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The concept of the neutrosophic set was introduced by Smarandache; it is a mathematical tool for handling problems
involving imprecise, indeterminacy and inconsistent data. The notion of pseudo-BCI algebra was introduced by Dudek
and Jun; it is a kind of nonclassical logic algebra and has a close connection with various noncommutative fuzzy
logics. In this paper, neutrosophic set theory is applied to pseudo-BCI algebras. The new concepts of neutrosophic
filter, neutrosophic normal filter, antigrouped neutrosophic filter, and neutrosophic p-filter in pseudo-BCI algebras are
proposed, and their basic properties are presented. Moreover, by using the concept of (alpha, beta, gamma)-level set in
neutrosophic sets, the relationships between fuzzy filters and neutrosophic filters are discussed.
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1. INTRODUCTION

To represent uncertain, imprecise, incomplete, and inconsistent information, Smarandache introduced the concept
of a neutrosophic set from a philosophical point of view (see [1–3]). The neutrosophic set is a powerful general
formal framework that generalizes the concept of the fuzzy set and intuitionistic fuzzy set. In the neutrosophic set,
truth-membership, indeterminacy-membership, and falsity-membership are represented independently. IfU is a set,
a neutrosophic set defined on the universeU assigns to each elementx ∈ U , a triple (T (x), I(x), F (x)), where
T (x), I(x), andF (x) are standard or nonstandard elements of a nonstandard unit interval ]0−, 1+[ = 0−∪ [0, 1] ∪
1+. T is the degree of truth-membership in the setU , I is the degree of indeterminacy-membership in the setU , and
F is the degree of nonmembership in the setU . In this paper we work with special neutrosophic sets where their
neutrosophic elements are standard real numbers in [0,1]; they are called single valued neutrosophic sets (see [4]).
The neutrosophic set theory is applied to many scientific fields (see [2,5–7]). In recent years neutrosophic set theory
has been applied to algebraic structures (see [8,9]); it is similar to the applications of fuzzy set (soft set, rough set)
theory in algebraic structures (see [10–13]).

Iséki introduced the concept of BCI-algebra as an algebraic counterpart of the BCI-logic (see [14,15]). As a gen-
eralization of BCI-algebra, Dudek and Jun [16] introduced the notion of pseudo-BCI algebras. Moreover, pseudo-BCI
algebra is also as a generalization of pseudo-BCK algebra (which has a close connection with various noncommu-
tative fuzzy logic formal systems; see [17–24]). For nonclassical logic algebra systems, the theory of filters (ideals)
plays an important role (see [25–33]). In 2006, the notion of a pseudo-BCI filter (ideal) of pseudo-BCI algebras was
introduced in [34]. In 2009, some special pseudo-BCI filters (ideals) were discussed in [35]. Recently, some articles
related to filter theory of pseudo-BCI algebras have been published (see [13,36–39]).
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In this paper, we study the applications of neutrosophic sets to pseudo-BCI algebras. We introduce the new
concepts of neutrosophic filter, neutrosophic normal filter, antigrouped neutrosophic filter, and neutrosophic p-filter
in pseudo-BCI algebras, and investigate their basic properties and present relationships between neutrosophic filters
and fuzzy filters in [33]. It is worth noting that the notion of pseudo-BCI algebra in this paper is a dual of the original
definition in [16], so the notion of filter is a dual of ideal. Moreover, the notion of filter of pseudo-BCI algebra is a
simple name of the notion of pseudo-BCI filter (or pseudo-filter) in the original and other articles (see [34,35]).

2. PRELIMINARIES

At first, we recall some basic concepts and properties of neutrosophic sets and pseudo-BCI algebras.

Definition 2.1 ([1–3]). LetX be a space of points (objects), with a generic element inX denoted byx. A neutrosophic
setA in X is characterized by a truth-membership functionTA(x), an indeterminacy-membership functionIA(x),
and a falsity-membership functionFA(x). The functionsTA(x), IA(x), andFA(x) are real standard or nonstandard
subsets of ]−0, 1+[. That is,TA(x): X → ]−0, 1+[, IA(x): X → ]−0, 1+[, andFA(x): X → ]−0, 1+[. Thus, there
is no restriction on the sum ofTA(x), IA(x), andFA(x), so−0≤ supTA(x) + supIA(x) + supFA(x) ≤ 3+.

Definition 2.2 ([4]). Let X be a space of points (objects) with generic elements inX denoted byx. A simple valued
neutrosophic setA in X is characterized by truth-membership functionTA(x), indeterminacy-membership function
IA(x), and falsity-membership functionFA(x). Then, a simple valued neutrosophic setA can be denoted by

A = {〈x, TA(x), IA(x), FA(x)〉|x ∈ X},
whereTA(x), IA(x), FA(x) ∈ [0, 1] for each pointx in X. Therefore, the sum ofTA(x), IA(x), andFA(x) satisfies
the condition 0≤ TA(x) + IA(x) + FA(x) ≤ 3.

Definition 2.3 ([4]). The complement of a simple valued neutrosophic setA is denoted byAc and is defined as

TAc(x) = FA(x), IAc(x) = 1− IA(x), FAc(x) = TA(x), ∀x ∈ X.

Then
Ac = {〈x, FA(x), 1− IA(x), TA(x)〉|x ∈ X}.

Definition 2.4 ([4]). A simple valued neutrosophic setA is contained in the other simple valued neutrosophic setB,
denotedA ⊆ B, if and only if TA(x) ≤ TB(x), IA(x) ≤ IB(x), FA(x) ≥ FB(x) for anyx in X.

Definition 2.5 ([4]). Two simple valued neutrosophic setsA andB are equal, written asA = B, if and only ifA ⊆ B
andB ⊆ A.

For convenience, “simple valued neutrosophic set” is abbreviated to “neutrosophic set” later.

Definition 2.6 ([4]). The union of two neutrosophic setsA andB is a neutrosophic setC, written asC = A ∪ B,
whose truth-membership, indeterminacy-membership, and falsity-membership functions are related to those ofA and
B by

TC(x) = max(TA(x), TB(x)), IC(x) = max(IA(x), IB(x)), FC(x) = min(FA(x), FB(x)), ∀x ∈ X.

Definition 2.7 ([4]). The intersection of two neutrosophic setsA andB is a neutrosophic setC, written asC = A∩B,
whose truth-membership, indeterminacy-membership, and falsity-membership functions are related to those ofA and
B by

TC(x) = min(TA(x), TB(x)), IC(x) = min(IA(x), IB(x)), FC(x) = max(FA(x), FB(x)), ∀x ∈ X.

Definition 2.8 ([5]). Let A be a neutrosophic set inX andα, β,γ ∈ [0, 1] with 0≤ α+β+γ ≤ 3 and(α, β, γ)-level
set ofA denoted byA(α,β,γ) is defined as

A(α,β,γ) = {x ∈ X|TA(x) ≥ α, IA(x) ≥ β, FA(x) ≤ γ}.
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Definition 2.9 ([16]). A pseudo-BCI algebra is a structure (X; ≤, →, Ã, 1), where “≤” is a binary relation onX,
“→” and “Ã” are binary operations onX, and “1” is an element ofX, verifying the axioms: For allx, y, z ∈ X,

(1) y → z ≤ (z → x) Ã (y → x), y Ã z ≤ (z Ã x) → (y Ã x);

(2) x ≤ (x → y) Ã y, x ≤ (x Ã y) → y;

(3) x ≤ x;

(4) x ≤ y, y ≤ x ⇒ x = y;

(5) x ≤ y ⇔ x → y = 1⇔ x Ã y = 1.

If (X; ≤, →, Ã, 1) is a pseudo-BCI algebra satisfyingx → y = x Ã y for all x, y ∈ X, then (X; →, 1) is a
BCI-algebra.

Proposition 2.1([16,34,35]). Let (X; ≤,→, Ã, 1) be a pseudo-BCI algebra, thenX satisfies the following properties
(∀x, y, z ∈ X):

(1) 1≤ x ⇒ x = 1;

(2) x ≤ y ⇒ y → z ≤ x → z, y Ã z ≤ x Ã z;

(3) x ≤ y, y ≤ z ⇒ x ≤ z;

(4) x Ã (y → z) = y → (x Ã z);

(5) x ≤ y → z ⇔ y ≤ x Ã z;

(6) x → y ≤ (z → x) → (z → y), x Ã y ≤ (z Ã x) Ã (z Ã y);

(7) x ≤ y ⇒ z → x ≤ z → y, z Ã x ≤ z Ã y;

(8) 1→ x = x, 1 Ã x = x;

(9) ((y → x) Ã x) → x = y → x, ((y Ã x) → x) Ã x = y Ã x;

(10) x → y ≤ (y → x) Ã 1, x Ã y ≤ (y Ã x) → 1;

(11) (x → y) → 1 = (x → 1) Ã (y Ã 1), (x Ã y) Ã 1 = (x Ã 1) → (y → 1);

(12) x → 1 = x Ã 1.

Definition 2.10 ([34]). A nonempty subsetF of pseudo-BCI algebraX is called a pseudo-BCI filter (briefly, filter)
of X if it satisfies

(F1) 1∈ F ;

(F2) x ∈ F , x → y ∈ F ⇒ y ∈ F ;

(F3) x ∈ F , x Ã y ∈ F ⇒ y ∈ F .

Definition 2.11 ([36]). A pseudo-BCI algebraX is said to be antigrouped pseudo-BCI algebra if it satisfies the
following identity:

(G1) ∀x, y, z ∈ X, (x → y) → (x → z) = y → z,

(G2) ∀x, y, z ∈ X, (x Ã y) Ã (x Ã z) = y Ã z.

Proposition 2.2([36]). A pseudo-BCI algebraX is an antigrouped pseudo-BCI algebra if and only if it satisfies

∀x ∈ X, (x → 1) → 1 = x or (x Ã 1) Ã 1 = x.

Definition 2.12 ([36]). A filter F of a pseudo-BCI algebraX is called an antigrouped filter ofX if it satisfies

(GF) ∀x ∈ X, (x → 1) → 1 ∈ F or (x Ã 1) Ã 1 ∈ F ⇒ x ∈ F .
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Definition 2.13 ([35,36]). A subsetF of a pseudo-BCI algebraX is called a p-filter ofX if it satisfies

(P1) 1∈ F ,

(P2) (x → y) Ã (x → z) ∈ F andy ∈ F imply z ∈ F ,

(P3) (x Ã y) → (x Ã z) ∈ F andy ∈ F imply z ∈ F .

Definition 2.14 ([37,38]). A fuzzy setA in pseudo-BCI algebraX is called a fuzzy filter ofX if it satisfies

(FF1) ∀x ∈ X, µA(x) ≤ µA(1);

(FF2) ∀x, y ∈ X, min{µA(x),µA(x → y)} ≤ µA(y);

(FF3) ∀x, y ∈ X, min{µA(x),µA(x Ã y)} ≤ µA(y).

Definition 2.15 ([38]). A fuzzy setA in pseudo-BCI algebraX is called fuzzy antigrouped filter if it satisfies

(1) ∀x ∈ X, µA(x) ≤ µA(1);

(2) ∀x, y, z ∈ X, min{µA(y),µA((x → y) → (x → z))}z))} ≤ µA(z);

(3) ∀x, y, z ∈ X, min{µA(y),µA((x Ã y) Ã (x Ã z))}z))} ≤ µA(z).

Proposition 2.3([38]). LetA be a fuzzy filter of pseudo-BCI algebraX. ThenA is a fuzzy antigrouped filter ofX if
and only if it satisfies:

∀x ∈ X, µA(x) ≥ µA((x → 1) → 1), µA(x) ≥ µA((x Ã 1) Ã 1).

Definition 2.16([35,38]). A fuzzy setA: X → [0, 1] is called a fuzzy p-filter of pseudo-BCI algebraX if it satisfies
(FF1) and

(FpF1) ∀x, y, z ∈ X, µA(z) ≥ min{µA((x → y) Ã (x → z)), µA(y)};
(FpF2) ∀x, y, z ∈ X, µA(z) ≥ min{µA((x Ã y) → (x Ã z)), µA(y)}.

Definition 2.17 ([38]). A fuzzy setA: X → [0, 1] is called a fuzzy normal filter of pseudo-BCI algebraX if it is a
fuzzy filter such that

(FNF) µA(x → y) = µA(x Ã y), ∀x, y ∈ X.

Proposition 2.4([38]). LetA be a fuzzy filter of a pseudo-BCI algebraX. ThenA is a fuzzy normal filter ofX if and
only if it satisfies

(1) ∀x, y ∈ X, µA((x → y) → y) ≥ µA(x);

(2) ∀x, y ∈ X, µA((x Ã y) Ã y) ≥ µA(x).

Proposition 2.5([38]). LetA be a fuzzy filter of a pseudo-BCI algebraX. Then the following conditions are equiv-
alent:

(1) A is a fuzzy p-filter ofX;

(2) A is both a fuzzy antigrouped filter and a fuzzy normal filter ofX.
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3. NEUTROSOPHIC FILTERS IN PSEUDO-BCI ALGEBRAS

Definition 3.1. A neutrosophic setA in pseudo-BCI algebraX is called a neutrosophic filter inX if it satisfies

(NSF1) ∀x ∈ X, TA(x) ≤ TA(1), IA(x) ≤ IA(1) andFA(x) ≥ FA(1);

(NSF2) ∀x, y ∈ X, min{TA(x), TA(x → y)} ≤ TA(y), min{IA(x), IA(x → y)} ≤ IA(y), and max{FA(x),
FA(x → y)} ≥ FA(y);

(NSF3) ∀x, y ∈ X, min{TA(x), TA(x Ã y)} ≤ TA(y), min{IA(x), IA(x Ã y)} ≤ IA(y), and max{FA(x),
FA(x Ã y)} ≥ FA(y).

Proposition 3.1. LetA be a neutrosophic filter in pseudo-BCI algebraX, then

(NSF4) ∀x, y ∈ X, x ≤ y ⇒ TA(x) ≤ TA(y), IA(x) ≤ IA(y) andFA(x) ≥ FA(y).

Proof. Supposex ≤ y, thenx → y = 1 [by Definition 2.9 (5)]. It follows thatTA(x → y) = TA(1). From this and
using Definition 3.1 (NSF1) and (NSF2) we get

TA(x) = min{TA(x), TA(1)} = min{TA(x), TA(x → y)} ≤ TA(y).

That is,x ≤ y ⇒ TA(x) ≤ TA(y).
Similarly, we can get thatx ≤ y ⇒ IA(x) ≤ IA(y) andFA(x) ≥ FA(y).

Proposition 3.2. If A andB are two neutrosophic filters in pseudo-BCI algebraX, thenA∩B is also a neutrosophic
filter in X.

Proof. Suppose thatA andB are two neutrosophic filters in pseudo-BCI algebraX. By Definition 3.1 (NSF1), we
have

∀x ∈ X, TA(x) ≤ TA(1), IA(x) ≤ IA(1), andFA(x) ≥ FA(1);

TB(x) ≤ TB(1), IB(x) ≤ IB(1), andFB(x) ≥ FB(1).

It follows that

∀x ∈ X, min(TA(x), TB(x)) ≤ min(TA(1), TB(1)), min(IA(x), IB(x)) ≤ min(IA(1), IB(1)),

and max(FA(x), FB(x)) ≥ max(FA(1), FB(1)).

From this, using Definition 2.7, we get that

∀x ∈ X, TA∩B(x) ≤ TA∩B(1), IA∩B(x) ≤ IA∩B(1), andFA∩B(x) ≥ FA∩B(1).

That is,A ∩B satisfies (NSF1).
Moreover, by Definition 3.1 (NSF2), we have

∀x, y ∈ X, min{TA(x), TA(x → y)} ≤ TA(y), min {IA(x), IA(x → y)} ≤ IA(y),

and max{FA(x), FA(x → y)} ≥ FA(y);

∀x, y ∈ X, min{TB(x), TB(x → y)} ≤ TB(y), min{IB(x), IB(x → y)} ≤ IB(y),

and max{FB(x), FB(x → y)} ≥ FB(y).

Then,∀x, y ∈ X,
min{TA∩B(x), TA∩B(x → y)} = min{min(TA(x), TB(x)),

min(TA(x → y), TB(x → y))} ≤ min{TA(x), TA(x → y)} ≤ TA(y),

min{TA∩B(x), TA∩B(x → y)} = min{min(TA(x), TB(x)),
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min(TA(x → y), TB(x → y))} ≤ min{TB(x), TB(x → y)} ≤ TB(y);

min{IA∩B(x), IA∩B(x → y)} = min{min(IA(x), IB(x)),

min(IA(x → y), IB(x → y))} ≤ min{IA(x), IA(x → y)} ≤ IA(y),

min{IA∩B(x), IA∩B(x → y)} = min{min(IA(x), IB(x)),

min(IA(x → y), IB(x → y))} ≤ min{IB(x), IB(x → y)} ≤ IB(y);

max{FA∩B(x), FA∩B(x → y)} = max{max(FA(x), FB(x)),

max(FA(x → y), FB(x → y))} ≥ max{FA(x), FA(x → y)} ≥ FA(y),

max{FA∩B(x), FA∩B(x → y)} = max{max(FA(x), FB(x)),

max(FA(x → y), FB(x → y))} ≥ max{FB(x), FB(x → y)} ≥ FB(y).

It follows that
min{TA∩B(x), TA∩B(x → y)} ≤ min{TA(y), TB(y)} = TA∩B(y);

min{IA∩B(x), IA∩B(xv → y)} ≤ min{IA(y), IB(y)} = IA∩B(y);

max{FA∩B(x), FA∩B(x → y)} ≥ max{FA(y), FB(y)} = FA∩B(y).

That is,A ∩B satisfies (NSF2).
Similarly, we can prove thatA ∩B satisfies (NSF3). Therefore,A ∩B is a neutrosophic filter inX.

Proposition 3.3. LetA be a neutrosophic filter in pseudo-BCI algebraX; denote that

(1) AT = {x ∈ X|TA(x) = TA(1)};
(2) AI = {x ∈ X|IA(x) = IA(1)};
(3) AF = {x ∈ X|FA(x) = FA(1)}.

ThenAT , AI , andAF are filters ofX.

Proof. Obviously,1 ∈ AT . Assume thatx ∈ AT andx → y ∈ AT , thenTA(x) = TA(1), TA(x → y) = TA(1).
From this, using Definition 3.1, we have

TA(1) = min{TA(x), TA(x → y)} ≤ TA(y) ≤ TA(1).

It follows thatTA(y) = TA(1), that is,y ∈ AT . In the same way, we can getx ∈ AT , x Ã y ∈ AT ⇒ y ∈ AT . By
Definition 2.10 we know thatAT is a filter ofX.

Similarly, we can get thatAI is a filter ofX.
Moreover, 1∈ AF . Assume thatx ∈ AF andx → y ∈ AF , thenFA(x) = FA(1), FA(x → y) = FA(1). From

this, using Definition 3.1, we have

FA(1) = max{FA(x), FA(x → y)} ≥ FA(y) ≥ FA(1).

It follows thatFA(y) = FA(1); that is,y ∈ AF . In the same way, we can getx ∈ AF , x Ã y ∈ AF ⇒ y ∈ AF . By
Definition 2.10 we know thatAF is a filter ofX.

The following example shows that the union of two neutrosophic filters may be not a neutrosophic filter.
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Example1. Let X = {a, b, c, d, e, 1} with two binary operations given in Tables 1 and 2. Then (X; ≤,→, Ã, 1) is
a pseudo-BCI algebra, wherex ≤ y if and only if x → y = 1.

Define neutrosophic setsA andB in X as follows:

TA(a) = TA(b) = TA(e) = TA(d) = 0, TA(c) = TA(1) = 0.7,

IA(a) = IA(b) = IA(e) = IA(d) = 0, IA(c) = IA(1) = 0.1,

FA(a) = FA(b) = FA(e) = FA(d) = 0.8, FA(c) = FA(1) = 0.15;

TB(a) = TB(b) = TB(c) = TB(d) = 0.1, TB(e) = 0.6, TB(1) = 0.8,

IB(a) = IB(b) = IB(c) = IB(d) = 0.05, IB(e) = 0.1, IB(1) = 0.15,

FB(a) = FB(b) = FB(c) = FB(d) = 0.78, FB(e) = 0.2, FB(1) = 0.05.

ThenA, B are neutrosophic filters inX. Let C = A ∩B andD = A ∪B, then

TA∩B(a) = TA∩B(b) = TA∩B(d) = TA∩B(e) = 0, TA∩B(c) = 0.1, TA∩B(1) = 0.7,

IA∩B(a) = IA∩B(b) = IA∩B(d) = IA∩B(e) = 0, IA∩B(c) = 0.05, IA∩B(1) = 0.1,

FA∩B(a) = FA∩B(b) = FA∩B(d) = FA∩B(e) = 0.8, FA∩B(c) = 0.78, FA∩B(1) = 0.15;

TA∪B(a) = TA∪B(b) = TA∪B(d) = 0.1, TA∪B(c) = 0.7, TA∪B(e) = 0.6, TA∪B(1) = 0.8,

IA∪B(a) = IA∪B(b) = IA∪B(d) = 0.05, IA∪B(c) = IA∪B(e) = 0.1, IA∪B(1) = 0.15,

FA∪B(a) = FA∪B(b) = FA∪B(d) = 0.78, FA∪B(c) = 0.15, FA∪B(e) = 0.2, FA∪B(1) = 0.05.

We can verify thatC = A ∩B is a neutrosophic filter inX, butD = A ∪B is not a neutrosophic filter inX, since

min{TA∪B(c), TA∪B(c → b)} = min{TA∪B(c), TA∪B(e)} = min{0.7, 0.6} = 0.6� 0.1 = TA∪B(b),

max{FA∪B(c), FA∪B(c → b)} = max{FA∪B(c), FA∪B(e)} = max{0.15, 0.2} = 0.2� 0.78 = FA∪B(b).

TABLE 1: First set of binary operations

→ a b c d e 1
a 1 a d e c b
b b 1 e c d a
c d e 1 a b c
d e c b 1 a d
e c d a b 1 e
1 a b c d e 1

TABLE 2: Second set of binary operations

Ã a b c d e 1
a 1 a e c d b
b b 1 d e c a
c e d 1 b a c
d c e a 1 b d
e d c b a 1 e
1 a b c d e 1
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4. ANTIGROUPED NEUTROSOPHIC FILTERS AND NEUTROSOPHIC P-FILTERS

Definition 4.1. A neutrosophic setA in pseudo-BCI algebraX is called an antigrouped neutrosophic filter if it
satisfies∀x, y, z ∈ X,

(1) TA(x) ≤ TA(1), IA(x) ≤ IA(1), andFA(x) ≥ FA(1);

(2) min{TA(y), TA((x → y) → (x → z))} ≤ TA(z), min{IA(y), IA((x → y) → (x → z))} ≤ IA(z), and
max{FA(x), FA((x → y) → (x → z))} ≥ FA(z);

(3) min{TA(y), TA((x Ã y) Ã (x Ã z))} ≤ TA(z), min{IA(y), IA((x Ã y) Ã (x Ã z))} ≤ IA(z), and
max{FA(x), FA((x Ã y) Ã (x Ã z))} ≥ FA(z).

Whenx = y in Definition 4.1 (2) and (3), we can get (NSF2) and (NSF3) in Definition 3.1; this means that the
following proposition is true.

Proposition 4.1. Let A be an antigrouped neutrosophic filter in pseudo-BCI algebraX. ThenA is a neutrosophic
filter in X.

Proposition 4.2. LetA be an antigrouped neutrosophic filter in pseudo-BCI algebraX. ThenA satisfies the following
conditions:

(i) ∀x ∈ X, TA(x) ≥ TA((x → 1) → 1), TA(x) ≥ TA((x Ã 1) Ã 1);

(ii) ∀x ∈ X, IA(x) ≥ IA((x → 1) → 1), IA(x) ≥ IA((x Ã 1) Ã 1);

(iii) ∀x ∈ X, FA(x) ≤ FA((x → 1) → 1), FA(x) ≤ FA((x Ã 1) Ã 1).

Proof. Puttingz = x andy = 1 in Definition 4.1 (2) and (3), we can get the results.

Lemma 4.1([38]). LetX be a pseudo-BCI algebraX. ThenX satisfies the following properties:

(1) ∀x, y, z ∈ X, ((x → y) → (x → z)) → 1 = (y → z) → 1;

(2) ∀x, y, z ∈ X, ((x Ã y) Ã (x Ã z)) Ã 1 = (y Ã z) Ã 1;

(3) ∀x, y ∈ X, (x → y) → (x → 1) = y → 1;

(4) ∀x, y Ã X, (x Ã y) Ã (x Ã 1) = y Ã 1.

Theorem 4.1. LetA be a neutrosophic filter in pseudo-BCI algebraX. ThenA is an antigrouped neutrosophic filter
in X if and only if it satisfies

(i) ∀x ∈ X, TA(x) ≥ TA((x → 1) → 1), TA(x) ≥ TA((x Ã 1) Ã 1);

(ii) ∀x ∈ X, IA(x) ≥ IA((x → 1) → 1), IA(x) ≥ IA((x Ã 1) Ã 1);

(iii) ∀x ∈ X, FA(x) ≤ FA((x → 1) → 1), FA(x) ≤ FA((x Ã 1) Ã 1).

Proof. If A is an antigrouped neutrosophic filter inX, then by Proposition 4.2 we know that the conditions (i), (ii),
and (iii) hold.

Conversely, suppose thatA satisfies the conditions (i), (ii), and (iii). For anyx, y, z ∈ X, by Definition 2.9 (2)
and Lemma 4.1 (1) we have

(x → y) → (x → z) ≤ (((x → y) → (x → z)) → 1) → 1 = ((y → z) → 1) → 1.

From this, using Proposition 3.1 (NSF4) and conditions (i), (ii), and (iii) we have

TA((x → y) → (x → z)) ≤ TA(((y → z) → 1) → 1) ≤ TA(y → z);

IA((x → y) → (x → z)) ≤ IA(((y → z) → 1) → 1) ≤ IA(y → z);
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FA((x → y) → (x → z)) ≥ FA(((y → z) → 1) → 1) ≥ FA(y → z).

From this, using Definition 3.1 (NSF2) we get

min{TA(y), TA((x → y) → (x → z))} ≤ min{TA(y), TA(y → z)} ≤ TA(z);

min{IA(y), IA((x → y) → (x → z))} ≤ min{IA(y), IA(y → z)} ≤ IA(z);

max{FA(y), FA((x → y) → (x → z))} ≥ max{FA(y), FA(y → z)} ≥ FA(z).

This means that Definition 4.1 (2) holds. By the same way, we can prove that Definition 4.1 (3) holds. Therefore,A
is an antigrouped neutrosophic filter inX.

Definition 4.2. A neutrosophic filterA in pseudo-BCI algebraX is called a neutrosophic normal filter inX if it
satisfies

(NSNF) TA(x → y) = TA(x Ã y), IA(x → y) = IA(x Ã y), FA(x → y) = FA(x Ã y), ∀x, y ∈ X.

Theorem 4.2. LetA be a neutrosophic filter in pseudo-BCI algebraX. ThenA is a neutrosophic normal filter inX
if and only if it satisfies

(1) ∀x, y ∈ X, TA((x → y) → y) ≥ TA(x), IA((x → y) → y) ≥ IA(x), FA((x → y) → y) ≤ FA(x);

(2) ∀x, y ∈ X, TA((x Ã y) Ã y) ≥ TA(x), IA((x Ã y) Ã y) ≥ IA(x), FA((x Ã y) Ã y) ≤ FA(x).

Proof. Suppose thatA is a neutrosophic normal filter inX. For anyx, y ∈ X, by Definition 2.9 (2),x ≤ (x → y) Ã
y. Applying Proposition 3.1,TA(x) ≤ TA((x → y) Ã y), IA(x) ≤ IA((x → y) Ã y), FA(x) ≥ FA((x → y) Ã
y). On the other hand, by Definition 4.2 (NSNF),

TA((x → y) Ã y) = TA((x → y) → y), IA((x → y) Ã y) = IA((x → y) → y),

FA((x → y) Ã y) = FA((x → y) → y).

Thus,TA(x) ≤ TA((x → y) → y), IA(x) ≤ IA((x → y) → y), FA(x) ≥ FA((x → y) → y). That is, (1) holds.
Similarly, we can get (2).

Conversely, suppose thatA satisfies the conditions (1) and (2). For anyx, y ∈ X, by Definition 2.9 (1),

x → ((x Ã y) → y) ≤ (((x Ã y) → y) → y) Ã (x → y).

Moreover, by Definition 2.9 (2) and (5),x ≤ (x Ã y) → y andx → ((x Ã y) → y) = 1. Thus,1 ≤ (((x Ã y) →
y) → y) Ã (x → y). From this, by Proposition 2.1 (1),((x Ã y) → y) → y ≤ x → y. Applying Proposition 3.1
we get

TA(((x Ã y) → y) → y) ≤ TA(x → y), IA(((x Ã y) → y) → y) ≤ IA(x → y),

FA(((x Ã y) → y) → y) ≥ FA(x → y).

On the other hand, by (1),TA(((x Ã y) → y) → y) ≥ TA(x Ã y), IA(((x Ã y) → y) → y) ≥ IA(x Ã y),
FA(((x Ã y) → y) → y) ≤ FA(x Ã y). Therefore,

TA(x Ã y) ≤ TA(x → y), IA(x Ã y) ≤ IA(x → y), FA(x Ã y) ≥ FA(x → y).

Similarly, by (2) we can get

TA(x → y) ≤ TA(x Ã y), IA(x → y) ≤ IA(x Ã y), FA(x → y) ≥ FA(x Ã y).

It follows thatTA(x → y) = TA(x Ã y), IA(x → y) = IA(x Ã y), FA(x → y) = FA(x Ã y), ∀x, y Ã X. By
Definition 4.2,A is a neutrosophic normal filter inX.
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Definition 4.3. A neutrosophic setA in pseudo-BCI algebraX is called a neutrosophic p-filter inX if it satisfies
(NSF1) and∀x, y, z ∈ X,

(NSpF1) TA(z) ≥ min{TA((x → y) Ã (x → z)), TA(y)}, IA(z) ≥ min{IA((x → y) Ã (x → z)), IA(y)},
FA(z) ≤ max{FA((x → y) Ã (x → z)), FA(y)};

(NSpF2) TA(z) ≥ min{TA((x Ã y) → (x Ã z)), TA(y)}, IA(z) ≥ min{IA((x Ã y) → (x Ã z)), IA(y)},
FA(z) ≤ max{FA((x Ã y) → (x Ã z)), FA(y)}.

Whenx = y in Definition 4.3 (NSpF1) and (NSpF2), we can get (NSF2) and (NSF3) in Definition 3.1; this
means that the following proposition is true.

Proposition 4.3. LetA be a neutrosophic p-filter in pseudo-BCI algebraX. ThenA is a neutrosophic filter inX.

Theorem 4.3. LetA be a neutrosophic filter in pseudo-BCI algebraX. Then the following conditions are equivalent:

(i) A is a neutrosophic p-filter inX;

(ii) A is both a neutrosophic antigrouped filter and a neutrosophic normal filter inX.

Proof. (i) ⇒ (ii)
Suppose thatA is a neutrosophic p-filter inX. Whenx = z andy = 1 in Definition 4.3 (NSpF1) and (NSpF2),

we can get

TA(x) ≥ min{TA((x → 1) Ã 1), TA(1)}, IA(x) ≥ min{IA((x → 1) Ã 1), IA(1)},
FA(x) ≤ max{FA((x → 1) Ã 1), FA(1)};

TA(x) ≥ min{TA((x Ã 1) → 1)), TA(1)}, IA(x) ≥ min{IA((x Ã 1) → 1), IA(1)},
FA(x) ≤ max{FA((x Ã 1) → 1), FA(1)}.

From this, applying (NSF1) and Proposition 2.1 (12) we have

TA(x) ≥ TA((x → 1) → 1), IA(x) ≥ IA((x → 1) → 1), FA(x) ≤ FA((x → 1) → 1);

TA(x) ≥ TA((x Ã 1) Ã 1), IA(x) ≥ IA((x Ã 1) Ã 1), FA(x) ≤ FA((x Ã 1) Ã 1).

Using Theorem 4.1 and Proposition 4.3, we know thatA is a neutrosophic antigrouped filter inX.
Moreover, for anyx, y ∈ X, by Definition 2.9 (1), Proposition 2.1 (4), and (12), we have

x → y ≤ (y → 1) Ã (x → 1) = (y → 1) Ã (x Ã 1) = (y → 1) Ã (x Ã (y → y)) = (y → 1) Ã (y → (x Ã y)).

From this, using Proposition 3.1 we have

TA(x → y) ≤ TA((y → 1) Ã (y → (x Ã y))), IA(x → y) ≤ IA((y → 1) Ã (y → (x Ã y))),

FA(x → y) ≥ FA((y → 1) Ã (y → (x Ã y))).

On the other hand, by (NSF1) and Definition 4.3 (NSpF1) we get

TA((y → 1) Ã (y → (x Ã y))) = min{TA((y → 1) Ã (y → (x Ã y))), TA(1)} ≤ TA(x Ã y),

IA((y → 1) Ã (y → (x Ã y))) = min{IA((y → 1) Ã (y → (x Ã y))), IA(1)} ≤ IA(x Ã y),

FA((y → 1) Ã (y → (x Ã y))) = max{FA((y → 1) Ã (y → (x Ã y))), FA(1)} ≥ FA(x Ã y).

Combining above results, we have

TA(x → y) ≤ TA(x Ã y), IA(x → y) ≤ IA(x Ã y), FA(x → y) ≥ FA(x Ã y).
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Similarly, we can get

TA(x Ã y) ≤ TA(x → y), IA(x Ã y) ≤ IA(x → y), FA(x Ã y) ≥ FA(x → y).

Hence,TA(x → y) = TA(x Ã y), IA(x → y) = IA(x Ã y), FA(x → y) = FA(x Ã y). By Definition 4.2 we
know thatA is a neutrosophic normal filter inX.

(ii) ⇒ (i)

Conversely, suppose thatA is both a neutrosophic antigrouped filter and a neutrosophic normal filter inX. For
anyx, y, z ∈ X, by Definition 4.1 (2),

min{TA(y), TA((x → y) → (x → z))} ≤ TA(z), min{IA(y), IA((x → y) → (x → z))} ≤ IA(z),

max{FA(x), FA((x → y) → (x → z))} ≥ FA(z).
On the other hand, using Definition 4.2 (NSNF),

TA((x → y) → (x → z)) = TA((x → y) Ã (x → z)), IA((x → y) → (x → z)) = IA((x → y) Ã (x → z)),

FA((x → y) → (x → z)) = FA((x → y) Ã (x → z)).
Therefore,

min{TA(y), TA((x → y) Ã (x → z))} ≤ TA(z), min{IA(y), IA((x → y) Ã (x → z))} ≤ IA(z),

max{FA(x), FA((x → y) Ã (x → z))} ≥ FA(z).
This means that Definition 4.3 (NSpF1) holds. Similarly, we can get (NSpF2). Hence,A is a neutrosophic p-filter in
X.

Example2. Let X = {a, b, c, d, e, 1} with two binary operations given in Tables 1 and 2 (see Example 3.1). Then
(X; ≤,→, Ã, 1) is a pseudo-BCI algebra, wherex ≤ y if and only if x → y = 1. Define neutrosophic setsA andB
in X as follows:

TA(a) = TA(b) = TA(c) = TA(d) = 0, TA(e) = TA(1) = 0.9,

IA(a) = IA(b) = IA(c) = IA(d) = 0, IA(e) = IA(1) = 0.05,

FA(a) = FA(b) = FA(c) = FA(d) = 0.9, FA(e) = FA(1) = 0;
TB(a) = TB(b) = TB(c) = TB(d) = TB(e) = 0.75, TB(1) = 0.95,

IB(a) = IB(b) = IB(c) = IB(d) = IB(e) = 0.15, IB(1) = 0.05,

FB(a) = FB(b) = FB(c) = FB(d) = FB(e) = 0.1, FB(1) = 0.

ThenA, B are neutrosophic filters inX. We can verify thatA is a neutrosophic antigrouped filter inX. But A is not
a neutrosophic p-filter inX, since

TA(a) = 0� 0.9 = min{TA((b → e) ∈ (b → a)), TA(e)},
IA(a) = 0� 0.05 = min{IA((b → e) ∈ (b → a)), IA(e)},
FA(a) = 0.9� 0 = max{FA((b → e) ∈ (b → a)), FA(e)}.

Moreover, we can verify thatB is a neutrosophic p-filter inX.

Example3. Let X = {a, b, c, d, 1} with two binary operations given in Tables 3 and 4. Then (X; ≤, →, Ã, 1) is a
pseudo-BCI algebra, wherex ≤ y if and only if x → y = 1.

Define neutrosophic setA in X as follows:

TA(a) = TA(b) = TA(c) = TA(1) = 0.65, TA(d) = 0.3,

IA(a) = IA(b) = IA(c) = IA(1) = 0.2, IA(d) = 0.15,

FA(a) = FA(b) = FA(c) = FA(1) = 0.1, FA(d) = 0.55.

We can verify thatA is both a neutrosophic antigrouped filter and a neutrosophic normal filter inX, so it is a
neutrosophic p-filter inX.
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TABLE 3: Third set of binary operations

→ a b c d 1
a 1 1 1 d 1
b b 1 1 d 1
c b b 1 d 1
d d d d 1 d
1 a b c d 1

TABLE 4: Fourth set of binary operations

Ã a b c d 1
a 1 1 1 d 1
b c 1 1 d 1
c a b 1 d 1
d d d d 1 d
1 a b c d 1

5. THE RELATIONSHIPS BETWEEN NEUTROSOPHIC FILTERS AND FUZZY FILTERS

Theorem 5.1. LetA be a neutrosophic set in pseudo-BCI algebraX. ThenA is a neutrosophic filter inX if and only
if A satisfies

(i) TA is a fuzzy filter ofX;

(ii) IA is a fuzzy filter ofX;

(iii) 1− FA is a fuzzy filter ofX, where(1− FA)(x) = 1− FA(x), ∀x ∈ X.

Proof. Suppose thatA is a neutrosophic filter inX. ThenTA is a fuzzy set onX; and using Definition 3.1 we have

∀x, y ∈ X, TA(x) ≤ TA(1), min{TA(x), TA(x → y)} ≤ TA(y), min{TA(x), TA(x Ã y)} ≤ TA(y).

By Definition 2.14 we know thatTA is a fuzzy filter ofX. Similarly, we can get thatIA is a fuzzy filter ofX.
Moreover, it is easy to verify that1− FA is a fuzzy set onX; and using Definition 3.1 we have∀x, y ∈ X,

(1− FA)(x) = 1− FA(x) ≤ 1− FA(1) = (1− FA)(1);

min{(1− FA)(x), (1− FA)(x → y)} = min{1− FA(x), 1− FA(x → y)}
= 1−max{FA(x), FA(x → y)} ≤ 1− FA(y) = (1− FA)(y);

min{(1− FA)(x), (1− FA)(x Ã y)} = min{1− FA(x), 1− FA(x Ã y)}
= 1−max{FA(x), FA(x Ã y)} ≤ 1− FA(y) = (1− FA)(y).

By Definition 2.14 we know that1− FA is a fuzzy filter ofX.
Conversely, suppose that neutrosophic setA satisfies the conditions (i), (ii), and (iii). Then, by Definition 2.14

we have

∀x, y ∈ X, TA(x) ≤ TA(1), min{TA(x), TA(x → y)} ≤ TA(y), min{TA(x), TA(x Ã y)} ≤ TA(y);

∀x, y ∈ X, IA(x) ≤ TA(1), min{IA(x), IA(x → y)} ≤ IA(y), min{IA(x), IA(x Ã y)} ≤ IA(y);

∀x, y ∈ X, (1− FA)(x) ≤ (1− FA)(1), min{(1− FA)(x), (1− FA)(x → y)} ≤ (1− FA)(y),

min{(1− FA)(x), (1− FA)(x Ã y)} ≤ (1− FA)(y).
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Thus∀x, y ∈ X,

TA(x) ≤ TA(1), IA(x) ≤ IA(1), andFA(x) = 1− (1− FA)(x) ≥ 1− (1− FA)(1) = FA(1);

min{TA(x), TA(x → y)} ≤ TA(y), min{IA(x), IA(x → y)} ≤ IA(y)

and

max{FA(x), FA(x → y)} = 1−min{(1− FA)(x), (1− FA)(x → y)} ≥ 1− (1− FA)(y) = FA(y);

min{TA(x), TA(x Ã y)} ≤ TA(y), min{IA(x), IA(x Ã y)} ≤ IA(y)

and

max{FA(x), FA(x Ã y)} = 1−min{(1− FA)(x), (1− FA)(x Ã y)} ≥ 1− (1− FA)(y) = FA(y).

From this, by Definition 3.1 we get thatA is a neutrosophic filter inX.

Theorem 5.2. Let A be a neutrosophic set in pseudo-BCI algebraX. ThenA is an antigrouped neutrosophic filter
in X if and only ifA satisfies

(i) TA is a fuzzy antigrouped filter ofX;

(ii) IA is a fuzzy antigrouped filter ofX;

(iii) 1− FA is a fuzzy antigrouped filter ofX, where(1− FA)(x) = 1− FA(x), ∀x ∈ X.

Proof. By Theorem 5.1, we only prove the following fact:
For any neutrosophic filterA in X, A is antigrouped if and only ifTA, IA, and1− FA are fuzzy antigrouped

filters ofX.
Assume thatA is antigrouped neutrosophic filter inX. By Theorem 4.1 we have (∀x ∈ X)

TA(x) ≥ TA((x → 1) → 1), TA(x) ≥ TA((x Ã 1) Ã 1); IA(x) ≥ IA((x → 1) → 1), IA(x) ≥ IA((x Ã 1) Ã 1);

FA(x) ≤ FA((x → 1) → 1), FA(x) ≤ FA((x Ã 1) Ã 1).

Thus,
(1− FA)(x) = 1− FA(x) ≥ 1− FA((x → 1) → 1) = (1− FA)((x → 1) → 1),

(1− FA)(x) = 1− FA(x) ≥ 1− FA((x ∈ 1) ∈ 1) = (1− FA)((x Ã 1) Ã 1).

Therefore, using Proposition 2.3, we get thatTA, IA, and1− FA are fuzzy antigrouped filters ofX.
Conversely, assume thatTA, IA, and1− FA are fuzzy antigrouped filters ofX. Then, by Proposition 2.3,

TA(x) ≥ TA((x → 1) → 1), TA(x) ≥ TA((x Ã 1) Ã 1); IA(x) ≥ IA((x → 1) → 1), IA(x) ≥ IA((x Ã 1) Ã 1);

(1− FA)(x) ≥ (1− FA)((x → 1) → 1), (1− FA)(x) ≥ (1− FA)((x Ã 1) Ã 1).

Therefore,
FA(x) = 1− (1− FA)(x) ≤ 1− (1− FA)((x → 1) → 1) = FA((x → 1) → 1),

FA(x) = 1− (1− FA)(x) ≤ 1− (1− FA)((x Ã 1) Ã 1) = FA((x Ã 1) Ã 1).

Hence, applying Theorem 4.1 we get thatA is antigrouped neutrosophic filterA in X.

Similar to Theorem 5.2 we can get the following results (the proofs are omitted).

Theorem 5.3. LetA be a neutrosophic set in pseudo-BCI algebraX. ThenA is a neutrosophic normal filter inX if
and only ifA satisfies
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(i) TA is a fuzzy normal filter ofX;

(ii) IA is a fuzzy normal filter ofX;

(iii) 1− FA is a fuzzy normal filter ofX, where(1− FA)(x) = 1− FA(x), ∀x ∈ X.

Theorem 5.4. Let A be a neutrosophic set in pseudo-BCI algebraX. ThenA is a neutrosophic p-filter inX if and
only if A satisfies

(i) TA is a fuzzy p-filter ofX;

(ii) IA is a fuzzy p-filter ofX;

(iii) 1− FA is a fuzzy p-filter ofX, where(1− FA)(x) = 1− FA(x), ∀x ∈ X.

Lemma 5.1([10,38]). Let X be a pseudo-BCI algebra. Then a fuzzy setµ : X → [0, 1] is a fuzzy filter ofX if and
only if the level setµt = {x ∈ X|µ(x) ≥ t} is a filter ofX for all t ∈ Im(µ).

Theorem 5.5. LetX be a pseudo-BCI algebra, andA be a neutrosophic set inX such thatTA(x) ≥ α0, IA(x) ≥ β0,
andFA(x) ≤ γ0, ∀x ∈ X, whereα0 ∈ Im(TA), β0 ∈ Im(IA), andγ0 ∈ Im(FA). ThenA is a neutrosophic filter in
X if and only if (α,β,γ)-level setA(α,β,γ) is a filter ofX for all α ∈ Im(TA), β ∈ Im(IA), andγ ∈ Im(FA).

Proof. Assume thatA is a neutrosophic filter inX. By Theorem 5.1 and Lemma 5.1, for anyα ∈ Im(TA), β ∈
Im(IA), andγ ∈ Im(FA), we have

(TA)α = {x ∈ X|TA(x) ≥ α}, (IA)β = {x ∈ X|IA(x) ≥ β},

and
(1− FA)1−γ = {x ∈ X|(1− FA)(x) ≥ 1− γ} = {x ∈ X|FA(x) ≤ γ} are filters ofX.

Thus(TA)α ∩ (IA)β ∩ (1−FA)1−γ is a filters ofX. Moreover, by Definition 2.8, it is easy to verify thatA(α,β,γ) =
(TA)α ∩ (IA)β ∩ (1−FA)1−γ. Therefore,A(α,β,γ) is filter of X for all α ∈ Im(TA), β ∈ Im(IA), andγ ∈ Im(FA).

Conversely, assume thatA(α,β,γ) is a filter of X for all α ∈ Im(TA), β ∈ Im(IA), andγ ∈ Im(FA). Since
TA(x) ≥ α0, IA(x) ≥ β0, andFA(x) ≤ γ0, ∀x ∈ X, then

(TA)α = {x ∈ X|TA(x) ≥ α} = (TA)α ∩X ∩X = (TA)α ∩ (IA)β0 ∩ (1− FA)1−γ0 = A(α,β0,γ0);

(IA)β = {x ∈ X|IA(x) ≥ β} = X ∩ (IA)β ∩X = (TA)α0 ∩ (IA)β ∩ (1− FA)1−γ0 = A(α0,β,γ0);

(1− FA)1−γ = {x ∈ X|(1− FA)(x) ≥ 1− γ} = X ∩X ∩ {x ∈ X|FA(x) ≤ γ}
= (TA)α0 ∩ (IA)β0 ∩ {x ∈ X|FA(x) ≤ γ} = A(α0,β0,γ).

Thus,
(TA)α = {x ∈ X|TA(x) ≥ α}, (IA)β = {x ∈ X|IA(x) ≥ β},

and
(1− FA)1−γ = {x ∈ X|(1− FA)(x) ≥ 1− γ} = {x ∈ X|FA(x) ≤ γ} are filters ofX.

From this, applying Lemma 5.1, we know thatTA, IA, and1−FA are fuzzy filters ofX. By Theorem 5.1 we get that
A is neutrosophic filter inX.

Similar to Theorem 5.5 we can get the following results (the proofs are omitted).

Theorem 5.6. LetX be a pseudo-BCI algebra, andA be a neutrosophic set inX such thatTA(x) ≥ α0, IA(x) ≥ β0,
and FA(x) ≤ γ0, ∀x ∈ X, whereα0 ∈ Im(TA), β0 ∈ Im(IA), and γ0 ∈ Im(FA). ThenA is a antigrouped
neutrosophic filter inX if and only if (α, β, γ)-level setA(α,β,γ) is an antigrouped filter ofX for all α ∈ Im(TA),
β ∈ Im(IA), andγ ∈ Im(FA).
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Theorem 5.7. LetX be a pseudo-BCI algebra, andA be a neutrosophic set inX such thatTA(x) ≥ α0, IA(x) ≥ β0,
andFA(x) ≤ γ0, ∀x ∈ X, whereα0 ∈ Im(TA), β0 ∈ Im(IA), andγ0 ∈ Im(FA). ThenA is a neutrosophic normal
filter in X if and only if (α, β,γ)-level setA(α,β,γ) is a normal filter ofX for all α ∈ Im(TA), β ∈ Im(IA), and
γ ∈ Im(FA).

Theorem 5.8. LetX be a pseudo-BCI algebra, andA be a neutrosophic set inX such thatTA(x) ≥ α0, IA(x) ≥ β0,
andFA(x) ≤ γ0, ∀x ∈ X, whereα0 ∈ Im(TA), β0 ∈ Im(IA), andγ0 ∈ Im(FA). ThenA is a neutrosophic p-filter
in X if and only if (α,β,γ)-level setA(α,β,γ) is a p-filter ofX for all α ∈ Im(TA), β ∈ Im(IA), andγ ∈ Im(FA).

Now, some new research results on neutrosophic sets and related algebraic structures have been published (see
[40–42]), and we will further expand the research content of this paper on the basis of these studies.
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