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Abstract. This paper comes as a second step serves the purpose of constructing a 

neutrosophic optimization model for the relation geometric programming problems subject 

to (max, product) operator in its constraints. This essay comes simultaneously with my 

previous paper entitled (Neutrosophic Geometric Programming (NGP) with (max-product) 

Operator, An Innovative Model) which contains the structure of the maximum solution. The 

purpose of this article is to set up the minimum solution for the (RNGP) problems, the author 

faced many difficulties, where the feasible region for this type of problems is already non-

convex; furthermore, the negative signs of the exponents with neutrosophic variables 𝑥𝑗 ∈

[0,1] ∪ 𝐼 . A new technique to avoid the divided by the indeterminacy component (𝐼) was 

introduced; Separate the neutrosophic geometric programming into two optimization 

models, introducing two new matrices named as the distinguishing matrix and the 

facilitation matrix. All these notions were important for finding the minimum solution of the 

program. Finally, two numerical examples were presented to enable the reader to understand 

this work.  

Keyword: Relational Neutrosophic Geometric Programming (RNGP); (⋁, . ) Operator; 

Neutrosophic Relation Equations; Distinguishing Matrix; Facilitation Matrix; Minimum 

Solution; Incompatible Problem. 

1. Introduction

 As of 1995 so far, dozens of mathematicians and researchers in many fields of 

sciences trying to study and understand the neutrosophic theory, the first mathematician who 

set up and put forward the neutrosophic theory was Smarandache F. at 1995 [2,11], he is in 

the neutrosophic theory as Lotfi A. Zadeh [12] in fuzzy theory and as K. Atanasov [10] in 

intuitionistic fuzzy theory. The importance of the neutrosophic logic comes from its ability to 

deal with the indeterminacy component (𝐼), this component makes scholars generalize the 

fuzzy and intuitionistic fuzzy logics, give them the ability to put the paradoxes in a new 

framework, and it makes the researchers deal with contradicted information in more 

relaxation. This paper comes as an establishing article in the relational neutrosophic 

programming problems (RNGP) with (⋁, . ) in its constraints. This kind of problems has many 

applications in real-world problems, like communication system, civil engineering, 

mechanical engineering, structural design and optimization, business management …etc. The 

author published previous articles [1,3,4,6,7,9] to expand the fuzzy theory to be fit with 

neutrosophic theory, this essay was one of the series of these articles. 

 This publication includes three original sections, despite the second section goes to 

the basic concepts, but these pure concepts were originated by the author at the 
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simultaneously published paper, which focused on the form of the maximum solution in the 

(RNGP) with (∨, . ) operator, the third section was dedicated to many unprecedented 

mathematical formulas such as pre-distinguishing matrices, pre-facilitation matrices, a new 

technique to separate the optimization model into two models depending upon the sign of 

terms powers in the objective function, and a technique to filter all minimum solutions, the 

forth section was for two numerical examples, they are the same examples that presented in 

the article [8] which assigned to the maximum solution, the last section includes the 

conclusion. 

2. Basic Concepts 

We call 

min 𝑓(𝑥) = (𝑐1. 𝑥1
𝛾1) ∨ (𝑐2. 𝑥2

𝛾2) ∨ …∨ (𝑐𝑛. 𝑥𝑛
𝛾𝑛)

𝑠. 𝑡.                      𝐴𝑜𝑥 =  𝑏                                          
𝑥𝑗 ∈ [0,1] ∪ 𝐼,       1 ≤ 𝑗 ≤ 𝑛                                 

}                                                                               (1)  

A ( ∨, . ) (max- product) neutrosophic geometric programming, where 𝐴 = (𝑎𝑖𝑗), 1 ≤

𝑖 ≤ 𝑚 , 1 ≤ 𝑗 ≤ 𝑛, 𝑎𝑖𝑗 ∈ [0,1] is (𝑚 × 𝑛) dimensional neutrosophic matrix, 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇

an n-dimensional variable vector, 𝑏 = (𝑏1, 𝑏2, … , 𝑏𝑚)
𝑇 (𝑏𝑖 ∈ [0,1] ∪ 𝐼) an m- dimensional 

constant vector, 𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑛)
𝑇 (𝑐𝑗 ≥ 0) an n- dimensional constant vector, 𝛾𝑗 is an 

arbitrary real number, and the composition operator ‘’𝑜’’ is ( ∨, . ) ,  i.e. ⋁ (𝑎𝑖𝑗. 𝑥𝑗) = 𝑏𝑖
𝑛
𝑗=1 .  Note 

that the program (1) is undefined and has no minimal solution in the case of 𝛾𝑗 < 0 with all 

𝑥𝑗′𝑠 taking indeterminacy value.  

2.1. Definition [8] 

𝑎𝑖𝑗 ⋈ 𝑏𝑖 = {

𝑏𝑖

𝑎𝑖𝑗
,                  𝑖𝑓  𝑎𝑖𝑗 > 𝑏𝑖 , 𝑎𝑖𝑗 ∈ [0,1], 𝑏𝑖 ∈ [0,1]

1,                    𝑖𝑓  𝑎𝑖𝑗 ≤ 𝑏𝑖 , 𝑎𝑖𝑗 ∈ [0,1], 𝑏𝑖 ∈ [0,1]

 1 ,              𝑖𝑓             𝑎𝑖𝑗 ∈ [0,1], 𝑏𝑖 = 𝑛𝐼, 𝑛 ∈ (0,1]

                                                          (2) 

𝑎𝑖𝑗Θ𝑏𝑖 =

{
 
 

 
 

𝑛𝐼

𝑎𝑖𝑗
,            𝑖𝑓  𝑎𝑖𝑗 > 𝑛 , 𝑎𝑖𝑗 ∈ [0,1], 𝑏𝑖 = 𝑛𝐼, 𝑛 ∈ (0,1]

  
 

1,               𝑖𝑓  𝑎𝑖𝑗 ≤ 𝑛 , 𝑎𝑖𝑗 ∈ [0,1], 𝑏𝑖 = 𝑛𝐼, 𝑛 ∈ (0,1]  

𝑛𝑜𝑡 𝑐𝑜𝑚𝑝.     𝑖𝑓             𝑎𝑖𝑗 = 𝑚𝐼 , 𝑚 ∈ (0,1] , 𝑏𝑖 ∈ [0,1] ∪ 𝐼

1                      𝑖𝑓                                                  𝑎𝑖𝑗 , 𝑏𝑖𝑗 ∈ [0,1]  
 

                                      (3) 

Where ⋈ is an operator defined at [0,1], while the operator  Θ is defined at [0,1] ∪ 𝐼. Let        

�̂�𝑗 = ⋀ (𝑎𝑖𝑗 ⋈ 𝑏𝑖),        (1 ≤ 𝑗 ≤ 𝑛)𝑚
𝑖=1                                                                                                   (4) 

be the components of the pre maximum solution �̂�𝑣1.(i.e. �̂�𝑣1 = (�̂�1, �̂�2, … , �̂�𝑛)) 

Let  �̂�𝑗 = ⋀ (𝑎𝑖𝑗Θ𝑏𝑖),        (1 ≤ 𝑗 ≤ 𝑛)
𝑚
𝑖=1 ,                                                                                             (5) 

be the components of the pre maximum solution �̂�𝑣2. (i.e. �̂�𝑣2 = (�̂�1, �̂�2, … , �̂�𝑛)) 

Now the following question will be raised, 

Which one �̂�𝑣1 or �̂�𝑣2 should be the exact maximum solution? 

Neither �̂�𝑣1 nor �̂�𝑣2 will be the exact solution! The exact solution is integrated between them. 

Before solving 𝐴𝑜�̂� = 𝑏, we first define the matrices 𝐴𝑣1, 𝐴𝑣2. 

Let 𝐴𝑣1 be a matrix has the same dimension and the same rows elements of 𝐴 except for those 

rows of the indexes 𝑖 = 𝑖𝑜 corresponding to those indexes of 𝑏𝑖𝑜 = 𝑛𝐼, those special rows of 
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𝐴𝑣1 will be zeros. Let 𝐴𝑣2 be a matrix has the same dimension and the same rows elements of 

𝐴 except for those rows of the indexes 𝑖 = 𝑖𝑜 corresponding to those indexes of 𝑏𝑖𝑜 ∈ [0,1], 

those special rows of 𝐴𝑣2 will be zeros. Consequently, 

𝐴𝑜�̂� = 𝑏 = (𝐴𝑣1𝑜�̂�𝑣1) + (𝐴𝑣2𝑜�̂�𝑣2)                                                                                                   (6) 

The formula (6) is the greatest solution in 𝑋(𝐴, 𝑏). 

The maximum value of the objective function 𝑓(�̂�) = 𝑓(�̂�𝑣1) ∨ 𝑓(�̂�𝑣2). 

2.2. Theorem [8] 

If 𝛾𝑗 < 0  (1 ≤ 𝑗 ≤ 𝑛), then the greatest solution to the problem (1) is an optimal 

solution.  

2.3. Definition [5] 

If there exists a solution to 𝑥 = 𝑏 , it's called compatible. Suppose 𝑋(𝐴, 𝑏) = {(𝑥1, 𝑥2, … , 𝑥𝑚)
𝑇 ∈

[0,1]𝑛 ∪ 𝐼, 𝐼𝑛 = 𝐼 , 𝑛 > 0|𝑥𝜊𝐴 = 𝑏, 𝑥𝑖 ∈ [0,1] ∪ 𝐼} is a solution set of  𝐴𝑜𝑥 = 𝑏 , we define  𝑥1 ≤

𝑥2 ⟺ 𝑥𝑗
1  ≤ 𝑥𝑗

2 (1 ≤ 𝑗 ≤ 𝑛), ∀ 𝑥1, 𝑥2 ∈ 𝑋(𝐴, 𝑏). Where " ≤ " is a partial order relation on 𝑋(𝐴, 𝑏). 

3. The Structure of the Minimum Solution �̆�. 

The feasible region of the solution domain for the neutrosophic geometric 

programming (NGP) problems subject to (max-product) operator in its constraints is a 

solution to 𝐴𝑜𝑥 = 𝑏 , therefore the definition of the solution set 𝑋(𝐴, 𝑏) and the shape of the 

maximum and the minimum solutions are very important to optimize the (NGP) model. 

The structure of the maximum solution was introduced by Huda E. Khalid in [8]. 

The definition (2.3) was constructed by Huda E. Khalid at 2016 [5], this definition was 

dedicated for (RNGP) problems subject to (max-min) operator, this definition is also 

appropriate for (RNGP) problems with (max, product) operator. 

3.1. Definition  

If there exists a minimum solution in the solution set 𝑋(𝐴, 𝑏), then the numbers of the 

minimum solutions are not lonesome such as the maximum solution. If we denote all 

minimum elements by �̌�(𝐴, 𝑏), then another version of  𝑋(𝐴, 𝑏) can be presented depending 

upon the minimum and the maximum solutions as follows: 

𝑋(𝐴, 𝑏) = ∪𝑥∈�̌�(𝐴,𝑏) {𝑥 ⎸�̌� ≤ 𝑥 ≤ �̂�, 𝑥 ∈ 𝑋}                                                                                        (7) 

The following definitions introduce some important new matrices that were constructed by 

the author for using them in the filtering rule for finding the minimum solution. 

3.2. Definition 

Let 𝑆1 = (𝑠𝑖𝑗
1)𝑚×n , 𝑆2 = (𝑠𝑖𝑗

2)𝑚×n be two pre - distinguishing matrices of 𝐴, where 

𝑠𝑖𝑗
1 = {

𝑎𝑖𝑗,         𝑎𝑖𝑗 . �̂�𝑗 = 𝑏𝑖 

0,            𝑎𝑖𝑗 . �̂�𝑗 ≠ 𝑏𝑖
                                                                                                                  (8) 
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In (8), the  �̂�𝑗’s are the components of the pre - maximum solution �̂�𝑣1 which supports the 

fuzzy part of the problem, while the elements 𝑎𝑖𝑗  are the elements of the matrix 𝐴𝑣1. 

𝑠𝑖𝑗
2 = {

𝑎𝑖𝑗,         𝑎𝑖𝑗. �̂�𝑗 = 𝑏𝑖 

0,            𝑎𝑖𝑗. �̂�𝑗 ≠ 𝑏𝑖
                                                                                                                (9) 

In (9), the  �̂�𝑗’s are the components of the pre - maximum solution �̂�𝑣2 which supports the 

neutrosophic  part of the problem, while  𝑎𝑖𝑗  are the elements of the matrix 𝐴𝑣2. 

Let 

𝑆 = (𝑠𝑖𝑗)𝑚×𝑛 = (𝑠𝑖𝑗
1)𝑚×n + (𝑠𝑖𝑗

2)𝑚×n = 𝑆1 + 𝑆2                                                                             (10) 

The matrix  𝑆 is called the distinguishing matrix of 𝐴. It is obvious that the constraints system 

𝐴𝑜𝑥 = 𝑏 has a solution if and only if the distinguishing matrix 𝑆 of 𝐴 has non zero rows (i.e. 𝑆 

has at least a nonzero element in each row). 

3.3. Definition 

Let 𝐹1 = (𝑓𝑖𝑗
1)𝑚×n , 𝐹2 = (𝑓𝑖𝑗

2)𝑚×n be two pre - facilitation matrices of 𝐴, where 

𝑓𝑖𝑗
1 = {

�̂�𝑖𝑗 ,         𝑎𝑖𝑗 . �̂�𝑗 = 𝑏𝑖 

0,            𝑎𝑖𝑗 . �̂�𝑗 ≠ 𝑏𝑖
                                                                                                                  (11) 

In (11), the  �̂�𝑗’s are the components of the pre- maximum solution �̂�𝑣1 which supports the 

fuzzy part of the problem, while the elements 𝑎𝑖𝑗  are the entries of 𝐴𝑣1. 

𝑓𝑖𝑗
2 = {

�̂�𝑖𝑗 ,         𝑎𝑖𝑗 . �̂�𝑗 = 𝑏𝑖 

0,            𝑎𝑖𝑗. �̂�𝑗 ≠ 𝑏𝑖
                                                                                                                  (12) 

In (12), the �̂�𝑗’s are the components of the pre - maximum solution �̂�𝑣2 which supports the 

neutrosophic  part of the problem, 

Let  

𝐹 = (𝑓𝑖𝑗)𝑚×𝑛 = (𝑓𝑖𝑗
1)𝑚×n + (𝑓𝑖𝑗

2)𝑚×n = 𝐹1 + 𝐹2                                                                              (13) 

The matrix  𝐹 is called the Facilitation matrix of 𝐴. 

Both matrices 𝑆 𝑎𝑛𝑑 𝐹 are first introduced in this paper and they have a key role in finding 

the set of all quasi-minimum solutions and then the optimal solution for NGP problems. 

18



Neutrosophic Sets and Systems, Vol. 32, 2020

Huda E. Khalid, Neutrosophic Geometric Programming (NGP) Problems Subject to (⋁, . ) Operator; the Minimum 

Solution       

3.4  The Filtration Method for Finding Minimum Solutions 

1. Delete the 𝑖 − 𝑡ℎ row of  F, for which  𝑏𝑖 = 0 

2.  At 𝑏𝑖 > 0, find an index 𝑧 ∈ {1,2,… ,𝑚} such that  𝑧 > 𝑖, if for all 𝑗 = 1,2,… , 𝑛 

we find 𝑓𝑧𝑗 ≠ 0 ⟺ 𝑓𝑖𝑗 ≠ 0, then delete the 𝑖 − 𝑡ℎ row of F. 

3. Denote �̃� for the matrix that gained from the above steps (i.e steps 1&2). 

4. To each row of  �̃�, in each time, the only nonzero value is selected in every 

row with all entries of the rest seen as zero, perhaps all of the matrices are 

denoted by �̃�1, �̃�2,… . , �̃�𝑝. 

5. To each column of �̃�𝑘  (1 ≤ 𝑘 ≤ 𝑝), the maximum element is selected, a quasi-

minimum solution 𝑥𝑗 can be obtained through such a method 

The set composed of all 𝑥𝑗 is called a quasi-minimum solution, and it includes all 

minimum solutions to 𝐴𝑜𝑥 = 𝑏. Delete all repeated solutions, and then all minimum 

solutions �̌�(𝐴, 𝑏) can be obtained. 

As an integrated study for all cases of the exponents (𝛾𝑗) of the terms in the 

objective function 𝑓(𝑥), we saw that the theorem (2.2) covered the negative 

exponents, while the following theorem will cover the positive exponents for the 

terms of 𝑓(𝑥). 

3.5  Theorem 

If 𝛾𝑗 ≥ 0  (1 ≤ 𝑗 ≤ 𝑛), then a certain minimum solution 𝑥 to 𝐴𝑜𝑥 = 𝑏 is an optimal one 

to the program (1). 

Proof 

Since 𝛾𝑗 ≥ 0  (1 ≤ 𝑗 ≤ 𝑛), then 
𝑑(𝑥

𝑗

𝛾𝑗
)

𝑑𝑥𝑗
= 𝛾𝑗𝑥𝑗

𝛾𝑗−1 ≥ 0. 

We have 𝑥𝑗 ∈ [0,1] ∪ 𝐼, so 𝑥
𝑗

𝛾𝑗 is a monotone increasing function concerning 𝑥𝑗, so is 

𝑐𝑗𝑥𝑗
𝛾𝑗 concerning 𝑥𝑗. Hence, ∀ 𝑥 ∈ 𝑋(𝐴, 𝑏), depending on formula (7), then there exists 

𝑥 ∈ �̌�(𝐴, 𝑏), such that 𝑥 ≥ 𝑥 (i.e. 𝑥𝑗 ≥ 𝑥𝑗) ⟹ 𝑐𝑗. 𝑥𝑗
𝛾𝑗 ≥ 𝑐𝑗. 𝑥𝑗

𝛾𝑗  (1 ≤ 𝑗 ≤ 𝑛) ⟹ 𝑓(𝑥) ≥

𝑓(𝑥), this means that the optimal solution to the program (1) must exist in 
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�̌�(𝐴, 𝑏).𝑓(𝑥∗) = min { 𝑓(𝑥) ⎸𝑥 ∈ �̌�(𝐴, 𝑏)}. Then ∀ 𝑥 ∈ 𝑋(𝐴, 𝑏), there exists 𝑓(𝑥) ≥ 𝑓(𝑥∗), 

so 𝑥∗ ∈ �̌�(𝐴, 𝑏) is an optimal solution to the program (1). 

3.6  Two Optimization Models Based on the Sign of 𝜸𝒋 

Let 𝑀1 = {𝑗 ⎸𝛾𝑗 < 0, 1 < 𝑗 < 𝑛}, 𝑀2 = {𝑗 ⎸𝛾𝑗 > 0, 1 < 𝑗 < 𝑛},  then 𝑀1 ∩𝑀2 = ∅, 𝑀1 ∪𝑀2 = 𝐽 , 

here 𝐽 = {1,2, … , 𝑛}. It is evident that the terms of the objective function 𝑓(𝑥) in the program 

(1) having negative powers is  

𝑓1(𝑥) =∨𝑗∈𝑀1 {(𝑐𝑗. 𝑥𝑗
𝛾𝑗
)}                                                                                                                      (14) 

While the terms of  𝑓(𝑥) that having positive exponents is 

𝑓2(𝑥) =∨𝑗∈𝑀2 {(𝑐𝑗. 𝑥𝑗
𝛾𝑗
)}                                                                                                                       (15) 

Based on (14) and (15), we have the following two optimization models, 

  

min 𝑓1(𝑥)

𝑠. 𝑡. 𝐴𝑜𝑥 = 𝑏
𝑥𝑗 ∈ [0,1] ∪ 𝐼

                                                                                                                                       (16) 

min 𝑓2(𝑥)

𝑠. 𝑡. 𝐴𝑜𝑥 = 𝑏
𝑥𝑗 ∈ [0,1] ∪ 𝐼

                                                                                                                                         (17) 

Using theorem (2.2), �̂� is an optimal solution for (16). By theorem (3.5), there exists 

�̌�∗ ∈ �̌�(𝐴, 𝑏) , where �̌�∗ is an optimal solution for (17).  

3.7  Important Notes 

1. In this type of problems, the first step is to search for the maximum solution which is 

lonesome for every problem. If the purpose of the program (1) is to optimize it, with 

the restriction that all powers of the variables 𝑥𝑗 are negative, then the greatest 

solution is the optimal one {i.e. 𝑓(𝑥∗) = 𝑓(�̂�) = 𝑓(�̂�𝑣1)⋀𝑓(�̂�𝑣2)}. 

2. The second step is to search for the minimum solution which is the set of all minimal 

solutions �̌�(𝐴, 𝑏). When the purpose of the program (1) is to optimize it, with the 

restriction that some of the exponents are negative and others are positive, then 

𝑓(𝑥∗) = 𝑓1(�̂�)⋀𝑓2(�̌�).  
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3. It should be noticed that the components of  �̂�𝑣2 containing indeterminate values (I) 

raised to the negative powers of 𝑓(𝑥) must be neglected, otherwise, it will be 

undefined program. 

The upcoming section covering numerical examples, those examples are the same 

that discussed in [8] for its maximal solution, we could not be remote far away from the paper 

[8], present paper regarded as the complement of [8] which contained the formula of the 

maximum solution, while this present paper introduces the set of all minimum solutions. 

4 Numerical examples 

We now gaze the (max, product) neutrosophic relation geometric programming examples as 

follows 

3.1 Example 

Solve 

min𝑓(𝑥) = (0.3. 𝑥1
2)⋁(1.8𝐼 . 𝑥2

1
3)⋁(𝐼 . 𝑥3

1
4) 

s. t.   𝐴𝑜𝑥 = 𝑏 

𝑥𝑗 ∈ [0,1]⋃𝐼     (1 ≤ 𝑗 ≤ 𝑛)     

Where   𝑏 = (1,
1

3
𝐼,
1

5
𝐼)𝑇 ,  𝐴 = (

. 6 1 . 2

. 5 . 2 . 1

. 3 . 5 . 1
)

3×3

. 

Solution: 

𝑥𝑣1  = (𝑥1, 𝑥2, 𝑥3)
𝑇 = (1,1,1)𝑇, 𝑥𝑣2 = (𝑥1, 𝑥2, 𝑥3)

𝑇 = (
2

3
𝐼,
2

5
𝐼, 1)

𝑇
,  

𝐴𝑣1 = (
. 6 1 . 2
0 0 0
0 0 0

) ,         𝐴𝑣2 = (
0 0 0
. 5 . 2 . 1
. 3 . 5 . 1

), 

It is easy to notice that all exponents of 𝑓(𝑥) terms are positive. Therefore 

there will not be a need to separate 𝑓(𝑥) into 𝑓1 and 𝑓2. 

𝑓(𝑥) = 𝑓(𝑥𝑣1)⋁𝑓(𝑥𝑣2) = 1.8𝐼 is the maximum solution. 

Using theorem (3.5), it is essential to find the set of all minimum solutions for 

𝑓(𝑥), where the optimal solution occurs at the minimal solution. 

𝑆1 = [
0 1 0
0 0 0
0 0 0

],   𝑆1 = [
0 0 0
0.5 0 0
0.3 0.5 0

] , 𝑆 = [
0 1 0
0.5 0 0
0.3 0.5 0

]. 
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𝐹1 = [
0 1 0
0 0 0
0 0 0

] , 𝐹2 = [

0 1 0
2

3
𝐼 0 0

2

3
𝐼

2

5
𝐼 0

], 𝐹 = [

0 1 0
2

3
𝐼 0 0

2

3
𝐼

2

5
𝐼 0

]. 

Using the filtration rule stated in section (3.4), 

�̃� = [

2

3
𝐼 0 0

2

3
𝐼

2

5
𝐼 0

]  ⟹ �̃�1 = [

2

3
𝐼 0 0

2

3
𝐼 0 0

] , �̃�2 =  [

2

3
𝐼 0 0

0
2

5
𝐼 0

],  

so the minimum solutions that related to �̃�1 and �̃�2 are 𝑥1 = [
2

3
𝐼, 0,0], 𝑥2 =

[
2

3
𝐼,
2

5
𝐼, 0].

𝑓(𝑥1) =  𝑓(𝑥2) =
2

15
𝐼 is the minimum solution. 

3.2 Example 

Let min𝑓(𝑥) = (0.2𝐼. 𝑥1
−
2

3)⋁(1.3. 𝑥2

1

3)⋁ (𝐼 . 𝑥3

1

2) ⋁ (0.35. 𝑥4
−2) 

s. t.   𝐴𝑜𝑥 = 𝑏 

𝑥𝑗 ∈ [0,1]⋃𝐼     (1 ≤ 𝑗 ≤ 𝑛)     

Where   𝑏 = (0.3, 0.7𝐼, 0.5, 0.2𝐼)𝑇 ,  𝐴 = (

. 2 . 3 . 4 . 6

. 3 . 2 . 9 . 8
1
0

0
. 5

. 1 1
1 0

)

4×4

. 

Solution  

𝑥𝑣1  = (𝑥1, 𝑥2, 𝑥3, 𝑥4)
𝑇 = (0.5,1,

3

4
, 0.5)

𝑇
, 𝑥𝑣2 = (𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑇 =

(
2

5
𝐼, 1,0.2𝐼, 0.875𝐼)

𝑇
, 

The greatest solution for this problem is 𝑓(𝑥) = 𝑓(𝑥𝑣1)  ⋁  𝑓(𝑥𝑣2) = 1.3. 

The following calculations are for finding the minimum solution. 

𝐴𝑣1 = (

. 2 . 3 . 4 . 6
0 0 0 0
1
0

0
0

. 1 1
0 0

) , 𝐴𝑣2 = (

0 0 0 0
. 3 . 2 . 9 . 8
0
0

0
. 5

0 0
1 0

). 

𝑆1 = (

0 . 3 . 4 . 6
0 0 0 0
1
0

0
0

0 1
0 0

) , 𝑆2 = (

0 0 0 0
0 0 0 . 8
0
0

0
0

0 0
1 0

),   ⟹ 𝑆 = (

0 . 3 . 4 . 6
0 0 0 . 8
1
0

0
0

0 1
1 0

). 

𝐹1 =

[
 
 
 0 1

3

4
. 5

0 0 0 0
. 5
0

0
0

0 . 5
0 0 ]

 
 
 

,   𝐹2 = [

0 0 0       0
0 0  0 . 875𝐼
0
0

0
1

0        0
. 2𝐼      0

], ⟹ 𝐹 =

[
 
 
 0 1

3

4
       . 5

0  0  0 . 875𝐼
. 5
0

0
1

0        .5
. 2𝐼      0 ]

 
 
 

. 
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�̃� = [
0 0   0 . 875𝐼
. 5 0  0     . 5
0 1 . 2𝐼      0

], 

�̃�1 = [
0 0   0 . 875𝐼
. 5 0  0     0
0 1 . 2𝐼      0

] ⟹ �̌�1 = (.5,1, .2𝐼, .875𝐼)
𝑇, 

�̃�2 = [
0 0   0 . 875𝐼
0 0  0     . 5
0 1 . 2𝐼      0

] ⟹ �̌�2 = (0,1, .2𝐼, .875𝐼)
𝑇 , 

�̃�3 = [
0 0   0 . 875𝐼
. 5 0  0     . 5
0 1 0      0

] ⟹ �̌�3 = (.5,1,0, .875𝐼)
𝑇 , 

�̃�4 = [
0 0   0 . 875𝐼
. 5 0  0     . 5
0 0 . 2𝐼      0

] ⟹ �̌�4 = (.5,0, .2𝐼, .875𝐼)𝑇, 

�̃�5 = [
0 0    0 . 875𝐼
. 5 0  0      0
0 1 0      0

] ⟹ �̌�5 = (.5,1,0, .875𝐼)
𝑇, 

�̃�6 = [
0 0   0 . 875𝐼
0 0  0      . 5
0 1 0        0

] ⟹ �̌�6 = (0,1,0, .875𝐼)
𝑇 , 

�̃�7 = [
0 0   0 . 875𝐼
. 5 0  0       0
0 0 . 2𝐼      0

] ⟹ �̌�7 = (.5,0, .2𝐼, .875𝐼)
𝑇, 

�̃�8 = [
0 0   0 . 875𝐼
0 0  0     . 5
0 0 . 2𝐼      0

] ⟹ �̌�8 = (0,0, .2𝐼, .875𝐼)
𝑇. 

It is clear that there are two repeated solution, 

𝑥5 = (.5,1,0, .875𝐼)
𝑇 =  𝑥3 , and  𝑥7 = (.5,0, .2𝐼, .875𝐼)

𝑇 =  𝑥4, after deleting all 

repeated solutions, the set of all quasi- minimum solutions �̌�(𝐴, 𝑏) =

{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥6, 𝑥8}. 

Since the powers of some terms in 𝑓(𝑥) are positive while others are negative, 

we separate the objective function 𝑓(𝑥) into  

𝑓1(𝑥) = (0.2𝐼. 𝑥1
−
2

3) ⋁ (0.35 . 𝑥4
−2) ,  𝑓2(𝑥) = (1.3. 𝑥2

1

3) ⋁ (𝐼 . 𝑥3

1

2), 

First, solve for optimizing  

  

min𝑓1(𝑥)

𝑠. 𝑡. 𝐴𝑜𝑥 = 𝑏
𝑥𝑗 ∈ [0,1] ∪ 𝐼

By theorem (2.2), we have f1(𝑥
∗) =  f1(�̂�) = 𝑓1(�̂�𝑣1) ⋀ 𝑓1(�̂�𝑣2) = 1.4, take care 

of those terms of 𝑥𝑣2 that holding indeterminate components must be 

neglected and avoid apply them in the terms of f1(x). 
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Second, solve for optimizing 

min 𝑓2(𝑥)

𝑠. 𝑡. 𝐴𝑜𝑥 = 𝑏
𝑥𝑗 ∈ [0,1] ∪ 𝐼

𝑓2(�̌�1) = 1.3, 𝑓2(�̌�2) = 1.3, 𝑓2(�̌�3) = 1.3, 𝑓2(�̌�4) = .447𝐼, 𝑓2(�̌�6) = 1.3,  

𝑓2(�̌�8) = 0.447𝐼, 

�̌�4, �̌�8 are the optimal for 𝑓2(𝑥), (i.e. 𝑓2(𝑥
∗) = 0.447𝐼). 

∴ 𝒇(𝒙∗) = 𝐟𝟏(𝒙
∗) ⋀ 𝒇𝟐(𝒙

∗) = 𝟎. 𝟒𝟒𝟕𝑰 

5 Conclusion 
The importance of this work comes from the unprecedented notions that were firstly 

introduced in this article which are essential mathematical tools to establish the structure of 

neutrosophic geometric programming (NGP) problems with (∨, . ) operator. Any optimization 

problem needs to specify its minimum and maximum solution, in this article the author 

introduced an effective technique to find the set of all quasi- minimum solution �̌�(𝐴, 𝑏), side 

by side with the structure of the maximum solution �̂�. This work contains the theoretical rules 

with two numerical examples to enable the readers to understand the pure mathematical 

concepts. 
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