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                          Abstract. Smarandache introduced and developed the new concept of Neutrosophic set from   

                          the Intuitionistic  fuzzy sets. A.A. Salama introduced Neutrosophic topological spaces   by using   

                          the   Neutrosophic crisp sets. Aim of this paper is we introduce and study about Neutrosophic  

                          generalized b closed sets in Neutrosophic topological spaces and its properties are              

                          discussed details. 

 

 

 

1. Introduction 

Topology is a classical subject, as a generalization topological spaces many type of 

topological spaces introduced over the year. C.L. Chang[3] was introduced and developed fuzzy 

topological space by using L.A. Zadeh’s[12] fuzzy sets. Coker[4]  introduced the concepts of 

Intuitionistic  fuzzy topological spaces by using Atanassov’s[1] Intuitionistic  fuzzy set  

Neutrality the degree of indeterminacy, as an independent concept, was introduced by Smarandache 

[6] in 1998. He also defined the Neutrosophic set on three component Neutrosophic topological spaces 

(T- Truth, F -Falsehood ,I- Indeterminacy). Neutrosophic topological spaces(N-T-S) introduced by 

Salama [10]et al.In 1996 D. Andrijevic [2] introduced b open sets in topological space, 

R.Dhavaseelan[5],SaiedJafari are introduced Neutrosophic generalized closed sets.Aim of this paper is 

we introduced in Neutrosophic b-open sets, Neutrosophic generalized b-open sets in Neutrosophic 

topological space and also discussed about properties of Neutrosophic gb-interior and Neutrosophic 

gb-closure in Neutrosophic topological spaces(N-T-S) 

 

2. Preliminaries  

In the Second section, we recall needed basic definition and operation of Neutrosophic sets and then 

fundamental results 

Definition 2.1 [10]  

Let X be a non-empty fixed set. A Neutrosophic set P is an object having the form 

 P = {〈 x, μP(x),σP(x),γP(x)〉:x ∈ X} 

 where μP(x)-represents the degree of membership function,  

           σP(x)- represents degree indeterminacy and  then  

           γP(x)- represents the degree of non-membership function  

Remark 2.2 [10]  

Neutrosophic set P={〈 x, μP(x), σP(x), γP(x)〉 : x ∈ X} can be write to an ordered triple lies in the 

interval in ⦌ -0,1+ ⦋ on X. 

Remark 2.3[10]  

we shall use the symbol  

Neutrosophic set P = {〈 x, μP(x), σP(x), γP(x)〉 : x ∈ X} we can be write  briefly   

Like as P= 〈 x, μP, σP, γP 〉  
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Definition 2.4 [10] 

In N-T-S, 0N may be defined like as: ∀x ∈X 

01  = 〈 x, 0, 0, 1 〉  
02  = 〈 x, 0, 1, 1 〉 
03  = 〈 x, 0, 1, 0 〉 
04 = 〈 x, 0, 0, 0 〉 
1N may be defined like as: ∀x ∈X 

11= 〈 x, 1, 0, 0 〉   
12= 〈 x, 1, 0, 1 〉  
13= 〈 x, 1, 1, 0 〉 
14= 〈 x, 1, 1, 1 〉  
Definition 2.5 [10]  

Neutrosophic set P={〈 x, μP(x), σP(x), γP(x)〉} on X and ∀x∈X 

 then complement of P is 

 PC = {〈 x, γP(x), 1 – σP(x), μP(x)〉}  

Definition 2.6 [10]  

Let P and Q are two Neutrosophic sets ∀x∈X 

P={〈 x, μP(x), σP(x), γP(x)〉} and 

Q={〈 x, μQ(x), σQ(x), γQ(x)〉}.  

Then   

P⊆Q ⇔ μP(x) ≤ μQ(x), σP(x)≤ σQ(x) and γP(x) ≥ γQ(x)  

Proposition 2.6 [10]  

 The following results are true for any Neutrosophic set P 

(i) 0N ⊆P, 0N⊆0N  

(ii) P⊆1N, 1N⊆1N  

Definition 2.7 [10]  

Let X be a non-empty set, and 

Let P and Q be two Neutrosophic sets are  

P=〈 x, μP(x),σP(x), γP(x)〉 ,  
Q =〈x, μQ(x), σQ(x), γQ(x)〉  Then  

    (i) P∩Q=〈 x, μP(x) ⋀ μQ(x), σP(x) ⋀ σQ(x) & γP(x)⋁γQ(x)〉  
    (ii) P∪Q=〈 x, μP(x)⋁μQ(x), σP(x)⋁σQ(x) & γP(x) ⋀γQ(x)〉  
Proposition 2.8 [10] 

The following conditions are true for all two Neutrosophic sets P and Q are  

    (i) (P∩Q)C =PC∪QC  

    (ii) (P∪Q)C=PC∩QC.  

Definition 2.9 [10]  

 Let X be non-empty set and τN  be the collection of Neutrosophic subsets of X satisfying the 

following properties :  

      (i) 0N, 1N ∈ τN ,  

      (ii) T1∩T2∈τN for any T1, T2 ∈τN ,  

     (iii) ∪Ti∈τN for every {Ti : i ∈J}⊆τN 

Then the space (X, τN) is called a Neutrosophic topological space(N-T-S).  

The element of τN are called Neu-OS (Neutrosophic open set) 

and its complement is Neu-CS(Neutrosophic closed set) 

Example 2.10 [10]  

Let X={x} and ∀x∈X 

A1 = 〈 x, 0.6, 0.6, 0.5 〉 
A2 = 〈 x, 0.5, 0.7, 0.9 〉 
A3 = 〈 x, 0.6, 0.7, 0.5 〉 
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A4 = 〈 x, 0.5, 0.6, 0.9 〉 
Then the collection τN = {0N, A1, A2, A3, A4, 1N} is called a N-T-S on X.  

Definition 2.11 [10]  

(X, τN) be N-T-S and ∀x∈X 

P ={〈x, μP(x), σP(x), γP(x)〉}be a Neutrosophic set in X. Then the Neutrosophic closure and  

Then the Neutrosophic closure of P is 

      Neu-Cl(P)=∩{ H:H is a Neutrosophic closed set in X and P⊆H}  

Neutrosophic interior of P is 

      Neu-Int(P)=∪{M:M is a Neutrosophic open set in X and M⊆P}.  

Then 

  (i)  P is Neutrosophic open set iff P=Neu-Int(P) .  

  (ii)  P is Neutrosophic closed set iff P=Neu-Cl(P).  

Proposition 2.12 [10]  

Let( X, τN ) be a Neutrosophic  topological spaces ,Then for any Neutrosophic set P  

  (i) Neu-Cl((P)C)= (Neu-Int(P))C,  

  (ii) Neu-Int((PC))= (Neu-Cl(P))C.  

Proposition 2.13 [10]  

Let P, Q be two Neutrosophic sets in  N-T-S (X, τN). Then the following results are true:  

(i) Neu-Int(P)⊆P,  

(ii) P⊆Neu-Cl(P),  

(iii) P⊆Q⇒Neu-Int(P)⊆Neu-Int(Q),  

(iv) P⊆Q⇒Neu-Cl(P)⊆Neu-Cl(Q),  

(v) Neu-Int(Neu-Int(P))=Neu-Int(P),  

(vi) Neu-Cl(Neu-Cl(P))=Neu-Cl(P),  

(vii) Neu-Int(P∩Q))=Neu-Int(P)∩Neu-Int(Q),  

(viii) Neu-Cl(P∪Q)=Neu-Cl(P)∪Neu-Cl(Q),  

(ix) Neu-Int(0N)=0N ,  

(x) Neu-Int(1N)=1N ,  

(xi) Neu-Cl(0N)=0N ,  

(xii) Neu-Cl(1N)=1N ,  

(xiii) P⊆Q⇒QC⊆PC,  

(xiv) Neu-Cl(P∩Q)⊆Neu-Cl(P)∩Neu-Cl(Q),  

(xv) Neu-Int(P∪Q)⊇Neu-Int(P)∪Neu-Int(Q). 

Definition:2.14[5] 

Neutrosophic generalized closed set (Neu-g closed) if  Neutrosophic cl(P)⊆G whenever P⊆G  and G 

is Neutrosophic open set in (X,τN). 

 

3.Neutrosophic generalized b-open sets  

For this third section, we are newly introduce and study the new concept of Neutrosophic generalized 

b-open sets in N-T-S 

Definition:3.1  

Let (X, τN) be a N-T-S.A Neutrosophic set P is called  

Neutrosophic b-open set is 

              if  P⊆Neu-cl [Neu-int(P)]∪Neu-int[Neu-cl(P)]  

Neutrosophic b-closed set is 

Neu-cl [Neu-int(P)]∩Neu-int[Neu-cl(P)] ⊆P 

Definition:3.2 

Neutrosophic generalized b-closed Set ( Neu-gb-closed set) if  Neutrosophic-bcl(P)⊆G whenever P⊆G  

and G is Neutrosophic open  set in (X,τN). 

Theorem 3.3.  

For Every Neutrosophic open sets is Neutrosophic generalized b-open sets.  
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Proof.  

Now Let P is a Neu-OS in N-T-S (X, τN)  since P⊆Neu-cl(P) and  P=Neu-Int(P),Neu-Int(P)⊆Neu-

Int(Neu-cl(P)) and then Neu-Int(P)⊆Neu-cl(Neu-Int ((P)) which implies Neu-Int(P)⊆ Neu-cl(Neu-

Int(P))∪Neu-Int (Neu-cl(P)).Hence P⊆Neu-Int(P)⊆ Neu-cl(Neu-Int(P))∪Neu-Int(Neu-cl(P)) and P is 

Neu- gb-open in  (X, τN) . 

But the converse of this theorem is fails  

i.e.,For Every Neu-gbOS is not Neutrosophic open sets.  

Example 3.4 

Here X ={a , b , c} with τN={ 0N, A1, A2, 1N } and (τN)C ={ 1N, A3, A4, 0N } where  

A1 = 〈(0.6, 0.6, 0.4 ), ( 0.2, 0.7, 1 ), ( 1, 0.6, 0.5) 〉 
A2 = 〈( 0.1, 0.4, 0.8 ), ( 0.2, 0.6, 1 ), ( 0.6, 0.5, 0.9)〉  
A3 = 〈( 0.4, 0.4, 0.6 ), ( 1, 0.3, 0.2 ), ( 0.5, 0.4, 1)〉  
A4 = 〈( 0.8, 0.6, 0.1 ), ( 1, 0.4, 0.2 ), ( 0.9, 0.5, 0.6 )〉.  
A5 = 〈( 0.3, 0.4, 1 ), ( 0.1, 0.2, 1 ), ( 0.4, 0.2, 1 )〉.  
Here the Neu-gbOSs are A3, A4 and A5.  

Also A5 is Neu-gbCS and A5 is not Neu-CS. 

Theorem 3.5  

Consider if P and Q are Neu-gbCS, and then P∪Q is Neu-gbCS. 

Proof:  

If P∪Q⊆K and K is Neutrosophic open set, then P⊆K and Q⊆K.Since P and Q are Neu-gb closed 

sets, Neu-cl(P)⊆K and Neu-cl(Q)⊆K and hence Neu-cl(P)∪Neu-cl(Q)⊆K.This implies Neu-cl(P ∪  

Q)⊆K. Thus P∪Q is Neu-gbCS in X. 

Theorem 3.6 

Let P is a Neu-gb closed set and then Neu-cl(P)-P ⊈ any nonempty Neu-C-S. 

Proof:  

Let P is a Neu-gbCS. Let G be a Neu-CS subset of Neu-cl(P)-P.Then P⊆GC.But P is Neu-gbCS. 

Therefore Neu-cl(P)⊆GC.Consequently G⊆(Neu-cl(P))C.We have G⊆Neu-cl(P). Thus G⊆Neu-cl(P) 

∩(Neu-cl(P))C =ϕ. Hence G is empty.  

 

4. Neutrosophic generalized b interior in a N-T-S 

 In this Fourth section, we newly introduce and study about the properties of Neu- gb interior in a   

N-T-S.  

Definition: 4.1 

Let (X, τN) be a Neutrosophic topological space and P be a Neutrosophic set in X, then the Neu-gb-

interior of P is defined as  

Neu-gb-int(P) =∪{M/M is a Neu-gbOS in X and M⊆P}  

Theorem:4.2 

Neutrosophic subsets P and Q of a N-T-S   X we have  

(i) Neu-gb-Int(P)⊆P  

(ii) P is Neu-gb-open set in X⇔Neu-gb-Int(P)=P  

(iii) Neu-gb-Int( Neu-gb-Int(P))=Neu-gb-Int(P)  

(iv) If P⊆Q then Neu-gb-Int(P)=Neu-gb-Int(Q)  

Proof: 

Proof of (i) is directly get the result through the Definition 4.1.  

 Let P be Neu-gb-open set in X. Then P⊆Neu-gb-Int(P). from 4.2(i) we obtain the result P=Neu-gb-

Int(P). Now Conversely we assume that P=Neu-gb-Int(P). From the Definition 4.1,Neutrosophic set P 

is a Neu-gb-open set in N-T-S  X. from this we get the result (ii). From the  result (ii), Neu-gb-

Int(Neu-gb-Int(P))=Neu-gb-Int(P).we get the result(iii). Since P⊆Q, by using(i), Neu-gb-

Int(P)⊆P⊆Q.i.e.,Neu-gb-Int(P)⊆Q. from the result (iii),Neu-gb-Int(Neu-gb-Int(P))⊆Neu-gb-

Int(Q).Thus Neu-gb-Int(P)⊆Neu-gb-Int(Q). we get the result (iv).  
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Theorem 4.3 

Let P and Q are two Neutrosophic subsets  of N- T-S (X, τN) then 

(i) Neu-gb-Int( P∩Q)=Neu-gb-Int(P)∩Neu-gb-Int(Q)  

(ii) Neu-gb-Int(P∪Q)⊇Neu-gb-Int(P)∪Neu-gb-Int(Q).  

Proof :  

Since P∩Q⊆P and P∩Q⊆Q, follows from the theorem 4.2(iv), Neu-gb-Int(P∩Q)⊆Neu-gb-Int(P) and 

Neu-gb-Int(P∩Q)⊆Neu-gb-Int(Q). This implies that Neu-gb-Int(P∩Q)⊆Neu-gb-Int(P) ∩Neu-gb-

Int(Q) .....(1).follows from the  theorm3.4(i), Neu-gb-Int(P)⊆P and Neu-gb-Int(Q)⊆Q.This implies 

that Neu-gb-Int(P)∩Neu-gb-Int(Q)⊆P∩Q.Now from  theorm4.2(iv),Neu-gb-Int((Neu-gb-Int(P)∩Neu-

gb-Int(Q))⊆Neu-gb-Int(P∩Q).By(1), Neu-gb-Int(Neu-gb-Int(P))∩Neu-gb-Int(Neu-gb-Int(Q))⊆Neu-

gb-Int(P∩Q). from  theorm 4.2(iii), Neu-gb-Int(P)∩Neu-gb-Int(Q)⊆Neu-gb-Int(P∩Q) .....(2).From (1) 

and (2), Neu-gb-Int(P∩Q)=Neu-gb-Int(P)∩Neu-gb-Int(Q). This implies (i).Since P⊆P∪Q and 

Q⊆P∪Q,by from  theorm 4.2(iv), Neu-gb-Int(P)⊆Neu-gb-Int(P∪Q) and Neu-gb-Int(Q)⊆Neu-gb-

Int(P∪Q).This implies that Neu-gb-Int(P)∪Neu-gb-Int(Q)⊆Neu-gb-Int(P∪Q).Hence (ii).  

Converse part of Theorem 4.3(ii) is need not be true  

Example 4.4 

Let X = { p , q , r } and τN ={0N, A1, A2, A3, A4, 1N} where τN is a Neutrosophic topology in N-T-S  

A1 = 〈( 0.5, 0.7, 0.2), ( 0.6, 0.6, 0.3), (1, 0.7, 0.4)〉,  
A2 = 〈( 0.5, 0.6, 0.2), ( 0.8, 0.7, 0.3), (1, 0.5, 0.2)〉,  
A3 = 〈( 0.5, 0.7, 0.2), ( 0.8, 0.7, 0.3), (1, 0.7, 0.2)〉,  
A4 = 〈( 0.5, 0.6, 0.2), ( 0.6, 0.6, 0.3), (1, 0.5, 0.4)〉.  
 τN is a Neutrosophic topology in N-T-S  

Consider the Neutrosophic sets   

A5 = 〈( 0.8, 0.6, 0.2 ), ( 0.8, 0.6, 0.2 ), ( 1, 0.5, 0.1 )〉 and  

A6 = 〈( 0.5, 0.6, 0.2 ), ( 0.6, 0.7, 0.3 ), ( 1, 0.7, 0.2 )〉.  
Then Neu-gbint(A5)= A4 and Neu-gbint(A6)= A4.  

This implies that Neu-gbint(A5)∪Neu-gbint(A6)= A4. Then 

A5∪A6=〈( 0.8, 0.6, 0.2), (0.8, 0.7, 0.2), (1, 0.7, 0.1 )〉,  
it follows that Neu-gbint(A5∪A6)= A2.Then Neu-gbint(A5∪A6) ⊈Neu-gbint(A5)∪Neu-gbint (A6). 

 

5. Neutrosophic generalized b-closure in N-T-S.  

Now In the fifth section, we newly introduce and study the properties and characterization of Neu- gb-

closure in N-T-S.  

Definition 5.1  

Let P is a Neutrosophic subset P of Neutrosophic topological space (X, τN) 

Neu- gb-closure defined as 

Neu-gb-Cl(P) =∩{H:H is a Neu-gb-closed set in X and H⊇P}.  

Theorem 5.2  

Let P is a Neutrosophic subset of N-T-S (X, τN) 

(i) [(Neu-gb-Int(P)]C=Neu-gb-Cl[(P)]C,  

(ii) [Neu-gb-Cl(P)]C=Neu-gb-Int[(P)]C.  

Proof :  

From the Definition 5.1, Neu-gb-Int(P) =∪{M:M is a Neu-gb-open set in X and M⊆P}. Take 

complement each both sides, [(Neu-gb-Int(P)]C = (∪{ M :M is a Neu-gb open set in X and 

M⊆P})C=∩{ MC:MC is a Neu-gb-closed set in X and [(P)]C⊆MC }. Replacing MC by H, we get [(Neu-

gb-Int(P)]C=∩{ H:H is a Neu-gb-closed set in X and H⊇[(P)]C }. From the Definition 5.1, [(Neu-gb-

Int(P)]C=Neu-gb-Cl([(P)]C). This proves (i). By using (i), [Neu-gb-Int((P)C)]C=Neu-gb-Cl[(P)C]C=Neu-

gb-Cl(P). Take complement each both sides,  Then we obtain Neu-gb-Int((PC)) = [Neu-gb-Cl(P)]C .we 

obtained result(ii).  

Theorem 5.3  
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If P and Q are Neutrosophic subset of N-T-S (X, τN),Then 

 (i) P⊆Neu-gb-Cl(P)  

(ii) P is Neu-gb-CS in X⇔Neu-gb-Cl(P)=P  

(iii) Neu-gb-Cl(Neu-gb-Cl(P))=Neu-gb-Cl(P)  

(iv)Now, If P⊆Q and then Neu-gb-Cl(P)⊆Neu-gb-Cl(Q)  

Proof :  

(i) We can easily get result from Definition 5.1.  

Let P be Neu-gb-closed set in X. From the theorem 5.3, PC is Neu-gb-open set in X. From  the 

theorem5.2(ii),Neu-gb-Int((P)C)=(P)C⇔[Neu-gb-Cl(P)]C=PC⇔Neu-gb-Cl(P)=P.we obtain the 

result(ii).By using(ii), Neu-gb-Cl(Neu-gb-Cl(P))=Neu-gb-Cl(P) . we obtain the result (iii).Since 

P⊆Q,QC⊆PC. From the theorem 4.2(iv),Neu-gb-Int((Q)C)⊆Neu-gb-Int((P)C).apply complement each 

sides, [Neu-gb-Int( (QC))]C⊇[Neu-gb-Int((P)C)]C. From the theorem 5.2(ii), Neu-gb-Cl(P)⊆Neu-gb-

Cl(Q). we obtain the result (iv). 

Theorem 5.4 

 Let P be a Neutrosophic set in a N-T-S (X, τN).Then Neu-Int(P)⊆Neu-gb-Int(P)⊆P⊆Neu-gb-

Cl(P)⊆Neu-Cl(P).   

Proof :  

We can easily get result from Definition 5.1.  

Theroem 5.5  

If P and Q are Neutrosophic subset of N-T-S (X, τN),Then 

(i) Neu-gb-Cl(P∪Q)=Neu-gb-Cl(P)∪Neu-gb-Cl(Q) and  

(ii) Neu-gb-Cl(P∩Q)⊆Neu-gb-Cl(P)∩Neu-gb-Cl(Q).  

Proof : 

Since Neu-gb-Cl(P∪Q)=Neu-gb-Cl((P∪Q)C)CBy From theorem5.2(i),Neu-gb-Cl(P∪Q)=[Neu-gb-

Int((P∪Q)C))]C=[Neu-gb-Int(PC∩QC))]C. once Again From theorem 3.5(i),Neu-gb-Cl(P∪Q)=[Neu-gb-

Int(PC))∩Neu-gb-Int(QC)]C=[Neu-gb-Int(PC)]C∪ [Neu-gb-Int(C(Q))]C. From theorem5.2(i),,Neu-gb-

Cl(P∪Q)=Neu-gb-Cl(PC)C∪Neu-gb-Cl(((QC)C))=Neu-gb-Cl(P)∪Neu-gb-Cl(Q).Thus proved(i). Since 

P∩Q⊆P and P∩Q⊆Q, From theorem5.3(iv), Neu-gb-Cl(P∩Q)⊆Neu-gb-Cl(P) and Neu-gb-

Cl(P∩Q)⊆Neu-gb-Cl(Q). This implies that Neu-gb-Cl(P∩Q)⊆Neu-gb-Cl(P)∩Neu-gb-Cl(Q). we 

obtain the result (ii).  

 Converse of (ii) is not true ,Neu-gb-Cl(P)∩Neu-gb-Cl(Q) ⊈Neu-gb-Cl(P∩Q) 

Example 5.6 

Neu-gb-Cl(P)∩Neu-gb-Cl(Q) ⊈Neu-gb-Cl(P∩Q) 

Let X = { p , q , r } with τN = { 0N, A1, A2, A3, A4, 1N } and (τN)C= {1N, A5, A6, A7, A8, 0N } where  

A1 = 〈( 0.6, 0.6, 0.2 ), ( 0.7, 0.7, 0.2 ), ( 1, 0.5, 0.3 )〉  
A2 = 〈( 0.5, 0.5, 0.3 ), ( 0.9, 0.6, 0.4 ), ( 1, 0.7, 0.4 )〉  
A3 = 〈( 0.5, 0.5, 0.3 ), ( 0.7, 0.6, 0.4 ), ( 1, 0.5, 0.4 )〉  
A4 = 〈( 0.6, 0.6, 0.2 ), ( 0.9, 0.7, 0.2 ), ( 1, 0.7, 0.3 )〉  
A5 = 〈( 0.2, 0.4, 0.6 ), ( 0.2, 0.3, 0.7 ), ( 0.3, 0.5, 1 )〉,  
A6 = 〈( 0.3, 0.5, 0.5 ), ( 0.4, 0.4, 0.9 ), ( 0.4, 0.3, 1 )〉,  
A7 = 〈( 0.3, 0.5, 0.5 ), ( 0.4, 0.4, 0.7 ), ( 0.4, 0.5, 1 )〉,  
A8 = 〈( 0.2, 0.4, 0.6 ), ( 0.2, 0.3, 0.9 ), ( 0.3, 0.3, 1 )〉.  
Then (X, τN) is a N-T-S.  

Here we consider the some Neutrosophic sets  

A9 = 〈( 0.2, 0.2, 0.6 ), ( 0.3, 0.3, 0.8 ), ( 0.4, 0.3, 1 )〉 and  

A10 = 〈( 0.3, 0.4, 0.9 ), ( 0.2, 0.2, 0.9 ),( 0.3, 0.5, 1 )〉. 
 Then Neu-gbcl(A9)=A7 and Neu-gbcl(A10)= A7.  

This implies that Neu-gbcl (A9)∩Neu-gbcl(A10) = A7.  

Now,A9∩ A10 = 〈( 0.2, 0.2, 0.9 ), ( 0.2, 0.2, 0.9 ),( 0.3, 0.3,1)〉, it follows that Neu-gbcl (A9∩A10)= A8. 

Then Neu-gbcl(A9)∩Neu-gbcl(A10) ⊈ Neu-gbcl(A9∩A10). 

Theorem 5.7 
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If P and Q are Neutrosophic subset of N-T-S (X, τN) then 

(i) Neu-gb-Cl(P)⊇P∪Neu-gb-Cl(Neu-gb-Int(P)),  

(ii) Neu-gb-Int(P)⊆P∩Neu-gb-Int(Neu-gb-Cl(P)),  

(iii) Neu-Int(Neu-gb-Cl(P))⊆Neu-Int(Neu-Cl(P)),  

(iv) Neu-Int(Neu-gb-Cl(P))⊇Neu-Int(Neu-gb-Cl(Neu-gb-Int(P))).  

Proof :  

From theorem 5.3(i),P⊆Neu-gb-Cl(P) .....(1).We use theorem 3.4(i),Neu-gb-Int(P)⊆P. Then Neu-gb-

Cl(Neu-gb-Int(P))⊆Neu-gb-Cl(P) .....(2). From (1) &(2) we have, P∪Neu-gb-Cl(Neu-gb-nt(P))⊆Neu-

gb-Cl(P). we obtain result (i). From theorem 4.2(i), Neu-gb-Int(P)⊆P.....(3). We get result from 

theorem 5.3(i), P⊆Neu-gb-Cl(P). Then Neu-gb-Int(P)⊆Neu-gb-Int(Neu-gb-Cl(P)).....(4). From (3) 

&(4), we have Neu-gb-Int(P)⊆P∩Neu-gb-Int(Neu-gb-Cl(P)). We obtain (ii). From theorem 5.4,Neu-

gb-Cl(P)⊆Neu-Cl(P).We obtain Neu-Int(Neu-gb-Cl(P))⊆Neu-Int(Neu-Cl(P)).Hence(iii).By(i),Neu-

gb-Cl(P)⊇P∪Neu-gb-Cl(Neu-gb-Int(P)).We have Neu-Int(Neu-gb-Cl(P)⊇Neu-Int(P∪Neu-gb-Cl(Neu 

-gb-Int(P))).SinceNeu-Int(P∪Q)⊇Neu-Int(P)∪Neu-Int(Q),Neu-Int(Neu-gb-Cl(P)⊇Neu-Int(P)∪Neu-

Int(Neu-gb-Cl(Neu-gb-Int(P)))⊇Neu-Int(Neu-gb-Cl(Neu-gb-Int(P))). Hence(iv). 

References 

[1]    Atanassov K 1986 Intuitionistic  fuzzy sets, Fuzzy Sets  and Systems 20  pp 87-94 

[2]    Andrijevic D 1996 b open sets, Math. Vesnik 48 1 pp 59-64 

[3]    Chang C L 1968 Fuzzy Topological Spaces, J. Math.Anal. Appl. 24  pp 182-190 

[4]    Dogan Coker 1997 An introduction to Intuitionistic   fuzzy topological spaces Fuzzy Sets and  

            Systems 88  pp 81-89 

[5]    Dhavaseelan R and Jafari S 2018 Generalized  Neutrosophic closed sets New trends in  

            Neutrosophic theory and applications II pp 261-273 

[6]    Florentin Smarandache 2002 Neutrosophic and   Neutrosophic Logic First International  

           Conference on Neutrosophy , Neutrosophic Logic, Set,Probability, and Statistics  University  

           of New Mexico, Gallup, NM 87301, USA ,smarand@unm.edu  

[7]    Floretin Smaradache 2010  Neutrosophic Set A  Generalization of Intuitionistic  Fuzzy set,  

           Journal of Defense Resourses Management.  1 pp 107-114 

[8]    Iswarya P and Bageerathi K 2016 On Neutrosophic semi-open sets in Neutrosophic topological    

           spaces, International Journal of  Mathematics  Trends and   Technology 37 3 pp 24-33 

[9]    Salama A A and Alblowi S A 2012 Generalized   Neutrosophic set and generalized     

            Neutrosophic  topological spaces Journal computer Sci. Engineering 2 7 pp 129-132 

[10]   Salama A A and Alblowi S A 2012  Neutrosophic set and Neutrosophic topological space,  

            ISOR  J.mathematics, 3 4 pp 31-35  

[11]   Shanthi V K  Chandrasekar.S , Safina Begam.K, 2018 Neutrosophic Generalized Semi Closed  

             Sets In Neutrosophic Topological Spaces International Journal of Research in Advent            

             technology  6 7 pp 1739-1743 

[12]   Zadeh L P 1965 Fuzzy Sets, Inform and Control  8 pp 338- 353 


