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Abstract 

In this chapter, we introduce the integer programming in 

neutrosophic environment, by considering coefficients of problem 

as a triangular neutrosophic numbers. The degrees of acceptance, 

indeterminacy and rejection of objectives are simultaneously 

considered. The Neutrosophic Integer Programming Problem (NIP) 

is transformed into a crisp programming model, using truth 

membership (T), indeterminacy membership (I), and falsity 

membership (F) functions as well as single valued triangular 

neutrosophic numbers. To measure the efficiency of our proposed 

model we solved several numerical examples. 
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1 Introduction 

In linear programming models, decision variables are allowed to be 

fractional. For example, it is reasonable to accept a solution giving an hourly 

production of automobiles at 64.5, if the model were based upon average hourly 

production. However, fractional solutions are not realistic in many situations and 

to deal with this matter, integer programming problems are introduced. We can 

define integer programming problem as a linear programming problem with 
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integer restrictions on decision variables. When some, but not all decision 

variables are restricted to be integer, this problem called a mixed integer problem 

and when all decision variables are integers, it’s a pure integer program. Integer 

programming plays an important role in supporting managerial decisions. In 

integer programming problems, the decision maker may not be able to specify 

the objective function and/or constraints functions precisely. In 1995, 

Smarandache [1-3] introduce neutrosophy which is the study of neutralities as an 

extension of dialectics. Neutrosophic is the derivative of neutrosophy and it 

includes neutrosophic set, neutrosophic probability, neutrosophic statistics and 

neutrosophic logic. Neutrosophic theory means neutrosophy applied in many 

fields of sciences, in order to solve problems related to indeterminacy. Although 

intuitionistic fuzzy sets can only handle incomplete information not 

indeterminate, the neutrosophic set can handle both incomplete and indeterminate 

information. [4] Neutrosophic sets characterized by three independent degrees as 

in Fig. 1., namely truth-membership degree (T), indeterminacy-membership 

degree(I),  and falsity-membership degree (F), where T,I,F are standard or non-

standard subsets of ]-0, 1+[. The decision makers in neutrosophic set want to 

increase the degree of truth-membership and decrease the degree of 

indeterminacy and falsity membership.  

The structure of the chapter is as follows: the next section is a preliminary 

discussion; the third section describes the formulation of integer programing 

problem using the proposed model; the fourth section presents some illustrative 

examples to put on view how the approach can be applied; the last section 

summarizes the conclusions and gives an outlook for future research. 

2 Preliminaries 

2.1 Neutrosophic Set [4] 

Let 𝑋 be a space of points (objects) and 𝑥∈𝑋. A neutrosophic set 𝐴 in 𝑋 is 

defined by a truth-membership function T (𝑥), an indeterminacy-membership 

function I (𝑥) and a falsity-membership function (𝑥). T (𝑥), I (𝑥) and (𝑥) are real 

standard or real nonstandard subsets of ]0-,1+[. That is 𝑇𝐴(𝑥):𝑋→]0-,1+[, 

I𝐴(𝑥):𝑋→]0-,1+[ and F𝐴(𝑥):𝑋→]0-,1+[.  There is no restriction on the sum of T(𝑥), 

I(𝑥) and 𝐹(𝑥), so 0−≤sup(𝑥)≤sup𝐼𝐴(𝑥)≤𝐹𝐴(𝑥)≤3+.  

2.2 Single Valued Neutrosophic Sets (SVNS) [3-4] 

Let 𝑋 be a universe of discourse. A single valued neutrosophic set 𝐴 over 

𝑋 is an object having the form 𝐴= {〈𝑥, T(𝑥), I𝐴(𝑥),F𝐴(𝑥)〉:𝑥∈𝑋},  where 

T𝐴(𝑥):𝑋→[0,1], I𝐴(𝑥):𝑋→[0,1] and F𝐴(𝑥):𝑋→[0,1] with 0≤T𝐴(𝑥)+ I𝐴(𝑥)+F𝐴(𝑥)≤3 

for all 𝑥∈𝑋. The intervals T(𝑥), I(𝑥) and F𝐴(𝑥) denote the truth-membership 
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degree, the indeterminacy-membership degree and the falsity membership degree 

of 𝑥 to 𝐴, respectively.  

In the following, we write SVN numbers instead of single valued 

neutrosophic numbers. For convenience, a SVN number is denoted by 𝐴= (𝑎, b, 

𝑐), where 𝑎, 𝑏, 𝑐∈ [0, 1] and 𝑎+𝑏+𝑐≤3. 

 

 

Fig.1: Neutrosophication process 

 

2.3 Complement [5] 

The complement of a single valued neutrosophic set 𝐴 is denoted by C (𝐴) 

and is defined by 

 𝑇𝑐(𝐴)(𝑥) = 𝐹(𝐴)(𝑥)
 , 

 𝐼𝑐(𝐴)(𝑥)  = 1 − 𝐼(𝐴)(𝑥)
 , 

 𝐹𝑐(𝐴)(𝑥) = 𝑇(𝐴)(𝑥)              for all 𝑥 in 𝑋 
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2.4 Union [5] 

The union of two single valued neutrosophic sets A and B is a single valued 

neutrosophic set C, written as C = A∪B, whose truth-membership, indeterminacy 

membership and falsity-membership functions are given by 

 𝑇(𝐶)(𝑥) = 𝑚𝑎𝑥 ( 𝑇(𝐴)(𝑥) ,𝑇(𝐵)(𝑥) ) ,          

 𝐼(𝐶)(𝑥) = 𝑚𝑎𝑥 ( 𝐼(𝐴)(𝑥) ,𝐼(𝐵)(𝑥) ) , 

 𝐹(𝐶)(𝑥) =  𝑚𝑖𝑛((𝐴)(𝑥) ,𝐹(𝐵)(𝑥) )  for all 𝑥 in 𝑋           

2.5 Intersection [5] 

The intersection of two single valued neutrosophic sets   A and B is a single 

valued neutrosophic set C, written as  

C = A∩B, whose truth-membership, indeterminacy membership and 

falsity-membership functions are given by 

  𝑇(𝐶)(𝑥) = 𝑚𝑖𝑛 ( 𝑇(𝐴)(𝑥) ,𝑇(𝐵)(𝑥) ) ,          

   𝐼(𝐶)(𝑥) = 𝑚𝑖𝑛 ( 𝐼(𝐴)(𝑥) ,𝐼(𝐵)(𝑥) ) , 

    𝐹(𝐶)(𝑥) =  𝑚𝑎𝑥((𝐴)(𝑥) ,𝐹(𝐵)(𝑥) )  for all 𝑥 in 𝑋 

3 Neutrosophic Integer Programming Problems  

 Integer programming problem with neutrosophic coefficients (NIPP) is 

defined as the following: 

Maximize Z= ∑ 𝑐�̃�𝑥𝑗
𝑛
𝑗=1  

Subject to 

 ∑ aij
~n𝑥𝑗

n
j=1 ≤ 𝑏i     𝑖 = 1,… ,𝑚 ,  (1) 

  𝑥𝑗 ≥ 0,                      𝑗 = 1,…𝑛 , 

  𝑥𝑗       Integer for   𝑗 ∈ {0,1, …𝑛}. 

where 𝑐�̃� , aij
~n  are neutrosophic numbers. 

The single valued neutrosophic number (aij
~n) is donated by A=(a,b,c) 

where a,b,c ∈ [0,1] And a,b,c ≤ 3  

The truth- membership function of neutrosophic number aij
~n is defined as: 

T aij
~n(x) = {

𝑥−𝑎1 

𝑎2−𝑎1
    𝑎1 ≤ 𝑥 ≤ 𝑎2                  

𝑎2−𝑥

𝑎3−𝑎2
        𝑎2 ≤ 𝑥 ≤ 𝑎3               

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       

                 (2) 
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The indeterminacy- membership function of neutrosophic number 𝑎𝑖𝑗
𝑛 is 

defined as: 

I aij
~n(x) =

{
 

 
𝑥−𝑏1 

𝑏2−𝑏1
    𝑏1 ≤ 𝑥 ≤ 𝑏2                  

𝑏2−𝑥

𝑏3−𝑏2
        𝑏2 ≤ 𝑥 ≤ 𝑏3              

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       

  (3) 

And its falsity- membership function of neutrosophic number 𝑎𝑖𝑗
~𝑛 is 

defined as: 

F aij
~n(x) =

{
 

 
𝑥−𝐶1 

𝐶2−𝐶1
          𝐶1 ≤ 𝑥 ≤ 𝐶2  

𝑐2−𝑥

𝑐3−𝑐2
        𝐶2 ≤ 𝑥 ≤ 𝐶3    

1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       

  (4) 

Then we find the maximum and minimum values of the objective function 

for truth-membership, indeterminacy and falsity membership as follows: 

𝑓𝑚𝑎𝑥 = max{𝑓(𝑥𝑖
∗ )} and 𝑓𝑚𝑖𝑛 =min{𝑓(𝑥𝑖

∗ )}, 

where 1≤ 𝑖 ≤ 𝑘 

𝑓𝑚𝑖𝑛=
𝐹 𝑓𝑚𝑖𝑛

𝑇  and  𝑓𝑚𝑎𝑥=
𝐹 𝑓𝑚𝑎𝑥

𝑇 − 𝑅(𝑓𝑚𝑎𝑥
𝑇 − 𝑓𝑚𝑖𝑛

𝑇 ) 

𝑓𝑚𝑎𝑥=
𝐼 𝑓𝑚𝑎𝑥

𝐼  𝑎𝑛𝑑 𝑓𝑚𝑖𝑛=
𝐼 𝑓𝑚𝑖𝑛

𝐼 − 𝑆(𝑓𝑚𝑎𝑥
𝑇 − 𝑓𝑚𝑖𝑛

𝑇 ), 

where R, S are predetermined real number in (0, 1) 

The truth membership, indeterminacy membership, falsity membership of 

objective function are as follows: 

𝑇𝑓(𝑥) = {

1                         𝑖𝑓  𝑓 ≤ 𝑓𝑚𝑖𝑛                
𝑓𝑚𝑎𝑥−𝑓(𝑥)

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛
                 𝑖𝑓   𝑓𝑚𝑖𝑛 < 𝑓(𝑥) ≤ 𝑓𝑚𝑎𝑥     

0                        𝑖𝑓 𝑓(𝑥)  > 𝑓𝑚𝑎𝑥                    

  (5)  

 

𝐼𝑓(𝑥) = {

0                          𝑖𝑓  𝑓 ≤ 𝑓𝑚𝑖𝑛                                           
𝑓(𝑥)−𝑓𝑚𝑎𝑥

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛
         𝑖𝑓   𝑓𝑚𝑖𝑛 < 𝑓(𝑥) ≤ 𝑓𝑚𝑎𝑥                     

0                        𝑖𝑓 𝑓(𝑥)  > 𝑓𝑚𝑎𝑥                                  

   (6) 

𝐹𝑓(𝑥) =  {

0                        𝑖𝑓  𝑓 ≤ 𝑓𝑚𝑖𝑛                  
𝑓(𝑥)−𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛
         𝑖𝑓   𝑓𝑚𝑖𝑛 < 𝑓(𝑥) ≤ 𝑓𝑚𝑎𝑥              

   1                      𝑖𝑓 𝑓(𝑥)  > 𝑓𝑚𝑎𝑥                      

             (7) 

The neutrosophic set of the 𝑗𝑡ℎ  decision variable 𝑥𝑗 is defined as: 
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𝑇𝑥𝑗 
(𝑥)

=  { 

 1                           𝑖𝑓     𝑥𝑗 ≤ 0                            
𝑑𝑗−𝑥𝑗

𝑑𝑗
              𝑖𝑓   0 < 𝑥𝑗 ≤ 𝑑𝑗                               

0                            𝑖𝑓   𝑥𝑗  > 𝑑𝑗                              

  (8) 

𝐹𝑥𝑗 
(𝑥)

= {

0                      𝑖𝑓     𝑥𝑗 ≤ 0                                                             
𝑥𝑗

𝑑𝑗+𝑏𝑗
       𝑖𝑓   0 < 𝑥𝑗 ≤ 𝑑𝑗                                                       

1                   𝑖𝑓   𝑥𝑗  > 𝑑𝑗                                                                

 (9)  

 

𝐼𝑗 
(𝑥)

=

{
 
 

 
 

0         𝑖𝑓    𝑥𝑗 ≤ 0                 
𝑥𝑗−𝑑𝑗

𝑑𝑗+𝑏𝑗
 𝑖𝑓   0 < 𝑥𝑗 ≤ 𝑑𝑗               

                                                                                      
  0              𝑖𝑓   𝑥𝑗  > 𝑑𝑗                       

   (10) 

where 𝑑𝑗 , 𝑏𝑗 are integer numbers. 

4 Neutrosophic Optimization Model of Integer 

Programming Problem 

In our neutrosophic model we want to maximize the degree of acceptance 

and minimize the degree of rejection and indeterminacy of the neutrosophic 

objective function and constraints. Neutrosophic optimization model can be 

defined as: 

  𝑚𝑎𝑥𝑇(𝑥)       

  𝑚𝑖𝑛𝐹(𝑥) 

  𝑚𝑖𝑛𝐼(𝑥) 

  Subject to 

         𝑇(𝑋) ≥ 𝐹(𝑥)                          

          𝑇(𝑋) ≥ 𝐼(𝑥)  

          0 ≤ 𝑇(𝑋) + 𝐼(𝑥) + 𝐹(𝑥) ≤ 3     (11) 

  𝑇(𝑋),     𝐼(𝑋) ,    𝐹(𝑋) ≥ 0                                        

                  𝑥 ≥ 0  , integer, 

where 𝑇(𝑥). 𝐹(𝑥), 𝐼(𝑥)denotes the degree of acceptance, rejection and 

indeterminacy of 𝑥 respectively. 

The above problem is equivalent to the following: 

𝑚𝑎𝑥 𝛼,  𝑚𝑖𝑛 𝛽 , 𝑚𝑖𝑛 𝜃      
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Subject to       

𝛼 ≤ 𝑇(𝑥) 

𝛽 ≤ 𝐹(𝑥) 

𝜃 ≤ 𝐼(𝑥) 

           𝛼 ≥ 𝛽 

        𝛼 ≥ 𝜃 

0≤  𝛼 +  𝛽 +  𝜃 ≤ 3        (12) 

         𝑥 ≥ 0  , integer, 

where  𝛼 denotes the minimal acceptable degree, 𝛽 denote the maximal degree of 

rejection and 𝜃 denote maximal degree of indeterminacy. 

The neutrosophic optimization model can be changed into the following 

optimization model: 

𝑚𝑎𝑥(𝛼 −  𝛽 −  𝜃)               

Subject to 

𝛼 ≤ 𝑇(𝑥)        (13) 

𝛽 ≥ 𝐹(𝑥) 

𝜃 ≥ 𝐼(𝑥) 

 𝛼 ≥ 𝛽 

 𝛼 ≥ 𝜃s 

0≤  𝛼 +  𝛽 +  𝜃 ≤ 3 

𝛼, 𝛽, 𝜃 ≥ 0                                                                        

         𝑥 ≥ 0  , integer. 

The previous model can be written as: 

𝑚𝑖𝑛 (1-  𝛼) 𝛽 𝜃 

Subject to 

𝛼 ≤ 𝑇(𝑥) 

𝛽 ≥ 𝐹(𝑥) 

𝜃 ≥ 𝐼(𝑥) 
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 𝛼 ≥ 𝛽 

        𝛼 ≥ 𝜃 

0≤  𝛼 +  𝛽 +  𝜃 ≤ 3      (14) 

       𝑥 ≥ 0 , integer. 

5 The Algorithms for Solving Neutrosophic Integer 

Programming Problem (NIPP) 

5.1 Neutrosophic Cutting Plane Algorithm  

Step 1: Convert neutrosophic integer programming problem to its crisp 

model by using the following method: 

By defining a method to compare any two single valued triangular 

neutrosophic numbers which is based on the score function and the accuracy 

function. Let �̃� = 〈(𝑎1, 𝑏1, 𝑐1 ), 𝑤�̃� , 𝑢�̃� , 𝑦�̃� 〉 be a single valued triangular 

neutrosophic number, then 

𝑆(�̃�) =
1

16
[𝑎 + 𝑏 + 𝑐]×(2 + 𝜇�̃� − 𝑣�̃� − 𝜆�̃�)    (15) 

and  

𝐴(�̃�) =
1

16
[𝑎 + 𝑏 + 𝑐]×(2 + 𝜇�̃� − 𝑣�̃� + 𝜆�̃�)    (16) 

It is called the score and accuracy degrees of �̃�, respectively. The 

neutrosophic integer programming NIP can be represented by crisp programming 

model using truth membership, indeterminacy membership, and falsity 

membership functions and the score and accuracy degrees of ã, at equations (15) 

or (16). 

Step 2: Create the decision set which include the highest degree of truth-

membership and the least degree of falsity and indeterminacy memberships. 

Step 3:  Solve the problem as a linear programming problem and ignore 

integrality. 

 Step 4:  If the optimal solution is integer, then it’s right. Otherwise, go to 

the next step. 

Step 5: Generate a constraint which is satisfied by all integer solutions and 

add this constraint to the problem. 

Step 6: Go to step 1. 
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5.2 Neutrosophic Branch and Bound Algorithm  

Step 1: Convert neutrosophic integer programming problem to its crisp 

model by using Eq.16. 

Step 2: Create the decision set which include the highest degree of truth-

membership and the least degree of falsity and indeterminacy memberships. 

Step 3:  At the first node let the solution of linear programming model with 

integer restriction as an upper bound and the rounded-down integer solution as a 

lower bound. 

Step 4: For branching process, we select the variable with the largest 

fractional part.  Two constrains are obtained after the branching process, one for≤ 

and the other is ≥ constraint. 

Step 5: Create two nodes for the two new constraints. 

Step 6: Solve the model again, after adding new constraints at each node. 

Step 7: The optimal integer solution has been reached, if the feasible 

integer solution has the largest upper bound value of any ending node. Otherwise 

return to step 4. 

The previous algorithm is for a maximization model.  For a minimization 

model, the solution of linear programming problem with integer restrictions are 

rounded up and upper and lower bounds are reversed. 

6 Numerical Examples 

To measure the efficiency of our proposed model we solved many numerical 

examples. 

6.1 Illustrative Example #1 

𝑚𝑎𝑥    5̃𝑥1 + 3̃𝑥2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

     

4̃𝑥1 + 3̃𝑥2 ≤ 12̃

1̃𝑥1 + 3̃𝑥2 ≤ 6̃  
              𝑥1, 𝑥2 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

 

where  

5̃ =  〈(4,5,6 ), 0.8, 0.6, 0.4 〉 

3̃ =  〈(2.5,3,3.5 ), 0.75, 0.5, 0.3 〉 

4̃ =  〈(3.5,4,4.1 ), 1, 0.5, 0.0 〉 

3̃ =  〈(2.5,3,3.5 ), 0.75, 0.5, 0.25 〉 

1̃ =  〈(0,1,2 ), 1, 0.5, 0 〉 
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3̃ =  〈(2.8,3,3.2 ), 0.75, 0.5, 0.25 〉 

12̃ =  〈(11,12,13 ), 1, 0.5, 0 〉 

6̃ =  〈(5.5,6,7.5 ), 0.8, 0.6, 0.4 〉  

Then the neutrosophic model converted to the crisp model by using 

Eq.16.as follows: 

𝑚𝑎𝑥    5.6875𝑥1 + 3.5968𝑥2 

subject to 

     

4.3125𝑥1 + 3.625𝑥2 ≤ 14.375
0.2815𝑥1 + 3.925𝑥2 ≤ 7.6375

𝑥1, 𝑥2 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟
 

The optimal solution of the problem is 𝑥∗ = (3,0)  with optimal objective 

value 17.06250. 

6.2 Illustrative Example #2 

𝑚𝑎𝑥    25̃𝑥1 + 48̃𝑥2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

     

15𝑥1 + 30𝑥2 ≤ 45000
24𝑥1 + 6𝑥2 ≤ 24000
21𝑥1 + 14𝑥2 ≤ 28000
𝑥1, 𝑥2 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

 

where  

25̃ =  〈(19,25,33 ), 0.8,0.5,0 〉;  

48̃ =  〈(44,48,54 ), 0.9,0.5,0 〉 

Then the neutrosophic model converted to the crisp model as: 

max    27.8875𝑥1 + 55.3𝑥2 

subject to 

     

15𝑥1 + 30𝑥2 ≤ 45000
24𝑥1 + 6𝑥2 ≤ 24000
21𝑥1 + 14𝑥2 ≤ 28000
𝑥1, 𝑥2 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

 

The optimal solution of the problem is 𝑥∗ = (500,1250)  with optimal 

objective value 83068.75. 

6.3 Illustrative Example #3 

The owner of a machine shop is planning to expand by purchasing some 

new machines - presses and lathes. The owner has estimated that each press 

purchased will increase profit by $100 per day and each lathe will increase profit 

by $150 daily.  

The number of machines the owner can purchase is limited by the cost of 

the machines and the available floor space in the shop. The machine purchase 

prices and space requirements are as follows. 
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Table 1. Requirements of machines 

Machine Required Floor Space (ft2) Purchase Price 

Press 40̃ $8,000 

Lathe 70̃ $4,000 

 

The owner has a budget of $40,000 for purchasing machines and 200 

square feet of available floor space. The owner wants to know how many of each 

type of machine to purchase to maximize the daily increase in profit. 

The problem can be formulated as follows: 

max    100𝑥1 + 150𝑥2 

Subject to 

8,000𝑥1 + 4,000𝑥2 ≤ 40,000 

40̃𝑥1 + 70̃𝑥2 ≤ 40,000 

𝑥1, 𝑥2 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

Since 40̃= {(30,   40,   50);(0.7, 0.4, 0.3)} 

Since 70̃= {(50,   70,   120);(0.7, 0.4, 0.3)} 

By using Neutrosophic Branch and Bound Algorithm, then by converting 

neutrosophic integer programming parameter to its crisp values by using Eq.16 

then, 

max    100𝑥1 + 150𝑥2 

Subject to 

8,000𝑥1 + 4,000𝑥2 ≤ 40,000 

15𝑥1 + 30𝑥2 ≤ 40,000 

𝑥1, 𝑥2 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

We began the branch and bound method by first solving the problem as a 

regular linear programming model without integer restrictions, the result as 

follows: 

𝑥1 = 2.22, 𝑥2 = 5.56, And optimal objective value = 1,055.56. 

 

By applying branch and bound steps then, the upper and lower bounds at 

each node presented in Fig.2: 
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Fig.2. Branch and bound diagram with optimal solution at node 6 

The previous branch and bound diagram indicates that the optimal integer 

solution 𝑥1 = 1, 𝑥2 = 6  , has been reached at node 6 with optimal value =1000.  

7 Conclusions and Future Work 

In this chapter, we proposed an integer programming model based on 

neutrosophic environment, simultaneously considering the degrees of 

acceptance, indeterminacy and rejection of objectives, by proposed model for 

solving neutrosophic integer programming problems (NIPP). In the proposed 

model, we maximized the degrees of acceptance and minimized indeterminacy 

and rejection of objectives. NIPP was transformed into a crisp programming 

model using truth membership, indeterminacy membership, falsity membership 

and score functions. We also gave numerical examples to show the efficiency of 

the proposed method. As far as future directions are concerned, these will include 

studying the duality theory of integer programming problems based on 

Neutrosophics. 
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