutrosophic chaotic** continuous 
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neutrosophic closure of every neutrosophic open orbit set is neutrosophic open orbit. 

4.2 Theorem 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. If f : (X, τ) → (X, σ) is a neutrosophic chaotic 

continuous function and (X, τ) is a neutrosophic orbit extremally disconnected space then f is a neutrosophic 

chaotic* continuous function.  

Proof Let x be a periodic point and x ∈ X. Since f is neutrosophic chaotic continuous, F = <x,F
1
,F

2
,F

3
> is a 

neutrosophic clopen chaotic set of (X, σ),   a neutrosophic open orbit set NOf(x) of (X, τ) containing x   

f(NOf(x)) ⊆ F. Therefore, NOf(x) is a neutrosophic open orbit set NOf(x) of (X, τ). Since (X, τ) is neutrosophic 

orbit extremally disconnected, Ncl(NOf(x)) is a neutrosophic open orbit set. Therefore, F is a neutrosophic closed 

chaotic set containing f(x)   a neutrosophic open orbit set Ncl(NOf(x))   f(Ncl(NOf(x))) ⊆ F. Hence, f is 

neutrosophic chaotic* continuous. 

4.3 Definition 
A neutrosophic chaos space (X, τ) is said to be neutrosophic chaotic 0- dimensional if it has a neutrosophic base 

consisting of neutrosophic clopen chaotic sets. 

4.4 Theorem 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. Let f : (X, τ) → (X, σ) be a neutrosophic chaotic*** 

continuous function. If (X, σ) is neutrosophic chaotic 0-dimensional then f is a neutrosophic chaotic continuous 

function.  

Proof Let the periodic point x ∈ X. Since (X, σ) is neutrosophic chaotic 0-dimensional,   a neutrosophic clopen 

chaotic set F = <x,F
1
,F

2
,F

3
> in (X, σ). Since f is a neutrosophic chaotic*** continuous function,   a 

neutrosophic clopen orbit set NOf(x)   f(Nint(NOf(x))) ⊆ F. Since NOf(x) is a neutrosophic open orbit set, 

Nint(NOf(x) = NOf(x). This implies that, f(NOf(x)) ⊆ F. Therefore, f is neutrosophic chaotic continuous. 

4.5 Definition 
A neutrosophic chaos space (X, τ) is said to be a neutrosophic orbit connected space if XN cannot be expressed 

as the union of two neutrosophic open orbit sets NOf(x) and NOf(y), x,y ∈ X of (X, τ) with NOf(x) ∩NOf(y) φN. 

4.6 Definition 
A neutrosophic chaos space (X, τ) is said to be a neutrosophic chaotic connected space if XN cannot be expressed 

as the union of two neutrosophic open chaotic sets U = <x,U
1
,U

2
,U

3
> and V = <x,V

1
,V

2
,V

3
>  of (X, τ) with U∩V 

 φN. 

4.7 Theorem 
A neutrosophic chaotic continuous image of a neutrosophic orbit connected space is a neutrosophic chaotic 

connected space.  

Proof Let (X, σ) be neutrosophic chaotic disconnected. Let F1 = <x,
3

1

2

1

1

1
,, FFF > and F2 = <x,

3

2

2

2

1

2
,, FFF >  be 

a neutrosophic chaotic disconnected sets of (X, σ). Then F1 φN and F2  φN are neutrosophic clopen chaotic 

sets in (X, σ) and YN= F1∪F2 where F1 ∩ F2 = φN . Now, XN = f
−1

(YN) = f
−1

(F1 ∪ F2) = f
−1

(F1) ∪ f
−1

(F2).Since f is 

neutrosophic chaotic continuous, f
−1

(F1) and f
−1

(F2) are neutrosophic open orbit sets in (X, τ). Also 

f
−1

(F1)∩f
−1

(F2) = φN. Therefore, (X, τ) is not neutrosophic orbit connected. Which is a contradiction. Hence, (X, 

σ) is neutrosophic chaotic connected. 

4.8 Theorem 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. If f : (X, τ) → (X, σ) is a neutrosophic chaotic 

continuous function and NOf(x) is neutrosophic open orbit set then the restriction f|NOf(x) : NOf(x) → (X, σ) is 

neutrosophic chaotic continuous.  

Proof Let F = <x,F
1
,F

2
,F

3
> be a neutrosophic clopen chaotic set in (X, σ). Then, (f|NOf(x))

−1
(F) = f

−1
(F) ∩ 

NOf(x). Since f is neutrosophic chaotic continuous, f
−1

(F) is neutrosophic open orbit in (X, τ) and NOf(x) is a 

neutrosophic open orbit set. This implies that, f
−1

(F) ∩ NOf(x) is a neutrosophic open orbit set. Therefore, 

(f|NOf(x))
−1

(F) is neutrosophic open orbit in (X, τ). Hence, f|NOf(x) is neutrosophic chaotic continuous. 

4.9 Definition 
Let (X, τ) be a neutrosophic chaos space. If a family {NOf(xi) : i ∈ J} of neutrosophic open orbit set in (X, τ) 

satisfies the condition ∪NOf(xi) = XN, then it is called a neutrosophic open orbit cover of (X, τ).  

4.10 Theorem 
Let {NOf(x)γ : γ ∈ Γ} be any neutrosophic open orbit cover of a neutrosophic chaos space (X, τ). A function f : 

(X, τ) → (X, σ) is a neutrosophic chaotic continuous function if and only if the restriction f|NOf(x)γ : NOf(x)γ → 

(X, σ) is neutrosophic chaotic continuous for each γ ∈ Γ.  

Proof Let γ be an arbitrarily fixed index and NOf(x)γ be a neutrosophic open orbit set of (X, τ). Let the periodic 

point x ∈ NOf(x)γ and F = <x,F
1
,F

2
,F

3
> is neutrosophic clopen chaotic set containing (f|NOf(x)γ)(x) = f(x). Since 

f is neutrosophic chaotic continuous there exists a neutrosophic open orbit set NOf(x) containing x such that 
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f(NOf(x)) ⊆ F. Since (NOf(x)γ) is neutrosophic open orbit cover in (X, τ), x ∈ NOf(x)∩NOf(x)γ and 

(f|NOf(x)γ)(NOf(x) ∩ (NOf(x)γ) = f(NOf(x) ∩ (NOf(x)γ)) ⊂ f(NOf(x) ⊂ F. Hence f|NOf(x)γ is a neutrosophic cha-

otic continuous function. Conversely, let the periodic point x ∈ X and F be a neutrosophic chaotic set containing 

f(x). There exists an γ ∈ Γ such that x ∈ NOf(x)γ. Since (f|NOf(x)γ) : NOf(x)γ → (X, σ) is neutrosophic chaotic 

continuous, there exists a NOf(x) ∈ NOf(x)γ containing x such that (f|NOf(x)γ)(NOf(x)) ⊆ F. Since NOf(x) is neu-

trosophic open orbit in (X, τ), f(NOf(x)) ⊆ F. Hence, f is neutrosophic chaotic continuous. 

4.11 Theorem 
If a function f : (X, τ) →  (X, σ)λ is neutrosophic chaotic continuous then Pλ◦ f : (X, τ) → (X, σ)λ is neutro-

sophic chaotic continuous for each λ ∈ Λ, where Pλ is the projection of  (X, σ)λ onto (X, σ)λ.  

Proof Let Fλ = <x,
321

,,


FFF > be any neutrosophic clopen chaotic set of (X, σ)λ. Then 
1


P  (Fλ) is a neutro-

sophic clopen chaotic set in  (X, σ)λ and hence (Pλ ◦ f)
−1

(Fλ) = f
−1

(
1


P (Fλ)) is a neutrosophic open orbit set in 

(X, τ). Therefore, Pλ ◦ f is neutrosophic chaotic continuous. 

4.12 Theorem 
If a function f :  (X, τ)λ →  (X, σ)λ is neutrosophic chaotic continuous then fλ : (X, τ)λ → (X, σ)λ is a neutro-

sophic chaotic continuous function for each λ ∈ Λ.  

Proof Let Fλ =<x,
321

,,


FFF > be any neutrosophic clopen chaotic set of (X, σ)λ. Then 
1


P   (Fλ) is neutrosoph-

ic clopen chaotic in  (X, σ)λ and f
−1

(
1


P (Fλ)) = 

1


f (Fλ)×  {(X, τ)α : α ∈ Λ − {λ}}. Since f is neutrosophic 

chaotic continuous, f
−1

(
1


P (Fλ)) is a neutrosophic open orbit set in  (X, τ)λ. Since the projection Pλ of  (X, 

τ)λ onto (X, τ)λ is a neutrosophic open function, 
1


f (Fλ) is neutrosophic open orbit in (X, τ)λ. Hence, fλ is neu-

trosophic chaotic continuous. 

4.13 Definition 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. A function f : (X, τ) → (X, σ) is said to be neutro-

sophic chaotic irresolute if for each neutrosophic clopen chaotic set F = <x,F
1
,F

2
,F

3
> in (X, σ), f

−1
(A) is a neutro-

sophic clopen chaotic set of (X, τ). 

4.14 Theorem 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. If f : (X, τ) → (X, σ) is a neutrosophic chaotic con-

tinuous function and g : (X, σ) → (X, ) is a neutrosophic chaotic irresolute function, then g ◦ f : (X, τ) → 

(X, ) is neutrosophic chaotic continuous.  

Proof Let F = <x,F
1
,F

2
,F

3
> be a neutrosophic clopen set of (X, ). Since g is neutrosophic chaotic irresolute, 

g
−1

(F) is neutrosophic clopen chaotic set of (X, σ). Since f is neutrosophic chaotic continuous, f
−1

(g
−1

(F)) = (g ◦ 

f)
−1

(F) is a neutrosophic open orbit set of (X, τ) such that f
−1

(g
−1

(F)) ⊆ F. Hence g ◦ f is neutrosophic chaotic 

continuous. 

4.15 Definition 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. A function f : (X, τ) → (X, σ) is said to be neutro-

sophic orbit irresolute if for each neutrosophic open orbit set NOf(x) in (X, σ), f
−1

(NOf(x)) is a neutrosophic open 

orbit set of (X, τ). 

4.16 Definition 
Let (X, τ) and (X, σ) be any two neutrosophic chaos spaces. Let f : (X, τ) → (X, σ) be a function. Then f is said 

to be a neutrosophic open orbit function if the image of every neutrosophic open orbit set in (X, τ) is neutrosoph-

ic open orbit in (X, σ). 

4.17 Theorem 
Let f : (X, τ) → (X, σ) be neutrosophic orbit irresolute, surjective and neutrosophic open orbit function. Then g ◦ 

f : (X, τ) → (X, ) is neutrosophic chaotic continuous iff  g : (X, σ) → (X, ) is neutrosophic chaotic continuous.                                              

Proof Let Fλ =<x,
321

,,


FFF > be a neutrosophic clopen chaotic set of (X, ). Since g is neutrosophic chaotic 

continuous, g
−1

(F) is neutrosophic open orbit in (X, σ). Since f is neutrosophic orbit irresolute, f
−1

(g
−1

(F)) = (g ◦ 

f)
−1

(F) is neutrosophic open orbit in (X, τ). Hence g ◦ f is neutrosophic chaotic continuous. Conversely, let g ◦ f : 

(X, τ) → (X, ) be  neutrosophic chaotic continuous function. Let F be a neutrosophic clopen chaotic set of 

(X, ), then (g ◦ f)
−1

(F) is a neutrosophic open orbit set of (X, τ). Since f is neutrosophic open orbit and surjec-

tive, f(f
−1

(g
−1

(F)) is a neutrosophic open orbit set of (X, σ). Therefore, g
−1

(F) is a neutrosophic open orbit set in 

(X, σ). Hence, g is neutrosophic chaotic continuous. 

 



Neutrosophic Sets and Systems, Vol. 25, 2019  

 

T. Madhumathi, F. Nirmala Irudayam  and Florentin Smarandache , A Note on Neutrosophic Chaotic Continuous 
 Function. 

 

84 

Conclusion  

In this paper, characterization of neutrosophic chaotic continuous functions are studied. Some interrelations are 

discussed with suitable examples. Also, neutrosophic orbit, extremally disconnected spaces and neutrosophic 

chaotic zero-dimensional spaces has been discussed with some interesting properties. This paper paves way in 

future to introduce and study the notions of neutrosophic orbit Co-kernal spaces, neutrosophic hardly open orbit 

spaces, neutrosophic orbit quasi regular spaces and neutrosophic orbit strongly complete spaces, neutrosophic 

orbit Co-kernal function, neutrosophic hardly open orbit function for which the above discussed set form the ba-

sis. 
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