
symmetryS S

Article

Neutrosophic Cubic Power Muirhead Mean
Operators with Uncertain Data for
Multi-Attribute Decision-Making

Qaisar Khan 1, Nasruddin Hassan 2,* and Tahir Mahmood 1

1 Department of Mathematics and Statistics, International Islamic University Islamabad Pakistan,
Islamabad 44000, Pakistan; qaisarkhan421@gmail.com (Q.K.); tahirbakhat@iiu.edu.pk (T.M.)

2 School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
UKM Bangi, Selongar DE 43600, Malaysia

* Correspondence: nas@ukm.edu.my; Tel.: +60-1-9214-5750

Received: 31 August 2018; Accepted: 25 September 2018; Published: 28 September 2018
����������
�������

Abstract: The neutrosophic cubic set (NCS) is a hybrid structure, which consists of interval
neutrosophic sets (INS) (associated with the undetermined part of information associated with
entropy) and single-valued neutrosophic set (SVNS) (associated with the determined part of
information). NCS is a better tool to handle complex decision-making (DM) problems with INS
and SVNS. The main purpose of this article is to develop some new aggregation operators for cubic
neutrosophic numbers (NCNs), which is a basic member of NCS. Taking the advantages of Muirhead
mean (MM) operator and power average (PA) operator, the power Muirhead mean (PMM) operator is
developed and is scrutinized under NC information. To manage the problems upstretched, some new
NC aggregation operators, such as the NC power Muirhead mean (NCPMM) operator, weighted NC
power Muirhead mean (WNCPMM) operator, NC power dual Muirhead mean (NCPMM) operator
and weighted NC power dual Muirhead mean (WNCPDMM) operator are proposed and related
properties of these proposed aggregation operators are conferred. The important advantage of the
developed aggregation operator is that it can remove the effect of awkward data and it considers the
interrelationship among aggregated values at the same time. Furthermore, a novel multi-attribute
decision-making (MADM) method is established over the proposed new aggregation operators
to confer the usefulness of these operators. Finally, a numerical example is given to show the
effectiveness of the developed approach.

Keywords: NC power dual MM operator (NCPDMM) operator; NCPMM operator; MADM; MM
operator; Neutrosophic cubic sets; PA operator

1. Introduction

One of the drawbacks of real MADM problems is expressing attribute values in fuzzy and
indeterminate DM environments. Fuzzy sets (FSs) developed by Zadeh [1] emerged as a tool for
describing and communicating uncertainties and vagueness. Since its beginning, FS has gained a
significant focus from researchers all over the world who studied its practical and theoretical aspects.
Several extensions of FSs have been developed, such as interval-valued FS (IVFS) [2], which explained
the truth membership degree (TMD) on a closed interval value in the interval [0, 1], and intuitionistic
FS (IFS) [3], which explained the TMD and falsity-membership degree (FMD). Therefore, IFS defines
fuzziness and uncertainty more comprehensively than FS. However, neither FS nor IFS are capable to
handle indeterminate and inconsistent information. For example, when we take a student opinion
about the teaching skills of a professor with about 0.6 being the possibility that the teaching skills
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of the professor are good, 0.5 being the possibility that the teaching skills of the professor are bad
and 0.3 is the possibility that he/she may not be sure about the teaching skills of the professor
whether bad or good. To handle such type of information, Smarandache [4] added a new component
“indeterminacy membership degree” (IMD) to the TMD and FMD, all being independent elements
lying in ]0−, 1+[. The resulting set is now familiarly known as neutrosophic set (NS). To use NS in
practical and engineering problems, some scholars developed simplified forms of NS, such as SVNS [5],
INS [6,7], simplified neutrosophic sets [8,9], multi-valued NS [10], Q-neutrosophic soft set [11], complex
neutrosophic soft expert set [12] and others.

In the real world, sometimes it is difficult to express the TMD in some fuzzy problems completely
by an exact value or interval value. Therefore, Jun et al. [13] developed the concept of cubic set
(CS) by combining FS and IVFS. CS defined uncertainty and vagueness by an interval value and
a fuzzy value concurrently. In recent years, some researchers established some extended forms of
CS. Garg et al. [14,15] combined IFS and interval-valued intuitionistic FS (IVIFS) to form cubic IFS
(CIFS), while Ali et al. [16] and Jun et al. [17] combined INS and SVNS to develop the cubic NS (CNS),
consisting of internal and external NCSs. Jun et al. [18] further investigated P-union and P-intersection
of NCS and discussed their related properties. Since then, various studies to solve MADM problems
based on NCSs are developed. Zhang et al. [19] and Ye [20] developed some aggregation operators
such as weighted averaging operators and weighted geometric operators on NCSs and applied these
to MADM. Shi et al. [21], developed some aggregation operator for NCNs based on Dombi T-norm
and T-conorm and applied these to MADM. To solve MADM problems under NC information, various
similarity measures are developed for NCSs [22,23]. Pramanik et al. [24] introduced the NC-TODIM
method to solve multiple-attribute group decision-making (MAGDM) problem.

Aggregation operator (AO) plays a dominant role in DM. Consequently, many scholars
proposed different aggregation operators and their generalizations, such as Bonferroni mean (BM)
operator [25,26], Heronian mean (HM) operator [27], Muirhead mean (MM) operator [28], Maclaurin
symmetric mean (MSM) operator [29,30] and others. Certainly, different AOs have different functions.
Some can remove the effect of awkward data given by prejudiced DMs, such as power average (PA)
operator [31,32] developed by Yager [31] which can aggregate the input information by giving the
weighted vector based on support degree among the input arguments. Some aggregation operators
are capable to consider the interrelationship among two or more input arguments such as BM operator,
HM operators, MSM operator and MM operator.

Due to the enhanced complexity in real decision-making problems, it is necessary to look over the
following questions when selecting the best alternative. Firstly, the values of the attributes provided
by the decision makers may be too low or too high, thus giving a negative impact on the final ranking
results. The PA operator, however, permits the evaluated values to be mutually supported and
enhanced. Therefore, we may use the PA operator to diminish such awful impact by designating
distinct weights produced by the support measure. Secondly, the values of attributes are required to
be dependent. Hence, the interrelationship among the values of the attributes should be examined.
Some advantages of MM operator over BM and HM are discussed by Liu et al. [33,34]. Some existing
aggregation operator such as the BM and MSM operators are special cases of the MM operator. The MM
operator consists of the parameter vector, which enlarges the flexibility in the aggregation process.
Recently, Li et al. [35] developed the concept of power Muirhead mean operator under Pythagorean
fuzzy environment. From the existing literature, the PA operator and MM operator have not been yet
combined to deal with NC information. To handle the issues raised, a few new aggregation operators
will be proposed by incorporating both the PA and MM operators. These new aggregation operators
are NC power MM operator (NCPMM), weighted NC power MM operator, NC power dual MM
operator (NCPDMM) and weighted NC power dual MM (WNCPDMM) operator. Discussions on
some basic properties and related cases with respect to the parameter vector will be dealt at length. The
advantages of these proposed aggregation operators are to capture the interrelationship among input
arguments by the MM operator, and simultaneously eliminate the effect of awkward data. Finally,
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a novel approach to solve MADM problems based on these proposed aggregation operators will
be developed.

The rest of the article is organized as follows. In Section 2, some basic definitions and properties of
NCSs, MM and PA operators are recalled. In Section 3, the PA and MM operators in the construction of
new operators, namely NCPMM, WNCPMM, NCPDMM and WNCPDMM operators are incorporated
followed by discussions on their related properties. In Section 4, a novel method to MADM is
established based on the developed aggregation operators. In Section 5, a numerical example is
illustrated to show the effectiveness of the proposed method to solve a MADM problem. In Section 6,
a comparison with the existing methods is given followed by the conclusion.

2. Preliminaries

In this part, some basic concepts about SVNSs, INSs, NCSs, PA and MM operators are
briefly overviewed.

2.1. The NCSs and Their Operations

Definition 1 ([4]). Let Γ be a space of points (objects), with a generic element in Γ denoted by n. A neutrosophic
set N in Γ is defined as N = {〈n; TN(n), IN(n), FN(n)〉n ∈ Γ} where TN(n), IN(n) and FN(n) are the truth
membership function, the indeterminacy membership function and the falsity-membership function respectively,
such that T; F; I : Γ→ ]0−, 1+[ and 0− ≤ TN(n) + IN(n) + FN(n) ≤ 3+.

Smarandache [4] developed the concept of NS as a generalization of FS, IFS and IVIFS. To apply
NS to real and engineering problems easily, its parameters should be specified. Hence, Wang et al. [5]
provided the following definition.

Definition 2 ([5]). Let Γ be a space of points (objects), with a generic element in Γ denoted by n. A single-valued
neutrosophic set S in Γ is defined as:

S =
∫

Γ
〈TS(n), IS(n), FS(n)〉|n, n ∈ Γ (1)

when Γ is continuous, and

S =
m

∑
i=1
〈TS(ni), IS(ni), FS(ni)〉|ni, ni ∈ Γ (2)

when Γ is discrete, where TS(n), IS(n) and FS(n) are the truth membership function, the indeterminacy
membership function and the falsity-membership function respectively, such that T; F; I : Γ→ [0, 1] and
0 ≤ TS(n) + IS(n) + FS(n) ≤ 3.

Definition 3 ([6]). Let Γ be a space of points (objects), with a generic element in Γ denoted by n. An interval
neutrosophic set A in Γ is defined as:

A =
∫

Γ
〈TA(n), IA(n), FA(n)〉|n, n ∈ Γ (3)

when Γ is continuous, and

A =
m

∑
i=1
〈TA(ni), IA(ni), FA(ni)〉|ni, ni ∈ Γ (4)

when Γ is discrete, where TA(n), IA(n) and FA(n) are the truth membership function, the indeterminacy
membership function and the falsity-membership function respectively. For each element n in Γ, we have

TA(n) =
[

TL
A(n), TU

A (n)
]
⊆ [0, 1], IA(n) =

[
IL
A(n), IU

A (n)
]
⊆ [0, 1], and FA(n) =

[
FL

A(n), FU
A (n)

]
⊆ [0, 1] such that
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0 ≤ supTU
A (n) + supIU

A (n) + supFU
A (n) ≤ 3.

Definition 4 ([16,17]). Let Γ be a non-empty set. A neutrosophic cubic set (NCS) in Γ is a pair
Z = 〈A, λ〉, where A = {〈n, TA(n), IA(n), FA(n)〉|n ∈ Γ} is an interval neutrosophic set in Γ and
λ = {〈n, λT(n), λI(n), λF(n)〉|n ∈ Γ} is a neutrosophic set in Γ.

For simplicity, a basic element {n, 〈T(n), I(n), F(n)〉, 〈λT(n), λI(n), λF(n)〉} in a NCS can be
expressed by z = (〈T, I, F〉, 〈λT , λI , λF〉), which is called neutrosophic cubic number (NCN), where
T, I, F ⊆ [0, 1] and λT , λI , λF ∈ [0, 1], satisfying 0 ≤ TU + IU + FU ≤ 3 and 0 ≤ λT + λI + λF ≤ 3.

Definition 5 ([20]). Let z1 =
(〈[

TL
1 , TU

1
]
,
[
IL
1 , IU

1
]
,
[
FL

1 , FU
1
]〉

,
〈
λT1 , λI1 , λF1

〉)
and z2 =(〈[

TL
2 , TU

2
]
,
[
IL
2 , IU

2
]
,
[
FL

2 , FU
2
]〉

,
〈
λT2 , λI2 , λF2

〉)
be any two NCNs and ξ > 0. Then the operational laws for

NCNs defined by Ye [20] are as follows:

(1) z1 ⊕ z2 =
(〈[

TL
1 + TL

2 − TL
1 TL

2 , TU
1 + TU

2 − TU
1 TU

2
]
,
[
IL
1 IL

2 , IU
1 IU

2
]
,
[
FL

1 FL
2 , FU

1 FU
2
]〉

,〈
λT1 + λT2 − λT1 λT2 , λI1 λI2 , λF2 λF2

〉)
;

(5)

(2) z1 ⊗ z2 =
(〈[

TL
1 TL

2 , TU
1 TU

2
]
,
[
IL
1 + IL

2 − IL
1 IL

2 , IU
1 + IU

2 − IU
1 IU

2
]
,
[
FL

1 + FL
2 − FL

1 FL
2 , FU

1 + FU
2 − FU

1 FU
2
]〉

,〈
λT1 λT2 , λI1 + λI2 − λI1 λI2 , λF2 + λF2 − λF2 λF2

〉)
;

(6)

(3) ξz1 =
(〈[

1−
(
1−

(
TL

1
))ξ

, 1−
(
1−

(
TU

1
))ξ
]
,
[(

IL
1
)ξ

,
(

IU
1
)ξ
]
,
[(

FL
1
)ξ

,
(

FU
1
)ξ
]〉

,
〈

1−
(
1− λT1

)ξ ,
(
λI1

)ξ ,
(
λF1

)ξ
〉)

; (7)

(4) zξ
1 =

〈[(
TL

1
)ξ

, 1−
(
TU

1
)ξ
]
,
[
1−

(
1− IL

1
)ξ

, 1−
(
1− IU

1
)ξ
]
,
[
1−

(
1− FL

1
)ξ

, 1−
(
1− FU

1
)ξ
]〉

,
〈(

λT1

)ξ , 1−
(
1− λI1

)ξ , 1−
(
1− λF1

)ξ
〉

. (8)

Definition 6 ([21]). Let z1 =
(〈[

TL
1 , TU

1
]
,
[
IL
1 , IU

1
]
,
[
FL

1 , FU
1
]〉

,
〈
λT1 , λI1 , λF1

〉)
be an NCN. Then, the score,

accuracy, and certainty functions of NCN are defined as follows:

Ŝ(z1) =
4 + TL

1 − IL
1 − FL

1 + TU
1 − IU

1 − FU
1 + λT1 + 2− λI1 − λF1

9
; (9)

Â(z1) =
TL

1 − IL
1 + TU

1 − IU
1 + λT1 − λF1

3
and Ĉ(z1) =

TL
1 + TU

1 + λT1

3
. (10)

Theorem 1 ([21]). Let z1 =
(〈[

TL
1 , TU

1
]
,
[
IL
1 , IU

1
]
,
[
FL

1 , FU
1
]〉

,
〈
λT1 , λI1 , λF1

〉)
and z2 =(〈[

TL
2 , TU

2
]
,
[
IL
2 , IU

2
]
,
[
FL

2 , FU
2
]〉

,
〈
λT2 , λI2 , λF2

〉)
. Then the comparison rules for NCNs can be defined

as follows:

(i) If Ŝ(z1) > Ŝ(z2), then z1 is greater than z2, and is denoted by z1 > z2;
(ii) If Ŝ(z1) = Ŝ(z2), and Â(z1) > Â(z2), then z1 is greater than z2, and is denoted by z1 > z2;
(iii) If Ŝ(z1) = Ŝ(z2), Â(z1) = Â(z2), and Ĉ(z1) > Ĉ(z2), then z1 is greater than z2, and is denoted by

z1 > z2;
(iv) If Ŝ(z1) = Ŝ(z2), Â(z1) = Â(z2), and Ĉ(z1) = Ĉ(z2), then z1 is equal to z2, and is denoted by z1 = z2.

2.2. Power Average (PA) Operator

The PA operator was first introduced by Yager [31] for classical number. The dominant edge of
PA operator is its capacity to diminish the inadequate effect of unreasonably too high and too low
arguments on the inconclusive results.
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Definition 7 ([31]). Let <g(g = 1, 2, . . . , a) be a group of classical numbers. The PA operator is then
represented as follows:

PA(<1,<2, . . . ,<a) =
a

∑
g=1


(
1 + T

(
<g
))

a
∑

x=1
(1 + T(<x))

<g

 (11)

where, T(<z) =
a
∑

x=1
g 6=x

Supp
(
<g,<x

)
and Supp(<z,<x) is the support degree for <g and <x. The support

degree must satisfy the following axioms:

(1) Supp
(
<g,<x

)
∈ [0, 1];

(2) Supp
(
<g,<x

)
= Supp

(
<x,<g

)
;

(3) If D
(
<g,<x

)
< D(<l ,<m), then Supp

(
<g,<x

)
> Supp(<l ,<m), where D

(
<g,<x

)
is the distance

measure among <g and <x.

2.3. Muirhead Mean (MM) Operator

The MM operator was first introduced by Muirhead [28] for classical numbers. MM operator has
the advantage of considering the interrelationship among all aggregated arguments.

Definition 8 ([28]). Let <g(g = 1, 2, . . . , a) be a group of classical numbers and Q = (q1, q2, . . . , qa) ∈ Ra be
a vector of parameters. Then, the MM operator is described as:

MMQ(<1,<2, . . . ,<a) =

(
1
a! ∑

θ∈Sa

a

∏
g=1
<qg

θ(g)

) 1
a
∑

g=1
qg

(12)

where, Sa is the group of permutation of (1, 2, . . . , a) and θ(g) is any permutation of (1, 2, . . . , a).

Now we can give some special cases with respect to the parameter vector Q of the MM operator,
which are shown as follows:

(1) If Q = (1, 0, 0, . . . , 0), then the MM operator degenerates to the following form:

MM(1,0,...,0)(<1,<2, . . . ,<a) =
1
a

a

∑
g=1
<g. (13)

That is, the MM operator degenerates into arithmetic averaging operator.

(2) If Q =
(

1
a , 1

a , . . . , 1
a

)
, then the MM operator degenerates to the following form:

MM( 1
a , 1

a ,..., 1
a )(<1,<2, . . . ,<a) =

a

∏
g=1
<

1
a
g . (14)

That is, the MM operator degenerates into geometric averaging operator.
(3) If Q = (1, 1, 0, . . . , 0), then the MM operator degenerates to the following form:

MM(1,1,0,...,0)(<1,<2, . . . ,<a) =

 1
a(a + 1)

a

∑
g,x=1
g 6=x

<g<x


1
2

. (15)
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That is, the MM operator degenerates into BM operator.

(4) If Q =

 c︷ ︸︸ ︷
1, 1, . . . , 1,

a−c︷ ︸︸ ︷
0, . . . , 0

, then the MM operator degenerates to the following form:

MM(

d︷ ︸︸ ︷
1, 1, . . . , 1,

a−d︷ ︸︸ ︷
0, . . . , 0)(<1,<2, . . . ,<a) =


∑

1≤x1<x2<...<xd≤a

d
∏

y=1
<gy

Cd
a


1
d

. (16)

That is, the MM operator degenerates into MSM operator.

3. Some Power Muirhead Mean Operator for NCNs

In this part, we first give the definitions of PMM operator and propose the concept of power
dual Muirhead mean (PDMM) operator. Then, we extended both the aggregation operator to
NCN environment.

Definition 9 ([35]). Let <g(g = 1, 2, . . . , a) be a group of classical numbers and Q = (q1, q2, . . . , qa) ∈ Ra be
a vector of parameters. Then, the PMM operator is explained as,

PMMQ(<1,<2, . . . ,<a) =

 1
a! ∑

θ∈Sa

a

∏
g=1

 a
(

1 + T
(
<θ(g)

))
a
∑

x=1
(1 + T(<x))

<θ(g)


qg

1
a
∑

g=1
qg

(17)

where, T
(
<g
)
=

a
∑

x=1,x 6=g
Supp

(
<g,<x

)
and Supp

(
<g,<x

)
is the support degree for <g and <x, satisfying

the above conditions.

Definition 10. Let <g(g = 1, 2, . . . , a) be a group of classical numbers and Q = (q1, q2, . . . , qa) ∈ Ra be a
vector of parameters. Then, the PDMM operator is described as,

PDMMQ(<1,<2, . . . ,<a) =
1

a
∑

g=1
qg

 ∑
θ∈Sa

a

∏
g=1

qg<

a(1+T(<θ(g)))
a
∑

x=1
(1+T(<x))

θ(g)


1
a!

(18)

where, T(<g) =
a
∑

x=1x 6=1
Supp

(
<g,<x

)
and Supp

(
<g,<x

)
is the support degree for <g and <x, satisfying

the above conditions.

3.1. The Neutrosophic Cubic Power Muirhead Mean (NCPMM) Operator

In this subsection, we extend the PMM operator to neutrosophic cubic environment and discuss
some basic properties, and special cases of these developed aggregation operators with respect to the
parameter Q.
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Definition 11. Let zg(g = 1, 2, . . . , a) be a group of NCNs and Q = (q1, q2, . . . , qa) ∈ Ra be a vector of
parameters. If,

NCPMMQ(z1, z2, . . . ., za) =

 1
a! ∑

θ∈Sa

a

∏
g=1

 a
(

1 + T
(

zθ(g)

))
a
∑

x=1
(1 + T(zx))

zθ(g)


qg

1
a
∑

g=1
qg

(19)

then, we call NCPMMQ the neutrosophic cubic power Muirhead mean operator, where Sa is the group of all

permutation, θ(g) is any permutation of (1, 2, . . . , a) and T(zx) =
a
∑

x=1,x 6=g
Supp

(
zg, zx

)
, Supp

(
zg, zx

)
is the

support degree for zg and zx, satisfying the following axioms:

(1) Supp
(
zg, zx

)
∈ [0, 1];

(2) Supp
(
zg, zx

)
= Supp(zx, zz);

(3) If D(zg, zx) < D(zu, zv), then Supp(zg, zx) > Supp(zu, zv), where D(zg, zx) is the distance among zg

and zx.

To write Equation (20) in a simple form, we can specify it as:

Θg =

(
1 + T

(
zg
))

a
∑

x=1
(1 + T(zx))

. (20)

For suitability, we can call (Θ1, Θ2, . . . , Θa)
T the power weight vector (PMV), such that Θg ∈ [0, 1]

and
a
∑

g=1
Θg = 1. From the use of Equation (20), Equation (19) can be expressed as:

NCPMMQ(z1, z2, . . . ., za) =

(
1
a! ∑

θ∈Sa

a

∏
g=1

(
aΘgzθ(g)

)qg

) 1
a
∑

g=1
qg

. (21)

Based on the operational rules given in Definition 3 for NCNs, and Definition 11, we can have the
following Theorem 2.

Theorem 2. Let zg(g = 1, 2, . . . , a) be a group of NCNs and Q = (q1, q2, . . . , qa) ∈ Ra be a vector of
parameters. Then, the aggregated value obtained by using Equation (21) is still an NCN and,

NCPMMQ (z1 , z2 , . . . , za ) =
〈
1−

(
∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1−

(
TL)

θ(g)

)aΘg
)qg

)) 1
a!


1
a
∑

g=1
qg

,

1−
(

∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1−

(
TU )

θ(g)

)aΘg
)qg

)) 1
a!


1
a
∑

g=1
qg

 ,

1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
IL)aΘg

θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg

,

1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
IU )aΘg

θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg

,

1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
FL)aΘg

θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
FU )aΘg

θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg


〉

〈1−
(

∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1− (λT )

θ(g)

)aΘg
)qg

)) 1
a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1− (λI )

aΘg
θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1− (λF )

aΘg
θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg
〉.

(22)

Proof. According to the operational laws for NCNs, we have

aΘg zθ(g) =

(〈[
1−

(
1−

(
TL
)

θ(g)

)aΘg
, 1−

(
1−

(
TU
)

θ(g)

)aΘg
]

,
[(

IL
)aΘg

θ(g)
,
(

IU
)aΘg

θ(g)

]
,
[(

FL
)aΘg

θ(g)
,
(

FU
)aΘg

θ(g)

]〉
,
〈

1−
(

1−
(
λT
)
θ(g)

)aΘg
,
(
λI
)aΘg
θ(g) ,

(
λF
)aΘg
θ(g)

〉)
.

Therefore,

(
aΘgzθ(g)

)qg
=

(〈[(
1−

(
1−

(
TL
)

θ(g)

)aΘg
)qg

,

(
1−

(
1−

(
TU
)

θ(g)

)aΘg
)qg ]

,
[

, 1−
(

1−
(

IL
)aΘg

θ(g)

)qg
1−

(
1− (I)

aΘg
θ(g)

)qg ]
,
[

1−
(

1−
(

FL
)aΘg

θ(g)

)qg
, 1−

(
1−

(
FU
)aΘg

θ(g)

)qg ]〉
,〈 (

1−
(

1−
(
λT
)
θ(g)

)aΘg
)qg

, 1−
(

1−
(
λI
)aΘg
θ(g)

)qg
, 1−

(
1−

(
λF
)aΘg
θ(g)

)qg 〉 )
.
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Therefore,

a
∏

g=1

(
aΘg zθ(g)

)qg
=

〈 a
∏

g=1

(
1−

(
1−

(
TL
)

θ(g)

)aΘg
)qg

,
a
∏

g=1

(
1−

(
1−

(
TU
)

θ(g)

)aΘg
)qg

,

1−
a
∏

g=1

(
1−

(
IL
)aΘg

θ(g)

)qg
, 1−

a
∏

g=1

(
1−

(
IU
)aΘg

θ(g)

)qg
,

1−
a
∏

g=1

(
1−

(
FL
)aΘg

θ(g)

)qg
,

1−
a
∏

g=1

(
1−

(
FU
)aΘg

θ(g)

)qg
〉,

〈
a
∏

g=1

(
1−

(
1−

(
λT
)
θ(g)

)aΘg
)qg

, 1−
a
∏

g=1

(
1−

(
λI
)aΘg
θ(g)

)qg
, 1−

a
∏

g=1

(
1−

(
λF
)aΘg
θ(g)

)qg
〉,

and

∑
θ∈Sa

a
∏

g=1

(
aΘg zθ(g)

)qg
=

〈[
1− ∏

θ∈Sa

(
a

∏
g=1

(
1−

(
1−

(
TL)

θ(g)

)aΘg
)qg

)
, 1− ∏

θ∈Sa

(
a

∏
g=1

(
1−

(
1−

(
TU )

θ(g)

)aΘg
)qg

)]
,

[
∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
IL)aΘg

θ(g)

)qg

)
, ∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
IU )aΘg

θ(g)

)qg

)] )
,[

∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
FL)aΘg

θ(g)

)qg

)
, ∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
FU )aΘg

θ(g)

)qg

)]〉
,

〈
1− ∏

θ∈Sa

(
a

∏
g=1

(
1−

(
1− (λT )θ(g)

)aΘg
)qg

)
, ∏

θ∈Sa

(
1−

a
∏

g=1

(
1− (λI )

aΘg
θ(g)

)qg

)
, ∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
λ f

)aΘg

θ(g)

)qg
)〉)

.

Furthermore,

1
a! ∑

θ∈Sa

a
∏

g=1

(
aΘg zθ(g)

)qg
=

〈1−
(

∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1−

(
TL)

θ(g)

)aΘg
)qg

)) 1
a!

, 1−
(

∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1−

(
TU )

θ(g)

)aΘg
)qg

)) 1
a!
 ,

( ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
IL)aΘg

θ(g)

)qg

)) 1
a!

,

〈 (
∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
IU )aΘg

θ(g)

)qg

)) 1
a!
,

( ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
FL)aΘg

θ(g)

)qg

)) 1
a!

,

(
∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
FU )aΘg

θ(g)

)qg

)) 1
a!
〉 ,

〈
1−

(
∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1− (λT )θ(g)

)aΘg
)qg

)) 1
a!

,

(
∏

θ∈Sa

(
1−

a
∏

g=1

(
1− (λI )

aΘg
θ(g)

)qg

)) 1
a!

,

(
∏

θ∈Sa

(
1−

a
∏

g=1

(
1− (λF )

aΘg
θ(g)

)qg

)) 1
a!
〉.

Hence,

(
1
a! ∑

θ∈Sa

a
∏

g=1

(
aΘg Γθ(g)

)qg

) 1
a
∑

g=1
qg

=


〈
1−

(
∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1−

(
TL)

θ(g)

)aΘg
)qg

)) 1
a!


1
a
∑

g=1
qg

,

1−
(

∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1−

(
TL)

θ(g)

)aΘg
)qg

)) 1
a!


1
a
∑

g=1
qg

 ,

1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
IL)aΘg

θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
IU )aΘg

θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg

,

1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
FL)aΘg

θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg

,

1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
FU )aΘg

θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg


〉

,

〈1−
(

∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1− (λT )θ(g)

)aΘg
)qg

)) 1
a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1− (λI )

aΘg
θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1− (λF )

aΘg
θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg
〉,

NCPMMQ (z1 , z2 , . . . , za ) =
〈
1−

(
∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1−

(
TL)

θ(g)

)aΘg
)qg

)) 1
a!


1
a
∑

g=1
qg

,

1−
(

∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1−

(
TU )

θ(g)

)aΘg
)qg

)) 1
a!


1
a
∑

g=1
qg

 ,

1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
IL)aΘg

θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg

,

1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
IU )aΘg

θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg

,

1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
FL)aΘg

θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
FU )aΘg

θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg


〉

,

〈1−
(

∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1− (λT )

θ(g)

)aΘg
)qg

)) 1
a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1− (λI )

aΘg
θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1− (λF )

aΘg
θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg
〉.

This is the required proof of Theorem 2. 2

In the above equations, we calculate the PWV Θ, after calculating the support degree Supp
(
zg, zx

)
.

First, we determined the Supp
(
zg, zx

)
using

Supp
(
zg, zx

)
= 1− D

(
zg, zx

)
, (23)

where,

D
(
zg, zx

)
=

√√√√√√√
1
9

((
TL

g − TL
x

)2
+
(

TU
g − TU

x

)2
+
(

IL
g − IL

x

)2
+
(

IU
g − IU

x

)2
+
(

FL
g − FL

x

)2
+
(

FU
g − FU

x

)2

(
λTg − λTx

)2
+
(

λIg − λIx

)2
+
(

λFg − λFx

)2
) . (24)

Therefore, we use the equation

T
(
zg
)
=

a

∑
g=1,g 6=x

Supp
(
zg, zx

)
(25)

to obtain the values of T
(
zg
)
(g = 1, 2, . . . , a). Then using Equation (20) we can get the PWV.
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Theorem 3. (Idempotency) Let zg(g = 1, 2, . . . , a) be a group of NCNs, and zg = z, for all g = 1, 2, . . . , a. Then,

NCPMMQ(z1, z2, . . . , za) = CN. (26)

Proof. As zg = z for all g = 1, 2, . . . , a, we have Supp
(
zg, zx

)
= 1 for all g, x = 1, 2, . . . , a. Therefore,

we can get Θg = 1
a for all g. Moreover,

CNPMMQ (z1 , z2 , . . . , za ) = CNPMMQ (z, z, . . . , z)

=


〈
1−

(
∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1− TL)a 1

a

)qg
)) 1

a!


1
a
∑

g=1
qg

,

1−
(

∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1− TL)a 1

a

)qg
)) 1

a!


1
a
∑

g=1
qg

 ,

1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1− ILa 1

a

)qg

) 1
a!


1
a
∑

g=1
qg

,

1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1− IUa 1

a

)qg

) 1
a!


1
a
∑

g=1
qg

,

1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1− FLa 1

a

)qg

) 1
a!


1
a
∑

z=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1− FUa 1

a

)qg

) 1
a!


1
a
∑

g=1
qg


〉

,

〈1−
(

∏
θ∈Sa

(
1−

a
∏

g=1

(
1− (1− λT )

a 1
a
)qg
)) 1

a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1− λI

a 1
a

)qg

) 1
a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1− λF

a 1
a

)qg

) 1
a!


1
a
∑

g=1
qg
〉,

=


〈
1−


1−

(
1−

(
1− TL)) a

∑
g=1

qg

a!


1
a!


1
a
∑

g=1
qg

,

1−


1−

(
1−

(
1− TU )) a

∑
g=1

qg

a!


1
a!


1
a
∑

g=1
qg

,

1−

1−

1−
(
1− IL) a

∑
g=1

qg

a! 1
a!


1
a
∑

g=1
qg

,

1−

1−

1−
(
1− IU ) a

∑
g=1

qg

a! 1
a!


1
a
∑

g=1
qg

,

1−

1−

1−
(
1− FL) a

∑
g=1

qg

a! 1
a!


1
a
∑

g=1
qg

, 1−

1−

1−
(
1− FU ) a

∑
g=1

qg

a! 1
a!


1
a
∑

g=1
qg


〉

,

〈1−


1− (1− (1− λT ))

a
∑

g=1
qg

a!


1
a!


1
a
∑

g=1
qg

, 1−

1−

1− (1− λI )

a
∑

g=1
qg

a! 1
a!


1
a
∑

g=1
qg

, 1−

1−

1− (1− λF )

a
∑

g=1
qg

a! 1
a!


1
a
∑

g=1
qg 〉,

=
(〈[

TL , TU ], [IL , IU ], [FL , FU ]〉, 〈λT , λI , λF 〉
)
= z.

This is the required proof of Theorem 3. 2

Theorem 4. (Boundedness) Let zg(g = 1, 2, . . . , a) be a group of NCNs. Where

−
z = min(z1, z2, . . . , za) =

(〈[
T−L, T−U], [I+L, I+U], [F+L, F+U]〉, 〈λT

−, λI
+, λF

+〉
)
, and

+
z = max(z1, z2, . . . , za) =

(〈[
T+L, T+U], [I−L, I−U], [F−L, F−U]〉, 〈λT

+, λI
−, λF

−〉
)
.

Then,
m ≤ NCPMMQ(z1, z2, . . . , za) ≤ n (27)

where,

m =


〈
1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

1−
−
T

L

θ(g)

)aΘg
qg

1
a!


1
a
∑

g=1
qg

,

1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

1−
−
T

U

θ(g)

)aΘg
qg

1
a!


1
a
∑

g=1
qg

,

1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

+
I

LaΘg

θ(g)

)qg) 1
a!


1

a
∑

g=1
qg

,

1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

+U
I

aΘz

θ(g)

)qg) 1
a!


1

a
∑

g=1
qg

,

1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

+
F

LaΘz

θ(g)

)qg) 1
a!


1

a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

+
F

UaΘg

θ(g)

)qg) 1
a!


1

a
∑

g=1
qg


〉

,

〈1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

1−
( −

λT

)
θ(g)

)aΘg
qg

1
a!


1
a
∑

z=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
+
λI

)aΘg

θ(g)

)qg) 1
a!


1

a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
+

λF

)aΘg

θ(g)

)qg) 1
a!


1

a
∑

g=1
qg
〉.

and

n =


〈
1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

1−
+
T

L

θ(g)

)aΘg
qg

1
a!


1
a
∑

g=1
qg

,

1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

1−
+
T

U

θ(g)

)aΘg
qg

1
a!


1
a
∑

g=1
qg

,

1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

−
I

LaΘg

θ(g)

)qg) 1
a!


1

a
∑

g=1
qg

,

1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

−U
I

aΘz

θ(g)

)qg) 1
a!


1

a
∑

g=1
qg

,

1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

−
F

LaΘz

θ(g)

)qg) 1
a!


1

a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

−
F

UaΘg

θ(g)

)qg) 1
a!


1

a
∑

g=1
qg


〉

,

〈1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

1−
(

+
λT

)
θ(g)

)aΘg
qg

1
a!


1
a
∑

z=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

( −
λI

)aΘg

θ(g)

)qg) 1
a!


1

a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

( −
λF

)aΘg

θ(g)

)qg) 1
a!


1

a
∑

g=1
qg
〉.
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Proof.

aΘg zθ(g) =

(〈[
1−

(
1−

(
TL)

θ(g)

)aΘg
, 1−

(
1−

(
TU )

θ(g)

)aΘg
]

,
[(

IL)aΘg
θ(g) ,

(
IU )aΘg

θ(g)

]
,
[(

FL)aΘg
θ(g) ,

(
FU )aΘg

θ(g)

]〉
,
〈

1−
(

1− (λT )θ(g)

)aΘg
, (λI )

aΘg
θ(g) , (λF )

aΘg
θ(g)

〉)

≥

〈
1−

1−
(
−
T

L
)

θ(g)

aΘg

, 1−

1−
(
−
T

U
)

θ(g)

aΘg
,

(+
I

L
)aΘg

θ(g)

,

(
+
I

U
)aΘg

θ(g)

,

(+
F

L
)aΘg

θ(g)

,

(
+
F

U
)aΘg

θ(g)

〉,

〈
1−

(
1−

( −
λT

)
θ(g)

)aΘg

,
(

+
λI

)aΘg

θ(g)
,
(

+
λF

)aΘg

θ(g)

〉.

and (
aΘg zθ(g)

)qg
=

(〈[(
1−

(
1−

(
TL)

θ(g)

)aΘg
)qg

,
(

1−
(

1−
(
TU )

θ(g)

)aΘg
)qg ]

,
[
, 1−

(
1−

(
IL)aΘg

θ(g)

)qg
1−

(
1−

(
IU )aΘg

θ(g)

)qg ]
,[

1−
(

1−
(

FL)aΘg
θ(g)

)qg
1−

(
1−

(
FU )aΘg

θ(g)

)qg ]〉
,
〈(

1−
(

1− (λT )θ(g)

)aΘg
)qg

, 1−
(

1− (λI )
aΘg
θ(g)

)qg
, 1−

(
1− (λF )

aΘg
θ(g)

)qg
〉)

≥

〈

1−

1−
(
−
T

L
)

θ(g)

aΘg


qg

,

1−

1−
(
−
T

U
)

θ(g)

aΘg


qg  ,

, 1−

1−
(

+
I

L
)aΘg

θ(g)

qg

1−

1−
(

+
I

U
)aΘg

θ(g)

qg ,

1−

1−
(

+
F

L
)aΘg

θ(g)

qg

1−

1−
(

+
F

U
)aΘg

θ(g)

qg 〉,

〈1−
(

1−
( −

λT

)
θ(g)

)aΘg
qg

, 1−
(

1−
(

+
λI

)aΘg

θ(g)

)qg

, 1−
(

1−
(

+
λF

)aΘg

θ(g)

)qg〉.

Thus,

a
∏

g=1

(
aΘg zθ(g)

)qg
=

(〈[
a

∏
g=1

(
1−

(
1−

(
TL)

θ(g)

)aΘg
)qg

,
a

∏
g=1

(
1−

(
1−

(
TU )

θ(g)

)aΘg
)qg

]
,

[
1−

a
∏

g=1

(
1−

(
IL)aΘg

θ(g)

)qg
, 1−

a
∏

g=1

(
1−

(
IU )aΘg

θ(g)

)qg

]
,[

1−
a

∏
g=1

(
1−

(
FL)aΘg

θ(g)

)qg
, 1−

a
∏

g=1

(
1−

(
FU )aΘg

θ(g)

)qg

]〉
,

〈
a

∏
g=1

(
1−

(
1− (λT )θ(g)

)aΘg
)qg

, 1−
a

∏
g=1

(
1− (λI )

aΘg
θ(g)

)qg
, 1−

a
∏

g=1

(
1− (λF )

aΘg
θ(g)

)qg

〉)
≥〈

 a
∏

g=1

1−

1−
(
−
T

L
)

θ(g)

aΘg


qg

,
a

∏
g=1

1−

1−
(
−
T

U
)

θ(g)

aΘg


qg ,

1−
a

∏
g=1

1−
(

+
I

L
)aΘg

θ(g)

qg

, 1−
a

∏
g=1

1−
(

+
I

U
)aΘg

θ(g)

qg ,

1−
a

∏
g=1

1−
(

+
F

L
)aΘg

θ(g)

qg

, 1−
a

∏
g=1

1−
(

+
F

U
)aΘg

θ(g)

qg 〉,

〈
a

∏
g=1

1−
(

1−
( −

λT

)
θ(g)

)aΘg
qg

, 1−
a

∏
g=1

(
1−

(
+
λI

)aΘg

θ(g)

)qg

, 1−
a

∏
g=1

(
1−

(
+

λF

)aΘg

θ(g)

)qg〉)
.

and

∑
θ∈Sa

a
∏

z=1

(
aΘg zθ(g)

)qg
=

(〈[
1− ∏

θ∈Sa

(
a

∏
g=1

(
1−

(
1−

(
TL)

θ(g)

)aΘg
)qg

)
, 1− ∏

θ∈Sa

(
a

∏
g=1

(
1−

(
1−

(
TU )

θ(g)

)aΘg
)qg

)]
,

[
∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
IL)aΘg

θ(g)

)qg

)
, ∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
IU )aΘg

θ(g)

)qg

)]
,[

∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
FL)aΘg

θ(g)

)qg

)
, ∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
FU )aΘg

θ(g)

)qg

)]〉
,

〈
1− ∏

θ∈Sa

(
a

∏
g=1

(
1−

(
1− (λT )θ(g)

)aΘg
)qg

)
, ∏

θ∈Sa

(
1−

a
∏

g=1

(
1− (λI )

aΘg
θ(g)

)qg

)
, ∏

θ∈Sa

(
1−

a
∏

g=1

(
1− (λF )

aΘg
θ(g)

)qg

)〉)

≥

〈
1− ∏

θ∈Sa

 a
∏

g=1

1−

1−
(
−
T

L
)

θ(g)

aΘg


qg, 1− ∏
θ∈Sa

 a
∏

g=1

1−

1−
(
−
T

U
)

θ(g)

aΘg


qg
,

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

+
I

L
)aΘg

θ(g)

qg, ∏
θ∈Sa

1−
a

∏
g=1

1−
(

+
I

U
)aΘg

θ(g)

qg ,

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

+
F

L
)aΘg

θ(g)

qg, ∏
θ∈Sa

1−
a

∏
g=1

1−
(

+
F

U
)aΘg

θ(g)

qg〉,

〈
1− ∏

θ∈Sa

 a
∏

g=1

1−
(

1−
( −

λT

)
θ(g)

)aΘg
qg , ∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
+
λI

)aΘg

θ(g)

)qg)
, ∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
+

λF

)aΘg

θ(g)

)qg)〉)
.

Furthermore,

1
a! ∑

θ∈Sa

a
∏

g=1

(
aΘg zθ(g)

)qg
=

〈1−
(

∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1−

(
TL)

θ(g)

)aΘg
)qg

)) 1
a!

, 1−
(

∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1−

(
TU )

θ(g)

)aΘg
)qg

)) 1
a!
,( ∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
IL)aΘg

θ(g)

)qg

)) 1
a!

,

(
∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
IU )aΘg

θ(g)

)qg

)) 1
a!
,

( ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
FL)aΘg

θ(g)

)qg

)) 1
a!

,

(
∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
FU )aΘg

θ(g)

)qg

)) 1
a!
〉,

〈
1−

(
∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1− (λT )θ(g)

)aΘg
)qg

)) 1
a!

,

(
∏

θ∈Sa

(
1−

a
∏

g=1

(
1− (λI )

aΘg
θ(g)

)qg

)) 1
a!

,

(
∏

θ∈Sa

(
1−

a
∏

z=1

(
1− (λF )

aΘz
θ(z)

)qz
)) 1

a!
〉

≥


〈1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−

1−
(
−
T

L
)

θ(g)

aΘg


qg


1
a!

, 1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−

1−
(
−
T

U
)

θ(g)

aΘg


qg


1
a!
,


 ∏

θ∈Sa

1−
a

∏
g=1

1−
(

+
I

L
)aΘg

θ(g)

qg
1
a!

,

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

+
I

U
)aΘg

θ(g)

qg
1
a!
,


 ∏

θ∈Sa

1−
a

∏
g=1

1−
(

+
F

L
)aΘg

θ(g)

qg
1
a!

,

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

+
F

U
)aΘg

θ(g)

qg
1
a!
〉,

〈
1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

1−
( −

λT

)
θ(g)

)aΘg
qg

1
a!

,

(
∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
+
λI

)aΘg

θ(g)

)qg)) 1
a!

,

(
∏

θ∈Sa

(
1−

a
∏

z=1

(
1−

(
+

λF

)aΘz

θ(z)

)qz)) 1
a!
〉.

Hence,

(
1
a! ∑

θ∈Sa

a
∏

z=1

(
aΘz Γθ(z)

)qz

) 1
a
∑

z=1
qz

=


〈
1−

(
∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1−

(
TL)

θ(g)

)aΘg
)qg

)) 1
a!


1
a
∑

g=1
qg

,

1−
(

∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1−

(
TU )

θ(g)

)aΘg
)qg

)) 1
a!


1
a
∑

g=1
qg

 ,

1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
IL)aΘg

θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
IU )aΘg

θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg

,

1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
FL)aΘg

θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
FU )aΘg

θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg


〉

,

〈1−
(

∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1− (λT )

θ(g)

)aΘg
)qg

)) 1
a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1− (λI )

aΘg
θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1− (λF )

aΘg
θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg
〉

≥


〈
1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−

1−
(
−
T

L
)

θ(g)

aΘg


qg 


1
a!


1
a
∑

g=1
qg

,

1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−

1−
(
−
T

U
)

θ(g)

aΘg


qg 


1
a!


1
a
∑

g=1
qg

 ,

1−

1− ∏
θ∈Sa

1−
a

∏
g=1

1−
(

+
I

L
)aΘg

θ(g)

qg 
1
a!


1
a
∑

g=1
qg

,

1−

1− ∏
θ∈Sa

1−
a

∏
g=1

1−
(

+
I

U
)aΘg

θ(g)

qg 
1
a!


1
a
∑

g=1
qg

,

1−

1− ∏
θ∈Sa

1−
a

∏
g=1

1−
(

+
F

L
)aΘg

θ(g)

qg 
1
a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

1−
a

∏
g=1

1−
(

+
F

U
)aΘg

θ(g)

qg 
1
a!


1
a
∑

g=1
qg


〉

,

〈1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

1−
( −

λT

)
θ(g)

)aΘg
qg 

1
a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
+
λI

)aΘg

θ(g)

)qg ) 1
a!


1

a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
+

λF

)aΘg

θ(g)

)qg ) 1
a!


1

a
∑

g=1
qg
〉.
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This implies that m ≤ NCPMMQ(z1, z2, . . . , za). 2

In a similar way we can show that NCPMMQ(z1, z2, . . . , za) ≤ n. Hence, m ≤
NCPMMQ(z1, z2, . . . , za) ≤ n.

The NCPMM operator does not have the property of monotonicity.
One of the leading advantages of NCPMM is its capacity to represent the interrelationship among

NCNs. Furthermore, the NCPMM operator is more flexible in aggregation process due to parameter
vector. Now, we discuss some special cases of NCPMM operators by assigning different values to the
parameter vector.

Case 1. If Q = (1, 0, . . . , 0), then the NCPMM operator degenerates into the following form:

NCPMM(1,0,...,0)(z1, z2, . . . ., za) =

 a

∑
g=1

(
1 + T

(
zg
))

a
∑

x=1
(1 + T(zx))

zg

. (28)

This is the NC power averaging operator.

Case 2. If Q =
(

1
a , 1

a , . . . ., 1
a

)
, then the NCPMM operator degenerates into the following form:

NCPMM( 1
a , 1

a ,..., 1
a )(z1, z2, . . . ., za) =

a

∏
g=1

z

(1+T(zθ(g)))
a
∑

x=1
(1+T(zx))

g . (29)

This is the NC power geometric operator.
Case 3. If Q = (1, 1, . . . , 0), then the NCPMM operator degenerates into the following form:

NCPMM(1,1,0,...,0) = (z1 , z2 , . . . , za ) =

〈





1−



a
∏

g, x = 1

g 6= x

(
1−

(
1−

(
1− TL

g

)Θg
)(

1−
(
1− TL

x
)Θx

))



1
a2 −a



1
2

,



1−



a
∏

g, x = 1

g 6= x

(
1−

(
1−

(
1− TU

g

)Θg
)(

1−
(
1− TU

x
)Θx

))



1
a2 −a



1
2


,



1−



1−



a
∏

g, x = 1

g 6= x

(
1−

(
1− I

LΘg
g

)(
1− ILΘx

x

))



1
a2 −a



1
2

,

1−



1−



a
∏

g, x = 1

g 6= x

(
1−

(
1− I

UΘg
g

)(
1− IUΘx

x

))



1
a2 −a



1
2


,



1−



1−



a
∏

g, x = 1

g 6= x

(
1−

(
1− F

LΘg
g

)(
1− FLΘx

x

))



1
a2 −a



1
2

, 1−



1−



a
∏

g, x = 1

g 6= x

(
1−

(
1− F

UΘg
g

)(
1− FUΘx

x

))



1
a2 −a



1
2


,



1−



a
∏

g, x = 1

g 6= x

(
1−

(
1−

(
1− (λT )g

)Θz
)(

1− (1− Tx )
Θx
))



1
a2 −a



1
2

, 1−



1−



a
∏

g, x = 1

g 6= x

(
1−

(
1− (λI )

Θg
g

)(
1− (λT )

Θx
x

))



1
a2 −a



1
2

, 1−



1−



a
∏

g, x = 1

g 6= x

(
1−

(
1− (λF )

Θz
z

)(
1− (λF )

Θx
x

))



1
a2 −a



1
2

〉



.

(30)

This is the NC power Bonferroni mean operator (p = q = 1).
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Case 4. If Q =

 i︷ ︸︸ ︷
1, 1, . . . , 1,

z−i︷ ︸︸ ︷
0, 0, . . . , 0

, then the NCPMM operator degenerates into the following

form:

NCPMM(

i︷ ︸︸ ︷
1, 1, , ., 1,

z−i︷ ︸︸ ︷
0, 0, . . . , 0) = (z1 , z2 , . . . , za ) =〈

1− ∏
1≤y1<y2<....<yi≤a

(
1−

i
∏

x=1

(
1−

(
1− TL

gx

)Θgx
)) 1

Ci
a

 1
k

,

1− ∏
1≤y1<y2<....<yi≤a

(
1−

i
∏

x=1

(
1−

(
1− TU

gx

)Θgx
)) 1

Ci
a

 1
k
 ,

, 1−

1− ∏
1≤y1<y2<....<yi≤a

(
1−

i
∏

x=1

(
1− I

LΘgx
gx

)) 1
Ci

a

 1
k

,

1−

1− ∏
1≤y1<y2<....<yi≤a

(
1−

i
∏

x=1

(
1− I

UΘgx
gx

)) 1
Ci

a

 1
k
,

1−

1− ∏
1≤y1<y2<....<yi≤a

(
1−

i
∏

x=1

(
1− F

LΘgx
gx

)) 1
Ci

a

 1
k

, 1−

1− ∏
1≤y1<y2<....<yi≤a

(
1−

i
∏

x=1

(
1− F

UΘgx
gx

)) 1
Ci

a

 1
k
〉,

〈1− ∏
1≤y1<y2<....<yi≤a

(
1−

i
∏

x=1

(
1−

(
1− (λT )gx

)Θgx
)) 1

Ci
a

 1
k

, 1−

1− ∏
1≤y1<y2<....<yi≤a

(
1−

i
∏

x=1

(
1− (λI )

Θgx
gx

)) 1
Ci

a

 1
k

, 1−

1− ∏
1≤y1<y2<....<yi≤a

(
1−

i
∏

x=1

(
1− (λF )

Θgx
gx

)) 1
Ci

a

 1
k 〉

.

(31)

This is the NC power Maclaurin symmetric mean operator.

3.2. Weighted Neutrosophic Cubic Power Muirhead Mean (WNCPMM) Operator

The NCPMM operator does not consider the weight of the aggregated NCNs. In this subsection,
we develop the WNCPMM operator, which has the capacity of taking the weights of NCNs.

Definition 12. Let zg(g = 1, 2, . . . , a) be a group of NCNs and Q = (q1, q2, . . . , qa) ∈ Ra be a vector of
parameters. If,

WNCPMMQ(z1, z2, . . . ., za) =

 1
a! ∑

θ∈Sa

a

∏
g=1

 aΞϑ(g)Θθ(g)
a
∑

x=1
ΞxΘx

zθ(g)


qg

1
a
∑

g=1
qg

(32)

then, we WNCPMMQ the weighted neutrosophic cubic power Muirhead mean operator, where Ξ =

(Ξ1, Ξ2, . . . , Ξa)
T is the weight vector of zg(g = 1, 2, . . . , a) such that Ξz ∈ [0, 1],

a
∑

z=1
Ξz = 1, Sa is the group

of all permutation, θ(z) is any permutation of (1, 2, . . . , a) and Θg is power weight vector (PWV) satisfying

Θg =
(1+T(zg))
a
∑

g=1
(1+T(zg))

,
a
∑

g=1
Θg = 1, T(zx) =

a
∑

x=1,x 6=g
Supp

(
zg, zx

)
, Supp

(
zg, zx

)
is the support degree for zg

and zx, satisfying the following axioms:

(1) Supp
(
zg, zx

)
∈ [0, 1];

(2) Supp
(
zg, zx

)
= Supp

(
zx, zg

)
;

(3) If D(zg, zx) < D(zu, zv), then Supp(zg, zx) > Supp(zu, zv), where D(zg, zx) is distance among zg

and zx.
From Definition 12, we have the following Theorem 5.

Theorem 5. Let zg(g = 1, 2, . . . , a) be a group of NCNs and Q = (q1, q2, . . . , qa) ∈ Ra be a vector of
parameters. Then, the aggregated value obtained by using Equation (32) is still an NCN and

WNCPMMQ (z1 , z2 , . . . , za ) =
〈
1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

1−
(
TL )

θ(g)

) aΘθ(g) Ξϑ(g)
a
∑

x=1
Θx Ξx


qg 


1
a!


1
a
∑

g=1
qg

,

1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

1−
(
TU )

θ(g)

) aΘθ(g) Ξϑ(g)
a
∑

x=1
Θx Ξx


qg 


1
a!


1
a
∑

g=1
qg

 ,

1−

1− ∏
θ∈Sa

1−
a

∏
g=1

1−
(

IL )
aΘθ(g) Ξϑ(g)

a
∑

x=1
Θx Ξx

θ(g)


qg


1
a!


1
a
∑

g=1
qg

,

1−

1− ∏
θ∈Sa

1−
a

∏
g=1

1−
(

IU )
aΘθ(g) Ξϑ(g)

a
∑

x=1
Θx Ξx

θ(g)


qg


1
a!


1
a
∑

g=1
qg

 ,

1−

1− ∏
θ∈Sa

1−
a

∏
g=1

1−
(

FL )
aΘθ(g) Ξϑ(g)

a
∑

x=1
Θx Ξx

θ(g)


qg


1
a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

1−
a

∏
g=1

1−
(

FU )
aΘθ(g) Ξϑ(g)

a
∑

x=1
Θx Ξx

θ(g)


qg


1
a!


1
a
∑

g=1
qg


〉

,

〈1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

1− (λT )θ(g)

) aΘθ(g) Ξϑ(g)
a
∑

x=1
Θx Ξx


qg 


1
a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

1−
a

∏
g=1

1− (λI )

aΘθ(g) Ξϑ(g)
a
∑

x=1
Θx Ξx

θ(g)


qg


1
a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

1−
a

∏
g=1

1− (λF )

aΘθ(g) Ξϑ(g)
a
∑

x=1
Θx Ξx

θ(g)


qg


1
a!


1
a
∑

g=1
qg 〉.

(33)

Proof. Proof of Theorem 5 is same as Theorem 2. 2
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3.3. The Neutrosophic Cubic Power Dual Muirhead Mean (NCPDMM) Operator

In this subsection, we develop the NCPDMM operator and discuss some related properties.

Definition 13. Let zg(g = 1, 2, . . . , a) be a group of NCNs and Q = (q1, q2, . . . , qa) ∈ Ra be a vector of
parameters. If,

NCPDMMQ(z1, z2, . . . ., za) =
1

a
∑

g=1
qg

∏
θ∈Sa

a

∑
g=1

qgz

a(1+T(zθ(g)))
a
∑

x=1
(1+T(zx))

θ(g)




1
a!

(34)

then, we call NCPDMMQ the neutrosophic cubic power dual Muirhead mean operator, where Sa is the group

of all permutation, θ(g) is any permutation of (1, 2, . . . , a) and T(zx) =
a
∑

x=1,x 6=g
Supp

(
zg, zx

)
, Supp

(
zg, zx

)
is the support degree for zg and zx, satisfying the following axioms:

(1) Supp
(
zg, zx

)
∈ [0, 1];

(2) Supp
(
zg, zx

)
= Supp

(
zx, zg

)
;

(3) If D(zg, zx) < D(zu, zv), then Supp(zg, zx) > Supp(zu, zv), where D(zg, zx) is distance among zg

and zx.

To write Equation (34) in a simple form, we can specify it as:

Θg =

(
1 + T

(
zg
))

a
∑

x=1
(1 + T(zx))

. (35)

For suitability, we can call (Θ1, Θ2, . . . , Θa)
T the power weight vector (PMV), such that Θg ∈ [0, 1]

and
a
∑

g=1
Θg = 1. From, the use of Equation (35), Equation (34) can be expressed as,

NCPDMMQ(z1, z2, . . . ., za) =
1

a
∑

g=1
qg

(
∏

θ∈Sa

a

∑
g=1

(
qgz

aΘθ(g)
θ(g)

)) 1
a!

. (36)

Theorem 6. Let zg(g = 1, 2, . . . , a) be a group of SVNNs and Q = (q1, q2, . . . , qa) ∈ Ra be a vector of
parameters. Then, the aggregated value obtained by using Equation (36) is still an NCN and,

NCPDMMQ (z1 , z2 , . . . , za ) =
〈1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
TL)aΘg

θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
TU )aΘg

θ(g)

)qg

) 1
a!


1
a
∑

g=1
qg

 ,


1−

(
∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1−

(
IL)

θ(g)

)aΘg
)qg

)) 1
a!


1
a
∑

g=1
qg

,

1−
(

∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1−

(
IU )

θ(g)

)aΘg
)qg

)) 1
a!


1
a
∑

g=1
qg

,


1−

(
∏

θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1−

(
FL)

θ(g)

)aΘg
)qg

)) 1
a!


1
a
∑

g=1
qg

,

1−
(

∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1−

(
FU )

θ(g)

)aΘg
)qg

)) 1
a!


1
a
∑

g=1
qg


〉

1−

1− ∏
θ∈Sa

(
1−

a
∏

g=1

(
1− (λT )

aΘg
θ(g)

)qg

) 1
a!


1
a
∑

z=1
qg

,

1−
(

∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1− (λI )θ(g)

)aΘg
)qg

)) 1
a!


1
a
∑

g=1
qg

,

1−
(

∏
θ∈Sa

(
1−

a
∏

g=1

(
1−

(
1− (λF )θ(g)

)aΘg
)qg

)) 1
a!


1
a
∑

g=1
qg
〉.

(37)

Proof. Proof of Theorem 6 is similar to that of Theorem 2. 2

Theorem 7 (Idempotency). Let zg(g = 1, 2, . . . , a) be a group of NCNs, and zg = z, for all g = 1, 2, . . . , a. Then,

NCPDMMQ(z1, z2, . . . , za) = z. (38)
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Theorem 8 (Boundedness). Let zg(g = 1, 2, . . . , a) be a group of NCNs,
−
z =

min(z1, z2, . . . , za) =

(〈[
−
T

L
,
−
T

U
]

,

[
+
I

L
,
+
I

U
]

,

[
+
F

L
,
+
F

U
]〉

,〈λT
− ,λI

+ ,λF
+〉
)

, and z+ = max(z1, z2, . . . , za) =(〈[
+
T

L
,
+
T

U
]

,

[
−
I

L
,
−
I

U
]

,

[
−
F

L
,
−
F

U
]〉

,〈λT
+ ,λI

− ,λF
−〉
)

.

Then,
m ≤ NCPDMMQ(z1, z2, . . . , za) ≤ n. (39)

where,

m =


〈1−

1− ∏
θ∈Sa

1−
a

∏
g=1

1−
(
−
T

L
)aΘg

θ(g)

qg 
1
a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

1−
a

∏
g=1

1−
(
−
T

U
)aΘg

θ(g)

qg 
1
a!


1
a
∑

g=1
qg

,


1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−

1−
(

+
I

L
)

θ(g)

aΘg


qg 


1
a!


1
a
∑

g=1
qg

,

1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−

1−
(

+
I

U
)

θ(g)

aΘg


qg 


1
a!


1
a
∑

g=1
qg

,


1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−

1−
(

+
F

L
)

θ(g)

aΘg


qg 


1
a!


1
a
∑

g=1
qg

,

1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−

1−
(

+
F

U
)

θ(g)

aΘg


qg 


1
a!


1
a
∑

g=1
qg


〉

,

〈
1−

1− ∏
θ∈Sa

(
1−

a
∏

z=1

(
1−

( −
λT

)aΘz

θ(z)

)qz ) 1
a!


1

a
∑

z=1
qz

,

1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

1−
(

+
λI

)
θ(g)

)aΘg
qg 

1
a!


1
a
∑

g=1
qg

,

1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

1−
(

+
λF

)
θ(g)

)aΘg
qg 

1
a!


1
a
∑

g=1
qg 〉,

and

n =


〈1−

1− ∏
θ∈Sa

1−
a

∏
g=1

1−
(

+
T

L
)aΘg

θ(g)

qg
1
a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

1−
a

∏
g=1

1−
(

+
T

U
)aΘg

θ(g)

qg
1
a!


1
a
∑

g=1
qg

,


1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−

1−
(
−
I

L
)

θ(g)

aΘg


qg


1
a!


1
a
∑

g=1
qg

,

1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−

1−
(
−
I

U
)

θ(g)

aΘg


qg


1
a!


1
a
∑

g=1
qg

,


1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−

1−
(
−
F

L
)

θ(g)

aΘg


qg


1
a!


1
a
∑

g=1
qg

,

1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−

1−
(
−
F

U
)

θ(g)

aΘg


qg


1
a!


1
a
∑

g=1
qg


〉

,

〈
1−

1− ∏
θ∈Sa

(
1−

a
∏

z=1

(
1−

(
+

λT

)aΘz

θ(z)

)qz) 1
a!


1

a
∑

z=1
qz

,

1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

1−
( −

λI

)
θ(g)

)aΘg
qg

1
a!


1
a
∑

g=1
qg

,

1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

1−
( −

λF

)
θ(g)

)aΘg
qg

1
a!


1
a
∑

g=1
qg 〉.

Now we will discuss some special cases of NCPDMM operator with respect to the parameter vector Q.

Case 1. If Q = (1, 0, . . . , 0), then NCPDMM operators degenerate into the following form:

NCPDMM(1,0,...,0)(z1, z2, . . . ., za) =

 a

∏
g=1

z

(1+T(zg))
a
∑

x=1
(1+T(zx))

g

 (40)

This is the NC power geometric averaging operator.

Case 2. If Q =
(

1
a , 1

a , . . . ., 1
a

)
, then NCPMM operators degenerate into the following form:

NCPDMM( 1
a , 1

a ,..., 1
a )(z1, z2, . . . ., za) =

a

∑
g=1

(
1 + T

(
zg
))

a
∑

x=1
(1 + T(zx))

zg (41)

This is NC power arithmetic averaging operator.



Symmetry 2018, 10, 444 15 of 23

Case 3. If Q = (1, 1, 0, . . . , 0), then NCPDMM operators degenerate into the following form:

NCPDMM(1,1,0,...,0) (z1 , z2 , . . . , za ) =



〈


1−


1−



a
∏

g, x = 1

g 6= x

(
1−

(
1−

(
TL)Θg

g

)(
1−

(
TL)Θx

x

))



1
a2−a



1
2

, 1−


1−



a
∏

g, x = 1

g 6= x

(
1−

(
1−

(
TU )Θg

g

)(
1−

(
TU )Θx

x

))



1
a2−a



1
2


,




1−



a
∏

g, x = 1

g 6= x

(
1−

(
1−

(
1−

(
IL)

g

)Θg
)(

1−
(
1−

(
IL)

x

)Θx
))



1
a2−a



1
2

,


1−



a
∏

g, x = 1

g 6= x

(
1−

(
1−

(
1−

(
IU )

g

)Θg
)(

1−
(
1−

(
IU )

x

)Θx
))



1
a2−a



1
2


,




1−



a
∏

g, x = 1

g 6= x

(
1−

(
1−

(
1−

(
FL)

g

)Θg
)(

1−
(
1−

(
FL)

x

)Θx
))



1
a2−a



1
2

,


1−



a
∏

g, x = 1

g 6= x

(
1−

(
1−

(
1−

(
FU )

g

)Θg
)(

1−
(
1−

(
FU )

x

)Θx
))



1
a2−a



1
2


〉
,

〈
1−


1−



a
∏

g, x = 1

g 6= x

(
1−

(
1− (λT )

Θg
g

)(
1− (λT )

Θx
x

))



1
a2−a



1
2

,


1−



a
∏

g, x = 1

g 6= x

(
1−

(
1−

(
1− (λI )g

)Θg
)(

1− (1− (λI )x )
Θx
))



1
a2−a



1
2

,


1−



a
∏

g, x = 1

g 6= x

(
1−

(
1−

(
1− (λF )g

)Θg
)(

1− (1− (λF )x )
Θx
))



1
a2−a



1
2

〉


.

(42)

This is the NC power geometric Bonferroni mean operator (p = q = 1).

Case 4. If Q =

 i︷ ︸︸ ︷
1, 1, . . . , 1,

z−i︷ ︸︸ ︷
0, 0, . . . , 0

, then the NCPDMM operator degenerates into the

following form:

NCPDMM(

i︷ ︸︸ ︷
1, 1, , ., 1,

z−i︷ ︸︸ ︷
0, 0, . . . , 0) (z1 , z2 , . . . , za ) =〈

1−

1− ∏
1≤y1<y2<....<yi≤a

(
1−

i
∏

x=1

(
1−

(
TL )Θzg

gx

)) 1
Ci

a

 1
k

, 1−

1− ∏
1≤y1<y2<....<yi≤a

(
1−

i
∏

x=1

(
1−

(
TU )Θzg

gx

)) 1
Ci

a

 1
k
 ,


1− ∏

1≤y1<y2<....<yi≤a

(
1−

i
∏

x=1

(
1−

(
1−

(
IL )

gx

)Θgx
)) 1

Ci
a

 1
k

,

1− ∏
1≤y1<y2<....<yi≤a

(
1−

i
∏

x=1

(
1−

(
1−

(
IU )

gx

)Θgx
)) 1

Ci
a

 1
k
,


1− ∏

1≤y1<y2<....<yi≤a

(
1−

i
∏

x=1

(
1−

(
1−

(
FL )

gx

)Θgx
)) 1

Ci
a

 1
k

,

1− ∏
1≤y1<y2<....<yi≤a

(
1−

i
∏

x=1

(
1−

(
1−

(
FU )

gx

)Θgx
)) 1

Ci
a

 1
k
〉

〈
1−

1− ∏
1≤y1<y2<....<yi≤a

(
1−

i
∏

x=1

(
1− (λT )

Θgx
gx

)) 1
Ci

a

 1
k

,

1− ∏
1≤y1<y2<....<yi≤a

(
1−

i
∏

x=1

(
1−

(
1− (λI )gx

)Θgx
)) 1

Ci
a

 1
k

,

1− ∏
1≤y1<y2<....<yi≤a

(
1−

i
∏

x=1

(
1−

(
1− (λF )gx

)Θgx
)) 1

Ci
a

 1
k 〉.

(43)

This is the NC power dual Maclaurin symmetric mean operator.

3.4. Weighted Neutrosophic Cubic Power Dual Muirhead Mean (WNCPDMM) Operator

The NCPDMM operator does not consider the weight of the aggregated NCNs. In this subsection,
we develop the WNCPDMM operator, which has the capacity of taking the weights of NCNs.

Definition 14. Let zg(g = 1, 2, . . . , a) be a group of NCNs and Q = (q1, q2, . . . , qa) ∈ Ra be a vector of
parameters. If,

WNCPDMMQ(z1, z2, . . . ., za) =
1

a
∑

g=1
qg

∏
θ∈Sa

a

∑
g=1

qgz

aΞϑ(g)Θθ(g)
a
∑

x=1
ΞxΘx

θ(g)




1
a!

(44)
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then, we call WNCPDMMQ the weighted neutrosophic cubic power dual Muirhead mean operator, where

Ξ = (Ξ1, Ξ2, . . . , Ξa)
T is the weight vector of zg(g = 1, 2, . . . , a) such that Ξg ∈ [0, 1],

a
∑

g=1
Ξg = 1, Sa is

the group of all permutation, θ(g) is any permutation of (1, 2, . . . , a) and Θg is PVW satisfying Θg =
(1+T(zg))
a
∑

g=1
(1+T(zg))

,
a
∑

g=1
Θg = 1, T(zx) =

a
∑

x=1,x 6=g
Supp

(
zg, zx

)
, and Supp

(
zg, zx

)
is the support degree for zg and

zx, satisfying the following axioms:

(1) Supp
(
zg, zx

)
∈ [0, 1];

(2) Supp
(
zg, zx

)
= Supp

(
zx, zg

)
;

(3) If D(zg, zx) < D(zu, zv), then Supp(zg, zx) > Supp(zu, zv), where D(zg, zx) is distance among zg

and zx.

From Definition 14, we have the following Theorem 9.

Theorem 9. Let zg(g = 1, 2, . . . , a) be a group of NCNs and Q = (q1, q2, . . . , qa) ∈ Ra be a vector of
parameters. Then, the aggregated value obtained by using Equation (44) is still an NCN and

WNCPDMMQ (z1 , z2 , . . . , za ) =

〈1−

1− ∏
θ∈Sa

1−
a

∏
g=1

1−
(

L
T
) aΘθ(g)Ξϑ(g)

a
∑

x=1
Θx Ξx

θ(g)


qg

1
a!


1
a
∑

g=1
qg

, 1−

1− ∏
θ∈Sa

1−
a

∏
g=1

1−
(

U
T
) aΘθ(g)Ξϑ(g)

a
∑

x=1
Θx Ξx

θ(g)


qg

1
a!


1
a
∑

g=1
qg

,


1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

1−
(

L
I
)

θ(g)

) aΘθ(g)Ξϑ(g)
a
∑

x=1
Θx Ξx


qg


1
a!


1
a
∑

g=1
qg

,

1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

1−
(

U
I
)

θ(g)

) aΘθ(g)Ξϑ(g)
a
∑

x=1
Θx Ξx


qg


1
a!


1
a
∑

g=1
qg

,


1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

1−
(

L
F
)

θ(g)

) aΘθ(g)Ξϑ(g)
a
∑

x=1
Θx Ξx


qg


1
a!


1
a
∑

g=1
qg

,

1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

1−
(

U
F
)

θ(g)

) aΘθ(g)Ξϑ(g)
a
∑

x=1
Θx Ξx


qg


1
a!


1
a
∑

g=1
qg


〉

,

1−

1− ∏
θ∈Sa

1−
a

∏
g=1

1− (λT )

aΘθ(g)Ξϑ(g)
a
∑

x=1
Θx Ξx

θ(g)


qg


1
a!


1
a
∑

g=1
qg

,

1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

1− (λI )θ(g)

) aΘθ(g)Ξϑ(g)
a
∑

x=1
Θx Ξx


qg


1
a!


1
a
∑

g=1
qg

,

1−

 ∏
θ∈Sa

1−
a

∏
g=1

1−
(

1− (λF )θ(g)

) aΘθ(g)Ξϑ(g)
a
∑

x=1
Θx Ξx


qg


1
a!


1
a
∑

g=1
qg 〉.

(45)

Proof. Proof of Theorem 9 is similar to that of Theorem 2. 2

4. The MADM Approach Based on WNCPMM Operator and WNCPDMM Operator

In this section, we give a novel method to MADM with NCNs, in which the attributes values
gain the form of NCNs. For a MADM problem, let the series of alternatives is represented by } =

{}1,}2, . . . ,}a}, and the series of attributes is represented by
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Proof. Proof of Theorem 9 is similar to that of Theorem 2. □ 

4. The MADM Approach Based on WNCPMM Operator and WNCPDMM Operator 

In this section, we give a novel method to MADM with NCNs, in which the attributes values 
gain the form of NCNs. For a MADM problem, let the series of alternatives is represented by 

{ }1 2, ,..., ,a=     and the series of attributes is represented by { }1 2, ,..., b=    . The weight vector of 

the attributes is denoted by ( )1 2, ,..., T
bϖ ϖ ϖ ϖ=  such that [ ]

1
0,1 , 1.

b

p p
p

ϖ ϖ
=

∈ =  Assume that 

( ), , , , , , , ,
gh ghgh

L U L U L U
gh gh gh gh gh gh gh T I Fz T T I I F F λ λ λ     =        is the assessment values of the alternatives g  on the attribute 

h , which is expressed by the form of NCN. Then, the main aim is to rank the alternatives. The 
following decision steps are to be followed. 

= {
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Hence, the decision matrix gh a b
M z

×
 =    can be transformed into normalized decision matrix

gh a b
N δ

×
 =   . 

Step 2. Determine the supports ( ) ( ), 1,2,..., ; , 1,2,...,gh glSupp g a h l bδ δ = =  by, 

( ) ( ), 1 ,gh gl gh ghSupp Dδ δ δ δ= −  (47) 

where, ( ),gh ghD δ δ is the distance measure among two NCNs ghδ  and glδ  defined in Equation (25). 
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+
Ψ = = =

+
 (49) 

where, ( ) ( )( )
1

, 1, 2,..., ; , 1, 2,...,
b

gh gh gl
l
l h

T Supp g a h l bδ δ δ
=
≠

= = = is weighted support of NCN ghδ  by the other NCN 

( )1,2,..., ; , 1,2,...,gl g a h l bδ = = .  

Step 5. Use the WNCPMM or WNCPDMM operators 

( )1 2, , , , , , , , , ,...,L U L U L U Q
g g g g g g g T g I g F g g g gbT T I I F F WNCPMMδ λ λ λ δ δ δ     = =       (50) 

or 
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g g g g g g g T g I g F g g g gbT T I I F F WNCPDMMδ λ λ λ δ δ δ     = =       (51) 

to calculate the overall NCNs, ( )1,2,...,g g aδ = . 

Step 6. Determine the score values of the collective NCNs ( )1,2,...,g g aδ = , using Definition 6. 

Step 7. Rank all the alternatives according to their score values, and the select the best one using 
Theorem 1. 

5. An Illustrative Example 

To show the application of the developed MADM method, an illustrative example is embraced 
from [19,21] with NC information. 

Example 1. A passenger wants to travel and select the best vans (alternatives) ( 1,2,3,4)g g =  among the 
possible four vans. The customer takes the following four attributes into account to evaluate the possible four 
alternatives: (1) the facility 1;  (2) saving rent 2 ;  (3) comfort 3 ;  (4) safety 4 .  The importance degree ,
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Proof. Proof of Theorem 9 is similar to that of Theorem 2. □ 

4. The MADM Approach Based on WNCPMM Operator and WNCPDMM Operator 

In this section, we give a novel method to MADM with NCNs, in which the attributes values 
gain the form of NCNs. For a MADM problem, let the series of alternatives is represented by 

{ }1 2, ,..., ,a=     and the series of attributes is represented by { }1 2, ,..., b=    . The weight vector of 

the attributes is denoted by ( )1 2, ,..., T
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gh gh gh gh gh gh gh T I Fz T T I I F F λ λ λ     =        is the assessment values of the alternatives g  on the attribute 

h , which is expressed by the form of NCN. Then, the main aim is to rank the alternatives. The 
following decision steps are to be followed. 

}. The weight vector of

the attributes is denoted by v = (v1, v2, . . . , vb)
T such that vp ∈ [0, 1],

b
∑

p=1
vp = 1. Assume that zgh =(〈[

TL
gh, TU

gh

]
,
[

IL
gh, IU

gh

]
,
[

FL
gh, FU

gh

]〉
, 〈λT gh

, λI gh , λF gh

〉)
is the assessment values of the alternatives }g

on the attribute lh, which is expressed by the form of NCN. Then, the main aim is to rank the
alternatives. The following decision steps are to be followed.

Step 1. Standardize the decision matrix. Generally, there are two types of attributes, one is of cost type
and the other is of benefit type. We need to convert the cost type of attributes into benefit types of
attributes by using the following formula:

zgh =
(〈[

TL
gh, TU

gh

]
,
[

IL
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gh
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,
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FL
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gh

]〉
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]
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IL
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,
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FL
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]〉
, λT gh , λI gh , λF gh
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1− IU
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,
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TL
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]〉
, λT gh , 1− λI gh , λF gh

〉
), for cost attribute Γh.

(46)
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Hence, the decision matrix M =
[
zgh

]
a×b

can be transformed into normalized decision matrix

N =
[
δgh

]
a×b

.

Step 2. Determine the supports Supp
(

δgh, δgl

)
(g = 1, 2, . . . , a; h, l = 1, 2, . . . , b) by,

Supp
(

δgh, δgl

)
= 1− D

(
δgh, δgh

)
(47)

where, D
(

δgh, δgh

)
is the distance measure among two NCNs δgh and δgl defined in Equation (25).

Step 3. Determine T
(

δgh

)
by,

T
(

δgh

)
=

b

∑
l=1
l 6=h

Supp
(

δgh, δgl

)
(g = 1, 2, . . . , a; h, l = 1, 2, . . . , b) (48)

Step 4. Determine the weights related with the NCN δgh(g = 1, 2, . . . , a; h = 1, 2, . . . , b) with the formula

Ψgh =
bvh

(
1 + T

(
δgh

))
b
∑

d=1
vd

(
1 + T

(
δgh

)) (g = 1, 2, . . . , a; h, d = 1, 2, . . . , b), (49)

where, T
(

δgh

)
=

b
∑

l=1
l 6=h

Supp
(

δgh, δgl

)
(g = 1, 2, . . . , a; h, l = 1, 2, . . . , b) is weighted support of NCN

δgh by the other NCN δgl(g = 1, 2, . . . , a; h, l = 1, 2, . . . , b).

Step 5. Use the WNCPMM or WNCPDMM operators

δg =
〈[

TL
g , TU

g

]
,
[

IL
g , IU

g

]
,
[

FL
g , FU

g

]
, λT g, λI g, λFg

〉
= WNCPMMQ

(
δg1, δg2, . . . , δgb

)
(50)

or
δg =

〈[
TL

g , TU
g

]
,
[

IL
g , IU

g

]
,
[

FL
g , FU

g

]
, λT g, λI g, λFg

〉
= WNCPDMMQ

(
δg1, δg2, . . . , δgb

)
(51)

to calculate the overall NCNs, δg(g = 1, 2, . . . , a).
Step 6. Determine the score values of the collective NCNs δg(g = 1, 2, . . . , a), using Definition 6.
Step 7. Rank all the alternatives according to their score values, and the select the best one using
Theorem 1.

5. An Illustrative Example

To show the application of the developed MADM method, an illustrative example is embraced
from [19,21] with NC information.

Example 1. A passenger wants to travel and select the best vans (alternatives) }g(g = 1, 2, 3, 4) among
the possible four vans. The customer takes the following four attributes into account to evaluate the possible

four alternatives: (1) the facility
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Hence, the decision matrix gh a b
M z

×
 =    can be transformed into normalized decision matrix

gh a b
N δ

×
 =   . 
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( ) ( )( )
1

, 1,2,..., ; , 1,2,...,
b

gh gh gl
l
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≠

= = =  (48) 
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( )( )
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( )

1

1
1,2,..., ; , 1,2,..., ,

1

h gh
gh b

d gh
d

b T
g a h d b

T

ϖ δ

ϖ δ
=

+
Ψ = = =

+
 (49) 

where, ( ) ( )( )
1

, 1, 2,..., ; , 1, 2,...,
b

gh gh gl
l
l h

T Supp g a h l bδ δ δ
=
≠

= = = is weighted support of NCN ghδ  by the other NCN 

( )1,2,..., ; , 1,2,...,gl g a h l bδ = = .  

Step 5. Use the WNCPMM or WNCPDMM operators 

( )1 2, , , , , , , , , ,...,L U L U L U Q
g g g g g g g T g I g F g g g gbT T I I F F WNCPMMδ λ λ λ δ δ δ     = =       (50) 

or 

( )1 2, , , , , , , , , ,...,L U L U L U Q
g g g g g g g T g I g F g g g gbT T I I F F WNCPDMMδ λ λ λ δ δ δ     = =       (51) 
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Step 7. Rank all the alternatives according to their score values, and the select the best one using 
Theorem 1. 

5. An Illustrative Example 

To show the application of the developed MADM method, an illustrative example is embraced 
from [19,21] with NC information. 

Example 1. A passenger wants to travel and select the best vans (alternatives) ( 1,2,3,4)g g =  among the 
possible four vans. The customer takes the following four attributes into account to evaluate the possible four 
alternatives: (1) the facility 1;  (2) saving rent 2 ;  (3) comfort 3 ;  (4) safety 4 .  The importance degree ; (2) saving rent
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from [19,21] with NC information. 

Example 1. A passenger wants to travel and select the best vans (alternatives) ( 1,2,3,4)g g =  among the 
possible four vans. The customer takes the following four attributes into account to evaluate the possible four 
alternatives: (1) the facility 1;  (2) saving rent 2 ;  (3) comfort 3 ;  (4) safety 4 .  The importance degree ; (3) comfort
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from [19,21] with NC information. 

Example 1. A passenger wants to travel and select the best vans (alternatives) ( 1,2,3,4)g g =  among the 
possible four vans. The customer takes the following four attributes into account to evaluate the possible four 
alternatives: (1) the facility 1;  (2) saving rent 2 ;  (3) comfort 3 ;  (4) safety 4 .  The importance degree ; (4) safety
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=
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= = = is weighted support of NCN ghδ  by the other NCN 
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to calculate the overall NCNs, ( )1,2,...,g g aδ = . 

Step 6. Determine the score values of the collective NCNs ( )1,2,...,g g aδ = , using Definition 6. 

Step 7. Rank all the alternatives according to their score values, and the select the best one using 
Theorem 1. 

5. An Illustrative Example 

To show the application of the developed MADM method, an illustrative example is embraced 
from [19,21] with NC information. 

Example 1. A passenger wants to travel and select the best vans (alternatives) ( 1,2,3,4)g g =  among the 
possible four vans. The customer takes the following four attributes into account to evaluate the possible four 
alternatives: (1) the facility 1;  (2) saving rent 2 ;  (3) comfort 3 ;  (4) safety 4 .  The importance degree . The importance degree

of the attributes is expressed by v = (0.5, 0.25, 0.125, 0.125)T . Therefore, the following decision matrix
M =

[
zgh

]
4×4

can be obtained in the form of NCNs shown in Table 1.
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Table 1. The decision matrix M =
[
CNgh

]
4×4

.
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[ ] [ ](
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2  
[ ] [ ](

[ ] )
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 [ ] [ ](
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0.3,0.7 , 0.6,0.8 ,
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 [ ] [ ](

[ ] )
0.3,0.9 , 0.4,0.6 ,
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 [ ]( [ ]

[ ] )
0.2,0.5 , 0.4,0.9 ,

0.5,0.8 , 0.5,0.2,0.7
 

3  
[ ] [ ](

[ ] )
0.3,0.4 , 0.4,0.8 ,

0.2,0.6 , 0.1,0.4,0.2
 [ ]( [ ]

[ ] )
0.2,0.4 , 0.2,0.3 ,

0.2,0.5 , 0.2,0.2,0.2
 

[ ]( [ ]
[ ] )

0.4,0.7 , 0.1,0.2 ,

0.4,0.5 , 0.9,0.5,0.5
 [ ]( [ ]

[ ] )
0.6,0.7 , 0.3,0.6 ,

0.3,0.7 , 0.7,0.5,0.3
 

4  
[ ]( [ ]

[ ] )
0.5,0.9 , 0.1,0.8 ,

0.2,0.6 , 0.4,0.6,0.2
 [ ]( [ ]

[ ] )
0.4,0.6 , 0.5,0.7 ,

0.1,0.2 , 0.5,0.3,0.2
 

[ ]( [ ]
[ ] )

0.5,0.6 , 0.2,0.4 ,

0.3,0.5 , 0.5,0.4,0.5
 [ ]( [ ]

[ ] )
0.3,0.7 , 0.7,0.8 ,

0.6,0.7 , 0.4,0.2,0.8
 

Then, we apply the WNCPMM operator or WNCPDMM operator to solve the MADM problem. 
Now, we use the WNCPMM operator for this decision-making problem as follows: 

Step 1. Since all the attributes are the same, hence there is no need for conversion. 
Step 2. Use Equation (47), to calculate the support degrees ( )( ), 1,2,...,4; , 1,2,...,4gh glSupp z z h l = . We denote 

( ),gh glSupp z z  by ,gh glSupp . 

11,12 12,11 11,13 13,11 11,14 14,11

12,13 13,12 12,14 14,12 13,14 14,13

0.79452, 0.735425, 0.65359,
0.771478, 0.805635, 0.786563;

Supp Supp Supp Supp Supp Supp
Supp Supp Supp Supp Supp Supp

= = = = = =
= = = = = =

 

21,22 22,21 21,23 23,21 21,24 24,21

22,23 23,22 22,24 24,22 23,24 23,24

0.7972, 0.7667, 0.727155,
0.750556, 0.750556, 0.76906,

Supp Supp Supp Supp Supp Supp
Supp Supp Supp Supp Supp Supp

= = = = = =
= = = = = =

 

31,32 32,31 31,33 33,31 31,34 34,31

32,33 33,32 32,34 34,32 33,34 33,34

0.8, 0.614139, 0.735425,
0.690879, 0.711325, 0.797241,

Supp Supp Supp Supp Supp Supp
Supp Supp Supp Supp Supp Supp

= = = = = =
= = = = = =

 

41,42 42,41 41,43 43,41 41,44 44,41

42,43 43,42 42,44 44,42 43,44 44,43

0.7551, 0.783975, 0.645662,
0.783975, 0.675107, 0.7152.

Supp Supp Supp Supp Supp Supp
Supp Supp Supp Supp Supp Supp

= = = = = =
= = = = = =

 

 

Step 3. Use Equation (48), to get ( )( , 1 4)ghT g h toδ = . We denote ( )ghT δ  by .ghT  

11 12 13 14T =2.183534,T =2.371633,T =2.293466,T =2.245787;

21 22 23 24T =2.291063,T =2.298354,T =2.286283,T =2.246771,  

31 32 33 34T =2.149564,T =2.202204,T =2.102259,T =2.243991,

41 42 43 44T =2.184688,T =2.214133,T =2.28315,T =2.035969.  

 

Step 4. Use Equation (49), to obtain ( , 1,2,3,4).gh g hΨ =  

11 12 13 141.957844, 1.036761, 0.506363, 0.499032,Ψ = Ψ = Ψ = Ψ =

21 22 23 242.002623, 1.00353, 0.499929, 0.493918,Ψ = Ψ = Ψ = Ψ =  

31 32 33 341.987975, 1.010601, 0.489529, 0.511894,Ψ = Ψ = Ψ = Ψ =  
 

Step 5. Use the WNCPMM given in Equation (50), 

( ) ( )1 2 4, , , , , , , , , ,..., ( 1,2,...,4).L U L U L U Q
g g g g g g g T g I g F g g g gz T T I I F F WCNPMM z z z gλ λ λ     = = =        

To get the overall NCNs ( )1,2,...,4gz g = . Assume that ( )1,1,1,1Q = . 

[ ] [ ] [ ]( )1 0.1399,0.4650 , 0.4421,0.7027 , 0.4691,0.6847 , 0.5483,0.6368,0.6029z = ; 

[ ] [ ] [ ]( )2 0.2238,0.6021 , 0.5236,0.8162 , 0.5122,0.715 , 0.5617,0.5505,0.7294 ;z =  
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 [ ]( [ ]

[ ] )
0.3,0.7 , 0.7,0.8 ,

0.6,0.7 , 0.4,0.2,0.8
 

Then, we apply the WNCPMM operator or WNCPDMM operator to solve the MADM problem. 
Now, we use the WNCPMM operator for this decision-making problem as follows: 

Step 1. Since all the attributes are the same, hence there is no need for conversion. 
Step 2. Use Equation (47), to calculate the support degrees ( )( ), 1,2,...,4; , 1,2,...,4gh glSupp z z h l = . We denote 

( ),gh glSupp z z  by ,gh glSupp . 

11,12 12,11 11,13 13,11 11,14 14,11

12,13 13,12 12,14 14,12 13,14 14,13

0.79452, 0.735425, 0.65359,
0.771478, 0.805635, 0.786563;

Supp Supp Supp Supp Supp Supp
Supp Supp Supp Supp Supp Supp

= = = = = =
= = = = = =

 

21,22 22,21 21,23 23,21 21,24 24,21

22,23 23,22 22,24 24,22 23,24 23,24

0.7972, 0.7667, 0.727155,
0.750556, 0.750556, 0.76906,

Supp Supp Supp Supp Supp Supp
Supp Supp Supp Supp Supp Supp

= = = = = =
= = = = = =

 

31,32 32,31 31,33 33,31 31,34 34,31

32,33 33,32 32,34 34,32 33,34 33,34

0.8, 0.614139, 0.735425,
0.690879, 0.711325, 0.797241,

Supp Supp Supp Supp Supp Supp
Supp Supp Supp Supp Supp Supp

= = = = = =
= = = = = =

 

41,42 42,41 41,43 43,41 41,44 44,41

42,43 43,42 42,44 44,42 43,44 44,43

0.7551, 0.783975, 0.645662,
0.783975, 0.675107, 0.7152.

Supp Supp Supp Supp Supp Supp
Supp Supp Supp Supp Supp Supp

= = = = = =
= = = = = =

 

 

Step 3. Use Equation (48), to get ( )( , 1 4)ghT g h toδ = . We denote ( )ghT δ  by .ghT  

11 12 13 14T =2.183534,T =2.371633,T =2.293466,T =2.245787;

21 22 23 24T =2.291063,T =2.298354,T =2.286283,T =2.246771,  

31 32 33 34T =2.149564,T =2.202204,T =2.102259,T =2.243991,

41 42 43 44T =2.184688,T =2.214133,T =2.28315,T =2.035969.  

 

Step 4. Use Equation (49), to obtain ( , 1,2,3,4).gh g hΨ =  

11 12 13 141.957844, 1.036761, 0.506363, 0.499032,Ψ = Ψ = Ψ = Ψ =

21 22 23 242.002623, 1.00353, 0.499929, 0.493918,Ψ = Ψ = Ψ = Ψ =  

31 32 33 341.987975, 1.010601, 0.489529, 0.511894,Ψ = Ψ = Ψ = Ψ =  
 

Step 5. Use the WNCPMM given in Equation (50), 

( ) ( )1 2 4, , , , , , , , , ,..., ( 1,2,...,4).L U L U L U Q
g g g g g g g T g I g F g g g gz T T I I F F WCNPMM z z z gλ λ λ     = = =        

To get the overall NCNs ( )1,2,...,4gz g = . Assume that ( )1,1,1,1Q = . 

[ ] [ ] [ ]( )1 0.1399,0.4650 , 0.4421,0.7027 , 0.4691,0.6847 , 0.5483,0.6368,0.6029z = ; 

[ ] [ ] [ ]( )2 0.2238,0.6021 , 0.5236,0.8162 , 0.5122,0.715 , 0.5617,0.5505,0.7294 ;z =  
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Then, we apply the WNCPMM operator or WNCPDMM operator to solve the MADM problem. 
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0.7551, 0.783975, 0.645662,
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Step 3. Use Equation (48), to get ( )( , 1 4)ghT g h toδ = . We denote ( )ghT δ  by .ghT  

11 12 13 14T =2.183534,T =2.371633,T =2.293466,T =2.245787;

21 22 23 24T =2.291063,T =2.298354,T =2.286283,T =2.246771,  
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Step 4. Use Equation (49), to obtain ( , 1,2,3,4).gh g hΨ =  

11 12 13 141.957844, 1.036761, 0.506363, 0.499032,Ψ = Ψ = Ψ = Ψ =
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11 12 13 141.957844, 1.036761, 0.506363, 0.499032,Ψ = Ψ = Ψ = Ψ =
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}1
(〈[0.2, 0.5], [0.3, 0.7],

[0.1, 0.2]〉, 〈0.9, 0.7, 0.2〉)
(〈[0.2, 0.4], [0.4, 0.5],

[0.2, 0.5]〉, 〈0.7 , 0.4, 0.5〉)
(〈[0.2, 0.7], [0.4, 0.9],

[0.5, 0.7]〉, 〈0.7 , 0.7, 0.5〉)
(〈[0.1, 0.6], [0.3, 0.4] ,

[0.5, 0.8]〉, 〈0.5 , 0.5, 0.7〉)

}2
(〈[0.3, 0.9], [0.2, 0.7] ,

[0.3, 0.5]〉, 〈0.5 , 0.7, 0.5〉)
(〈[0.3, 0.7], [0.6, 0.8] ,

[0.2, 0.4]〉 , 〈0.7 , 0.6, 0.8〉)
(〈[0.3, 0.9], [0.4, 0.6] ,

[0.6, 0.8]〉, 〈0.9 , 0.4, 0.6〉)
(〈[0.2, 0.5], [0.4, 0.9],

[0.5, 0.8]〉, 〈0.5 , 0.2, 0.7〉)

}3
(〈[0.3, 0.4], [0.4, 0.8] ,

[0.2, 0.6]〉, 〈0.1 , 0.4, 0.2〉)
(〈[0.2, 0.4], [0.2, 0.3],

[0.2, 0.5]〉, 〈0.2 , 0.2, 0.2〉)
(〈[0.4, 0.7], [0.1, 0.2],

[0.4, 0.5]〉, 〈0.9 , 0.5, 0.5〉)
(〈[0.6, 0.7], [0.3, 0.6],

[0.3, 0.7]〉 , 〈0.7, 0.5, 0.3〉)

}4
(〈[0.5, 0.9], [0.1, 0.8],

[0.2, 0.6]〉, 〈0.4 , 0.6, 0.2〉)
(〈[0.4, 0.6], [0.5, 0.7],

[0.1, 0.2]〉, 〈0.5 , 0.3, 0.2〉)
(〈[0.5, 0.6], [0.2, 0.4],

[0.3, 0.5]〉, 〈0.5, 0.4 , 0.5〉)
(〈[0.3, 0.7] , [0.7, 0.8],
[0.6, 0.7]〉, 〈0.4, 0.2, 0.8〉)

Then, we apply the WNCPMM operator or WNCPDMM operator to solve the MADM problem.
Now, we use the WNCPMM operator for this decision-making problem as follows:

Step 1. Since all the attributes are the same, hence there is no need for conversion.

Step 2. Use Equation (47), to calculate the support degrees Supp
(

zgh, zgl

)
(1, 2, . . . , 4; h, l = 1, 2, . . . , 4).

We denote Supp
(

zgh, zgl

)
by Suppgh,gl .

Supp11,12 = Supp12,11 = 0.79452, Supp11,13 = Supp13,11 = 0.735425, Supp11,14 = Supp14,11 = 0.65359,

Supp12,13 = Supp13,12 = 0.771478, Supp12,14 = Supp14,12 = 0.805635, Supp13,14 = Supp14,13 = 0.786563;

Supp21,22 = Supp22,21 = 0.7972, Supp21,23 = Supp23,21 = 0.7667, Supp21,24 = Supp24,21 = 0.727155,

Supp22,23 = Supp23,22 = 0.750556, Supp22,24 = Supp24,22 = 0.750556, Supp23,24 = Supp23,24 = 0.76906,

Supp31,32 = Supp32,31 = 0.8, Supp31,33 = Supp33,31 = 0.614139, Supp31,34 = Supp34,31 = 0.735425,

Supp32,33 = Supp33,32 = 0.690879, Supp32,34 = Supp34,32 = 0.711325, Supp33,34 = Supp33,34 = 0.797241,

Supp41,42 = Supp42,41 = 0.7551, Supp41,43 = Supp43,41 = 0.783975, Supp41,44 = Supp44,41 = 0.645662,

Supp42,43 = Supp43,42 = 0.783975, Supp42,44 = Supp44,42 = 0.675107, Supp43,44 = Supp44,43 = 0.7152.

Step 3. Use Equation (48), to get T
(

δgh

)
(g, h = 1 to 4). We denote T

(
δgh

)
by Tgh.

T11 = 2.183534, T12 = 2.371633, T13 = 2.293466, T14 = 2.245787;
T21 = 2.291063, T22 = 2.298354, T23 = 2.286283, T24 = 2.246771
T31 = 2.149564, T32 = 2.202204, T33 = 2.102259, T34 = 2.243991,
T41 = 2.184688, T42 = 2.214133, T43 = 2.28315, T44 = 2.035969.

Step 4. Use Equation (49), to obtain Ψgh(g, h = 1, 2, 3, 4).

Ψ11 = 1.957844, Ψ12 = 1.036761, Ψ13 = 0.506363, Ψ14 = 0.499032,
Ψ21 = 2.002623, Ψ22 = 1.00353, Ψ23 = 0.499929, Ψ24 = 0.493918,

Ψ31 = 1.987975, Ψ32 = 1.010601, Ψ33 = 0.489529, Ψ34 = 0.511894,

Step 5. Use the WNCPMM given in Equation (50),

zg =
(〈 [

TL
g , TU

g

]
,
[

IL
g , IU

g

]
,
[

FL
g , FU

g

]〉
,
〈
λT g , λI g, λF g

〉)
= WCNPMMQ(zg1, zg2, . . . , zg4

)
(g = 1, 2, . . . , 4).

To get the overall NCNs zg(g = 1, 2, . . . , 4). Assume that Q = (1, 1, 1, 1).

z1 = (〈[0.1399, 0.4650], [0.4421, 0.7027], [0.4691, 0.6847]〉, 〈0.5483 , 0.6368, 0.6029〉);
z2 = (〈[0.2238, 0.6021], [0.5236, 0.8162], [0.5122, 0.715]〉, 〈0.5617 , 0.5505, 0.7294〉);

z3 = 〈[0.3002, 0.4736], [0.3232, 0.5782], [0.3881, 0.6445]〉, 〈0.3255 , 0.4952, 0.415668〉;
z4 = 〈[0.3413, 0.5540], [0.5437, 0.7485], [0.4487, 0.5965]〉, 〈0.3762 , 0.4451, 0.5976〉.
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Step 6. Using Definition 6, we calculate the score values of the collective NCNs zg(g = 1, 2, . . . , a).

S̃C(z1) = 0.4022, S̃C(z2) = 0.393352, S̃C(z3) = 0.472717, S̃C(z4) = 0.4324.

Step 7. According to the score values, ranking order of the alternative is }3 > }4 > }1 > }2.

Hence using Theorem 1, the best alternative is }3 and the worst is }2.
Similarly, by using WNCPDMM operator for this decision-making problem, we will have, the

Steps 1 to 4 are similar to that of weighted neutrosophic cubic power Muirhead mean operator.

Step 5. Use the WNCPDMM given in Equation (51),

zg =
〈[

TL
g , TU

g

]
,
[

IL
g , IU

g

]
,
[

FL
g , FU

g

]〉
,
〈
λT g , λI g, λF g

〉
= WNCPDMMQ(zg1, zg2, . . . , zg4

)
(g = 1, 2, . . . , 4).

To get the overall NCNs zg(g = 1, 2, . . . , 4). Assume that, Q = (1, 1, 1, 1).

z1 = 〈[0.2569, 0.6239], [0.2929, 0.5112], [0.2375, 0.4571]〉, 〈0.7682 , 0.4666, 0.3905〉;
z2 = 〈[0.3642, 0.8179], [0.3110, 0.6479], [0.3194, 0.5430]〉, 〈0.7416 , 0.3336, 0.5561〉;
z3 = 〈[0.4935, 0.6438], [0.1794, 0.3224], [0.2248, 0.4812]〉, 〈0.6502 , 0.3206, 0.2330〉;
z4 = 〈[0.4995, 0.7691], [0.2570, 0.5332], [0.2130, 0.3815]〉, 〈0.5355 , 0.2744, 0.3248〉.

Step 6. Using Definition 6, we calculate the score values of the collective NCNs zg(g = 1, 2, . . . , a).

S̃C(z1) = 0.5881, S̃C(z2) = 0.5782, S̃C(z3) = 0.6688, S̃C(z4) = 0.6467.

Step 7. According to the score values, ranking order of the alternative is }3 > }4 > }1 > }2.

Hence using Theorem 1, the best alternatives is }3, while the worst is }2.
From the above obtained results, we can see that by using WNCPMM operator or WNCPDMM

operator, the best alternative obtained is }3, while the worst is }2.

Effect of the Parameter Q on the Decision Result

In this subsection, different values to the parameter vector and the results obtained from these
values are shown in Tables 2 and 3. From Tables 2 and 3, it can be seen that, when the value
of the parameter vector Q is (1, 0, 0, 0), that is, when the interrelationship among the attributes is
not considered, then according to the score values the best alternative is }4 while the worst is }2.
Similarly, when the value of the parameter vector Q is (1, 1, 0, 0), that is, when WCNPMM operator
and WNCPDMM operator degenerate into neutrosophic cubic power Bonferroni mean operator and
neutrosophic cubic power geometric Bonferroni mean operator respectively, the best alternative is }3

and }4 while the worst for both cases is }2. When the value of the parameter vector Q is (1, 1, 1, 0), the
best alternative is }3 and the worst is }2. When the value of the parameter vector Q is (1, 1, 1, 1), the
best alternative is }3 and the worst is }2. Similarly, for other values of the parameter vector the score
values and ranking order vary. Thus, one can select the value of the parameter vector according to the
needs of the situations.
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Table 2. Score values and ranking orders for different parameter values in WCNPMM operator.

Parameter Vector Q Score Values Ranking Orders

Q(1, 0, 0, 0)
S̃C(CN1) = 0.5671, S̃C(CN2) = 0.5230,
S̃C(CN3) = 0.5593, S̃C(CN4) = 0.6031.

}4 > }1 > }3 > }2.

Q(1, 1, 0, 0)
S̃C(CN1) = 0.4579, S̃C(CN2) = 0.4468,
S̃C(CN3) = 0.5092, S̃C(CN4) = 0.5027.

}3 > }4 > }1 > }2.

Q(1, 1, 1, 0)
S̃C(CN1) = 0.4227, S̃C(CN2) = 0.4133,
S̃C(CN3) = 0.4866, S̃C(CN4) = 0.4607.

}3 > }4 > }1 > }2.

Q(1, 1, 1, 1)
S̃C(CN1) = 0.5881, S̃C(CN2) = 0.5782,
S̃C(CN3) = 0.6688, S̃C(CN4) = 0.6467.

}3 > }4 > }1 > }2.

Q(0.5, 0.5, 0.5, 0.5)
S̃C(CN1) = 0.3988, S̃C(CN2) = 0.3910,
S̃C(CN3) = 0.4708, S̃C(CN4) = 0.4306.

}3 > }4 > }1 > }2.

Q(5, 0, 0, 0)
S̃C(CN1) = 0.6608, S̃C(CN2) = 0.6235,
S̃C(CN3) = 0.6313, S̃C(CN4) = 0.6854.

}4 > }1 > }3 > }2.

Table 3. Score values and ranking orders for different parameter values in weighted neutrosophic
cubic power dual Muirhead mean operator.

Parameter Vector Q Score Values Ranking Orders

Q(1, 0, 0, 0)
S̃C(CN1) = 0.5588, S̃C(CN2) = 0.5346,
S̃C(CN3) = 0.6040, S̃C(CN4) = 0.6081.

}4 > }1 > }3 > }2.

Q(1, 1, 0, 0)
S̃C(CN1) = 0.5881, S̃C(CN2) = 0.5782,
S̃C(CN3) = 0.6688, S̃C(CN4) = 0.6467.

}4 > }3 > }1 > }2.

Q(1, 1, 1, 0)
S̃C(CN1) = 0.5760, S̃C(CN2) = 0.5582,
S̃C(CN3) = 0.6478, S̃C(CN4) = 0.6276.

}3 > }4 > }1 > }2.

Q(1, 1, 1, 1)
S̃C(CN1) = 0.5881, S̃C(CN2) = 0.5782,
S̃C(CN3) = 0.6688, S̃C(CN4) = 0.6467.

}3 > }4 > }1 > }2.

Q(0.5, 0.5, 0.5, 0.5)
S̃C(CN1) = 0.5909, S̃C(CN2) = 0.5817,
S̃C(CN3) = 0.6741, S̃C(CN4) = 0.6488.

}3 > }4 > }1 > }2.

Q(5, 0, 0, 0)
S̃C(CN1) = 0.4671, S̃C(CN2) = 0.4073,
S̃C(CN3) = 0.4022, S̃C(CN4) = 0.4559.

}1 > }4 > }2 > }3.

6. Comparison with Existing Methods

To show the efficiency and advantages of the proposed method, we give a comparative analysis.
We exploit some existing methods to solve the same example and examine the final results. We compare
our method in this paper with the methods developed by Qin et al. [30] based on weighted IFMSM
operator, and the one developed by Liu et al. [32]-based generalized INPWA operator. We extend the
IFMSM operator method [30] for intuitionistic fuzzy information to neutrosophic cubic Maclaurin
symmetric mean operator. We also extend the GINPWA operator [32] for interval neutrosophic
information to generalized neutrosophic cubic power average operator.

The method developed by Qin et al. [30], is based on MSM operator, which can consider the
interrelationship among the attribute values, but unable to remove the effect of awkward data.
The MSM operator is a special case of the proposed aggregation operator. Also, the ranking
result obtained using the method of Qin et al. [30], is different from the one obtained using the
proposed method.

Similarly, the method developed by Liu et al. [32], is based on power weighted averaging operator,
which can remove the effect of awkward data but cannot consider the interrelationship among the
attributes values. From Table 4, it can be seen that the ranking result obtained using Liu et al. [32] is
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the same as the ranking order obtained from the proposed method, when Q(1, 0, 0, 0). That is, when
the interrelationship between NCNs are not considered. This shows the validity of the proposed
approach. The ranking order is different when Q(1, 1, 1, 1). That is, when the interrelationship among
four attributes are considered, then the ranking order is different. The main reason behind the different
ranking results is due to the existing aggregation operators, can only consider a single characteristic
at a time while aggregating the NCNs, meaning that they can only either consider interrelationship
among attributes or remove the effect of awkward data. Our proposed aggregation operator, however,
can consider two characteristics at a time. It can consider the interrelationship among the attributes
and remove the effect of awkward data. In fact, these existing aggregation operators can be regarded
as special cases to our proposed aggregation operator. Hence, our proposed aggregation operator is
more practical and flexible to be used in decision-making problems.

Table 4. Score values and ranking orders for different parameter values in WCNPDMM operator.

Aggregation Operator Score Values Ranking Orders

NCMSM operator [30] S̃C(CN1) = 0.6263, S̃C(CN2) = 0.6153,
S̃C(CN3) = 0.6355, S̃C(CN4) = 0.6373.

}4 > }3 > }1 > }2.

GNCPWA operator [32] S̃C(CN1) = 0.5694, S̃C(CN2) = 0.5266,
S̃C(CN3) = 0.5646, S̃C(CN4) = 0.6054.

}4 > }1 > }3 > }2.

Proposed WNCPMM operator Q(1, 0, 0, 0)
S̃C(CN1) = 0.5671, S̃C(CN2) = 0.5230,
S̃C(CN3) = 0.5593, S̃C(CN4) = 0.6031.

}4 > }1 > }3 > }2.

Proposed WNCPDMM operator Q(1, 0, 0, 0)
S̃C(CN1) = 0.5588, S̃C(CN2) = 0.5346,
S̃C(CN3) = 0.6040, S̃C(CN4) = 0.6081.

}4 > }1 > }3 > }2.

Proposed WNCPMM operator Q(1, 1, 1, 1)
S̃C(CN1) = 0.5881, S̃C(CN2) = 0.5782,
S̃C(CN3) = 0.6688, S̃C(CN4) = 0.6467.

}3 > }4 > }1 > }2.

Proposed WNCPDMM operator Q(1, 1, 1, 1)
S̃C(CN1) = 0.5881, S̃C(CN2) = 0.5782,
S̃C(CN3) = 0.6688, S̃C(CN4) = 0.6467.

}3 > }4 > }1 > }2.

7. Conclusions

In this article, we incorporate both the PA operator and MM operator to form a few new
aggregation operators to aggregate CNNs, such as the cubic neutrosophic power Muirhead
mean (CNPMM) operator, WCNPMM operator, CNPDMM operator and WCNPDMM operator.
We discussed several basic results and properties, along with a few special cases of the proposed
aggregation operators. In other words, the developed aggregation operators do not only consider the
interrelationship among the NCNs, but also remove the influence of too high or too low arguments
in the final results. Based on these aggregation operators, a novel approach to MADM problem is
developed. Finally, a numerical example is illustrated to show the effectiveness and practicality of the
proposed approach.

Our main contribution is enhancing the neutrosophic cubic aggregation operator and its
MADM method under neutrosophic cubic environment. In future, we will incorporate the PA
operator with the MM operator under the intuitionistic fuzzy environment [3], interval neutrosophic
environment [6] and multi-valued neutrosophic environment [10], to develop new operators such as
IFPMM, IFPDMM, INPMM, INPDMM, multi-valued neutrosophic power Muirhead mean (NPMM)
and multi-valued neutrosophic power dual Muirhead mean (NPDMM) operators along with their
weighted forms. We will apply these to MAGDM, data mining, decision support, recommender system
and pattern recognition.
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Abbreviations

FS Fuzzy set
IFS Intuitionistic fuzzy set
INS Interval neutrosophic set
INN Interval neutrosophic number
MADM Multiple-attribute decision-making
MAGDM Multiple-attribute group decision-making
MM Muirhead Mean
NS Neutrosophic set
NC Neutrosophic cubic
NCN Neutrosophic cubic number
NCPMM Neutrosophic cubic power Muirhead mean operator
NCPDMM Neutrosophic cubic power dual Muirhead mean operator
PA Power average operator
PWV Power weight vector
SVNS Single-valued neutrosophic set
SVNN Single-valued neutrosophic number
WNCPMM Weighted neutrosophic cubic power Muirhead mean
WNCPDMM Weighted neutrosophic cubic power dual Muirhead mean operator
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