CREAT. MATH. INFORM. **20** (2011), No. 2, 00-00

Online version at http://creative-mathematics.ubm.ro/ Print Edition: ISSN 1584 - 286X Online Edition: ISSN 1843 - 441X

NEUTROSOPHIC GENERALIZED α -CONTRA-CONTINUITY

R.DHAVASEELAN, S. JAFARI AND MD. HANIF PAGE

ABSTRACT. In this paper we introduce neutrosophic generalized α -contra-continuous function, neutrosophic strongly generalized α -contra-continuous function, neutrosophic generalized α -contra-irresolute and their interrelations are established with necessary examples.

1. INTRODUCTION AND PRELIMINARIES

Zadeh [14] introduced the concept of fuzzy set. Atanassov [2] introduced the notion of intuitionistic fuzzy set as a generalization of fuzzy set. Coker [4] introduced the notion of intuitionistic fuzzy topological space. The concepts of generalized intuitionistic fuzzy closed set was introduced by Dhavaseelan et al. [5] and also investigated generalized intuitionistic fuzzy contra-continuous functions [6]. F. Smadaranche introduced the notion of neutrosophy and the neutrosophic set [[12], [13]], and A. A. Salama and S. A. Alblowi [11] offered the notions of neutrosophic crisp set and neutrosophic crisp topological space. In this paper, we focus on some versions of Dontchev's notion of contra-continuous function, neutrosophic topology such as neutrosophic generalized α -contra-continuous function, neutrosophic strongly generalized α -contra-continuous function functio

Definition 1.1. [12, 13] Let T,I,F be real standard or non standard subsets of $]0^-, 1^+[$, with $sup_T = t_{sup}, inf_T = t_{inf}$

$$\begin{split} sup_I &= i_{sup}, inf_I = i_{inf} \\ sup_F &= f_{sup}, inf_F = f_{inf} \\ n - sup &= t_{sup} + i_{sup} + f_{sup} \\ n - inf &= t_{inf} + i_{inf} + f_{inf} . \text{ T,I,F are neutrosophic components.} \end{split}$$

Definition 1.2. [12, 13] Let X be a nonempty fixed set. A neutrosophic set [NS for short] A is an object having the form $A = \{\langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle : x \in X\}$ where $\mu_A(x), \sigma_A(x)$ and $\gamma_A(x)$ which represents the degree of membership function (namely $\mu_A(x)$), the degree of indeterminacy (namely $\sigma_A(x)$) and the degree of nonmembership (namely $\gamma_A(x)$) respectively of each element $x \in X$ to the set A.

Remark 1.1. [12, 13]

(1) A neutrosophic set $A = \{\langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle : x \in X\}$ can be identified to an ordered triple $\langle \mu_A, \sigma_A, \gamma_A \rangle$ in $]0^-, 1^+[$ on X.

Received: date. In revised form: date. Accepted: 23.02.2011

²⁰⁰⁰ Mathematics Subject Classification. 03E72, 54A40 ,54C10.

Key words and phrases. neutrosophic generalized α -contra-continuous functions, neutrosophic strongly generalized α -contra-continuous function, neutrosophic generalized α -contra-irresolute.

Corresponding author: R.Dhavaseelan, dhavaseelan.r@gmail.com

(2) For the sake of simplicity, we shall use the symbol $A = \langle \mu_A, \sigma_A, \gamma_A \rangle$ for the neutrosophic set $A = \{\langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle : x \in X\}.$

Definition 1.3. [11] Let *X* be a nonempty set and the neutrosophic sets A and B in the form

 $A = \{ \langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle : x \in X \}, B = \{ \langle x, \mu_B(x), \sigma_B(x), \gamma_B(x) \rangle : x \in X \}.$ Then

- (a) $A \subseteq B$ iff $\mu_A(x) \le \mu_B(x)$, $\sigma_A(x) \le \sigma_B(x)$ and $\gamma_A(x) \ge \gamma_B(x)$ for all $x \in X$;
- (b) A = B iff $A \subseteq B$ and $B \subseteq A$;
- (c) $\bar{A} = \{ \langle x, \gamma_A(x), \sigma_A(x), \mu_A(x) \rangle : x \in X \}$; [Complement of A]
- (d) $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), \gamma_A(x) \lor \gamma_B(x) \rangle : x \in X \};$
- (e) $A \cup B = \{\langle x, \mu_A(x) \lor \mu_B(x), \sigma_A(x) \lor \sigma_B(x), \gamma_A(x) \land \gamma_B(x) \rangle : x \in X\};$
- (f) [] $A = \{ \langle x, \mu_A(x), \sigma_A(x), 1 \mu_A(x) \rangle : x \in X \};$
- (g) $\langle \rangle A = \{ \langle x, 1 \gamma_A(x), \sigma_A(x), \gamma_A(x) \rangle : x \in X \}.$

Definition 1.4. [11] Let $\{A_i : i \in J\}$ be an arbitrary family of neutrosophic sets in X. Then

- $\begin{array}{l} \text{(a)} & \bigcap A_i = \{ \langle x, \wedge \mu_{A_i}(x), \wedge \sigma_{A_i}(x), \vee \gamma_{A_i}(x) \rangle : x \in X \}; \\ \text{(b)} & \bigcup A_i = \{ \langle x, \vee \mu_{A_i}(x), \vee \sigma_{A_i}(x), \wedge \gamma_{A_i}(x) \rangle : x \in X \}. \end{array}$

Since our main purpose is to construct the tools for developing neutrosophic topological spaces, we must introduce the neutrosophic sets 0_N and 1_N in X as follows:

Definition 1.5. [11] $0_N = \{ \langle x, 0, 0, 1 \rangle : x \in X \}$ and $1_N = \{ \langle x, 1, 1, 0 \rangle : x \in X \}.$

Definition 1.6. [7] A neutrosophic topology (NT) on a nonempty set X is a family T of neutrosophic sets in *X* satisfying the following axioms:

- (i) $0_N, 1_N \in T$,
- (ii) $G_1 \cap G_2 \in T$ for any $G_1, G_2 \in T$,
- (iii) $\cup G_i \in T$ for arbitrary family $\{G_i \mid i \in \Lambda\} \subseteq T$.

In this case the ordered pair (X, T) or simply X is called a neutrosophic topological space (briefly NTS) and each neutrosophic set in T is called a neutrosophic open set (briefly NOS). The complement \overline{A} of a NOS A in X is called a neutrosophic closed set (briefly NCS) in X.

Definition 1.7. [7] Let A be a neutrosophic set in a neutrosophic topological space X. Then

 $Nint(A) = \bigcup \{G \mid G \text{ is a neutrosophic open set in } X \text{ and } G \subseteq A \}$ is called the neutrosophic interior of *A*;

 $Ncl(A) = \bigcap \{ G \mid G \text{ is a neutrosophic closed set in X and } G \supseteq A \}$ is called the neutrosophic closure of A.

Definition 1.8. [8] Let (X, T) and (Y, S) be any two neutrosophic topological spaces.

(i) A function $f: (X,T) \to (Y,S)$ is called neutrosophic contra-continuous if the inverse image of every neutrosophic open set in (Y, S) is a neutrosophic closed set in (X,T).

Equivalently if the inverse image of every neutrosophic closed set in (Y, S) is a neutrosophic open set in (X, T).

(ii) A function $f: (X,T) \to (Y,S)$ is called generalized neutrosophic contra-continuous if the inverse image of every neutrosophic open set in (Y, S) is a generalized neutrosophic closed set in (X, T).

Equivalently if the inverse image of every neutrosophic closed set in (Y, S) is a generalized neutrosophic open set in (X, T).

Definition 1.9. [1] Let f be a function from a neutrosophic topological spaces (X, T) and (Y, S). Then f is called

- (i) a neutrosophic open function if f(A) is a neutrosophic open set in Y for every neutrosophic open set A in X.
- (ii) a neutrosophic α -open function if f(A) is a neutrosophic α -open set in Y for every neutrosophic open set A in X.
- (iii) a neutrosophic preopen function if f(A) is a neutrosophic preopen set in Y for every neutrosophic open set A in X.
- (iv) a neutrosophic semiopen function if f(A) is a neutrosophic semiopen set in Y for every neutrosophic open set A in X.
 - 2. Neutrosophic generalized α -contra-continuous function

In this section we introduce neutrosophic generalized α -contra-continuous function and studied some of its properties.

Definition 2.1. A neutrosophic set A in (X,T) is said to be a neutrosophic generalized *alpha*-closed set if $N\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is a neutrosophic α open set in (X,T).

Definition 2.2. A function $f : (X,T) \to (Y,S)$ is called a neutrosophic generalized α -contra-continuous if $f^{-1}(B)$ is a neutrosophic generalized α -closed set in (X,T) for every neutrosophic open set B in (Y,S)

Definition 2.3. A function $f : (X,T) \to (Y,S)$ is called a neutrosophic strongly generalized α - continuous if $f^{-1}(B)$ is a neutrosophic open set in (X,T) for every neutrosophic generalized α -open set B in (Y,S)

Definition 2.4. A function $f : (X,T) \to (Y,S)$ is called a neutrosophic strongly generalized α -contra-continuous if $f^{-1}(B)$ is a neutrosophic closed set in (X,T) for every neutrosophic generalized α -open set B in (Y,S)

Definition 2.5. A function $f : (X,T) \to (Y,S)$ is called a neutrosophic generalized α contra-irresolute if $f^{-1}(B)$ is a neutrosophic generalized α -closed set in (X,T) for every
neutrosophic generalized α -open set B in (Y,S)

Proposition 2.1. For any two neutrosophic topological spaces (X,T) and (Y,S), if $f : (X,T) \rightarrow (Y,S)$ is a neutrosophic contra-continuous function then f is a neutrosophic generalized α -contra-continuous function.

Proof. Let B be a neutrosophic open set in (Y, S). Since f is a neutrosophic contra-continuous function, $f^{-1}(B)$ is a neutrosophic closed set in (X, T). Since every neutrosophic closed set is a neutrosophic generalized α -closed set, $f^{-1}(B)$ is a neutrosophic generalized α -closed set in (X, T). Hence f is a neutrosophic generalized α -contra-continuous function.

The converse of Proposition 2.1 need not be true as shown in Example 2.1.

Example 2.1. Let $X = \{a, b\}$. Define the neutrosophic sets G_1 and G_2 in X as follows: $G_1 = \langle x, (0.6, 0.6, 0.6), (0.4, 0.4, 0.4) \rangle$ and $G_2 = \langle x, (0.2, 0.2, 0.3), (0.8, 0.8, 0.7) \rangle$. Then the families $T = \{0_N, 1_N, G_1\}$ and $S = \{0_N, 1_N, G_2\}$ are neutrosophic topologies on X. Define a function $f : (X, T) \rightarrow (Y, S)$ as follow f(a) = a, f(b) = b. Then f is a neutrosophic generalized α -contra-continuous function, but $f^{-1}(G_2)$ is not a neutrosophic closed set in (X, T). Hence f is not a neutrosophic contra-continuous function. **Proposition 2.2.** For any two neutrosophic topological spaces (X,T) and (Y,S), if $f : (X,T) \rightarrow (Y,S)$ is a neutrosophic α -contra-continuous function then f is a neutrosophic generalized α -contra-continuous function.

Proof. Let B be a neutrosophic open set in (Y, S). Since f is a neutrosophic α -contracontinuous function, $f^{-1}(B)$ is a neutrosophic α -closed set in (X, T). Since every neutrosophic α -closed set is a neutrosophic generalized α -closed set, $f^{-1}(B)$ is a neutrosophic generalized α -closed set in (X, T). Hence f is a neutrosophic generalized α -contracontinuous function.

The converse of Proposition 2.2 need not be true as shown in Example 2.2.

Example 2.2. Let $X = \{a, b\}$. Define the neutrosophic sets G_1 and G_2 in X as follows: $G_1 = \langle x, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5) \rangle$ and $G_2 = \langle x, (0.4, 0.4, 0.4), (0.6, 0.6, 0.6) \rangle$. Then the families $T = \{0_N, 1_N, G_1\}$ and $S = \{0_N, 1_N, G_2\}$ are neutrosophic topologies on X. Define a function $f : (X, T) \to (Y, S)$ as follow f(a) = a, f(b) = b. Then f is a neutrosophic generalized α -contra-continuous function, but $f^{-1}(G_2)$ is not a neutrosophic α -closed set in (X, T). Hence f is not a neutrosophic α -contra-continuous function.

Proposition 2.3. For any two neutrosophic topological spaces (X,T) and (Y,S), if $f : (X,T) \to (Y,S)$ is a neutrosophic strongly generalized α -contra-continuous function then f is a neutrosophic generalized α -contra-continuous function.

Proof. Let B be a neutrosophic open set in (Y, S). Every neutrosophic open set is a neutrosophic generalized α -open set. Now, B is a neutrosophic generalized α -open set in (Y, S). Since f is a neutrosophic strongly generalized α -contra continuous function, $f^{-1}(B)$ is a neutrosophic closed set in (X, T). Since every neutrosophic closed set is a neutrosophic generalized α -closed set, $f^{-1}(B)$ is a neutrosophic generalized α -closed set in (X, T). Hence f is a neutrosophic generalized α -contra-continuous function.

The converse of Proposition 2.3 need not be true as shown in Example 2.3.

Example 2.3. Let $X = \{a, b\}$. Define the neutrosophic sets G_1 and G_2 in X as follows: $G_1 = \langle x, (0.4, 0.4, 0.4), (0.3, 0.3, 0.3) \rangle$ and $G_2 = \langle x, (0.2, 0.2, 0.3), (0.8, 0.8, 0.7) \rangle$. Then the families $T = \{0_N, 1_N, G_1\}$ and $S = \{0_N, 1_N, G_2\}$ are neutrosophic topologies on X. Define a function $f : (X, T) \rightarrow (Y, S)$ as follow f(a) = a, f(b) = b. Then f is a neutrosophic generalized α -contra-continuous function. Let $A = \langle x, (0.4, 0.4, 0.4), (0.6, 0.6, 0.6) \rangle$ is a neutrosophic generalized α -open set in (X, T), but $f^{-1}(A)$ is not a neutrosophic closed set in (X, T). Hence f is not a neutrosophic strongly generalized α -contra-continuous function.

Proposition 2.4. For any two neutrosophic topological spaces (X,T) and (Y,S), if $f : (X,T) \to (Y,S)$ is a neutrosophic strongly generalized α -contra-continuous function then f is a neutrosophic contra-continuous function.

Proof. Let B be a neutrosophic open set in (Y, S). Every neutrosophic open set is a neutrosophic generalized α -open set. Now, B is a neutrosophic generalized α -open set in (Y, S). Since f is a neutrosophic strongly generalized α -contra-continuous function, $f^{-1}(B)$ is a neutrosophic closed set in (X, T). Hence f is a neutrosophic contra-continuous function.

The converse of Proposition 2.4 need not be true as shown in Example 2.4.

Example 2.4. Let $X = \{a, b\}$. Define the neutrosophic sets G_1 and G_2 in X as follows: $G_1 = \langle x, (0.3, 0.3, 0.3), (0.7, 0.7, 0.7) \rangle$ and $G_2 = \langle x, (0.7, 0.7, 0.7), (0.3, 0.3, 0.3) \rangle$. Then the families $T = \{0_N, 1_N, G_1\}$ and $S = \{0_N, 1_N, G_2\}$ are neutrosophic topologies on X. Define a function $f : (X, T) \rightarrow (Y, S)$ as follow f(a) = a, f(b) = b. Then f is a neutrosophic contra continuous function. Let $A = \langle x, (0.35, 0.35, 0.4), (0.5, 0.5, 0.6) \rangle$ is a neutrosophic generalized α -closed set in (X, T), but $f^{-1}(A)$ is not a neutrosophic open set in (X, T). Hence f is not a neutrosophic strongly generalized α -contra-continuous function.

INTERRELATIONS

From the above results proved, we have a diagram of implications as shown below.

In the diagram, \overline{A} , \overline{B} , \overline{C} and \overline{D} denote a neutrosophic contra continuous function, neutrosophic generalized α -contra-continuous function, neutrosophic α -contra-continuous function and neutrosophic strongly generalized α -contra-continuous function respectively.

Proposition 2.5. Let (X, T), (Y, S) and (Z, R) be any three neutrosophic topological spaces. If a function $f : (X, T) \to (Y, S)$ is a neutrosophic strongly generalized α -continuous function and $g : (Y, S) \to (Z, R)$ is a neutrosophic generalized α -contra-continuous function then $g \circ f$ is a neutrosophic contra-continuous function.

Proof. Let *V* be a neutrosophic open set of (Z, R). Since g is a neutrosophic generalized α -contra-continuous function, $g^{-1}(V)$ is neutrosophic generalized α -closed set in (Y, S). Since f is a neutrosophic strongly generalized α -continuous function, $f^{-1}(g^{-1}(V))$ is a neutrosophic closed set in (X, T). Hence $g \circ f$ is a neutrosophic contra-continuous function.

Proposition 2.6. Let (X, T), (Y, S) and (Z, R) be any three neutrosophic topological spaces. Then the following statements hold:

- (i) If f is a neutrosophic generalized α -contra-continuous function and g is a neutrosophic continuous function, then $g \circ f$ is a neutrosophic generalized α -contracontinuous function.
- (ii) If f is a neutrosophic generalized α -contra-continuous function and g is a neutrosophic contra-continuous function, then $g \circ f$ is a neutrosophic generalized α -continuous function.
- (iii) If f is a neutrosophic generalized α -contra-irresolute function and g is a neutrosophic generalized α -contra-continuous function, then $g \circ f$ is a neutrosophic generalized α -continuous function.

(iv) If f is a neutrosophic generalized α -irresolute function and g is a neutrosophic generalized α -contra-continuous function, then $g \circ f$ is a neutrosophic generalized α -contra-continuous function.

Proof.

- (i) Let *B* be a neutrosophic open set of (Z, R). Since g is a neutrosophic continuous function, $g^{-1}(B)$ is neutrosophic open set in (Y, S). Since f is a neutrosophic generalized α -contra-continuous function, $f^{-1}(g^{-1}(B))$ is a neutrosophic generalized α -closed set in (X, T). Hence $g \circ f$ is a neutrosophic generalized α -contra-continuous function.
- (ii) Let *B* be a neutrosophic open set of (Z, R). Since g is a neutrosophic contracontinuous function, $g^{-1}(B)$ is neutrosophic closed set in (Y, S). Since f is a neutrosophic generalized α -contra-continuous function, $f^{-1}(g^{-1}(B))$ is a neutrosophic generalized α -open set in (X, T). Hence $g \circ f$ is a neutrosophic generalized α continuous function.
- (iii) Let *B* be a neutrosophic open set of (Z, R). Since g is a neutrosophic generalized α -contra -continuous function, $g^{-1}(B)$ is neutrosophic generalized α -closed set in (Y, S). Since f is a neutrosophic generalized α -contra-irresolute function, $f^{-1}(g^{-1}(B))$ is a neutrosophic generalized α -open set in (X, T). Hence $g \circ f$ is a neutrosophic generalized α -continuous function.
- (iv) Let *B* be a neutrosophic open set of (Z, R). Since g is a neutrosophic generalized α -contra -continuous function, $g^{-1}(B)$ is neutrosophic generalized α -closed set in (Y, S). Since f is a neutrosophic generalized α -irresolute function, $f^{-1}(g^{-1}(B))$ is a neutrosophic generalized α -closed set in (X, T). Hence $g \circ f$ is a neutrosophic generalized α -contra-continuous function.

Definition 2.6. Let (X,T) and (Y,S) be any two neutrosophic topological spaces. Let $f : (X,T) \to (Y,S)$ be a function. The graph $g : X \to X \times Y$ of f is defined by $g(x) = (x, f(x)), \forall x \in X$.

Proposition 2.7. Let (X,T) and (Y,S) be any two neutrosophic topological spaces.Let $f : (X,T) \to (Y,S)$ be a function. If the graph $g : X \to X \times Y$ of f is a neutrosophic generalized α -contra-continuous function then f is also a neutrosophic generalized α -contra-continuous function.

Proof. Let B be a neutrosophic closed set in (Y, S). By definition 2.6., $f^{-1}(B) = 1_N \cap f^{-1}(B) = g^{-1}(1_N \times B)$. Since g is a neutrosophic generalized α -contra-continuous function, $g^{-1}(1_N \times B)$ is a neutrosophic generalized α -open set in (X,T). Now, $f^{-1}(B)$ is a neutrosophic generalized α -open set in (X,T). Hence f is a neutrosophic generalized α -contra -continuous function.

Proposition 2.8. Let (X,T) and (Y,S) be any two neutrosophic topological spaces. Let $f : (X,T) \to (Y,S)$ be a function. If the graph $g : X \to X \times Y$ of f is a neutrosophic strongly generalized α -contra-continuous function then f is also a neutrosophic strongly generalized α -contra-continuous function.

Proof. Let B be a neutrosophic generalized α -open set in (Y, S). By definition 2.6., $f^{-1}(B) = 1_N \cap f^{-1}(B) = g^{-1}(1_N \times B)$. Since g is a neutrosophic strongly generalized α -contra- continuous function, $g^{-1}(1_N \times B)$ is a neutrosophic closed set in (X, T). Now, $f^{-1}(B)$ is

a neutrosophic closed set in (X, T). Hence f is an a neutrosophic strongly generalized α -contra-continuous function.

Proposition 2.9. Let (X,T) and (Y,S) be any two neutrosophic topological spaces. Let $f : (X,T) \to (Y,S)$ be a function. If the graph $g : X \to X \times Y$ of f is a neutrosophic generalized α -contra-irresolute function then f is also a neutrosophic generalized α -contra-irresolute function.

Proof. Let B be a neutrosophic generalized α -closed set in (Y, S). By definition 2.6., $f^{-1}(B) = 1_N \cap f^{-1}(B) = g^{-1}(1_N \times B)$. Since g is a neutrosophic generalized α -contra-irresolute function, $g^{-1}(1_N \times B)$ is a neutrosophic generalized α -open set in (X, T). Now, $f^{-1}(B)$ is a neutrosophic generalized α -open set in (X, T). Now, $f^{-1}(B)$ is a neutrosophic generalized α -open set in (X, T). Hence f is an a neutrosophic generalized α -contra-irresolute function.

REFERENCES

- Arokiarani .I, Dhavaseelan. R, Jafari .S, Parimala .M, On Some New Notions And Functions In Neutrosophic Topological Spaces(submitted)
- [2] Atanassov.K , Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986), 87-96.
- [3] Chang.C, Fuzzy topological spaces, J. Math. Anal. Appl. 24(1968), 182-190.
- [4] Coker.D, An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems, 88(1997),81-89.
- [5] Dhavaseelan .R, Roja.E and Uma.M.K, Generalized intuitionistic Fuzzy Closed Sets, Advances in Fuzzy Mathematics, 5, (2010) 152-172.
- [6] Dhavaseelan .R, Roja.E and Uma.M.K, Generalized intuitionistic fuzzy contra-continuous functions, The Journal of Fuzzy Mathematics, Vol. 20, No. 4, (2012), 1-16.
- [7] Dhavaseelan.R and Jafari.S, Generalized Neutrosophic closed sets (submitted).
- [8] Dhavaseelan.R, Jafari.S, Ozel.C and Al-Shumrani.M.A, Generalized Neutrosophic Contra-Continuity(submitted).
- [9] Dontchev.T, Contra continuous functions and strongly S-closed spaces. International J Math Sci., 19(2)(1996),303-310.
- [10] Kalamani.D, Sakthivel.K, and Gowri.C.S, Generalized alpha closed sets in intuitionistic fuzzy Topological spaces, Applied Mathematical Sciences, Vol. 6, 94 (2012), 4691 - 4700.
- [11] Salama.A.A and Alblowi.S.A, Neutrosophic Set and Neutrosophic Topological Spaces, IOSR Journal of Mathematics, Volume 3, Issue 4 (Sep-Oct. 2012), PP 31-35
- [12] Smarandache.F, Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA(2002), smarand@unm.edu
- [13] Smarandache. F, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. American Research Press, Rehoboth, NM, 1999.
- [14] Zadeh.L. A., Fuzzy sets, Information and control, 8(1965),338-353.

DEPARTMENT OF MATHEMATICS, SONA COLLEGE OF TECHNOLOGY, SALEM-636005, TAMIL NADU,INDIA. *E-mail address*: dhavaseelan.r@gmail.com

DEPARTMENT OF MATHEMATICS, COLLEGE OF VESTSJAELLAND SOUTH, HERRESTRAEDE 11, 4200 SLAGELSE, DENMARK *E-mail address*: jafaripersia@gmail.com

DEPARTMENT OF MATHEMATICS, DEPARTMENT OF MATHEMATICS, KLE TECHNOLOGICAL UNIVERSITY, HUBLI-31, KARNATAKA. *E-mail address*: hanif01@yahoo.com