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Abstract: Aim of this present paper is to introduce and investigate new kind of neutrosophic continuous function 

called neutrosophic econtinuous maps in neutrosophic topological spaces and also relate with their near continuous 

maps. Also, a new irresolute map called neutrosophic e-irresolute maps in neutrosophic topological spaces is 

introduced. Further, discussed about some properties and characterization of neutrosophic e-irresolute maps in 

neutrosophic topological spaces. 
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1 Introduction 

The concept of fuzzy set (briefly, fs) was introduced by Lotfi Zadeh in 1965 [17], then Chang depended the fuzzy set 

to introduce the concept of fuzzy topological space (briefly, fts) in 1968 [5]. After that the concept of fuzzy set was 

developed into the concept of intutionistic fuzzy set (briefly, Ifs) by Atanassov in 1983 [2, 3, 4], the intutionistic fuzzy 

set gives a degree of membership and a degree of non-membership functions. Cokor in 1997 [5] relied on intutionistic 

fuzzy set to introduced the concept of intutionistic fuzzy topological space (briefly, Ifts). In 2005 Smaradache [13] 

study the concept of neutrosophic set (briefly, Ns). After that and as developed the term of neutrosophic set, Salama 

has studied neutrosophic topological space (briefly, Nts) and many of its applications [8, 9, 10, 11]. In 2012 Salama 

and Alblowi defined neutrosophic topological space [8]. Saha [7] defined δ-open sets in topological spaces. Vadivel 

et al. [15] introduced δ-open sets in a neutrosophic topological space. In 2008, Ekici [6] introduced the notion of e-

open sets in a general topology. In 2014, Seenivasan et al. [12] introduced e-open sets in a topological space along 

with e-continuity. Vadivel et al. [16] studied fuzzy e-open sets in intuitionistic fuzzy topological space. In this paper, 

we develop the concept of neutrosophic e continuity in a topological spaces and also specialized some of their basic 

properties with examples. Also, we discuss about properties and characterization of neutrosophic e-irresolute maps. 

2 Preliminaries 

The needful basic definitions & properties of neutrosophic topological spaces are discussed in this section. 

Definition 2.1 [8] Let Y be a non-empty set. A neutrosophic set (briefly, Nss) L is an object having the form L = 

{hy,µL(y),σL(y), νL(y)i : y ∈ Y } where µL → [0,1] denote the degree of membership function, σL → [0,1] denote the 

degree of indeterminacy function and νL → [0,1] denote the degree of non-membership function respectively of each 

element y ∈ Y to the set L and 0 ≤ µL(y) + σL(y) + νL(y) ≤ 3 for each y ∈ Y . 

Remark 2.1 [8] A Nss L = {hy,µL(y),σL(y),νL(y)i : y ∈ Y } can be identified to an ordered triple hy,µL(y),σL(y),νL(y)i in 

[0,1] on Y . 

Definition 2.2 [8] Let Y be a non-empty set & the Nss’s L & M in the form L = {hy,µL(y),σL(y),νL(y)i : y ∈ Y }, M = 

{hy,µM(y),σM(y),νM(y)i : y ∈ Y }, then 

(i) 0N = hy,0,0,1i and 1N = hy,1,1,0i, 

(ii) L ⊆ M iff µL(y) ≤ µM(y), σL(y) ≤ σM(y) & νL(y) ≥ νM(y) : y ∈ Y , 

(iii) L = M iff L ⊆ M and M ⊆ L, 

(iv) 1N − L = {hy,νL(y),1 − σL(y),µL(y)i : y ∈ Y } = Lc, 

(v) L ∪ M = {hy,max(µL(y),µM(y)),max(σL(y),σM(y)),min(νL(y),νM(y))i : y ∈ Y }, 

(vi) L ∩ M = {hy,min(µL(y),µM(y)),min(σL(y),σM(y)),max(νL(y),νM(y))i : y ∈ Y }. 

Definition 2.3 [8] A neutrosophic topology (briefly, Nst) on a non-empty set Y is a family ΨN of neutrosophic subsets 

of Y satisfying 
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(i) 0N, 1N ∈ ΨN. 

(ii) L1 ∩ L2 ∈ ΨN for any L1,L2 ∈ ΨN. 

(iii) S Lx ∈ ΨN, ∀ Lx : x ∈ X ⊆ ΨN. 

Then (Y,ΨN) is called a neutrosophic topological space (briefly, Nsts) in Y . The ΨN elements are called neutrosophic 

open sets (briefly, Nsos) in Y . A Nss C is called a neutrosophic closed sets (briefly, Nscs) iff its complement Cc is Nsos. 

Definition 2.4 [8] Let (Y,ΨN) be Nsts on Y and L be an Nss on Y , then the neutrosophic interior of L (briefly, Nsint(L)) 

and the neutrosophic closure of L (briefly, Nscl(L)) are defined as 

Nsint(L) = [{I : I ⊆ L & I is a Nsos in Y } 

Nscl(L) = \{I : L ⊆ I & I is a Nscs in Y }. 

Definition 2.5 [1] Let (Y,ΨN) be Nsts on Y and L be an Nss on Y . Then L is said to be a neutrosophic regular open set 

(briefly, Nsros ) if L = Nsint(Nscl(L)). 

The complement of a Nsros is called a neutrosophic regular closed set (briefly, Nsrcs) in Y . 

Definition 2.6 [15] A set K is said to be a neutrosophic 

(i) δ interior of G (briefly, Nsδint(K)) is defined by Nsδint(K) = S{B : B ⊆ K & B is a Nsros in Y }. 

(ii) δ closure of K (briefly, Nsδcl(K)) is defined by Nsδcl(K) = T{A : K ⊆ A & A is a Nsrcs in Y }. 

Definition 2.7 [15] A set L is said to be a neutrosophic 

(i) δ-open set (briefly, Nsδos) if L = Nsδint(L). 

(ii) δ-pre open set (briefly, NsδPos) if L ⊆ Nsint(Nsδcl(L)). 

(iii) δ-semi open set (briefly, NsδSos) if L ⊆ Nscl(Nsδint(L)). 

(iv) e-open set (briefly, Nseos) [14] if L ⊆ Nscl(Nsδint(L)) ∪ Nsint(Nsδcl(L)). 

(v) e∗-open set (briefly, Nse∗os) if L ⊆ Nscl(Nsint(Nsδcl(L))). 

The complement of an Nsδos (resp. NsδPos, NsδSos, Nseos & Nse∗os) is called a neutrosophic δ (resp. δ-pre, δ-semi, 

e & e∗) closed set (briefly, Nsδcs (resp. NsδPcs, NsδScs, Nsecs & Nse∗cs)) in Y . 

Definition 2.8 [15] Let (X,ΨN) and (Y,ΦN) be any two Nts’s. A map h : (X,ΨN) → (Y,ΦN) is said to be neutrosophic 

(resp. δ, δS, δP & e∗) continuous (briefly, NsCts [10] (resp. NsδCts, NsδSCts, NsδPCts & Nse∗Cts)) if the inverse image 

of every Nsos in (Y,ΦN) is a Nsos (resp. Nsδos, NsδSos, NsδPos & Nse∗os) in (X,ΨN). 

3 Neutrosophic e-continuous maps in Nsts 

Definition 3.1 A map h : (X,τN) → (Y,σN) is called neutrosophic e-continuous (NseCts in short ) if h−1(λ) is a Nseos in 

(X,τN) for every Nsos λ in (Y,σN). 

Example 3.1 X = {a,b,c} = Y and define Nss’s X1,X2 & X3 in X and Y1 in Y are 

 µa µb µc σa σb σc νa νb νc 

 X1 = hX,( , , ),( , , ),( , , )i, 

 0.2 0.3 0.4 0.5 0.5 0.5 0.8 0.7 0.6 

X2 = hX,( µa , µb , µc ),( σa , σb , σc ),( νa , νb , νc )i, 0.1 0.1 0.4 0.5 0.5 

0.5 0.9 0.9 0.6 µa µb µc σa σb σc

 νa νb νc 

 X3 = hX,( , , ),( , , ),( , , )i, 

 0.2 0.4 0.4 0.5 0.5 0.5 0.8 0.6 0.6 

Y1 = hY,( µa , µb , µc ),( σa , σb , σc ),( νa , νb , νc )i. 

 0.2 0.4 0.4 0.5 0.5 0.5 0.8 0.6 0.6 

Then we have τN = {0N,X1,X2,1N} and σN = {0N,Y1,1N}. Let h : (X,τN) → (Y,σN) be an identity mapping, then h is 

NseCts function. 

Proposition 3.1 A map h : (X,τN) → (Y,σN), then the statements are hold but the converse does not true. 

(i) Every NsδCts is a NsCts. 

(ii) Every NsCts is a NsδSCts. 

(iii) Every NsCts is a NsδPCts. 

(iv) Every NsδSCts is a NseCts. 

(v) Every NsδPCts is a NseCts. 

(vi) Every NseCts is a Nse∗Cts. 

Proof. The proof of (i), (ii) & (iii) are studied in [15]. 

(iv) Let λ be a Nsos in Y. Since h is NsδSCts, h−1(λ) is a NsδSos in X. Since every Nsδos is a Nseos [14], h−1(λ) is a 

Nseos in X. Hence h is a NseCts. 

(v) Let λ be a Nsos in Y. Since h is NsδPCts, h−1(λ) is a NsδPos in X. Since every NsδPos is a Nseos [14], h−1(λ) is a 

Nseos in X. Hence h is a NseCts. 
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(vi) Let λ be a Nsos in h. Since h is NseCts, h−1(λ) is a Nseos in X. Since every Nseos is a Nse∗os [14], h−1(λ) is a 

Nse∗os in X. Hence h is a Nse∗Cts.  

(vii)  
NsδCts  

 NsδPCts   NsδSCts

NseCtsN se∗Cts  

 

Figure 1: NseCts maps in Nsts 

Example 3.2 In Example 3.1, h is NseCts but not NsδPCts, the set h−1(Y1) = X3 is a Nseos but not NsδPos. 

Example 3.3 X = {a,b,c} = Y and define Nss’s X1,X2,X3 & X4 in X and Y1 in Y are 

 µa µb µc σa σb σc νa νb νc 

 X1 = hX,( , , ),( , , ),( , , )i, 

0.3 0.5 0.5 0.5 0.5 0.5 0.7 0.5 0.5 

X2 = hX,( µa , µb , µc ),( σa , σb , σc ),( νa , νb , νc )i, 0.4 0.2 0.6 0.5 0.5 

0.5 0.6 0.8 0.4 µa µb µc σa σb σc

 νa νb νc 

 X3 = hX,( , , ),( , , ),( , , )i, 

0.4 0.5 0.6 0.5 0.5 0.5 0.6 0.5 0.4 µa µb µc σa σb σc νa νb νc 

 X4 = hX,( , , ),( , , ),( , , )i 

 0.3 0.5 0.4 0.5 0.5 0.5 0.7 0.5 0.6 

Y1 = hY,( µa , µb , µc ),( σa , σb , σc ),( νa , νb , νc )i. 

 0.3 0.5 0.4 0.5 0.5 0.5 0.7 0.5 0.6 

Then we have τN = {0N,X1,X2,X3,X1∩X2,1N} and σN = {0N,Y1,1N}. Let h : (X,τN) → (Y,σN) be an identity mapping, then h 

is NseCts but not NsδSCts, the set h−1(Y1) = X4 is a Nseos but not NsδSos. Example 3.4 Let X = {a,b} = Y and define 

Nss’s X1 & X2 in X and Y1 in Y are 

X1 =  X, µa , µb , σa , σb , νa , νb , 0.3 0.2 0.5 0.5 0.5 0.5 

X2 =  X, µa , µb , σa , σb , νa , νb , 0.3 0.5 0.5 0.5 0.7 0.6 

  Y, µa , µb , σa , σb , νa , νb . 

Y1 = 

 0.3 0.5 0.5 0.5 0.7 0.6 

Then we have τN = {0N,X1,1N} and σN = {0N,Y1,1N}. Let h : (X,τN) → (Y,σN) be an identity mapping, then h is Nse∗Cts but 

not NseCts, the set h−1(Y1) = X2 is a Nse∗os but not Nseos. 

Theorem 3.1 A map h : (X,τN) → (Y,σN) is NseCts iff the inverse image of each Nscs in Y is Nsecs in X. 

Proof. Let λ be a Nscs in Y . This implies λc is Nsos in Y . Since h is NseCts, h−1(λc) is Nseos in X. Since h−1(λc) = 

(h−1(λ))c, h−1(λ) is a Nsecs in X. 

Conversely, let λ be a Nscs in Y . Then λc is a Nsos in Y . By hypothesis h−1(λc) is Nseos in X. Since h−1(λc) = (h−1(λ))c, 

(h−1(λ))c is a Nseos in X. Therefore h−1(λ) is a Nsecs in X. Hence h is NseCts.  

Definition 3.2 A Nst (X,τN) is said to be an neutrosophic eU  (in short NseU  )-space, if every Nseos in X is a Nsos in X. 

Theorem 3.2 Let h : (X,τN) → (Y,σN) be a NseCts, then h is a NsCts if X is a NseU -space. 

Proof. Let λ be a Nsos in Y . Then h−1(λ) is a Nseos in X, by hypothesis. Since X is a NseU -space, h−1(λ) is a Nsos in X. 

Hence h is a NseCts.  

Theorem 3.3 Let h : (X,τN) → (Y,σN) be a NseCts map and g : (Y,σN) → (Z,ρN) be an NseCts, then g ◦ h : (X,τN) → 

(Z,ρN) is a NseCts. 

Proof. Let λ be a Nseos in Z. Then g−1(λ) is a Nsos in Y, by hypothesis. Since h is a NseCts map, h−1(g−1(λ)) is a Nseos 

in X. Hence g ◦ h is a NseCts map.  

Remark 3.1 The composition of two NseCts maps need not be NseCts maps shown in following examples. 

Example 3.5 Let X = Y = Z = {a,b,c} and define Nss’s X1 & X2 in X and Y1,Y2,Y3 & Y4 in Y and Z1 in Z are 
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 µa µb µc σa σb σc νa νb νc 

 X1 = hx,( , , ),( , , ),( , , )i, 

 0.3 0.1 0.4 0.5 0.5 0.5 0.3 0.4 0.4 

X2 = hx,( µa , µb , µc ),( σa , σb , σc ),( νa , νb , νc )i, 0.3 0.2 0.5 0.5 0.5 0.5 0.2 

0.2 0.4 

Y1 = hx,( µa , µb , µc ),( σa , σb , σc ),( νa , νb , νc )i, 0.4 0.3 0.4 0.5 0.5 

0.5 0.4 0.5 0.5 µa µb µc σa σb σc

 νa νb νc 

 Y2 = hx,( , , ),( , , ),( , , )i, 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 µa µb µc σa σb σc νa νb νc 

 Y3 = hx,( , , ),( , , ),( , , )i, 

0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.5 0.5 µa µb µc σa σb σc νa νb νc 

 Y4 = hx,( , , ),( , , ),( , , )i, 

0.4 0.3 0.4 0.5 0.5 0.5 0.5 0.5 0.5 µa µb µc σa σb σc νa νb νc 

 Z1 = hx,( , , ),( , , ),( , , )i 

 0.3 0.4 0.4 0.5 0.5 0.5 0.4 0.4 0.5 

Then we have τN = {0N,X1,X2,1N}, σN = {0N,Y1,Y2,Y3,Y4,1N} and ρN = {0N,Z1,1N}. Let h : (X,τN) → (Y,σN) and g : (Y,σN) → 

(Z,ρN) be an identity mapping, then h and g are NseCts function but g ◦ h is not a NseCts functions. 

Theorem 3.4 h : (X,τN) → (Y,σN) be a NseCts map. Then the following conditions are hold. 

(i) h(Nsecl(λ)) ≤ Nscl(h(λ)), for all Nscs λ in X. 

(ii) Nsecl(h−1(µ)) ≤ h−1(Nscl(µ)), for all Nscs µ in Y. 

Proof. (i) Since Nsecl(h(λ)) is a Nsecs in Y and h is NseCts, then h−1(Nsecl(h(λ))) is Nsec in Y . Now, since λ ≤ 

h−1(Nscl(h(λ))), Nsecl(λ) ≤ h−1(Nsecl(h(λ))). Therefore, h(Nsecl(λ)) ≤ Nscl(h(λ)). 

(ii) By replacing λ with µ in (i), we obtain h(Nsecl(h−1(µ))) ≤ Nscl(h(h−1(µ))) ≤ Nscl(µ). Hence, Nsecl(h−1(µ)) ≤ 

h−1(Nscl(µ)).  

Remark 3.2 If h is NseCts, then 

(i) h(Nsecl(λ)) is not necessarily equal to Nscl(h(λ)) where λ ∈ X. 

(ii) Nsecl(h−1(µ)) is not necessarily equal to h−1(Nscl(µ)) where µ ∈ Y . 

Example 3.6 In Example 3.1, h is a NseCts. 

(i) Let λ =   0µ.a2, 0µ.b4, 0µ.c4, 0σ.a5, 0σ.b5, 0σ.c5, 0ν.a8, 0ν.b6, 0ν.c6. Then 

h(Nsecl(λ)) = h Nsecl  µa , µb , µc , σa , σb , σc , νa , νb , νc  

0.2 0.4 0.4 0.5 0.5 0.5 0.8 0.6 0.6 

 = h  µa , µb , µc , σa , σb , σc , νa , νb , νc  

 0.2 0.4 0.4 0.5 0.5 0.5 0.8 0.6 0.6 

 =   µa , µb , µc , σa , σb , σc , νa , νb , νc . 

 0.2 0.4 0.4 0.5 0.5 0.5 0.8 0.6 0.6 

But 

 µa µb µc σa σb σc νa νb νc 

 Nscl(h(λ)) = Nscl(h(h( , , ),( , , ),( , , )i)) 

 0.2 0.4 0.4 0.5 0.5 0.5 0.8 0.6 0.6 

= Nscl(h( µa , µb , µc ),( σa , σb , σc ),( νa , νb , νc )i) 

 0.2 0.4 0.4 0.5 0.5 0.5 0.8 0.6 0.6 

 µa µb µc σa σb σc νa νb νc 

 = h( , , ),( , , ),( , , )i. 

 0.8 0.7 0.6 0.5 0.5 0.5 0.2 0.3 0.4 

Thus h(Nsecl(λ)) 6= Nscl(h(λ)). 

(ii) Let η = h(0µ.a2, 0µ.b4, 0µ.c4),(0σ.a5, 0σ.b5, 0σ.c5),(0ν.a8, 0ν.b6, 0ν.c6)i. Then 

Nsecl(h−1(η)) ≤ Nsecl(h−1(h( µa , µb , µc ),( σa , σb , σc ),( νa , νb , νc )i)) 

 0.2 0.4 0.4 0.5 0.5 0.5 0.8 0.6 0.6 

= Nsecl(h( µa , µb , µc ),( σa , σb , σc ),( νa , νb , νc )i) 

 0.2 0.4 0.4 0.5 0.5 0.5 0.8 0.6 0.6 

 µa µb µc σa σb σc νa νb νc 

 = h( , , ),( , , ),( , , )i. 

 0.2 0.4 0.4 0.5 0.5 0.5 0.8 0.6 0.6 

But 
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h−1(Nscl(η)) = h−1(Nscl(h( µa , µb , µc ),( σa , σb , σc ),( νa , νb , νc )i)) 0.2 0.4 0.4 0.5 0.5 0.5 

0.8 0.6 0.6 

= h−1(h( µa , µb , µc ),( σa , σb , σc ),( νa , νb , νc )i) 

 0.8 0.7 0.6 0.5 0.5 0.5 0.2 0.3 0.4 

= h( µa , µb , µc ),( σa , σb , σc ),( νa , νb , νc )i. 

 0.8 0.7 0.6 0.5 0.5 0.5 0.2 0.3 0.4 

Thus Nsecl(h−1(η)) 6= h−1(Nscl(η)). 

Theorem 3.5 If h is NseCts, then h−1(Nsint(µ)) ≤ Nseint(h−1(µ)), for all Nscs µ in Y . 

Proof. If h is NseCts and µ ∈ σN. Nsint(µ) is Nso in Y and hence, h−1(Nsint(µ)) is Nseo in X. Therefore Nseint(h−1(Nse 

int(µ))) = h−1(Nsint(µ)). Also, Nsint(µ) ≤ µ, implies that h−1(Nsint(µ)) ≤ h−1(µ). Therefore Nseint(h−1(Nsint(µ))) ≤ 

Nseint(h−1(µ)). That is h−1(Nsint(µ)) ≤ Nseint (h−1(µ)). 

Conversely, let h−1(Nsint(µ)) ≤ Nseint(h−1(µ)) for all subset µ of Y . If µ is Nso in Y , then Nsint(µ) = µ. By 

assumption, h−1(Nsint(µ)) ≤ Nseint(h−1(µ)). Thus h−1(µ) ≤ Nseint(h−1(µ)). But Nseint(h−1(µ)) ≤ h−1(µ). Therefore 

Nseint(h−1(µ)) = h−1(µ). That is, h−1(µ) is Nseo in X, for all Nsos µ in Y . Therefore h is NseCts on X.  

Remark 3.3 If h is NseCts, then Nseint(h−1(µ)) is not necessarily equal to h−1(Nsint(µ)) where µ ∈ Y . 

Example 3.7 In Example 3.1, h is a NseCts. Let η = h(0µ.a2, 0µ.b4, 0µ.c4),(0σ.a5, 0σ.b5, 0σ.c5),(0ν.a8, 0ν.b6, 0ν.c6)i. 

Then 

Nseint(h−1(η)) ≤ Nseint(h−1(h( µa , µb , µc ),( σa , σb , σc ),( νa , νb , νc )i)) 

0.2 0.4 0.4 0.5 0.5 0.5 0.8 0.6 0.6 

 µa µb µc σa σb σc νa νb νc 

 = Nseint(h( , , ),( , , ),( , , )i) 

 0.2 0.4 0.4 0.5 0.5 0.5 0.8 0.6 0.6 

 µa µb µc σa σb σc νa νb νc 

 = h( , , ),( , , ),( , , )i. 

 0.2 0.4 0.4 0.5 0.5 0.5 0.8 0.6 0.6 

But 

h−1(Nsint(η)) = h−1 Nsint ( µa , µb , µc ),( σa , σb , σc ),( νa , νb , νc ) 0.2 0.4 0.4 0.5 0.5 0.5 

0.8 0.6 0.6 

= h−1(h( µa , µb , µc ),( σa , σb , σc ),( νa , νb , νc )i) 

 0.1 0.1 0.4 0.5 0.5 0.5 0.9 0.9 0.6 

= h( µa , µb , µc ),( σa , σb , σc ),( νa , νb , νc )i. 

 0.1 0.1 0.4 0.5 0.5 0.5 0.9 0.9 0.6 

Thus Nseint(h−1(η)) 6= h−1(Nsint(η)). 

4 Neutrosophic e-irresolute maps in Nsts 

In this section we introduce neutrosophic e-irresolute maps and study some of its characterizations. 

Definition 4.1 A map h : (X,τN) → (Y,σN) is called a neutrosophic e-irresolute (briefly, NseIrr) map if h−1(λ) is a Nseos 

in (X,τN) for every Nseos λ of (Y,σN). 

Theorem 4.1 Let h : (X,τN) → (Y,σN) be a NseIrr, then h is a NseCts map. But not conversely. 

Proof. Let h be a NseIrr map. Let λ be any Nsos in Y . Since every Nsos is a Nseos, λ is a Nseos in Y . By hypothesis 

h−1(λ) is a Nseos in Y . Hence h is a NseCts map.  

Example 4.1 Let X = {a,b,c} = Y and define Nss’s X1,X2 & X3 in X and Y1 & Y2 in Y are 

X1 = hX,( µa , µb , µc ),( σa , σb , σc ),( νa , νb , νc )i, 

0.2 0.3 0.4 0.5 0.5 0.5 0.8 0.7 0.6 

X2 = hX,( µa , µb , µc ),( σa , σb , σc ),( νa , νb , νc )i, 

0.1 0.1 0.4 0.5 0.5 0.5 0.9 0.9 0.6 

X3 = hX,( µa , µb , µc ),( σa , σb , σc ),( νa , νb , νc )i, 0.2 0.4 0.4 0.5 0.5 

0.5 0.8 0.6 0.6 µa µb µc σa σb σc

 νa νb νc 

 Y1 = hY,( , , ),( , , ),( , , )i, 

0.1 0.1 0.4 0.5 0.5 0.5 0.9 0.9 0.6 

µa µb µc σa σb σc νa νb νc 

 Y2 = hY,( , , ),( , , ),( , , )i. 

 0.1 0.4 0.5 0.5 0.5 0.5 0.9 0.6 0.5 

Then we have τN = {0N,X1,X2,1N} and σN = {0N,Y1,1N}. Let h : (X,τN) → (Y,σN) be an identity mapping, then h is NseCts 

but not NseIrr, the set Y2 is a Nseos in Y but h−1(Y2) is not Nseos in X. 

Theorem 4.2 Let h : (X,τN) → (Y,σN) be a NseIrr, then h is a NsIrr map if X is a NseU -space. 
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Proof. Let λ be a Nsos in Y . Then λ is a Nseos in Y . Therefore h−1(λ) is a Nseos in X, by hypothesis. Since X is a NseU

-space, h−1(λ) is a Nsos in X. Hence h is a NsIrr map.  

Theorem 4.3 Let h : (X,τN) → (Y,σN) and g : (Y,σN) → (Z,ρN) be NseIrr maps, then g ◦ h : (X,τN) → (Z,ρN) is a NseIrr 

map. 

Proof. Let λ be a Nseos in Z. Then g−1(λ) is a Nseos in Y . Since h is a NseIrr map. h−1(g−1(λ)) is a Nseos in X. Hence g 

◦h is a NseIrr map.  

Theorem 4.4 Let h : (X,τN) → (Y,σN) be NseIrr map and g : (Y,σN) → (Z,ρN) be NseCts map, then g ◦ h : (X,τN) → 

(Z,ρN) is a NseCts map. 

 

Proof. Let λ be a Nsos in Z. Then g−1(λ) is a Nseos in Y . Since h is a NseIrr, h−1(g−1(λ)) is a Nseos in X. Hence g ◦ h is 

a NseCts map.  

Theorem 4.5 Let h : (X,τN) → (Y,σN) be a map. Then the following conditions are equivalent if X and Y are NseU -

spaces. 

(i) h is a NseIrr map. 

(ii) h−1(µ) is a Nseos in X for each Nseos µ in Y . 

(iii) Nscl(h−1(µ)) ⊆ h−1(Nscl(µ)) for each Nss µ of Y. 

Proof. (i) → (ii): Let µ be any Nseos in Y. Then µc is a Nsecs in Y. Since h is NseIrr, h−1(µc) is a Nsecs in X. But h−1(µc) 

= (h−1(µ))c. Therefore h−1(µ) is a Nseos in X. 

(ii) → (iii): Let µ be a any Nss in Y and µ ≤ Nscl(µ). Then h−1(µ) ≤ h−1(Nscl(µ)). Since Nscl(µ) is a Nscs in Y , 

Nscl(µ) is a Nsecs in Y. Therefore (Nscl(µ))c is a Nseos in Y . By hypothesis, h−1((Nscl(µ)))c is a Nseos in X. Since 

h−1((Nscl(µ))c) = (h−1(Nscl(µ)))c, h−1(Nscl(µ)) is a Nsecs in X. Since X is NseU -space, h−1(Nscl(µ)) is a Nscs in X. 

Hence Nscl(h−1(µ)) ⊆ Nscl(h−1(Nscl(µ))) = h−1(Nscl(µ)). That is Nscl(h−1(µ)) ⊆ h−1(Nscl(µ)). 

(iii) → (i): Let µ be any Nsecs in Y. Since Y is NseU -space, µ is a Nscs in Y and Nscl(µ) = µ. Hence h−1(µ) = 

h−1(Nsecl(µ)) ⊇ Nsecl(h−1(µ)). But clearly h−1(µ) ⊆ Nscl(h−1(µ)). Therefore Nscl(h−1(µ)) = h−1(µ). This implies h−1(µ) 

is a Nscs and hence it is a Nsecs in X. Thus h is a NseIrr map.  

5 Conclusions 

In this research paper using Nseos we are defined NseCts map and analyzed its properties. After that we were compared 

already existing neutrosophic continuity maps to Nse continuity maps. Furthermore we were extended to this maps to 

Nse-irresolute maps, Finally this concepts can be extended to future research for some mathematical applications. 
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