
Measurement 134 (2019) 762–772
Contents lists available at ScienceDirect

Measurement

journal homepage: www.elsevier .com/locate /measurement
Neutrosophic image segmentation with Dice Coefficients
https://doi.org/10.1016/j.measurement.2018.11.006
0263-2241/� 2018 Elsevier Ltd. All rights reserved.

Abbreviations: NS, Neutrosophic Sets; DScore, Dice’s Coefficients; NL, Neutro-
sophic Logic; NM, Neutrosophic Measure; NI, Neutrosophic Integral; NP, Neutro-
sophic Probability; FS, Fuzzy Set; IFS, Intuitionistic Fuzzy Set; RS, Rough Set; INS,
Interval Valued NS; GPU, Graphics processing units; ABC, Artificial Bee Colony; FDB,
Factorized Directional Bandpass; NSC, Neutrosophic Similarity Clustering; SVM,
Support vector machine; FOM, Figure of Merit; ROC, Receiver operating character-
istic; T, E, C, R, P, D, t, I, f, F, X, Threshold based, Edge-based, Cluster-based, Region-
based, PDE-based, Deep-learning based, truth, numerical indeterminacy, falsehood,
falsehood membership function, universe of discourse; SNS, Soft Neutrosophic Sets.
⇑ Corresponding author at: Division of Computational Mathematics and Engi-

neering, Institute for Computational Science, Ton Duc Thang University, Ho Chi
Minh City, Vietnam; Faculty of Mathematics and Statistics, Ton Duc Thang
University, Ho Chi Minh City, Vietnam.

E-mail addresses: jhasudan@hotmail.com (S. Jha), sonlh@vnu.edu.vn (L.H. Son),
raghvendraagrawal7@gmail.com (R. Kumar), ishaani@udel.edu (I. Priyadarshini),
smarand@unm.edu (F. Smarandache), hoangvietlong@tdtu.edu.vn (H.V. Long).
Sudan Jha a, Le Hoang Son b, Raghvendra Kumar c, Ishaani Priyadarshini d,
Florentin Smarandache e, Hoang Viet Long f,g,⇑
a School of Computer Engineering, KIIT University, India
bVNU Information Technology Institute, Vietnam National University, Hanoi, Vietnam
cComputer Science and Engineering Department, LNCT College, MP, India
dUniversity of Delaware, Newark, DE, USA
eDepartment of Electrical Engineering, University of New Mexico, USA
fDivision of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
g Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City

a r t i c l e i n f o
Article history:
Received 7 October 2018
Received in revised form 26 October 2018
Accepted 3 November 2018
Available online 10 November 2018

Keywords:
Neutrosophic set
Image processing
Membership and activation functions
Pixel features
Segmentation and augmentation
a b s t r a c t

This paper explores various properties of Neutrosophic sets (NS) and proposes a novel idea on Image
Segmentation using NS. A theoretical Neutrosophic model is proposed to reduce uncertainty from miss-
ing data. Besides, we also tackle the problem of image segmentation with fewer assumptions. Min-Max
Normalization is used to reduce any uncertain noise in an image due to a number of factors during image
capturing. Next, we apply activation functions to resolve the non-linearity in the image followed by the
computed membership functions. These sets are then transformed and compared with others to find sim-
ilarities and dissimilarities. Neutrosophic Sets and Dice’s Coefficients are fused to ensure proper evalua-
tion of uncertainty of the missing data and their indeterminacy for image segmentation. The proposed
method is experimentally validated.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

An image incorporates information which is needed to analyze
through the process of Image Segmentation. Partitioning of an
image into several of these segments (pixels or super-pixels) which
is confined to a particular region bound by some characteristics in
the forms of texture, intensity or color. If two pixels belong to adja-
cent regions, their characteristics differ [48]. Therefore, image seg-
mentation is performed in order to locate objects and boundaries.
It leads to the assignment of a specific label to each pixel in an
image. Regional based segmentation selects a seed pixel and then
merges similar pixels around it. Then, there are segmentation tech-
niques based on clustering like K-Means. However, they have their
own limitations in the form of overlapping images, computational
cost, difficulty in estimating, etc. Hence, more sophisticated meth-
ods are used such as image segmentation using fuzzy algorithms,
pattern recognition [42] and machine learning [43]. However,
these advanced methods have limitations like lack of robustness
and variability. Hence, there is a need to present a method of image
segmentation that is contemporary and a step ahead. We present
neutrosophic image segmentation as a result [47].

Neutrosophic science incorporates neutrosophic logic (NL) and
its applications in many fields. It is conceivable to characterize
the neutrosophic measure (NM), neutrosophic integral (NI), neu-
trosophic probability (NP) in light of the fact that there are differ-
ent kinds of indeterminacies we have to highlight [50–54]. NM is a
speculation of the established measure for the situation where the
space containing some indeterminacy whereas NP is a speculation
of the established and uncertain probabilities. A few traditional
probability rules are balanced as NP rules. Moreover, they
can be shown by different particular methodologies along with
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the likelihood theory, fuzzy set (FS) [1], rough set (RS) [2], intu-
itionistic fuzzy set (IFS) [3], and neutrosophic set (NS) [3]. Molodt-
sov [4] successfully proposed a novel delicate set theory by
utilizing traditional sets since it has been brought up that delicate
sets are not appropriate to manage dubious and fuzzy parameters.
IFSs can just deal with inadequate data in light of the fact that the
whole of degree genuine, indeterminacy and false is one in IFSs.
However, NSs can deal with the uncertain and contrasting data
which exist regularly in conviction frameworks in NS since inde-
terminacy is evaluated with free truth-membership,
indeterminacy-membership and lie membership [5]. NSs can han-
dle inadequate data, yet not the uncertain and contrasting data
which exist normally in genuine circumstances. Several other
related research papers featured neutrosophic science [49,50].
Broumi and Smarandache [6] presented the idea of correlation
coefficients of interval valued NS (INS). Solis and Panoutsos [7]
exhibited another system for making Granular Computing,
Neural-Fuzzy displaying structures by means of Neutrosophic
Logic to sort-out the problem of vulnerability amid the information
granulation process.

The previous works focused on specific characteristics like tex-
ture, intensity or color. However, they have limitations in the form
of overlapping images, computational cost, difficulty in estimating,
etc. Hence, we use Dice’s Coefficients (DScore) to resolve earlier
sophisticated methods and to ensure proper evaluation of uncer-
tainty of the missing data for image segmentation. Specifically,
we propose new definitions regarding various features of an image
using membership functions, activating them and then applying
fitness functions. A universe of discourse has been defined, and
subsequently the subsets are used with pixels as the most impor-
tant parameters. We use fuzzy set partially and neutrosophic
set along with rigorous mathematical operations on real numbers
with real standard subsets. They involve crisping an image into
smaller non-overlapping subsets so that the characteristics of the
image can be explored at a molecular level for better analysis.
Mathematical modeling is done for better accuracy for identifying
an object. This is our contribution in this paper.

The rest of the paper is organized as follows: Section 2 presents
the background of the paper. Section 3 shows the proposed
method. Sections 4 and 5 give experiments and conclusions.
2. Literature review

In this section, we list out a few of the existing works that target
the process of image segmentation. Taha and Hanbury [31] pro-
posed an efficient evaluation tool for 3D medical image segmenta-
tion. Some of the metrics considered for this research are
sensitivity, specificity, rand index, Jaccard index, average distance,
probabilistic distance, etc. Thai et al. [32] presented a filter design
and performance evaluation for fingerprint image segmentation
using the factorized directional bandpass (FDB) segmentation
method. A systematic performance comparison was conducted
between the FDB method and other fingerprint image segmenta-
tion algorithms. For evaluation, the metrics considered are a num-
ber of orientations in Angular pass filter, Order of Butterworth
bandpass filter, constant for selecting morphology threshold, the
number of neighboring blocks, etc. Several aspects of fingerprint
image quality may affect segmentation (dryness, ghost fingerprint,
small scale noise, image artifacts, scars and creases). Accurate ver-
ification may become difficult due to distortions or overlapping of
images. Bose and Mali [33] proposed an image segmentation algo-
rithm based on Fuzzy Based Artificial Bee Colony and Fuzzy C
means. It takes randomized characters and performs better in
terms of convergence, time complexity, robustness and accuracy.
The images considered for the research are synthetic, medical
and texture images whose segmentation are difficult due to noise
and ambiguous. Validity index and time complexity have been
used to validate the superiority of the proposed work. The pro-
posed work is well supported by the experimental results, but
there could be several limitations of using the Artificial Bee Colony
method. It does not take any secondary information and may
require new fitness tests on new algorithm parameters. Since it
performs a higher number of object evaluations, it may be very
slow during sequential processing.

Moftah et al. [34] introduced adaptive k-means clustering algo-
rithm for image segmentation. The idea is to perform image seg-
mentation based on identifying target objects by virtue of
optimizations so as to maintain optimum results during iterations.
It is an extension to the traditional k-means clustering algorithm
so as to increase effectiveness and efficiency. The experimental
results exhibit the overall performance of the adaptive clustering
algorithm in terms of entropy, standard deviation, mean, circular-
ity, orientation and solidity. The major drawback is the fact that
there were three samples considered, out of which for only one
sample the proposed algorithm showed significant increase. For
the other two samples, there was not much improvement. Liu
et al. [35] presented a modified particle swarm optimization tech-
nique for image segmentation. The aim is to address the issue of
computational expense by applying strategies to improve the per-
formance of the initial particle swarm optimization technique. 16
standard test images have been considered in the experimental
analysis, which validated that the modified technique is much
more superior than the original method in terms of performance
and quality. The parameters considered are twelve benchmark
functions like quadric, rosenbrock, step, quadric noise, ratrigin,
noncontinuous restrain, etc. The issue with the proposed method
is the small dataset an only 30 independent runs that have been
considered for validating the research, which questions the robust-
ness and application in real world scenarios.

Ayyoub et al. [36] proposed a GPU based implementation of the
fuzzy C-means algorithm for image segmentation to address the
issue of large data set and slow processing. The idea is to introduce
a parallel processing unit to validate the same. A faster variant of
fuzzy-c means has been implemented on different GPU cards i.e.,
Tesla M2070 and Tesla K20m. Experimental analysis reveals that
the proposed technique is significantly fast. Speed up, execution
time, performance and memory are some parameters which vali-
date the experimental analysis. Due to parallel processing, the pro-
cess may be computationally expensive. Kloster et al. [37]
suggested an image segmentation and outline feature extraction
tool for microscopic analysis. The tool SHERPA (SHapE Recognition,
Processing and Analysis) could identify and measure objects, and
incorporate functions like object identification and feature extrac-
tion. It could also perform full image analysis, multiple segmenta-
tion methods, matching an object against templates, object scoring
andprocessing largebatchof images. Several parameterswere taken
into consideration for the same, some of which are area, parameter,
width, height, optimization method, standard deviation, ellipticity,
roundness, compactness etc. The issuewith the proposed technique
is that it cannot deal with texture and structural features; thereby
questioning its versatility and identification specificity.

Chen et al. [38] suggested an interactive image segmentation
method in hand gesture recognition so as to recognize the rate of
hand gestures effectively. The Gaussian mixture model has been
used for image modelling, whereas Gibbs random field is associ-
ated with image segmentation and minimization of Gibbs energy
for optimal segmentation. The result has been tested on an image
dataset and compared with others. The parameters considered are
region accuracy and boundary accuracy. Five hand gestures have
been relied on for experimental analysis. The limitation of the pro-
posed research work is that it cannot handle issues like highlights,
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shadows and image distortions. Yu et al. [39] introduced a Seman-
tic Image Segmentation Method with Multiple Adjacency Trees and
Multiscale Features. A segment-based classifier and conditional
random field are deployed in order to generate large scale regions,
whose features have been used for training a region-based classi-
fier. For capturing context, a multiple adjacency tree model has
been suggested where each tree denotes a relevant region which
can be further generated graphs. Relying on a few assumptions,
some inference can be made. MSRC-21 and Stanford background
datasets have been used for experimentations. The accuracy is
determined by Support Vector Machines. The limitation of this
research work lies in the assumptions made in order to make infer-
ences. Further, using SVM has its own limitations like slow pro-
cessing time.

Guo et al. [40] suggested a novel image segmentation approach
based on neutrosophic c-means clustering and indeterminacy fil-
tering. The idea is to transfer the image into neutrosophic domain
and then the indeterminacy value of the neutrosophic image,
devise an indeterminacy filter. Neutrosophic c-means clustering
then clusters the pixels into several groups to find intensity. After
the indeterminacy filtering operation, segmentation results are
produced. The neutrosophic similarity clustering (NSC) segmenta-
tion algorithm has been compared to the proposed method quan-
titatively. Signal to noise ratio and misclassification error measure
are some parameters considered for this research. Figure of Merit
(FOM) has been used to measure the difference between the real
results with the ideal segmentation result and the difference is
not significant. Other works can be found in [23–29,41,46,55–67].
3. Methodology

3.1. Ideas

A universe of discourse is defined, and subsequently the subsets
have been used using pixels as the pixels are the most important
parameters for any image segmentation. We use Neutrosophic
set along with DScore with rigorous mathematical operations on
real numbers with real standard subsets. It involves crisping an
image into smaller non-overlapping subsets for better analysis. A
new definition of DScore is shown as:

Dscore ¼ S \ T
S [ T

where S is the area of segmentation of the object using our method
and T is the manual or original area of segmentation of the object or
the ground truth value. To calculate DScore, we have assumed the
following parameters which are applicable to all images:

Threshold based = ‘‘T”,
Edge-based = ‘‘E”,
Cluster-based = ‘‘C”,
Region-based = ‘‘R”,
PDE-based = ‘‘P”,
Deep-learning based = ‘‘D”.

Here the (t, I, f) -NS is referred as t = truth, I = numerical indeter-
minacy, f = falsehood. The (t, I, f) [3] are non-identical from the
Neutrosophic Algebraic Structures (NAS) defined in the form of A
+ bI, where I = literal Indeterminacy. We render the image as I-
NAS i.e., this is an algebraic structure established on indeterminacy
‘‘I” only. However, we can merge them and get the (t, I, f) -INAS.
This means that the algebraic structures based on Neutrosophic
Ontology (NoU) in the form a + bI where a and b are the real num-
bers, a is the determinant part on N, bI is the in-determinant part of
N, bI # mI + nI = (m + n) I, 0∙I = 0, I^n = I for integer n � 1, I/
I = undefined. When a, b are real numbers, then a + bI gives real
numbers as results. If at least one of a, b is a complex number, then
a + bI is known as a N complex number. These structures, in any
field of learning, are considered from a NL perspective, i.e., from
the truth-indeterminacy-falsehood (t, i, f) values [7,25,27,28].

3.2. Support Neutrosophic set (SNS)

Let X be a nonempty set, where x 2 X, called the universe of dis-
course. First, let us define some terms about fuzzy set and Neutro-
sophic set. Here, we use mathematical operations on real numbers.
Let A1 and A2 be two real standard or non-standard subsets, then
we can apply some basic set operations such as [8–24]:

A1þ A2 ¼ xjx ¼ a1þ a2; a1 2 A1; a2 2 A2f g

A1� A2 ¼ xjx ¼ a1� a2; a1 2 A1; a2 2 A2f g
Now, we perform complementary operations and compute the

Cross Product of the two sets, A1 and A2:

A2� ¼ 1þ� �� A2 ¼ xjx ¼ 1� a2; a2 2 A2f g

A1� A2 ¼ xjx ¼ a1� a2; a1 2 A1; a2 2 A2f g
Given a subset Y of a partially ordered set X, the Infimum, rep-

resented as in (Y), is the is greatest element in X, that is, X ({all ele-
ments in Y}, Conversely, The Suprema of Z on a partially ordered
set X, represented as sup (Z), is the smallest element in X that is,
X ({all elements in Z}, Therefore, we can define the logical opera-
tions in terms of Infimum and supreme as follows:

Infimum: A1 _ A2 = [max {Inf (A1), Inf (A2)}, max {sup (A1), sup
(A2)}].

Suprema: A1 ^ A2 = [min{inf(A1) , inf(A2)} , min{sup(A1) , sup
(A2)}].

Observation: Applying Demorgan’s Laws, let us consider two
cases:

1. If inf(A1) � inf(A2) and sup(A1) � sup(A2).

Case 1 above implies that complement of inf(A2) is less than
complement of inf(A1) and same for the suprema. From above def-
initions, we prove that

A1 ^ A2 ¼ A1; A1 _ A2 ¼ A3

2. If inf(A1) � inf(A2) � sup(A1) � sup(A2).

Then, the logical operations can be expressed as the set of infi-
mums and suprema.

Definition 1: A fuzzy set A on the universe X is a function which
maps each element in the universe with a truth value [0,1] +, also
called the degree of membership of an element.

Definition 2: A Neutrosophic set A on the universe X is a func-
tion which maps each element with various set membership func-
tions, such as truth membership function T, indeterminacy-
membership function I and falsehood membership function F, each
representing a truth value. Combining a Neutrosophic set with a
fuzzy set leads to a new concept called support-Neutrosophic set
(SNS). In which, there are four membership functions of each ele-
ment in a given set.

Definition 3: A support Neutrosophic set (SNS) in the universe
X is a function of four membership functions each corresponding to
truth values of either 0 or 1. We denote support Neutrosophic set
(SNS) as:

A ¼ x; T xð Þ; I xð Þ; F xð Þ; S xð Þð Þjx 2 Xf g:
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If universe X is continuous then the SNS is the integration of the
mapping between each membership function divided by the ele-
ments over the entire universe X

A ¼
Z

< T xð Þ; I xð Þ; F xð Þ; S xð Þ > =x:

If universe X is discrete, then, SNS can be written as the sum of
each membership divided by the elements of the universe. If T(x)
= I(x) = F(x) = S(x) = 0, then x is called the worst element. If T(x) = I(x)
= F(x) = S(x) = 1, then x is called the best element.

Observations:

1. If the support membership function S(x) attains a constant
value c, in a universe of truth labels [0,1] + then the support
Neutrosophic set reduces to a Neutrosophic set.

2. A support-Neutrosophic set is called a standard Neutrosophic
set if all the membership functions belong from the set [0,1]
and the sum of the functions is less than 1 always.

3. A support-Neutrosophic set is called an intuitionistic fuzzy set if
the truth T(x) and falsity FA(x) membership functions belong to
[0,1] with their sum less than 1 and the Indeterminacy function
I (x) is zero.

4. A constant SNS set can be represented using four symbols hav-
ing a value between [0,1].

Definition 4: The complement of a SNS set A is denoted by c(A).
Here, the truth membership function of c(A) is equal to the Falsity
membership function, and vice versa, which is obvious as we are
taking the complement of the SNS set. The indeterminacy set of
the complementary SNS set is equal to the complement of each ele-
ment of the original indeterminacy function. The same goes for the
support membership function.

Definition 5: A SNS set A is a subset SNS set B if and only if the
following conditions are satisfied:

1. The infimum and suprema of T(x) for set A is less than the infi-
mum and suprema of T(x) for set B.

2. The infimum and suprema of F(x) of set A is greater than the
infimum and suprema for F(x) of set B.

3. The infimum and suprema of S(x) for set A is less than the infi-
mum and suprema of S(x) of set B.

Definition 6: The intersection of two SNS sets A and B is
D ¼ A \ B, defined as follows:

1. The T (x), I (x) and S (x) of D is defined as the corresponding
AND functions of the sets A and B.

2. The F (x) of D is defined as the corresponding OR functions of
sets A and B.

Example 1: Let U = {x1, x2, x3, x4} be the universe of discourse.
Then the support Neutrosophic set A is defined as the sum of all
membership functions divided over each element of the universe.
Let A = <[0.5,0.8]. [0.4,0.6], [0.2,0.7], [0.7,0.9] >/x1 +. . .., where, T
(x) = [0.5,0.8], I(x) = [0.4,0.6], F (x) = [0.2,0.7] and S (x) = [0.7,0.9].
Then the complement of SNS set A, c (A), is given as c (A) = <
[0.2,0.7], [0.4,0.6], [0.5,0.8], [0.1,0.3]>, Here, we see that T(x) of c
(A) = F (x) of A, and F (x) of A = T(x) of c (A)

Definition 7 (Distance between support-Neutrosophic sets):
Let X = {x1, x2, x3. . .., x (n)} be the universe set. We define; two
support Neutrosophic sets A and B over X which is a universe of
discourse.

1. The Hamming distance – It is calculated as the sum of the dif-
ference between each corresponding membership function
value averaged over all the elements in the universe set.
2. The Euclidean distance – It is calculated as the sum of squares of
the difference of the corresponding membership functions aver-
aged over all the elements in the universe U.

3.3. The proposed method

Neutrosophic Sets can be applied on images to acquire under-
standing on indeterminate and missing data. That is, we are able
to apply Neutrosophic sets on missing pixels and still be able to
extract information about them. Our method uses activation func-
tions to extract features in a from set of pixels such as edges and
circles and then use membership functions to derive useful proper-
ties on shades and gradients. A Neutrosophic image Ia can be
defined as a set of membership functions, Ts, Is and Fs. Each image
consists of pixel coordinates P (x, y) defined on arbitrary axes.
Therefore, each pixel can be assigned membership value with Ts
representing the foreground Is representing the pixel intensity
and Fs representing the background or the channels. Given an
image Ia, subjected to various kinds of noise, which can be handled
by normalization to standardize the pixels. We used non-linear
normalization to account for missing and indeterminate data.

I nð Þ ¼ Max að Þ �Min að Þ � 1=exp 1þ I að Þ � b
a

� �
þMin að Þ ð1Þ

where I (n) is the normalized image with reduced noise, Max (a) and
Min (a) are the maximum and minimum pixel intensities in the
image, b is the range of pixel intensity values around which image
I (a) is centered, a is the width of the input image which is same as
the total number of pixels in the image with noise reduction. We
apply activation functions to find non-linearity on the segments
of the image and found patterns by applying them sequentially on
each row. Using Eq. (1), we use a filter size of 2 * 2 with stride 1
and apply a non-linear sigmoid activation function, which serves
two purposes:

1. Firstly, it captures shapes such as lines and edges, which are
crucial for object detection.

2. Secondly, it squashes each pixel value in the range [0,1] to be
used by membership functions. Thus, we apply a non-linear sig-
moid activation function S (z) as below:

S zð Þ ¼ 1= 1þ exp �zð Þð Þ ð2Þ
where z is the mean pixel intensity value of the filter which is being
activated. From Eq. (2), it is clear that the filters are sets of pixel val-
ues based on indeterminacy used to deal with indeterminate and
missing data. But for better and smoother segmentation, we used
a Gaussian function to smooth out the curves for standardization
which is depicted in Eq. (3).

G I x; yð Þð Þ ¼ 1
2pr2 exp � x2 þ y2

� �
2r2

� �
ð3Þ

From this equation, we see that

1. If the indeterminacy intensities are low, the variance around
the neighborhood is low as well.

2. This results in lowering down the value of rwhich make a less
smooth transition around the edges.

3. If r is large, the current filter neighborhood pixels become
smoother.

Therefore, in order to reduce the lowering value of r, the fol-
lowing equation is used. This is a linear variance function used to
transform the filter values to parameter values (Crisping)

r ¼ f I x; yð Þð Þ ¼ m � I x; yð Þ þ n ð4Þ
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where m and n are parameters of the linear function which are used
to transform the indeterminacy level to parameter level. A 2� 2 fil-
ter is a square filter consisting of 4 pixels. We take the mean of
these four-pixel values and apply the Gaussian standardization
and the activation function. Using the activated values on pixel
intensities, we define the truth and indeterminacy membership
functionality on the local neighborhood as:

T x; yð Þ ¼ i x; yð Þ � i minð Þ
i maxð Þ � i minð Þ ð5Þ

I x; yð Þ ¼ gd x; yð Þ � gd minð Þ
gd maxð Þ � gd minð Þ ð6Þ

where I(x,y) corresponds to the intensity of pixel P(x,y) and gd(x,y)
corresponds to the gradient magnitude of pixel P(x,y).

Proposed Algorithm: The entire algorithm can be summarized
in the following steps:

Step 1: Normalize the Image using Min-Max Method.
Step 2: Apply activation function on successive pixels over the
entire image using Gaussian filtering.
Step 3: Find the regions of interest by capturing pixels with
higher scores after activation.
Step 4: Compute the membership functions T, I and F by Eqs.
((2), (5), (6)).
Step 5: From the Neutrosophic sets for each object to be
identified.
Step 6: Perform De-Neutrosophication and Contrast Reduction
to re-construct the objects of interest in the image.
Step 7: Present the results in a Tabular form of fitness scores or
values.

The above algorithm can be used for any number of images. For
large datasets, we can perform automated using various programs
and check the algorithm’s accuracy. We can determine the accu-
racy of our model using Dice’s coefficient.

3.4. An illustrative example

In the grayscale image (Fig. 1), it is evident that the background
is distorted and not visible. This corresponds to our falsehood
membership function to be nearly undefined [30]. The foreground
of the image is well defined around the region of the crow, which is
the main focus on segmentation. Our goal is to segment each fea-
ture such as, the distorted or indeterminate bushes in the back-
ground, the features of the crow such as its beak, feathers and its
tail, etc. We start by normalizing the image to standardize it and
reduce any unnecessary noise in the background. We apply non-
Fig. 1. Original image to be used for segmentation.
linear normalization function in each row and column pixels by
using the sigmoid function to transform them to deal with indeter-
minate pixel values such as the bush near the crow. After normal-
ization, we see that the indeterminacy still prevails, but has
improved significantly accordingly with the foreground image.
Now, we apply the sigmoid activation functions by taking 2 � 2 fil-
ters to account for the various shapes and edges. We start by
applying them from the top-left corner and increment each filter
by a stride of 1.

For understanding how this works, we take a small filter seg-
ment near the head of the crow. Applying the activation function,
near the neighborhood, we find that outside the region of the head,
the value of the activation function is significantly low compared
to its corresponding filter value after that. We also find that this
pattern persists till the end. From this, we can find the edges signif-
icantly easier for segmentation.

After applying the activation function, the pixel intensities are
squashed between [0,1]. We prepare Neutrosophic sets by defining
the truth, indeterminacy and falsehood membership functions. We
take each row of the image as a set of Neutrosophics values (Fig. 2).
The truth membership function T accounts for the intensity of the
pixels in the foreground. We normalize the foreground by using
the Min-Max method. In our example, the foreground consists of
the crow. The truth membership function defines the patterns in
the crow.

The indeterminacy membership function I use the gradients or
shades of the neighboring pixels into account (Fig. 3). Therefore, it
is a function that defines the lower saturation regions in our image
such as the bushes in our example.

The falsehood membership function F operates in the back-
ground as opposed to the truth membership function. It would
mainly serve by applying the filters on a colored image which
has more than one channel. In our image, we have three channels,
the falsehood membership function is same as the truth member-
ship function T for each channel. We then define a Neutrosophic
set A by combining these three functions for each pixel x in the
pixel-space X. Here the universe of discourse X is the set of all pix-
els in the image, also called as the pixel-space of the image.

A ¼ x; T xð Þ; I xð Þ; F xð Þð Þjx 2 Xf g ð7Þ

Now, using this Neutrosophic set, we define a fitness function L,
also called Loss function, which will determine the quality of our
output generation. This involves the calculation of average Neutro-
sophic values of each membership function. This analysis shows
better insights such as segmentation score etc.

L ¼ T xð Þ þ I xð Þ þ F xð Þ
3

� 	
for all x 2 X ð8Þ
Fig. 2. Truth values after normalization in image.



Fig. 3. Indeterminate values in image.
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As we apply the activation functions to downgrade our image, it
may look distorted, due to which we need to reconstruct the image
for better clarity. Here we use, de-Neutrosophication and contrast
reduction to backtrack to a better image clarification. A Neutro-
sophic set N can be transformed to a de-Neutrosophic set by the
following transformation

H xð Þ ¼ a � T xð Þ þ b � F xð Þ
4

þ c � I xð Þ
2

ð9Þ
den H xð Þð Þ ¼
R b
a H xð Þ � xdxR b

a H xð Þdx
ð10Þ

Here, a;bandc are parameters where 0 � a;b; c � 1 and
aþ bþ c ¼ 1, den (H (x)) is the de-Neutrosophic set which is calcu-
lated using the center of gravity method. The de-Neutrosophic set
consists of the pixel values corresponding to the objects we want
to segment. Hence, they can be transformed and compared with
other images for better understanding of the model. Let N and M
be two Neutrosophic sets, we can find similarities with them using
set theory. Using intersect, we can find similarities between two
sets.

A ¼ N \MjT Nð Þ ^ T Mð Þ; I Nð Þ ^ I Mð Þ; F Nð Þ _ F Mð Þ ð11Þ
Using Union, it might be possible to combine two pixel sets as

well.

B ¼ N [MjT Nð Þ _ T Mð Þ; I Nð Þ _ I Mð Þ; F Nð Þ ^ F Mð Þ ð12Þ
Using complement, we can get the negative of an image.

C ¼ N jT Nð Þ ¼ Fc Nð Þ; F Nð Þ ¼ Tc Nð Þ; Ic Nð Þ ¼ 1þ � I Nð Þ ð13Þ

We now use the contrast reduction methods from the Eqs.
((11)–(13)) to further clarify the image. We found that by using
maximum clarity, the model had accurately identified the object
in the frame.
Fig. 4. Normalized image using non-linear Min-Max Method.

Table 1
Observations of bush, head and tail from original image 1.

Type Parameters of various types of observations

Bush Length
(0.23,0.82,0.23)

Width
(0.1,0.5,0.1)

Tip
(0.02,0.09,0.02)

Head Break
(0.86, 0.78,0.86)

Crown
(0.96,0.54,0.96)

Eyes
(0.23,0.67,0.23)

Tail Hand
(0.36,0.25,0.36)

Legs
(0.24,0.35,0.24)

Fingers
(0.48,0.89,0.48)
4. Result and discussions

In this section, we focus on extracting the image of the crow
[30] to discard other relevant features so that there are no external
noises. The Python library OpenCV is a scientific library for solving
problems in the computer vision domain. OpenCV takes an image
as input and produces an array representing its pixel values as out-
put. The pixel values are in the range (0–255). The original image is
converted into its corresponding pixel formats by using OpenCV 2
function imread () converting it to a numpy array. The pseudocode
for it can be given as below:
Import cv2

im = imread(‘file.jpg’)
The image can be converted to grayscale format
im_gray = cv2.cvtColor(im, cv2.BGR2GRAY)
In order to flip an image vertically, we can use OpenCV flip()

function which helps us in rotating the image by certain
degree. The image can be rotated vertically by 180 degrees. The
pseudocode is given as follows:

im_flip = cv2.flip(im, 1)
The image can be rescaled to a certain degree using OpenCV

rescale() function. We rescaled the image to 1.5x to better
analyze our images using the proposed method. The
followingpseudocode can be used to rescale any image.

r = 1.5 * im.shape[1]
Dim = (100, int(im.shape[0] * r)
resized = cv2.resize(im, dim, interpolation = cv2.INTER_AREA)

Firstly, we use normalization to reduce any kind of internal noise.
This gives us a better understanding of the objects in the frame,
such as the blurred bushes in the background. We use the Min-
Max Scaler normalization technique, which is a non-linear normal-
ization process to reduce noise. Let I(X) be the image where X is the
pixel-space set or the universe of discourse. Let X = {x1, x2, x3 . . .. xn}
where xi represents pixels of the flattened image. Then, for the
above image we have:

N x ið Þð Þ ¼ 255� 0ð Þ � 1=exp 1þ x ið Þ � 1001ð Þ=1395ð Þ þ 0 ð16Þ
Using the Min-Max Normalization technique (Fig. 4), it becomes

easier to interpret data and reduce noise and other factors which
hinder Image processing in general. Therefore, using Normalization
is a good start on reducing complexity. For the above image, we get
the following normalized image:

We then apply the sigmoid activation function on each Gaus-
sian filter as weights successively on each pixel. Then we compare
each output value by the adjacent one. If the adjacent value is less



Fig. 5. (a–c): The observational result following Table 2.

Table 2
Observations of bush, head and tail by flipping the original image 1 upside down.

Type Parameters of various types of observations

Bush Length
(0.56,0.78,0.0.56)

Width
(0.21,0.4,0.21)

Tip
(0.07, 0.12,0.07)

Head Break
(0.87, 0.65,0.87)

Crown
(0.75,0.65,0.75)

Eyes
(0.25,0.78,0.25)

Tail Hand
(0.40,0.89,0.40)

Legs
(0.27,0.37,0.27)

Fingers
(0.50,0.87,0.50)

Table 3
Observations of bush, head and tail by rescaling the original image by 1.5 � times.

Type Parameters of various types of observations

Bush Length
(0.89,0.74,0.0.89)

Width
(0.30,0.47,0.30)

Tip
(0.89, 0.88,0.89)

Head Break
(0.56, 0.23,0.0.56)

Crown
(0.78,0.68,0.78)

Eyes
(0.52,0.34,0.52)

Tail Hand
(0.60,0.64,0.60)

Legs
(0.67,0.75,0.67)

Fingers
(0.50,0.78,0.50)
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compared to the next pixel, we start to prepare our Neutrosophic
set from the next pixel till the end of the pattern. Given a pixel
x ið Þ 2 X, the sigmoid activation function is calculated for each
Gaussian filter separately.

G I x; yð Þð Þ ¼ 1
2pr2 exp � x2 þ y2

� �
2r2

� �
ð17Þ
S x ið Þð Þ ¼ 1= 1þ exp x ið Þð Þð Þ ð18Þ
R I x; yð Þð Þ ¼ G I x; yð Þð Þ � S x ið Þð Þ ð19Þ

Hare, R (I (x, y)) represents the transformed Image after applying
the activation function. The Gaussian function keeps track whether
the pixels are changing or not. According to those observations, we
can pick the pixels which we are interested in and from their corre-
sponding Neutrosophic sets. We form Neutrosophic sets for three
sections named, Bush, Head and Tail, each corresponding to the
bush, the crow’s head, and tail. We then transform the image by
rescaling and flipping the image and computing the Neutrosophic
Fig. 6. (a–c): The Observationa
values for each transformed image. For the original image, we find
the following observations (Table 1):

Referring to Fig. 5(a)–(c), it can be inferred that the orientation
of length is in proportion with that of Tip and Width whereas the
orientation for Head are almost same. But if we infer to the orien-
tation of Tail, the Tail is highly proportional with respect to Tail
Legs and tail Heads (Table 2).

Referring to Fig. 6(a)–(c), it can be inferred that the orientation
of length for head is almost consistent whereas the length is high-
est for ‘‘Tail”. The reason is due to upside down position of the orig-
inal image. Likewise, the orientation for Tip gradually increases
from Bush to Tail. If we infer to the orientation of Head, it is very
clear that the Head is highly proportional with respect to Tail
and Bush. We now rescale the image by 1.5 times i.e., the original
image � 1.5 times. The observations are tabulated as below
(Table 3).

Referring to Fig. 7(a)–(c), it can be inferred that the orientation
of Tip, Width and length are almost consistent for all the three i.e.,
Bush, Head and Tail. Thus, this result infers to the fact that even if
we change and rescale our image, the Neutrosophic sets do not
l result following Table 2.



Fig. 7. (a–c): The Observational result following Table 4.

Fig. 8. Final image showing object of interest (crow) in a frame.

Table 4
Comparison for different image orientations using Dscore with neutrosophic sets.

Parameters of various types of observations taken using the
DScore

Orientation Bush Head Tail

Normal Length
(0.21,0.75,0.19)
Width
(0.09,0.3,0.03)
Tip (0.01,
0.04,0.03)

Beak
(0.66,0.68,0.68)
Crown
(0.86,0.24,0.76)
Eyes
(0.13,0.37,0.32)

Hand
(0.21,0.12,0.13)
Legs
(0.16,0.23,0.14)
Fingers
(0.24,0.67,0.29)

Upside
Down

Length (0.46,0.38,
0.0.46) Width
(0.11,0.3,0.16), Tip
(0.04, 0.08,0.04)

Beak (0.75,
0.63,0.76), Crown
(0.64,0.46,0.64),
Eyes
(0.16,0.68,0.15)

Hand
(0.31,0.69,0.20),
Legs
(0.21,0.27,0.19),
Fingers
(0.43,0.65,0.42)

Rescaling
(1.5x)

Length (0.67,0.67,
0.0.71) Width
(0.20,0.37,0.21),
Tip (0.79,
0.78,0.69)

Beak (0.46, 0.13,
0.0.46), Crown
(0.63,0.62,0.65),
Eyes
(0.42,0.30,0.42)

Hand
(0.44,0.44,0.48),
Legs
(0.61,0.67,0.48),
Fingers
(0.49,0.65,0.46)
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change much, i.e., whatever be the pixel data presented in the
same image, the final sets will not alter much. Hence, our observa-
tions closely resemble with that of the theoretical observation.
Now, the above data can be normalized and cumulatively tabu-
lated as below (Fig. 8).
From the above observations (Table 4), we find that even if we
change and rescale our image, the Neutrosophic sets do not change
much. This means that however, be the data presented, the final
sets will not change much at all and we will get roughly the same
results always. This can be proved easily using properties of Neu-
trosophic sets. Hence, our observations closely resemble the theo-
retical observations. The below image is the final image after
performing all the steps, which shows us the object crow in the
frame which is of best interest to us. The comparison between
the various segmentation methods with the descriptions as well
as advantages and disadvantages are indicated in Table 5.

The Segmentation Method for Threshold based using DScore is
observed to be 0.56 whereas using Neutrosophic sets, we obtained
0.78 which is much better accurate value in comparison all other
segmentation methods (Table 6).

Now we have shown this analysis with the help of bar graph
visualization (Fig. 9).

The proposed method performs better than others as it requires
less computation power and time to find the results (Table 7). The
results were verified and validated by humans and the method
works fine. It is important to note that this method takes very
few assumptions about the data provided. The data can be pre-
sented with indeterminate form and in different orientations and
sizes. The model works on these types of scenarios as well, which
makes it unique from other previous works done on Image Seg-
mentation using Neutrosophic sets. In medical diagnosis as an
example, most of the data is indeterminate and come in various
orientations as well. Sometimes, we need to use sonar projections
of certain organs of the body which are captured better at certain



Table 5
Comparison between the various types of image segmentation methods.

Segmentation
Methods

Description Advantages Disadvantages

Threshold
based

Find particular
threshold values
of the image

No need to hold
the previous
image related
information

Highly dependent
on peaks, simplest
method

Edge-based Discontinuity
detection

Relevant for
images having
good contrast

Not suitable a
large

Cluster-based Homogeneous
clusters

Use of
membership
function to
address the real-
life problems

The evaluating
membership
function is not an
easy task

Region-based Based on splitting
image into
consistent regions

More protective
for noise

Expensive in
terms of memory
and time

PDE-based Used differential
equations

Fastest method Computational
complexity is
higher than
previous methods

Deep-learning
based

Replication of
learning process
for decision
making

Simple programs Training data time
is too high

Proposed
Work

Finding the
regions of interest
(ROI) by capturing
pixels with higher
scores after
activation to
compute the
membership
functions T, I and
F

This method can
be applied to any
number of
images and any
type of typical
problem (blurred
images)

No need to
training, so it is
less time
consuming than
deep learning
approaches

Table 6
Comparison between the various types of image segmentation methods and our
proposed model in terms of DScore value.

Segmentation methods Average D-score

Threshold based 0.56
Edge-based 0.62
Cluster-based 0.64
Region-based 0.67
PDE-based 0.70
Deep-learning based 0.73
Neutrosophic sets-based (Proposed work) 0.78

Fig. 9. Graphical representation of methods in terms of DScore.

Table 7
Comparison of the proposed work with existing ones.

No. Authors Existing methods Proposed method

1. Liang-
Chieh
Chen
et al. [44]

- Used benchmarking of
pre-release Cityscapes
dataset

- Performance is 63.1%

- We have used three ori-
entations of sample
crow images and the
datasets were generated
by ourselves (Section 4)

- Performance is 78% as
depicted in Table 7

2. Ma et al.
[13]

- Used a generalized
interval of Neutro-
sophic set values
(higher number of
assumptions)

- Aggregated the interval
Neutrosophic linguistic
information.

- Performance is 71%

- Very less assumptions
made in our paper, due
to which the results are
more absolute than their
work

- The model works on dif-
ferent types of scenarios
as well, which makes it
unique from them on
Image Segmentation
using Neutrosophic sets
because priority has
been given to each Neu-
trosophic Set values
(pixels) generated

- Performance is 78%
3. Irfan Deli

et al. [45]
- Define the concepts of

cut sets of SVN-
numbers

- Applied to single val-
ued trapezoidal neutro-
sophic numbers

- Developed a ranking
method by using the
concept of values and
ambiguities

- Our paper defines basic
concepts of Neutro-
sophic Set theory and

- Applicable in various
membership functions
and fitness functions

- Applied to multiple sets
of values

- Multiple set of values
experimented for differ-
ent image orientations

- No ambiguities
- We concluded with the

absolute performance
value of 78%
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orientations only. The same is true for X-ray images as well. In
these types of scenarios, Neutrosophic sets can be used effectively
to analyze the problems. In the future, we can optimize this
algorithm further to be applied to various other domains and sur-
pass the current state-of-the-art deep neural networks.
5. Conclusion

This paper explores the idea of applying Neutrosophic sets to
the domain of Image Segmentation. We firstly discussed various
properties of Neutrosophic sets and then lay out to tackle the prob-
lem of image segmentation with fewer assumptions. To accom-
plish this, we first used Min-Max Normalization to reduce any
uncertain noise in the image that may be caused due to a number
of factors during image capturing. Then, we applied activation
functions to account for non-linearities in the image. We then com-
puted the membership functions on different regions and formed
the Neutrosophic sets. These sets are then transformed and com-
pared with other sets to find similarities and dissimilarities.

Throughout the entire paper, we used images of a crow and pre-
sented our findings. It is worth noting that Neutrosophic sets can
be applied to datasets with missing data with different orienta-
tions. This calls for a better understanding of Neutrosophic systems
and their further research on solving complex problems simply and
replace the current state-of-the-art methodologies. Using Neutro-
sophic Sets and using Dice’s Coefficients (DScore), this paper has
resolved earlier sophisticated methods and ensured the proper
evaluation of the uncertainty of the missing data and their indeter-
minacy with various results to prove effectiveness for the image
processing and segmentation.
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The proposed work could be refined further in order to achieve
better results. Several other parameters may be considered for the
same:

1. Neutrosophic sets (NS) can be remarkably used along with neu-
ral networks to get in depth of various fields. Natural Language
Processing, Image Captioning etc are few of them.

2. Digital Communication have used lots of research to reduce
internal noise in an image. They have also used many filters
apart from quantization and sampling to reduce the noise and
errors in an image. However, the Neutrosophic Set theory can
be extensively used to predict indeterminacy and normalize
them using various membership functions.

3. NS can be used for noise detection and minimization using var-
ious factors, such as poor lighting, dust particles blockage, etc.
by normalization.

4. In short, the NS concept is best suitable in working conditions,
i.e., the real time problems. For example, in medical diagnosis, it
is very important to reduce noise before we perform any Image
Processing as it is impossible to find best. We used an existing
method for reducing noise which has proved effective in X-
ray images significantly high.
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