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Abstract: The idea of neutrosophic generalized homeomorphism is presented in neutrosophic 

topological spaces. In addition to this, neutrosophic generalized closed and open mappings are also 

presented. At the same time, their characterizations are discussed by establishing their related 

attributes. 

Keywords: GN-closed set, GN-closed map, GN-open map, Neutrosophic g-homeomorphism, 

Neutrosophic g*-homeomorphism. 

 

1. Introduction 

     Neutrosophic sets were initially established as a generality of intuitionistic fuzzy sets [10] by 

Smarandache [18] such that the membership, the non-membership, and the indeterminacy degrees 

are considered. In analogy with more unsure philosophy, the neutrosophic set discharge agreement 

with an indeterminacy condition. The neutrosophic conception has a broad scope of real-time 

requests in the fields of [1-9] Artificial Intelligence, Computer Science, Information Systems, 

Decision Making, Uncertainty assessments of linear time-cost tradeoffs, Applied Mathematics, and 

solving the supply chain problem. Salama et al. [15, 16] adapted the notion of the neutrosophic set 

to operate in neutrosophic topological spaces (NTSs in short) and pioneered generalized 

neutrosophic set and topological spaces. In [11], generalized neutrosophic closed set (in short, 

GNCS) is defined and using this generalized neutrosophic continuous (GN-continuous), and 

generalized neutrosophic irresolute (in short, GN-irresolute) functions are defined. Recently in [12, 

13], the perception of generalized α-contra continuous and neutrosophic almost 

α-contra-continuous functions are introduced. Parimala M et al. [14] introduced and studied the 

thought of Neutrosophic homeomorphism and Neutrosophic αψ homeomorphism in Neutrosophic 

topological spaces. This paper aspires to overly enunciate the thought of neutrosophic generalized 

homeomorphism (in short, neutrosophic g-homeomorphism) in NTSs by utilizing GN-continuous 

function and study some of their properties. We have also provided the idea of generalized 

neutrosophic closed and open mappings by establishing some of their characterizations. Besides, 

neutrosophic g*-homeomorphism is also presented and establish its relation with the neutrosophic 

g-homeomorphism. 

2. Preliminaries 

Definition 2.1 [15]: A neutrosophic topology (in short,N-topology) on 𝑋 ≠ ∅ is a family 𝜉 of N-sets 

in 𝑋 satisfying the laws given below:   

(i) 0𝑁 , 1𝑁 ∈ 𝜉,  

mailto:mb_page@kletech.ac.in
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(ii) 𝑊1⋂𝑊2 ∈ 𝜉 being 𝑊1, 𝑊2 ∈ 𝜉,  

(iii) ⋃𝑊𝑖 ∈ 𝜉 for arbitrary family {𝑊𝑖|𝑖 ∈ 𝛬} ⊆ 𝜉. 

In this situation the ordered pair (𝑋, 𝜉) or simply 𝑋 is termed as NTS and each NS in 𝜉 is named as 

neutrosophic open set (in short, NOS). The complement Λ of an N-open set Λ in 𝑋 is known as 

neutrosophic closed set (briefly, NCS) in 𝑋. 

 

Definition 2.2 [15]: Let Λ be an NS in an NTS (𝑋, 𝜉). Thereupon  

(i) 𝑁𝑖𝑛𝑡(Λ) = ⋃{𝐺|𝐺 is a NOS in 𝑋 and 𝐺 ⊆ Λ} is termed as neutrosophic interior (in brief 𝑁𝑖𝑛𝑡) 

of Λ; 

(ii) 𝑁𝑐𝑙(Λ) = ⋂{𝐺|𝐺 is an NCS in 𝑋 and 𝐺 ⊇ Λ} is termed as neutrosophic closure (shortly 𝑁𝑐𝑙) of 

Λ.  

 

Definition 2.3 [11]: Allow (𝑋, 𝜉) be a NTS. A NS Λ in (𝑋, 𝜉) is termed as generalized neutrosophic 

closed set (in short GNCS) if 𝑁𝑐𝑙(Λ) ⊆ Γ whenever Λ ⊆ Γ and Γ is a NOS. The complement of a 

GNCS is generalized neutrosophic open set (in short GNOS). 

 

Definition 2.4 [11]: Let (𝑋, 𝜉) be NTS and 𝐵 be a NS in 𝑋. Then neutrosophic generalized closure is 

defined as, 𝐺𝑁𝑐𝑙(𝐵) = ⋂{𝐺: 𝐺 is a GNCS in 𝑋 and 𝐵 ⊆ 𝐺}. 

 

Definition 2.5 [11, 17]: A map 𝜂: 𝑋 → 𝑌 is said to be 

(i) neutrosophic closed (in short, NC-map) if the image of every NCS in X is a NCS in Y. 

(ii) neutrosophic continuous (in short, N-continuous) if inverse image of every NCS in 𝑌 is a NCS 

i𝑛 𝑋. 

(iii) generalized neutrosophic continuous (in short, GN-continuous) if inverse image of every NCS 

in 𝑌 is a GNCS in 𝑋. 

(iv) generalized neutrosophic irresolute (in short, GN-irresolute) if inverse image of every GNCS in 

𝑌 is a GNCS in 𝑋. 

 

Definition 2.6 [14]: A bijection g: 𝑋 → 𝑌 is called a neutrosophic homeomorphism if g and g−1 are 

neutrosophic continuous. 

 

3. Neutrosophic Generalized Homeomorphism 

 

Definition 3.1: A bijection 𝜂: 𝑋 → 𝑌 is named as neutrosophic generalized homeomorphism (in 

short neutrosophic g-homeomorphism) if 𝜂 and 𝜂−1  are GN-continuous. 

 

Proposition 3.2: Every neutrosophic homeomorphism is a neutrosophic g-homeomorphism. 

Proof: Consider a bijection mapping 𝜂: 𝑋 → 𝑌 be a neutrosophic homeomorphism, in which 𝜂 as 

well as 𝜂−1 are N-continuous. We have each N-continuous mapping is GN-continuous, so 𝜂 and 

𝜂−1 are GN-continuous. Hence, 𝜂 is neutrosophic g-homeomorphism. 
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Remark 3.3: The next illustration makes clear that the opposite of the above proposition is not valid. 

 

Example 3.4: Let 𝑋 = {𝑝, 𝑞, 𝑟}, 𝜉 = {0𝑁 , 𝒜1, 𝒜2, 𝒜3, 𝒜4, 1𝑁} be a N-topology on 𝑋. 

𝒜1 = 〈𝑥, (0.2,0.1,0.1), (0.2,0.1,0.1), (0.3,0.5,0.5)〉, 𝒜2 = 〈𝑥, (0.1,0.2,0.2), (0.4,0.3,0.3), (0.3,0.3,0.3)〉, 

𝒜3 = 〈𝑥, (0.2,0.2,0.2), (0.2,0.1,0.1), (0.3,0.3,0.3)〉, 𝒜4 = 〈𝑥, (0.1,0.1,0.1), (0.4,0.3,0.3), (0.3,0.5,0.5)〉, 

and let 𝑌 = {𝑝, 𝑞, 𝑟}, 𝜎 = {0𝑁 , ℬ1, ℬ2, ℬ3, ℬ4, 1𝑁} be a neutrosophic topology on 𝑌. 

ℬ1 = 〈𝑦, (0.3,0.3,0.3), (0.2,0.1,0.1), (0.2,0.2,0.2)〉, ℬ2 = 〈𝑦, (0.2,0.2,0.2), (0.1,0.1,0.1), (0.3,0.3,0.3)〉, 

ℬ3 = 〈𝑦, (0.3,0.3,0.3), (0.1,0.1,0.1), (0.2,0.1,0.1)〉, ℬ4 = 〈𝑦, (0.2,0.2,0.2), (0.2,0.1,0.1), (0.3,0.3,0.3)〉. 

Define 𝜂: (𝑋, 𝜉) → (𝑌, 𝜎)  by 𝜂(𝑝) = 𝑝, 𝜂(𝑞) = 𝑞  and 𝜂(𝑟) = 𝑟 . Then 𝜂  is neutrosophic 

g-homeomorphism but not neutrosophic homeomorphism. 

Definition 3.5: A mapping 𝜂: 𝑋 → 𝑌 is generalized neutrosophic closed (in short, GNC-map) if the 

image 𝜂(𝑄) is GNCS in 𝑌 for every NCS 𝑄 in 𝑋. 

 

Definition 3.6: A mapping 𝜂: 𝑋 → 𝑌 is generalized neutrosophic open (in short, GNO-map) if the 

image 𝜂(𝑅) is GNOS in 𝑌 for every NOS 𝑅 in 𝑋. 

 

Proposition 3.7: Every NC-mapping is a GNC-mapping. 

Proof: Consider 𝜂: 𝑋 → 𝑌 is a NC-mapping, so as 𝑄 is an NCS in 𝑋. As 𝜂 is NC- mapping, 𝜂(𝑄) is 

NCS in 𝑌. Since each NCS is GNCS. Therefore, 𝜂(𝑄) is a GNCS in 𝑌. Hence, 𝜂 is GNC-mapping. 

 

Remark 3.8: The opposite of the above proposition is not valid as indicated. 

 

Example 3.9: Let 𝑋 = {𝑝, 𝑞, 𝑟}, 𝜉 = {0𝑁 , 𝒜1, 𝒜2, 𝒜3, 𝒜4, 1𝑁} be a N-topology on 𝑋. 

𝒜1 = 〈𝑥, (0.2,0.1,0.1), (0.2,0.1,0.1), (0.3,0.5,0.5)〉, 𝒜2 = 〈𝑥, (0.1,0.2,0.2), (0.4,0.3,0.3), (0.3,0.3,0.3)〉, 

𝒜3 = 〈𝑥, (0.2,0.2,0.2), (0.2,0.1,0.1), (0.3,0.3,0.3)〉, 𝒜4 = 〈𝑥, (0.1,0.1,0.1), (0.4,0.3,0.3), (0.3,0.5,0.5)〉, 

and let 𝑌 = {𝑝, 𝑞, 𝑟}, 𝜎 = {0𝑁 , ℬ1, ℬ2, ℬ3, ℬ4, 1𝑁} be a neutrosophic topology on 𝑌. 

ℬ1 = 〈𝑦, (0.3,0.3,0.3), (0.2,0.1,0.1), (0.2,0.2,0.2)〉, ℬ2 = 〈𝑦, (0.2,0.2,0.2), (0.1,0.1,0.1), (0.3,0.3,0.3)〉, 

ℬ3 = 〈𝑦, (0.3,0.3,0.3), (0.1,0.1,0.1), (0.2,0.1,0.1)〉, ℬ4 = 〈𝑦, (0.2,0.2,0.2), (0.2,0.1,0.1), (0.3,0.3,0.3)〉. 

Define 𝜂: (𝑋, 𝜉) → (𝑌, 𝜎)  by 𝜂(𝑝) = 𝑝, 𝜂(𝑞) = 𝑞  and 𝜂(𝑟) = 𝑟 . Then 𝜂  is GNC-mapping but not 

NC-mapping. 

 

Proposition 3.10: A map 𝜂: 𝑋 → 𝑌 is a GNC-mapping if the image of each NOS in 𝑋 is GNOS in 𝑌. 

Proof: Let 𝑅 be a NOS in 𝑋. Hence 𝑅 is a NCS in 𝑋. As 𝜂 is GNC-mapping, 𝜂(𝑅) is a GNCS in 𝑌. 

Since 𝜂(𝑅) = (𝜂(𝑅)), 𝜂(𝑅) is a GNOS in 𝑌. 

Proposition 3.11: Let 𝜂: 𝑋 → 𝑌 be a bijective mapping, then the next assertions are same: 

(i) 𝜂  is GNO-mapping. 

(ii) 𝜂 is GNC-mapping. 

(iii) 𝜂−1 is GN-continuous. 
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Proof: (𝑖) → (𝑖𝑖). Suppose that 𝜂 is GNO-mapping. Then, 𝑃 is a NOS in 𝑋, then image 𝜂(𝑃) is 

GNOS in 𝑌. Here, 𝑃 is NCS in 𝑋, then 𝑋 − 𝑃 is a NOS in 𝑋. By prediction, 𝜂(𝑋 − 𝑃) is a GNOS in 

𝑌. Hence, 𝑌 − 𝜂(𝑋 − 𝑃) is a GNCS in 𝑌. Hence, 𝜂 is a GNC-mapping. 

(𝑖𝑖) → (𝑖𝑖𝑖). Let 𝑅 be an NCS in 𝑋. By (ii), 𝜂(𝑅) is GNCS in 𝑌. Therefore, 𝜂(𝑅) = (𝜂−1)−1(𝑅), so 

𝜂−1 is a GNCS in 𝑌. Hence, 𝜂−1 is a GN-continuous. 

(𝑖𝑖𝑖) → (𝑖). Let 𝑄 be a NOS in 𝑋. By (iii), (𝜂−1)−1(𝑄) = 𝜂(𝑄) is GNO-mapping.  

 

Proposition 3.12: Let 𝜂: (𝑋, 𝜉) → (𝑌, 𝜎) be a bijective mapping. If 𝜂 is GN-continuous, thereupon 

the declarations are identical: 

(i) 𝜂 is GNC-mapping. 

(ii) 𝜂 is GNO-mapping. 

(iii) 𝜂−1 is neutrosophic g-homeomorphism. 

Proof:  (𝑖) → (𝑖𝑖) . Presume that 𝜂  is bijective as well as a GNC-mapping. So, 𝜂−1  is a 

GN-continuous mapping. As we have every NOS is GNOS in 𝑌. Hence, 𝜂 is GNO-mapping. 

(𝑖𝑖) → (𝑖𝑖𝑖). Consider a bijective NO-mapping 𝜂. Furthermore, 𝜂−1  is a GN-continuous mapping. 

Accordingly, 𝜂 and 𝜂−1 are GN-continuous. Hence, 𝜂 is neutrosophic g-homeomorphism.  

(𝑖𝑖𝑖) → (𝑖). Let 𝜂 be neutrosophic g-homeomorphism, then 𝜂 and 𝜂−1 are GN-continuous. As each 

NCS in 𝑋 is a GNCS in 𝑌, therefore 𝜂 is a GNC-mapping. 

 

Definition 3.13 [19]: Let (𝑋, 𝜉) be an NTS said to be a as neutrosophic-T1/2 (in short N-T1/2) space if 

every GNCS is NCS in 𝑋. 

 

Proposition 3.14: Let 𝜂: (𝑋, 𝜉) → (𝑌, 𝜎) be neutrosophic g-homeomorphism, then 𝜂 is neutrosophic 

homoemorphism if 𝑋 and 𝑌 are N-T1/2 space. 

Proof: Consider that 𝐷 is an NCS in 𝑌, then 𝜂−1(𝐷) is a GNCS in 𝑋 due to the assumption. Since 

𝑋  is N - T1/2 space, 𝜂−1(𝐷)  is NCS in 𝑋 . Then, 𝜂  is GN-continuous. By hypothesis 𝜂−1  is 

GN-continuous. Let 𝐻 be a NCS in 𝑋. (𝜂−1)−1(𝐻) = 𝜂(𝐻) is a NCS in 𝑌, by preassumption. As 𝑌 is 

N-T1/2  space, 𝜂(𝐻) is a NCS in 𝑌. Hence, 𝜂−1  is N-continuous. Therefore, 𝜂  is a neutrosophic 

homeomorphism. 

 

Proposition 3.15: Let 𝜂: 𝑋 → 𝑌 and 𝜇: 𝑌 → 𝑍 be GNC-mappings where 𝑋 and 𝑍 are NTSs and 𝑌 is 

N-T1/2 space, then (𝜇 𝑜 𝜂) is GNC-mapping. 

Proof: Let 𝑅 be a NCS in 𝑋. As 𝜂 is GNC-map and 𝜂(𝑅) is a GNCS in 𝑌, by assumption, 𝜂(𝑅) is a 

NCS in 𝑌. Since 𝜇 is GNC-map, then 𝜇(𝜂(𝑅)) is a GNCS in 𝑋 and 𝑍 and 𝜇(𝜂(𝑅)) = (𝜇 𝑜 𝜂)(𝑅). 

Therefore, (𝜇 𝑜 𝜂) is GNC-map. 

 

Proposition 3.16: Let 𝜇: 𝑋 → 𝑌 and 𝜆: 𝑌 → 𝑍 be NTSs, then the following hold:  

(i) If (𝜆 𝑜 𝜇) is GNO-map and 𝜇 is N-continuous, then 𝜆 is GNO-map. 

(ii) If (𝜆 𝑜 𝜇) is GNO-map and 𝜇 is GN-continuous, then 𝜆 is GNO-map. 
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Proof: (i) Let 𝐾  be NOS in 𝑌 . Then, 𝜇−1(𝐾)  is a NOS in 𝑋 . Since (𝜆 𝑜 𝜇)  GNO-map and 

(𝜆 𝑜 𝜇)𝜇−1(𝐾) = 𝜆 (𝜇(𝜇−1(𝐾))) = 𝜆(𝐾) is GN-open in 𝑍, hence 𝜆 is GN-open map. 

(ii) Let 𝐾 be NOS in 𝑋. Then, 𝜆 ( 𝜇(𝐾) ) is a NOS in 𝑍. Hence, 𝜆−1(𝜆 (𝜇(𝐾)) = 𝜇(𝐾) is GNOS in 𝑌. 

Therefore 𝜇 is GNO- map. 

 

4. Neutrosophic g*-Homeomorphism 

 

Definition 4.1: A bijection 𝜇: 𝑋 → 𝑌 is called neutrosophic g*-homeomorphism if 𝜇 and 𝜇−1 are 

GN-irresolute mappings. 

 

Proposition 4.2: Every neutrosophic g*-homeomorphism is a neutrosophic g-homeomorphism. 

Proof: A map 𝜇 is a neutrosophic g*-homeomorphism. Predict that 𝐾 is a NCS in 𝑌. So it is a 

GNCS in 𝑌. By pressumption, 𝜇−1(𝐾) is a GNCS in 𝑋. Accordingly, 𝜇 is GN-continuous mapping. 

Therefore, 𝜇  and 𝜇−1  are GN-continuous mappings. Henec, 𝜇  is a neutrosophic 

g-homeomorphism. 

 

Remark 4.3: The example is given to show that the reverese of the above proposition is not possible. 

 

Example 4.4: Let 𝑋 = {𝑝, 𝑞, 𝑟}, 𝜉 = {0𝑁 , 𝒜1, 𝒜2, 𝒜3, 𝒜4, 1𝑁} be a N-topology on 𝑋. 

𝒜1 = 〈𝑥, (0.2,0.1,0.1), (0.2,0.1,0.1), (0.3,0.5,0.5)〉, 𝒜2 = 〈𝑥, (0.1,0.2,0.2), (0.4,0.3,0.3), (0.3,0.3,0.3)〉, 

𝒜3 = 〈𝑥, (0.2,0.2,0.2), (0.2,0.1,0.1), (0.3,0.3,0.3)〉, 𝒜4 = 〈𝑥, (0.1,0.1,0.1), (0.4,0.3,0.3), (0.3,0.5,0.5)〉, 

and let 𝑌 = {𝑝, 𝑞, 𝑟}, 𝜎 = {0𝑁 , ℬ1, ℬ2, ℬ3, ℬ4, 1𝑁} be a neutrosophic topology on 𝑌. 

ℬ1 = 〈𝑦, (0.3,0.3,0.3), (0.2,0.1,0.1), (0.2,0.2,0.2)〉, ℬ2 = 〈𝑦, (0.2,0.2,0.2), (0.1,0.1,0.1), (0.3,0.3,0.3)〉, 

ℬ3 = 〈𝑦, (0.3,0.3,0.3), (0.1,0.1,0.1), (0.2,0.1,0.1)〉, ℬ4 = 〈𝑦, (0.2,0.2,0.2), (0.2,0.1,0.1), (0.3,0.3,0.3)〉. 

Define 𝜂: (𝑋, 𝜉) → (𝑌, 𝜎)  by 𝜂(𝑝) = 𝑝, 𝜂(𝑞) = 𝑞  and 𝜂(𝑟) = 𝑟 . Then 𝜂  is neutrosophic 

g-homeomorphism but not neutrosophic g*-homeomorphism. 

 

Proposition 4.5: If 𝜇: 𝑋 → 𝑌 and 𝜆: 𝑌 → 𝑍 are neutrosophic g*-homeomorphisms, then (𝜆 𝑜 𝜇) is a 

neutrosophic g*-homeomorphism. 

Proof: Consider  𝜇  and 𝜆  as neutrosophic g*-homeomorphisms. Predict 𝐾  is a GNCS in 𝑍 . 

Thereupon, by the presumption, 𝜆−1(𝐾) is a GNCS in 𝑌. Hence, by hypothesis, 𝜇−1(𝜆−1(𝐾)) is a 

GNCS in 𝑋. Hence, (𝜆 𝑜 𝜇) is a GN-irresolute mapping. Now, consider 𝐻 be a GNCS in 𝑋. Then, by 

the presumption,  𝜇(𝐻) is a GNCS in 𝑌. So, by hypothesis, 𝜆( 𝜇(𝐻)) is a GNCS in 𝑍. This implies 

that (𝜆 𝑜 𝜇) is a GN-irresolute mapping. Therefore, (𝜆 𝑜 𝜇) is neutrosophic g*-homeomorphism. 

 

Proposition 4.6: If 𝜇: 𝑋 → 𝑌  is a neutrosophic g*-homeomorophism, then 𝑁𝐺𝑐𝑙(𝜇−1(𝐾)) =

𝜇−1(𝑁𝐺𝑐𝑙(𝐾)) for each NS 𝐾 in 𝑌. 

Proof: As 𝜇 is neutrosophic g*-homeomorphism, then 𝜇 is GN-irresolute mapping. Let 𝐾 be a NS 

in 𝑌. Clearly, 𝑁𝐺𝑐𝑙(𝐾) is GNCS in 𝑋. This proves that 𝐺𝑁𝑐𝑙(𝐾) is GNCS in 𝑋. Since 𝜇−1(𝐾) ⊆



Neutrosophic Sets and Systems, Vol. 35, 2020 345  

 

 

Md. Hanif PAGE and Qays Hatem Imran, Neutrosophic Generalized Homeomorphism 

 

𝜇−1(𝐺𝑁𝑐𝑙(𝐾)), then 𝐺𝑁𝑐𝑙(𝜇−1(𝐾)) ⊆ 𝐺𝑁𝑐𝑙 (𝜇−1(𝐺𝑁𝑐𝑙(𝐾))) = 𝜇−1(𝐺𝑁𝑐𝑙(𝐾)). Therefore, 

𝐺𝑁𝑐𝑙(𝜇−1(𝐾)) ⊆ 𝜇−1(𝐺𝑁𝑐𝑙(𝐾)). 

Let 𝜇 be neutrosophic g*-homeomorphism. 𝜇−1 is a GN-irresolute mapping. Consider NS 𝜇−1(𝐾) 

in 𝑋, which implies that 𝐺𝑁𝑐𝑙(𝜇−1(𝐾)) is GNCS in 𝑋. Therefore, 𝐺𝑁𝑐𝑙(𝜇−1(𝐾)) is a GNCS in 𝑋. 

This implies that (𝜇−1)−1(𝐺𝑁𝑐𝑙(𝜇−1(𝐾)) = 𝜇(𝐺𝑁𝑐𝑙(𝜇−1(𝐾))) is a GNCS in 𝑌. This proves that 𝐾 =

(𝜇−1)−1(𝜇−1(𝐾)) ⊆ (𝜇−1)−1 (𝐺𝑁𝑐𝑙(𝜇−1(𝐾))) = 𝜇(𝐺𝑁𝑐𝑙(𝜇−1(𝐾))) , since 𝜇−1  is GN-irresolute 

mapping. Hence, 𝜇−1(𝐺𝑁𝑐𝑙(𝐾)) ⊆ 𝜇−1 (𝜇 (𝐺𝑁𝑐𝑙(𝜇−1(𝐾)))) = 𝐺𝑁𝑐𝑙(𝜇−1(𝐾)).  

That is, 𝜇−1(𝐺𝑁𝑐𝑙(𝐾)) ⊆ 𝐺𝑁𝑐𝑙(𝜇−1(𝐾)). Hence, 𝐺𝑁𝑐𝑙(𝜇−1(𝐾)) = 𝜇−1(𝐺𝑁𝑐𝑙(𝐾)). 

  

5. Conclusions 

      We have introduced neutrosophic generalized homeomorphism in neutrosophic topological 

space using GN-contiuous functions. Some characterizations have been provided to illustrate how 

far topological structures are conserved by the new neutrosophic notion defined. Furthermore, 

neutrosophic g*-homeomorphism, neutrosophic generalized open and closed mappings are also 

studied. The study demonstrated neutrosophic g*-homeomorphisms and also proved some of their 

related attributes. Also, the relation between generalized neutrosophic closed mappings and other 

existed Neutrosophic closed mappings in Neutrosophic topological spaces were established and 

derived some of their related attributes. Examples are given wherever necessary. 

    In future, we can carry out the further rsearch on neutrosophic g-compactness, neutrosophic 

g-connectedness and neutrosophic almost g-contra continuous functions.  
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