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ABSTRACT

This paper is devoted to the concepts of neutrosophic upper and neutrosophic lower contra-

continuous multifunctions and also some of their characterizations are considered..

1 INTRODUCTION

In the last three decades, the theory of multifunctions has advanced in a variety of ways

and applications of this theory can be found, specially in functional analysis and fixed point

theory. In recent years, several authors have studied some new forms of contra-continuity

for functions and multifunctions. In the present paper, we study the notions of neutrosophic

upper and neutrosophic lower contra-continuous multifunctions. Also, some characteriza-

tions and properties of such notions are discussed. Since initiation of the theory of neutro-

sophic sets by Smarandache (1999), this theory has found wide applications in economics,

engineering, medicine, information sciences, programming, optimization, graphs etc. Also,

neutrosophic multifunctions arise in many applications, for example, the budget multifunc-

tions accurs in decision theory, noncooperative games, artificial intelligence, economic theory,

medicine, information sciences, fixed point theory. In this paper, we present the concepts of

neutrosophic upper and neutrosophic lower contra-continuous multifunctions and also some

characterizations of them are given.

2 Preliminaries

Definition 2.1. (Smarandache (1999)) Let X be a non-empty fixed set. A neutrosophic

set A is an object having the form A =< x, µA(x), σA(x), γA(x) >, where µA(x), σA(x) and
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γA(x) which represent the degree of member ship function, the degree of indeterminacy, and

the degree of non-membership, respectively of each element x ∈ X to the set A.

Definition 2.2. (Salama and Alblowi (2012)) A neutrosophic topology on a nonempty set

X is a family τ of neutrosophic subsets of X which satisfies the following three conditions:

1. 0, 1 ∈ τ ,

2. If g, h ∈ τ , their g ∧ h ∈ τ ,

3. If fi ∈ τ for each i ∈ I, then ∨i∈Ifi ∈ τ .

The pair (X, τ) is called a neutrosophic topological space.

Definition 2.3. Members of τ are called neutrosophic open sets and complement of neutro-

sophic open sets are called neutrosophic closed sets, where the complement of a neutrosophic

set A, denoted by Ac, is 1− A.

3 NEUTROSOPHIC UPPER AND LOWER CONTRA-CONTINUOUS MULTIFUNC-

TIONS

Definition 3.1. Let (X, τ) be a topological space in the classical sense and (Y, σ) be a neu-

trosophic topological space. Then F : (X, τ)→ (Y, σ) is called a neutrosophic multifunction

if and only if for each x ∈ X,F (x) is a neutrosophic set in Y .

Definition 3.2. For a neutrosophic multifunction F : (X, τ) → (Y, σ), the upper inverse

F+(λ) and lower inverse F−(λ) of a neutrosophic set λ in Y are defined as follows:

F+(λ) = {x ∈ X : F (x) ⊂ λ} and F−(λ) = {x ∈ X : F (x)qλ}.

Lemma 3.3. For a fuzzy multifunction F : (X, τ)→ (Y, σ), we have F−(1−λ) = X−F+(λ)

for any neutrosophic set λ in Y .

Definition 3.4. A neutrosophic multifunction F : (X, τ) → (Y, σ) is called neutrosophic

lower contra-continuous if for any neutrosophic closed set A in Y with x ∈ F−(A), there

exists an open set B in X containing x such that B ⊂ F−(A).

Definition 3.5. A neutrosophic multifunction F : (X, τ) → (Y, σ) is called neutrosophic

upper contra-continuous if for each neutrosophic closed set A in Y with x ∈ F+(A), there

exists an open set B in X containing x such that B ⊂ F+(A).

Theorem 3.6. The following are equivalent for a neutrosophic multifunction F : (X, τ) →
(Y, σ):

1. F is neutrosophic upper contra-continuous,

2. For each neutrosophic closed set A and x ∈ X such that F (x) ⊂ A, there exists an

open set B containing x such that if y ∈ B, then F (y) ⊂ A,
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3. F+(A) is open for any neutrosophic closed set A in Y ,

4. F−(B) is closed for any neutrosophic open set B in Y .

Proof. (1)⇒ (2): Obvious.

(1)⇒ (3): Let A be any neutrosophic closed set in Y and x ∈ F+(A). By (1), there exists an

open set Ax containing x such that Ax ⊂ F+(A). Thus, x ∈ Int(F+(A)) and hence F+(A)

is an open set in X.

(3) ⇒ (4): Let A be a neutrosophic open set in Y . Then Y \A is a neutrosophic closed set

in Y . By (3), F+(Y \A) is open. Since F+(1\A) = X\F−(A), then F−(A) is closed in X.

(4)⇒ (3): It is similar to that of (3)⇒ (4).

(3) ⇒ (1): Let A be any neutrosophic closed set in Y and x ∈ F+(A). By (3), F+(A) is

an open set in X. Take B = F+(A). Then, B ⊂ F+(A). Thus, F is neutrosophic upper

contra-continuous.

Definition 3.7. The set ∧{A ∈ τ : B ⊂ A} is called the neutrosophic kernel of a neutro-

sophic set A in a neutrosophic topological space (X, τ) and is denoted by Ker(A).

Lemma 3.8. If A ∈ τ rfor a neutrosophic set A in a neutrosophic topological space (X, τ),

then A = Ker(A).

Theorem 3.9. Let F : (X, τ) → (Y, σ) be a neutrosophic multifunction. If Cl(F−(A)) ⊂
F−(Ker(A)) for any neutrosophic set A in Y , then F is neutrosophic upper contra-continuous.

Proof. Suppose that Cl(F−(A)) ⊂ F−(Ker(A)) for every neutrosophic set A in Y . Let B ∈
σ. By Lemma 3.8, Cl(F−(B)) ⊂ F−(Ker(B)) = F−(B). This implies that Cl((F−(B)) =

F−(B) and hence F−(B) is closed in X. Thus, by Theorem 3.6, F is neutrosophic upper

contra-continuous.

Definition 3.10. A neutrosophic multifunction F : (X, τ)→ (Y, σ) is called

1. neutrosophic lower semi-continuous if for any neutrosophic open subset A ⊂ Y with

x ∈ F−(A), there exists an open set B in X containing x such that B ⊂ F−(A).

2. neutrosophic upper semi-continuous if for any neutrosophic open subset A ⊂ Y with

x ∈ F+(A), there exists an open set B in X containing x such that B ⊂ F+(A).

Remark 3.11. The notions of neutrosophic upper contra-continuous multifunctions and

neutrosophic upper semi-continuous multifunctions are independent as shown in the following

examples.

Example 3.12. Let X = {a, b, c}, τ = {X, ∅, {a}} and Y = [0, 1], σ = {Y, 0, A,B,C},
where A(y) =< 0.5, 0, 0.5 >, B(y) =< 0.6, 0, 0.4 > and C(y) =< 0.7, 0, 0.3 > for y ∈ Y .

Define a neutrosophic multifunction as follows: F (a) = A, F (b) = B, F (c) = C. Then the

neutrosophic multifunction F : (X, τ) → (Y, σ) is neutrosophic upper contra-continuous but

it is not neutrosophic upper semi-continuous.
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Example 3.13. Let X = {a, b, c}, τ = {X, ∅, {b, c}} and Y = [0, 1], σ = {Y, 0, A,B,C},
where A(y) =< 0.3, 0, 0.7 >, B(y) =< 0.2, 0, 0.8 >, C(y) =< 0.6, 0, 0.4 >, D(y) =<

0.4, 0, 0.6 >, and E(y) =< 0.5, 0, 0.5 > for y ∈ Y . Define a neutrosophic multifunction

as follows: F (a) = D, F (b) = E, F (c) = C. Then the neutrosophic multifunction F :

(X, τ) → (Y, σ) is neutrosophic upper semi-continuous, but it is not neutrosophic upper

contra-continuous.

Theorem 3.14. The following are equivalent for a neutrosophic multifunction F : (X, τ)→
(Y, σ):

1. F is neutrosophic lower contra-continuous,

2. For each neutrosophic closed set A and x ∈ X such that F (x)qA, there exists an open

set B containing x such that if y ∈ B, then F (y)qA,

3. F−(A) is open for any neutrosophic closed set A in Y ,

4. F+(B) is closed for any neutrosophic open set B in Y .

Proof. It is similar to that of Theorem 3.6.

Theorem 3.15. For a neutrosophic multifunction F : (X, τ) → (Y, σ), if Cl(F+(A)) ⊂
F+(Ker(A)) for every neutrosophic set A in Y , then F is neutrosophic lower contra-continuous.

Proof. Suppose that Cl(F+(A)) ⊂ F+(Ker(A)) for every neutrosophic set A in Y . Let

A ∈ σ. We have Cl(F+(A)) ⊂ F+(Ker(A)) = F+(A). Thus, Cl(F+(A)) = F+(A) and

hence F+(A) is closed in X. Then F is neutrosophic lower contra-continuous.

Definition 3.16. Given a family {Fi : (X, τ) → (Y, σ) : i ∈ I} of neutrosophic multifunc-

tions, we define the union ∨
i∈I
Fi and the intersection ∧

i∈I
Fi as follows: ∨

i∈I
Fi : (X, τ)→ (Y, σ),

( ∨
i∈I
Fi)(x) = ∨

i∈I
Fi(x) and ∧

i∈I
Fi : (X, τ)→ (Y, σ), ( ∧

i∈I
Fi)(x) = ∧

i∈I
Fi(x).

Theorem 3.17. If Fi : X → Y are neutrosophic upper contra-continuous multifunctions for

i = 1, 2, ..., n, then
n
∨
i∈I
Fi is a neutrosophic upper contra-continuous multifunction.

Proof. Let A be a neutrosophic closed set of Y . We will show that (
n
∨
i∈I
Fi)

+(A) = {x ∈ X :

n
∨
i∈I
Fi(x) ⊂ A} is open in X. Let x ∈ (

n
∨
i∈I
Fi)

+(A). Then Fi(x) ⊂ A for i = 1, 2, ..., n. Since

Fi : X → Y is neutrosophic upper contra-continuous multifunction for i = 1, 2, ..., n, then

there exists an open set Ux containing x such that for all z ∈ Ux, Fi(z) ⊂ A. Let U =
n
∪
i∈I
Ux.

Then U ⊂ (
n
∨
i∈I
Fi)

+(A). Thus, (
n
∨
i∈I
Fi)

+(A) is open and hence
n
∨
i∈I
Fi is a neutrosophic upper

contra-continuous multifunction.

Lemma 3.18. Let {Ai}i∈I be a family of neutrosophic sets in a neutrosophic topological

space X. Then a neutrosophic point x is quasi-coincident with ∨Ai if and only if there exists

an i0 ∈ I such that xqAi0.
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Theorem 3.19. If Fi : X → Y are neutrosophic lower contra-continuous multifunctions for

i = 1, 2, ..., n, then
n
∨
i∈I
Fi is a neutrosophic lower contra-continuous multifunction.

Proof. Let A be a neutrosophic closed set of Y . We will show that (
n
∨
i∈I
Fi)
−(A) = {x ∈ X :

(
n
∨
i∈I
Fi)(x)qA} is open in X. Let x ∈ (

n
∨
i∈I
Fi)
−(A). Then (

n
∨
i∈I
Fi)(x)qA and hence Fi0(x)qA

for an i0. Since Fi : X → Y is neutrosophic lower contra-continuous multifunction, there

exists an open set Ux containing x such that for all z ∈ U , Fi0(z)qA. Then (
n
∨
i∈I
Fi)(z)qA and

hence U ⊂ (
n
∨
i∈I
Fi)
−(A). Thus, (

n
∨
i∈I
Fi)
−(A) is open and hence

n
∨
i∈I
Fi is a neutrosophic lower

contra-continuous multifunction.

Theorem 3.20. Let F : (X, τ) → (Y, σ) be a neutrosophic multifunction and {Ui : i ∈ I}
be an open cover for X. Then the following are equivalent:

1. Fi = F|Ui
is a neutrosophic lower contra-continuous multifunction for all i ∈ I,

2. F is neutrosophic lower contra-continuous.

Proof. (1) ⇒ (2): Let x ∈ X and A be a neutrosophic closed set in Y with x ∈ F−(A).

Since {Ui : i ∈ I} is an open cover for X, then x ∈ Ui0 for an i0 ∈ I. We have F (x) = Fi0(x)

and hence x ∈ F−i0 (A). Since F|Ui0 is neutrosophic lower contra-continuous, there exists an

open set B = G ∩ Ui0 in Ui0 such that x ∈ B and F−(A) ∩ Ui0 = F|Ui
(A) ⊃ B = G ∩ Ui0,

where G is open in X. We have x ∈ B = G ∩ Ui0 ⊂ F−|Ui0
(A) = F−(A) ∩ Ui0 ⊂ F−(A).

Hence, F is neutrosophic lower contra-continuous.

(2) ⇒ (1): Let x ∈ X and x ∈ Ui. Let A be a neutrosophic closed set in Y with Fi(x)qA.

Since F is lower contra-continuous and F (x) = Fi(x), there exists an open set U containing

x such that U ⊂ F−(A). Take B = Ui ∩ U . Then B is open in Ui containing x. We have

B ⊂ F−i(A). Thus Fi is a neutrosophic lower contra-continuous.

Theorem 3.21. Let F : (X, τ) → (Y, σ) be a neutrosophic multifunction and {Ui : i ∈ I}
be an open cover for X. Then the following are equivalent:

1. Fi = F|Ui
is a neutrosophic upper contra-continuous multifunction for all i ∈ I,

2. F is neutrosophic upper contra-continuous.

Proof. It is similar to that of Theorem 3.20.

Recall that for a multifunction F1 : (X, τ) → (Y, σ) and a neutrosophic multifunction F2 :

(Y, σ) → (Z, η), the neutrosophic multifunction F2 ◦ F1 : (X, τ) → (Z, η) is defined by

(F2 ◦ F1)(x) = F2(F1(x)) for x ∈ X.

Definition 3.22. Let X and Y be topological spaces. A multifunction F : (X, τ) → (Y, σ)

is called
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1. lower semi-continuous if for any open subset A ⊂ Y with x ∈ F−(A), there exists an

open set B in X containing x such that B ⊂ F−(A).

2. upper semi-continuous if for any open subset A ⊂ Y with x ∈ F+(A), there exists an

open set B in X containing x such that B ⊂ F+(A).

Theorem 3.23. If F1 : X → Y is an upper semi-continuous multifunction, where X and

Y are topological spaces and F2 : Y → Z is a neutrosophic upper contra-continuous mul-

tifunction, where Z is a neutrosophic topological space, then F2 ◦ F1 is neutrosophic upper

contra-continuous.

Proof. Let x ∈ X and A be a neutrosophic closed set in Z. We have (F2 ◦ F1)
+(A) =

F+
1 (F+

2 (A)). Since F2 is neutrosophic upper contra-continuous, F+
2 (A) is open in Y . Since

F1 is upper semi-continuous, F+
1 (F+

2 (A)) = (F2 ◦ F1)
+(A) is open in X. Thus, F2 ◦ F1 is

neutrosophic upper contra-continuous.

Definition 3.24. A neutrosophic set A in a neutrosophic topological space X is called:

1. a neutrosophic cl-neighbourhood of a neutrosophic point x in X if there exists a neu-

trosophic closed set B in X such that x ∈ B ⊂ A.

2. a neutrosophic cl-neighbourhood of a neutrosophic set B in X if there exists a neutro-

sophic closed set C in X such that B ⊂ C ⊂ A.

Theorem 3.25. If F : (X, τ)→ (Y, σ) is a neutrosophic upper contra-continuous multifunc-

tion, then for each point x of X and each neutrosophic cl-neighbourhood A of F (x), F+(A)

is a neighbourhood of x.

Proof. Let x ∈ X and A be a neutrosophic cl-neighbourhood of F (x). There exists a

neutrosophic closed set B in Y such that F (x) ⊂ B ⊂ A. We have x ∈ F+(B) ⊂ F+(A).

Since F+(B) is an open set, F+(A) is a neighbourhood of x.

Remark 3.26. A subset A of a topological space (X, τ) can be considered as a neutrosophic

set with characteristic function defined by

A(x) =

{
1 if x ∈ A

0 if x /∈ A.

Let (Y, σ) be a neutrosophic topological space. The neutrosophic sets of the form A×B with

A ∈ τ and B ∈ σ form a basis for the product neutrosophic topology τ × σ on X × Y , where

for any (x, y) ∈ X × Y , (A×B)(x, y) = min{A(x), B(y)}.

Definition 3.27. For a neutrosophic multifunction F : (X, τ) → (Y, σ), the neutrosophic

graph multifunction GF : X → X×Y of F is defined by GF (x) = x1×F (x) for every x ∈ X.
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Theorem 3.28. If the neutrosophic graph multifunction GF of a neutrosophic multifunction

F : (X, τ) → (Y, σ) is neutrosophic lower contra-continuous, then F is neutrosophic lower

contra-continuous.

Proof. Suppose that GF is neutrosophic lower contra-continuous and x ∈ X. Let A be

a neutrosophic closed set in Y such that F (x)qA. Then there exists y ∈ Y such that

(F (x))(y) + A(y) > 1. Then (GF (x))(x, y) + (X × A)(x, y) = (F (x))(y) + A(y) > 1.

Hence, GF (x)q(X × A). Since GF is neutrosophic lower contra-continuous, there exists an

open set B in X such that x ∈ B and GF (b)q(X × A) for all b ∈ B. Let there exists

b0 ∈ B such that F (b0)qA. Then for all y ∈ Y , (F (b0))(y) + A(y) < 1. For any (a, c) ∈
X × Y , we have (GF (b0))(a, c) ⊂ (F (b0))(c) and (X × A)(a, c) ⊂ A(c). Since for all y ∈ Y ,

(F (b0))(y) + A(y) < 1, (GF (b0))(a, c) + (X × A)(a, c) < 1. Thus, GF (b0)q(X × A), where

b0 ∈ B. This is a contradiction since GF (b)q(X ×A) for all b ∈ B. Hence, F is neutrosophic

lower contra-continuous.

Theorem 3.29. If the neutrosophic graph multifunction GF of a neutrosophic multifunction

F : X → Y is neutrosophic upper contra-continuous, then F is neutrosophic upper contra-

continuous.

Proof. Suppose that GF is neutrosophic upper contra-continuous and let x ∈ X. Let A be

neutrosophic closed in Y with F (x) ⊂ A. Then GF (x) ⊂ X × A. Since GF is neutrosophic

upper contra-continuous, there exists an open set B containing x such that GF (B) ⊂ X×A.

For any b ∈ B and y ∈ Y , we have (F (b))(y) = (GF (b))(b, y) ⊂ (X ×A)(b, y) = A(y). Then

(F (b))(y) ⊂ A(y) for all y ∈ Y . Thus, F (b) ⊂ A for any b ∈ B. Hence, F is neutrosophic

upper contra-continuous.

Theorem 3.30. Let F : (X, τ)→ (Y, σ) be a neutrosophic multifunction. Then the following

are equivalent:

1. F is neutrosophic lower contra-continuous,

2. For any x ∈ X and any net (xi)i∈I converging to x in X and each neutrosophic closed

set B in Y with x ∈ F−(B), the net (xi)i∈I is eventually in F−(B).

Proof. (1)⇒ (2): Let (xi) be a net converging to x in X and B be any neutrosophic closed

set in Y with x ∈ F−(B). Since F is neutrosophic lower contra-continuous, there exists an

open set A ⊂ X containing x such that A ⊂ F−(B). Since xi → x, there exists an index

i0 ∈ I such that xi ∈ A for every i ≥ i0. We have xi ∈ A ⊂ F−(B) for all i ≥ i0. Hence,

(xi)i∈I is eventually in F−(B).

(2)⇒ (1): Suppose that F is not neutrosophic lower contra-continuous. There exists a point

x and a neutrosophic closed set A with x ∈ F−(A) such that B * F−(A) for any open set

B ⊂ X containing x. Let xi ∈ B and xi /∈ F−(A) for each open set B ⊂ X containing x.

Then the neighborhood net (xi) converges to x but (xi)i∈I is not eventually in F−(A). This

is a contradiction.
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Theorem 3.31. Let F : (X, τ)→ (Y, σ) be a neutrosophic multifunction. Then the following

are equivalent:

1. F is neutrosophic upper contra-continuous,

2. For any x ∈ X and any net (xi) converging to x in X and any neutrosophic closed set

B in Y with x ∈ F+(B), the net (xi) is eventually in F+(B).

Proof. The proof is similar to that of Theorem 3.30.

Theorem 3.32. The set of all points of X at which a neutrosophic multifunction F :

(X, τ) → (Y, σ) is not neutrosophic upper contra-continuous is identical with the union

of the frontier of the upper inverse image of neutrosophic closed sets containing F (x).

Proof. Suppose F is not neutrosophic upper contra-continuous at x ∈ X. Then there exists

a neutrosophic closed set A in Y containing F (x) such that A ∩ (X\F+(B)) 6= ∅ for every

open set A containing x. We have x ∈ Cl(X\F+(B)) = X\ Int(F+(B)) and x ∈ F+(B).

Thus, x ∈ Fr(F+(B)). Conversely, let B be a neutrosophic closed set in Y containing F (x)

with x ∈ Fr(F+(B)). Suppose that F is neutrosophic upper contra-continuous at x. There

exists an open set A containing x such that A ⊂ F+(B). We have x ∈ Int(F+(B)). This is

a contradiction. Thus, F is not neutrosophic upper contra-continuous at x.

Theorem 3.33. The set of all points of X at which a neutrosophic multifunction F :

(X, τ) → (Y, σ) is not neutrosophic lower contra-continuous is identical with the union of

the frontier of the lower inverse image of neutrosophic closed sets which are quasi-coincident

with F (x).

Proof. It is similar to that of Theorem 3.32.

Definition 3.34. A neutrosophic topological space X is called neutrosophic strongly S-closed

if every neutrosophic closed cover of X has a finite subcover.

Theorem 3.35. Let F : (X, τ) → (Y, σ) be a neutrosophic upper contra-continuous surjec-

tive multifunction. Suppose that F (x) is neutrosophic strongly S-closed for each x ∈ X. If

X is compact, then Y is neutrosophic strongly S-closed.

Proof. Let {Ak}k∈I be a neutrosophic closed cover of Y . Since F (x) is neutrosophic strongly

S-closed for any x ∈ X, there exists a finite subset Ix of I such that F (x) ⊂ ∨
k∈Ix

Ak. Take

Ax = ∨
k∈Ix

Ak. Since F is neutrosophic upper contra-continuous, there exists a neutrosophic

open set Ux of X containing x such that F (Ux) ⊂ Ax. Then {Ux}x∈X is an open cover of

X. Since X is compact, there exist x1, x2, x3, ...,xn in X such that X =
n
∪
i=1

Uxi
. We have

Y = F (X) = F (
n
∪
i=1

Uxi
) ≤

n
∨
i=1

F (Uxi
) ≤

n
∨
i=1

Uxi
Axi

=
n
∨
i=1
∨

k∈Ixi
Uk. Thus, Y is neutrosophic

strongly S-closed.
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